01.12.2012 Views

Influence of Thermal Fluctuations on Interfacial Electron Transfer in ...

Influence of Thermal Fluctuations on Interfacial Electron Transfer in ...

Influence of Thermal Fluctuations on Interfacial Electron Transfer in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1. Introducti<strong>on</strong><br />

<str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Thermal</str<strong>on</strong>g> <str<strong>on</strong>g>Fluctuati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>Interfacial</strong> Electr<strong>on</strong><br />

<strong>Transfer</strong> <strong>in</strong> Functi<strong>on</strong>alized TiO2 Semic<strong>on</strong>ductors<br />

Sabas G. Abuabara, † Luis G. C. Rego, ‡ and Victor S. Batista* ,†<br />

C<strong>on</strong>tributi<strong>on</strong> from the Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry, Yale UniVersity, P.O. Box 208107,<br />

New HaVen, C<strong>on</strong>necticut 06520-8107, and Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, UniVersidade Federal de<br />

Santa Catar<strong>in</strong>a, Florianopolis, SC 88040-900, Brazil<br />

Received August 15, 2005; E-mail: victor.batista@yale.edu<br />

Abstract: The <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> thermal fluctuati<strong>on</strong>s <strong>on</strong> the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terfacial electr<strong>on</strong> transfer <strong>in</strong> sensitized<br />

TiO2-anatase semic<strong>on</strong>ductors is <strong>in</strong>vestigated by comb<strong>in</strong><strong>in</strong>g ab <strong>in</strong>itio DFT molecular dynamics simulati<strong>on</strong>s<br />

and quantum dynamics propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transient electr<strong>on</strong>ic excitati<strong>on</strong>s. It is shown that thermal nuclear<br />

fluctuati<strong>on</strong>s speed up the underly<strong>in</strong>g <strong>in</strong>terfacial electr<strong>on</strong> transfer dynamics by <strong>in</strong>troduc<strong>in</strong>g n<strong>on</strong>adiabatic<br />

transiti<strong>on</strong>s between electr<strong>on</strong> acceptor states, localized <strong>in</strong> the vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g> the photoexcited adsorbate, and<br />

delocalized states extended throughout the semic<strong>on</strong>ductor material, creat<strong>in</strong>g additi<strong>on</strong>al relaxati<strong>on</strong> pathways<br />

for carrier diffusi<strong>on</strong>. Furthermore, it is shown that room-temperature thermal fluctuati<strong>on</strong>s reduce the<br />

anisotropic character <str<strong>on</strong>g>of</str<strong>on</strong>g> charge diffusi<strong>on</strong> al<strong>on</strong>g different directi<strong>on</strong>s <strong>in</strong> the anatase crystal and make similar<br />

the rates for electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> from adsorbate states <str<strong>on</strong>g>of</str<strong>on</strong>g> different character. The reported results are<br />

particularly relevant to the understand<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature effects <strong>on</strong> surface charge separati<strong>on</strong> mechanisms<br />

<strong>in</strong> molecular-based photo-optic devices.<br />

<strong>Interfacial</strong> electr<strong>on</strong> transfer <strong>in</strong> semic<strong>on</strong>ductor materials plays<br />

a central role <strong>in</strong> a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> photo<strong>in</strong>duced reacti<strong>on</strong>s <strong>in</strong><br />

electrochemistry, 1-5 photocatalysis, 6,7 imag<strong>in</strong>g, 8 as well as <strong>in</strong><br />

practical applicati<strong>on</strong>s to photo-optic devices for solar energy<br />

c<strong>on</strong>versi<strong>on</strong> cells 9-12 and artificial photosynthesis. 13 The elementary<br />

reacti<strong>on</strong> step <strong>in</strong>volves electr<strong>on</strong> transfer from an adsorbate<br />

molecule <strong>in</strong>to the semic<strong>on</strong>ductor host substrate, a process that<br />

rema<strong>in</strong>s poorly understood despite significant research effort<br />

reported <strong>in</strong> recent years, <strong>in</strong>clud<strong>in</strong>g experimental, 14-29 com-<br />

† Yale University.<br />

‡ Universidade Federal de Santa Catar<strong>in</strong>a.<br />

(1) Miller, R. J. D.; McLend<strong>on</strong>, G.; Nozik, A. J.; Schimickler, W.; Willig, F.<br />

Surface Electr<strong>on</strong>-<strong>Transfer</strong> Processes; VCH: New York, 1995.<br />

(2) Hagfeldt, A.; Grätzel, M. Chem. ReV. 1995, 95, 49-68.<br />

(3) Nozik, A. J.; Memm<strong>in</strong>g, R. J. Phys. Chem. 1996, 100, 13061-13078.<br />

(4) Kamat, P.; Meisel, D., Eds. Semic<strong>on</strong>ductor Nanoclusters - Physical,<br />

Chemical and Catalytic Aspects; Studies <strong>in</strong> Surface Science and Catalysis<br />

103; Elsevier: Amsterdam, 1997.<br />

(5) Anders<strong>on</strong>, N. A.; Lian, T. Q. Annu. ReV. Phys. Chem. 2005, 56, 491-519.<br />

(6) Zhao, W.; Ma, W. H.; Chen, C. C.; Zhao, J. C.; Shuai, Z. G. J. Am. Chem.<br />

Soc. 2004, 126, 4782-4783.<br />

(7) Huang, W. Y.; Yu, Y. Prog. Chem. 2005, 17, 242-247.<br />

(8) Jacobs<strong>on</strong>, K.; Jacobs<strong>on</strong>, R. E. Imag<strong>in</strong>g Systems: Mechanisms and Applicati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Established and New PhotosensitiVe Processes; John Wiley<br />

& S<strong>on</strong>s: New York, 1976.<br />

(9) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737-740.<br />

(10) Grätzel, M. Nature 2001, 414, 338-344.<br />

(11) Hagfeldt, A.; Grätzel, M. Acc. Chem. Res. 2000, 33, 269-277.<br />

(12) Moser, J. E.; B<strong>on</strong>nôte, P.; Grätzel, M. Coord. Chem. ReV. 1998, 171, 245-<br />

250.<br />

(13) Fujishima, A.; H<strong>on</strong>da, K. Nature 1972, 238, 37-38.<br />

(14) Asbury, J. B.; Ell<strong>in</strong>gs<strong>on</strong>, R. J.; Ghosh, H. N.; Ferrere, S.; Nozik, A. J.;<br />

Lian, T. Q. J. Phys. Chem. B 1999, 103, 3110-3119.<br />

(15) Asbury, J. B.; Hao, E.; Wang, Y. Q.; Ghosh, H. N.; Lian, T. Q. J. Phys.<br />

Chem. B 2001, 105, 4545-4557.<br />

(16) Asbury, J. B.; Anders<strong>on</strong>, N. A.; Hao, E.; Ai, X.; Lian, T. Q. J. Phys. Chem.<br />

B 2003, 107, 7376-7386.<br />

(17) Anders<strong>on</strong>, N. A.; Ai, X.; Lian, T. Q. J. Phys. Chem. B 2003, 107, 14414-<br />

14421.<br />

Published <strong>on</strong> Web 12/02/2005<br />

putati<strong>on</strong>al, 30-45 and theoretical 46-53 studies. In particular, the<br />

<strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> thermal fluctuati<strong>on</strong>s <strong>on</strong> the underly<strong>in</strong>g electr<strong>on</strong><br />

(18) Bauer, C.; Boschloo, G.; Mukhtar, E.; A., H. Int. J. Photoenergy 2002, 1,<br />

17-20.<br />

(19) Huber, R.; Moser, J.-E.; Grätzel, M.; Wachtveitl, J. J. Phys. Chem. B 2002,<br />

106, 6494-6499.<br />

(20) Schnadt, J.; Brühwiler, P. A.; Patthey, L.; O’Shea, J. N.; Södergren, S.;<br />

Odelius, M.; Ahuja, R.; Karis, O.; Bässler, M.; Perss<strong>on</strong>, P.; Siegbahn, H.;<br />

Lunell, S.; Ma˚rtenss<strong>on</strong>, N. Nature 2002, 418, 620-623.<br />

(21) Schnadt, J.; O’Shea, J. N.; Patthey, L.; Kjeldgaard, L.; A° hlund, J.; Nils<strong>on</strong>,<br />

K.; Schiessl<strong>in</strong>g, J.; Krempasky´ J.; Shi, M.; Karis, O.; Glover, C.; Siegbahn,<br />

H.; Ma˚rtenss<strong>on</strong>, N.; Bru¨hwiler, P. A. J. Chem. Phys. 2003, 119, 12462-<br />

12472.<br />

(22) Schnadt, J.; Henn<strong>in</strong>gss<strong>on</strong>, A.; Anderss<strong>on</strong>, M. P.; Karlss<strong>on</strong>, P. G.; Uvdal,<br />

P.; Siegbahn, H.; Brühwiler, P. A.; Sandell, A. J. Phys. Chem. B 2004,<br />

108, 3114-3122.<br />

(23) Willig, F.; Zimmermann, C.; Ramakrishna, S.; Storck, W. Electrochem.<br />

Acta 2000, 45, 4565-4575.<br />

(24) Zimmermann, C.; Willig, F.; Ramakrishna, S.; Burfe<strong>in</strong>dt, B.; Pett<strong>in</strong>ger,<br />

B.; Eichberger, R.; Storck, W. J. Phys. Chem. B 2001, 105, 9245-9253.<br />

(25) Hannappel, T.; Burfe<strong>in</strong>dt, B.; Storck, W.; Willig, F. J. Phys. Chem. B 1997,<br />

101, 6799-6802.<br />

(26) Ramakrishna, G.; S<strong>in</strong>gh, A. K.; Palit, D. K.; Ghosh, H. N. J. Phys. Chem<br />

B 2004, 108, 1701-1707.<br />

(27) Ramakrishna, G.; S<strong>in</strong>gh, A. K.; Palit, D. K.; Ghosh, H. N. J. Phys. Chem<br />

B 2004, 108, 4775-4783.<br />

(28) Ramakrishna, G.; S<strong>in</strong>gh, A. K.; Palit, D. K.; Ghosh, H. N. J. Phys. Chem<br />

B 2004, 108, 12489-12496.<br />

(29) Moser, J.; Punchihewa, S.; Infelta, P. P.; Grätzel, M. Langmuir 1991, 7,<br />

3012-3018.<br />

(30) Perss<strong>on</strong>, P.; Lunell, S.; Ojamäe L. Chem. Phys. Lett. 2002, 364, 469-474.<br />

(31) Perss<strong>on</strong>, P.; Bergstrom, R.; Lunell, S. J. Phys. Chem. B 2000, 104, 10348-<br />

10351.<br />

(32) Perss<strong>on</strong>, P.; Lundqvist, M. J. J. Phys. Chem. B 2005, 109, 11918-11924.<br />

(33) Duncan, W. R.; Stier, W. M.; Prezhdo, O. V. J. Am. Chem. Soc. 2005,<br />

127, 7941-7951.<br />

(34) Duncan, W. R.; Prezhdo, O. V. J. Phys. Chem. B 2005, 109, 365-373.<br />

(35) Smith, B. B.; Nozik, A. J. J. Phys. Chem. B 1999, 103, 9915-9932.<br />

(36) Smith, B. B.; Nozik, A. J. Chem. Phys. 1996, 205, 47-72.<br />

(37) Stier, W.; Prezhdo, O. V. J. Mol. Struct. (THEOCHEM) 2003, 630, 33-<br />

43.<br />

(38) Stier, W.; Prezhdo, O. V. J. Phys. Chem. B 2002, 106, 8047-8054.<br />

(39) Stier, W.; Duncan, W. R.; Prezhdo, O. V. AdV. Mater. 2004, 16, 240-<br />

244.<br />

(40) Thoss, M.; K<strong>on</strong>dov, I.; Wang, H. B. Chem. Phys. 2004, 304, 169-181.<br />

(41) Rego, L. G. C.; Batista, V. S. J. Am. Chem. Soc. 2003, 125, 7989-7997.<br />

18234 9 J. AM. CHEM. SOC. 2005, 127, 18234-18242 10.1021/ja055185u CCC: $30.25 © 2005 American Chemical Society


<str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Thermal</str<strong>on</strong>g> <str<strong>on</strong>g>Fluctuati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> IET <strong>in</strong> TiO2<br />

Figure 1. Density <str<strong>on</strong>g>of</str<strong>on</strong>g> states <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2-anatase functi<strong>on</strong>alized with catechol.<br />

The diagram shows the energy level <str<strong>on</strong>g>of</str<strong>on</strong>g> the adsorbate surface complex, the<br />

TiO2 valence and c<strong>on</strong>ducti<strong>on</strong> bands, and a schematic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> three<br />

possible <strong>in</strong>jecti<strong>on</strong> processes: direct adsorbate-substrate charge transfer<br />

excitati<strong>on</strong> (arrow 1); vertical photoexcitati<strong>on</strong> process (arrow 2) and subsequent<br />

electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> <strong>in</strong>to the c<strong>on</strong>ducti<strong>on</strong> band <str<strong>on</strong>g>of</str<strong>on</strong>g> the host material<br />

(curved arrow); and populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the LUMO as part <str<strong>on</strong>g>of</str<strong>on</strong>g> a MLCT state<br />

(arrow 3).<br />

<strong>in</strong>jecti<strong>on</strong> time scale and relaxati<strong>on</strong> mechanism has yet to be<br />

understood at the quantitative level. 17,21,22,37-39,47 This paper<br />

addresses the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> thermal nuclear moti<strong>on</strong> <strong>on</strong> the <strong>in</strong>terfacial<br />

electr<strong>on</strong> transfer dynamics <strong>in</strong> TiO2-anatase semic<strong>on</strong>ductors<br />

functi<strong>on</strong>alized with catechol, an aromatic l<strong>in</strong>ker <str<strong>on</strong>g>of</str<strong>on</strong>g> great<br />

<strong>in</strong>terest, 54-56 which has been the subject <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental 29,57-60<br />

and theoretical 34,41-43 studies.<br />

TiO2-anatase is an <strong>in</strong>expensive, n<strong>on</strong>toxic, and photostable<br />

semic<strong>on</strong>ductor material. However, its wide band gap (∼3.2 eV)<br />

limits the efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> the native semic<strong>on</strong>ductor <strong>in</strong> direct<br />

applicati<strong>on</strong>s to solar energy phototransducti<strong>on</strong> devices, a limitati<strong>on</strong><br />

comm<strong>on</strong>ly overcome by surface sensitizati<strong>on</strong>. Surface<br />

complexes, formed up<strong>on</strong> adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic or <strong>in</strong>organic<br />

molecules, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten <strong>in</strong>troduce additi<strong>on</strong>al electr<strong>on</strong>ic states with<strong>in</strong><br />

the semic<strong>on</strong>ductor band gap (see energy diagram <strong>in</strong> Figure 1).<br />

Such states sensitize the host material for photoabsorpti<strong>on</strong> at<br />

(42) Rego, L. G. C.; Abuabara, S. G.; Batista, V. S. J. Chem. Phys. 2005, 122,<br />

154709 (1-6).<br />

(43) Rego, L. G. C.; Abuabara, S. G.; Batista, V. S. Quantum Info. Comput.<br />

2005, 5, 318-334.<br />

(44) Redfern, P. C.; Zapol, P.; Curtiss, L. A.; Rajh, T.; Thurnauer, M. C. J.<br />

Phys. Chem. B 2003, 107, 11419-11427.<br />

(45) De Angelis, F.; Tilocca, A.; Sell<strong>on</strong>i, A. J. Am. Chem. Soc. 2004, 126,<br />

15024-15025.<br />

(46) Ramakrishna, S.; Willig, F. J. Phys. Chem. B 2000, 104, 68-77.<br />

(47) Ramakrishna, S.; Willig, F.; May, V. J. Chem. Phys. 2001, 115, 2743-<br />

2756.<br />

(48) Boroda, Y. G.; Voth, G. A. J. Chem. Phys. 1996, 104, 6168-6183.<br />

(49) Boroda, Y. G.; Calhoun, A.; Voth, G. A. J. Chem. Phys. 1997, 107, 8940-<br />

8954.<br />

(50) Kornyshev, A. A.; Schmickler, W. J. Electroanal. Chem. 1985, 185, 253-<br />

261.<br />

(51) Peterss<strong>on</strong>, A.; Ratner, M.; Karlss<strong>on</strong>, H. O. J. Phys. Chem. B 2000, 104,<br />

8498-8502.<br />

(52) Gao, Y. Q.; Georgievskii, Y.; Marcus, R. A. J. Chem. Phys. 2000, 112,<br />

3358-3369.<br />

(53) Gao, Y. Q.; Marcus, R. A. J. Chem. Phys. 2000, 113, 6351-6360.<br />

(54) Rice, C. R.; Ward, M. D.; Nazeerudd<strong>in</strong>, M. K.; Grätzel, M. New J. Chem.<br />

2000, 24, 651-652.<br />

(55) Mosurkal, R.; He, J.-A.; Yang, K.; Samuels<strong>on</strong>, L. A.; Kumar, J. J.<br />

Photochem. Photobiol. A 2004, 168, 191-196.<br />

(56) Galopp<strong>in</strong>i, E. Coord. Chem. ReV. 2004, 248, 1283-1297.<br />

(57) Gerhards, M.; Perl, W.; Schumm, S.; Henrichs, U.; Jacoby, C.; Kle<strong>in</strong>ermanns,<br />

K. J. Chem. Phys. 1996, 104, 9362-9375.<br />

(58) Rodriguez, R.; Blesa, M. A.; Regazz<strong>on</strong>i, A. E. J. Colloid Interface Sci.<br />

1996, 177, 122-131.<br />

(59) Liu, Y.; Dadap, J. I.; Zimdars, D.; Eisenthal, K. B. J. Phys. Chem. B 1999,<br />

103, 2480-2486.<br />

(60) Wang, Y. H.; Hang, K.; Anders<strong>on</strong>, N. A.; Lian, T. Q. J. Phys. Chem. B<br />

lower frequencies, lead<strong>in</strong>g to photo<strong>in</strong>duced <strong>in</strong>terfacial electr<strong>on</strong><br />

transfer when there is a suitable energy match between the<br />

photoexcited state and the manifold <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>ic states <strong>in</strong> the<br />

c<strong>on</strong>ducti<strong>on</strong> band <str<strong>on</strong>g>of</str<strong>on</strong>g> the semic<strong>on</strong>ductor. The efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>to-current<br />

c<strong>on</strong>versi<strong>on</strong> thus relies up<strong>on</strong> optimal c<strong>on</strong>diti<strong>on</strong>s for<br />

the underly<strong>in</strong>g electr<strong>on</strong> transfer mechanism as well as <strong>on</strong> the<br />

rati<strong>on</strong>al design <str<strong>on</strong>g>of</str<strong>on</strong>g> dyes and l<strong>in</strong>ker photosensitizers.<br />

Catechol has raised significant experimental <strong>in</strong>terest as a<br />

prototype <str<strong>on</strong>g>of</str<strong>on</strong>g> an aromatic l<strong>in</strong>ker up<strong>on</strong> which a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

molecular structures can be attached for specific functi<strong>on</strong>alities,<br />

<strong>in</strong>clud<strong>in</strong>g applicati<strong>on</strong>s to photovoltaic devices with high <strong>in</strong>cident<br />

phot<strong>on</strong>-to-current c<strong>on</strong>versi<strong>on</strong> efficiencies. 54-56 As a model<br />

sensitizer, catechol lowers the TiO2 absorpti<strong>on</strong> threshold from<br />

370 to 600 nm, with a shoulder peak<strong>in</strong>g around 420 nm due to<br />

a direct charge transfer excitati<strong>on</strong> from the catechol HOMO to<br />

the c<strong>on</strong>ducti<strong>on</strong> band 29,31,34,44,45,58-60 (see arrow 1 <strong>in</strong> Figure 1).<br />

“Vertical” transiti<strong>on</strong>s to higher-energy electr<strong>on</strong>ic states <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

surface complexes are also allowed transiti<strong>on</strong>s 31,34,60 and corresp<strong>on</strong>d<br />

closely to the catechol HOMO-LUMO and HOMO-<br />

(LUMO+1) states (see arrow 2 <strong>in</strong> Figure 1). As po<strong>in</strong>ted out by<br />

Grätzel, Nozik, Lian, and others, 2,14,15,28,55 efficient photo<strong>in</strong>jecti<strong>on</strong><br />

mechanisms from larger organometallic dye molecules<br />

<strong>in</strong>volve reacti<strong>on</strong> pathways via these higher electr<strong>on</strong>ic states <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the aromatic l<strong>in</strong>ker (i.e., metal-to-ligand charge transfer states<br />

(MLCTs) <strong>in</strong>volv<strong>in</strong>g the π* levels; see arrow 3 <strong>in</strong> Figure 1).<br />

Thus <strong>in</strong> focus<strong>in</strong>g <strong>on</strong> photo<strong>in</strong>jecti<strong>on</strong> mechanisms from the excited<br />

electr<strong>on</strong>ic states <str<strong>on</strong>g>of</str<strong>on</strong>g> catechol (arrows 2 and 3), this paper<br />

exam<strong>in</strong>es the process <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> through catechol <strong>in</strong><br />

its likely applicati<strong>on</strong> to the design <str<strong>on</strong>g>of</str<strong>on</strong>g> an efficient phototransductive<br />

device. In particular, this work addresses the <strong>in</strong>fluence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> thermal nuclear moti<strong>on</strong> <strong>on</strong> the time scales and mechanisms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terfacial electr<strong>on</strong> transfer, complement<strong>in</strong>g previous studies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> catechol/TiO2-anatase semic<strong>on</strong>ductors 41-43 and recent theoretical<br />

and experimental work address<strong>in</strong>g the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terfacial<br />

electr<strong>on</strong> transfer <strong>in</strong> other functi<strong>on</strong>alized semic<strong>on</strong>ductor materials.<br />

17,21,22,28,33,37-39 However, the reported results are expected<br />

to stimulate the development <str<strong>on</strong>g>of</str<strong>on</strong>g> femtosec<strong>on</strong>d-pulse spectroscopic<br />

measurements that might directly probe the electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong><br />

dynamics from the native excited states <str<strong>on</strong>g>of</str<strong>on</strong>g> catechol (arrow 2),<br />

even <strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> compet<strong>in</strong>g direct catechol-TiO2 charge<br />

transfer excitati<strong>on</strong>s (arrow 1) and possibly str<strong>on</strong>ger (depend<strong>in</strong>g<br />

<strong>on</strong> substrate surface coverage) semic<strong>on</strong>ductor band-to-band<br />

transiti<strong>on</strong>s.<br />

<strong>Interfacial</strong> electr<strong>on</strong> transfer <strong>in</strong> functi<strong>on</strong>alized semic<strong>on</strong>ductors<br />

is typically completed with<strong>in</strong> the subpicosec<strong>on</strong>d time scale, as<br />

reported for various different systems. 5,19,20,22,25,26 Reacti<strong>on</strong> times<br />

as short as a few femtosec<strong>on</strong>ds have also been reported for<br />

systems, such as TiO2 functi<strong>on</strong>alized with (bi-)is<strong>on</strong>icot<strong>in</strong>ic<br />

acid, 20,21 alizar<strong>in</strong>, 19,33 and catechol. 41 There is also substantial<br />

experimental evidence that the primary electr<strong>on</strong> transfer event<br />

<strong>in</strong> dye-sensitized semic<strong>on</strong>ductors occurs much faster than<br />

vibrati<strong>on</strong>al relaxati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the photoexcited chromophore, 17,22-24,27<br />

suggest<strong>in</strong>g electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> mechanisms driven by electr<strong>on</strong>ic<br />

coupl<strong>in</strong>g rather than by nuclear reorganizati<strong>on</strong>al moti<strong>on</strong>. 16,17,20,22,46<br />

The quantitative descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terfacial electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> thus<br />

seems to be bey<strong>on</strong>d the capabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> the traditi<strong>on</strong>al electr<strong>on</strong><br />

transfer theories, based <strong>on</strong> weak coupl<strong>in</strong>g schemes, where<br />

electr<strong>on</strong> transfer rates are determ<strong>in</strong>ed by the time scale <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclear<br />

reorganizati<strong>on</strong>al moti<strong>on</strong>. 61-63 Theoretical extensi<strong>on</strong>s to the<br />

2003, 107, 9434-9440. (61) Newt<strong>on</strong>, M. D. Chem. ReV. 1991, 91, 767-792.<br />

ARTICLES<br />

J. AM. CHEM. SOC. 9 VOL. 127, NO. 51, 2005 18235


ARTICLES Abuabara et al.<br />

str<strong>on</strong>g electr<strong>on</strong>ic coupl<strong>in</strong>g (adiabatic) limit, typically based <strong>on</strong><br />

the Anders<strong>on</strong>-Newns Hamilt<strong>on</strong>ian, have been developed and<br />

applied to the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metal electrodes and semic<strong>on</strong>ductor/<br />

liquid <strong>in</strong>terfaces. 46-50 While these models have provided valuable<br />

<strong>in</strong>sight, applicati<strong>on</strong>s to electr<strong>on</strong> transfer <strong>in</strong> dye-sensitized<br />

semic<strong>on</strong>ductor nanostructures rely up<strong>on</strong> simplify<strong>in</strong>g assumpti<strong>on</strong>s<br />

with regards to the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>ic structure and<br />

coupl<strong>in</strong>g model. 23,24,40 Ideally, however, <strong>on</strong>e would like to<br />

implement more rigorous theoretical descripti<strong>on</strong>s fac<strong>in</strong>g the<br />

challenge <str<strong>on</strong>g>of</str<strong>on</strong>g> model<strong>in</strong>g both the electr<strong>on</strong>ic structure and the<br />

nuclear relaxati<strong>on</strong> explicitly <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> fully atomistic simulati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the underly<strong>in</strong>g electr<strong>on</strong> transfer dynamics.<br />

Previous computati<strong>on</strong>al studies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terfacial electr<strong>on</strong> transfer<br />

<strong>in</strong> catechol/TiO2-anatase nanostructures were focused <strong>on</strong> the<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ultrafast <strong>in</strong>terfacial electr<strong>on</strong> transfer under vacuum<br />

and cryogenic temperature c<strong>on</strong>diti<strong>on</strong>s. 41 These studies found that<br />

the primary charge separati<strong>on</strong> event is completed <strong>in</strong> τ = 6 fs,<br />

even when there is negligible participati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thermal nuclear<br />

fluctuati<strong>on</strong>s at cryogenic temperature. The ultrafast charge<br />

separati<strong>on</strong> process is followed by an anisotropic delocalizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>jected charge throughout the nanostructure, a diffusi<strong>on</strong>al<br />

process that can be up to an order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude slower al<strong>on</strong>g<br />

the [-101] directi<strong>on</strong> than al<strong>on</strong>g the [010] or the [101]<br />

crystallographic directi<strong>on</strong>s <strong>in</strong> the anatase crystal. Furthermore,<br />

the overall electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> rates were found to be str<strong>on</strong>gly<br />

dependent <strong>on</strong> the character <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>itially populated electr<strong>on</strong>ic<br />

state <str<strong>on</strong>g>of</str<strong>on</strong>g> the adsorbate molecule s<strong>in</strong>ce the nodal planes <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

native catechol molecular orbitals determ<strong>in</strong>e their respective<br />

coupl<strong>in</strong>g strengths with host substrate states and, c<strong>on</strong>sequently,<br />

the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> reacti<strong>on</strong> path. 41<br />

The ma<strong>in</strong> focus <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper is to address the <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

room-temperature nuclear fluctuati<strong>on</strong>s <strong>on</strong> the electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong><br />

dynamics <strong>in</strong> catechol/TiO2-anatase semic<strong>on</strong>ductors, with emphasis<br />

<strong>on</strong> the potential effect <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclear moti<strong>on</strong> <strong>on</strong> both the<br />

reacti<strong>on</strong> rates and electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> mechanisms found earlier<br />

at lower temperature. 41 The reported simulati<strong>on</strong>s show that<br />

room-temperature thermal fluctuati<strong>on</strong>s create new pathways for<br />

electr<strong>on</strong> relaxati<strong>on</strong> at the sensitized semic<strong>on</strong>ductor <strong>in</strong>terface. The<br />

result<strong>in</strong>g effect is a net speed-up <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> and a<br />

manifestly isotropic diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>jected charge al<strong>on</strong>g the<br />

semic<strong>on</strong>ductor host substrate.<br />

The implemented methodology adopts a mixed quantumclassical<br />

approach based <strong>on</strong> Ehrenfest dynamics, with a classical<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the nuclear moti<strong>on</strong> evolv<strong>in</strong>g <strong>on</strong> an effective mean<br />

field potential. Electr<strong>on</strong>ic degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom are described by<br />

a time-dependent extended Hückel Hamilt<strong>on</strong>ian, 42 which is<br />

particularly suited to <strong>in</strong>vestigate n<strong>on</strong>adiabatic dynamics <strong>in</strong> a<br />

dense manifold <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>ic states, provid<strong>in</strong>g <strong>in</strong>sight <strong>on</strong> the<br />

role that electr<strong>on</strong>ic state symmetry and chemical b<strong>on</strong>d<strong>in</strong>g play<br />

<strong>in</strong> the underly<strong>in</strong>g relaxati<strong>on</strong> mechanism. 41 C<strong>on</strong>diti<strong>on</strong>s under<br />

which quantum relaxati<strong>on</strong> dynamics can be approximated by<br />

such quantum-classical treatments have been <strong>in</strong>vestigated for<br />

many years. 37,38,42,43,64-75 In particular, quantum coherences have<br />

(62) Barbara, P. F.; Meyer, T. J.; Ratner, M. A. J. Phys. Chem. 1996, 100,<br />

13148-13168.<br />

(63) Marcus, R. A.; Sut<strong>in</strong>, N. Biochim. Biophys. Acta 1985, 811, 265-322.<br />

(64) Joos, E.; Zeh, H. D.; Kiefer, C.; Giul<strong>in</strong>i, D.; Kupsch, J.; Stamatescu, I.-O.<br />

Decoherence and the Appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> a Classical World <strong>in</strong> Quantum Theory;<br />

Spr<strong>in</strong>ger-Verlag: Berl<strong>in</strong>, Heidelberg, 1996.<br />

(65) Tully, J. C.; Prest<strong>on</strong>, R. K. J. Chem. Phys. 1971, 55, 562-572.<br />

(66) Tully, J. C. J. Chem. Phys. 1990, 93, 1061-1071.<br />

(67) Hammes-Schiffer, S.; Tully, J. C. J. Chem. Phys. 1994, 101, 4657-4667.<br />

(68) Hammes-Schiffer, S.; Tully J C. J. Chem. Phys. 1995, 103, 8528-8537.<br />

18236 J. AM. CHEM. SOC. 9 VOL. 127, NO. 51, 2005<br />

been studied <strong>in</strong> similar composite models where a quantum<br />

subsystem (electr<strong>on</strong>ic state) is coupled to a buffer subsystem<br />

(nuclear coord<strong>in</strong>ates) which is directly coupled to a thermal bath.<br />

It has been shown that the applicability <str<strong>on</strong>g>of</str<strong>on</strong>g> these mixed quantumclassical<br />

approaches, where the buffer subsystem is treated<br />

classically, is valid so l<strong>on</strong>g as the quantum subsystem decoheres<br />

slowly and the buffer quickly. 75 In the catechol/anatase system<br />

studied here, it is found that the most relevant degrees <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

freedom to the underly<strong>in</strong>g electr<strong>on</strong>ic relaxati<strong>on</strong> are those <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

i<strong>on</strong>ic coord<strong>in</strong>ates <strong>in</strong> the semic<strong>on</strong>ductor crystal. In c<strong>on</strong>trast to<br />

vibrati<strong>on</strong>al states <str<strong>on</strong>g>of</str<strong>on</strong>g> the adsorbate chromophore, which may be<br />

prepared <strong>in</strong> coherent superpositi<strong>on</strong> states, the i<strong>on</strong>ic degrees <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

freedom are presumed to be <strong>in</strong>itially at equilibrium with a<br />

thermal bath and possess no particular phase relati<strong>on</strong>, that is, a<br />

classical approximati<strong>on</strong> for their dynamics is valid.<br />

The paper is organized as follows. The Methods secti<strong>on</strong><br />

(secti<strong>on</strong> 2) describes the preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the catechol/TiO2-anatase<br />

model system and the computati<strong>on</strong>al methodology. Details <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the molecular dynamics simulati<strong>on</strong>s are discussed <strong>in</strong> secti<strong>on</strong> 2.1.<br />

A descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>ic Hamilt<strong>on</strong>ian is <strong>in</strong>cluded <strong>in</strong> secti<strong>on</strong><br />

2.2. Secti<strong>on</strong> 2.3. describes the simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>ic <strong>in</strong>jecti<strong>on</strong>.<br />

Results are presented <strong>in</strong> secti<strong>on</strong>s 3.1. and 3.2. A discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the results is presented <strong>in</strong> secti<strong>on</strong> 3.3. F<strong>in</strong>ally, secti<strong>on</strong> 4<br />

summarizes and c<strong>on</strong>cludes.<br />

2. Methods<br />

2.1. Computati<strong>on</strong>al Model. This secti<strong>on</strong> outl<strong>in</strong>es <strong>on</strong>ly briefly the<br />

methodology and the models implemented for the present study <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

functi<strong>on</strong>alized TiO2 nanostructures. A more thorough descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the model, <strong>in</strong>clud<strong>in</strong>g details c<strong>on</strong>cern<strong>in</strong>g the ab <strong>in</strong>itio Molecular<br />

Dynamics (MD) simulati<strong>on</strong>s and the analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> structural and electr<strong>on</strong>ic<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the models, can be found <strong>in</strong> previous work. 41-43<br />

The unit cell model system is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> 32 [TiO2] units arranged<br />

accord<strong>in</strong>g to the anatase crystall<strong>in</strong>e structure, 76 where the (101) surface<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the crystal is functi<strong>on</strong>alized with catechol (see Figure 2). The surface<br />

dangl<strong>in</strong>g b<strong>on</strong>ds are saturated with hydrogen capp<strong>in</strong>g atoms <strong>in</strong> order to<br />

quench the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface states, 77 avoid<strong>in</strong>g unphysical low<br />

coord<strong>in</strong>ati<strong>on</strong> numbers. Periodic boundary c<strong>on</strong>diti<strong>on</strong>s are imposed with<br />

a vacuum spacer between slabs, mak<strong>in</strong>g negligible the <strong>in</strong>teracti<strong>on</strong><br />

between dist<strong>in</strong>ct surfaces <strong>in</strong> the <strong>in</strong>f<strong>in</strong>itely periodic model system.<br />

Geometry relaxati<strong>on</strong> as well as thermalizati<strong>on</strong> and equilibrati<strong>on</strong> under<br />

c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> room temperature and c<strong>on</strong>stant volume are performed<br />

by us<strong>in</strong>g the Vienna ab <strong>in</strong>itio Simulati<strong>on</strong> Package (VASP/VAMP). 78,79<br />

The result<strong>in</strong>g structural relaxati<strong>on</strong> next to the adsorbate describes the<br />

underly<strong>in</strong>g surface rec<strong>on</strong>structi<strong>on</strong> due to functi<strong>on</strong>alizati<strong>on</strong>, 41,80 a process<br />

that is partially resp<strong>on</strong>sible for quench<strong>in</strong>g the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface states<br />

deep with<strong>in</strong> the semic<strong>on</strong>ductor band gap. 77<br />

The VASP/VAMP package implements the Density Functi<strong>on</strong>al<br />

Theory (DFT) <strong>in</strong> a plane wave basis set, mak<strong>in</strong>g use <str<strong>on</strong>g>of</str<strong>on</strong>g> the Perdew-<br />

Wang 81 generalized gradient approximati<strong>on</strong> for the exchange-correlati<strong>on</strong><br />

(69) Bittner, E. R.; Rossky, P. J. J. Chem. Phys. 1995, 103, 8130-8143.<br />

(70) Prezhdo, O. V.; Rossky, P. J. Phys. ReV. Lett. 1998, 81, 5294-5297.<br />

(71) Coker, D. F.; Xiao, L. J. Chem. Phys. 1995, 102, 496-510.<br />

(72) Batista, V. S.; Coker, D. F. J. Chem. Phys. 1996, 105, 4033-4054.<br />

(73) Batista, V. S.; Coker, D. F. J. Chem. Phys. 1997, 106, 7102-7116.<br />

(74) Elola, M. D.; Estr<strong>in</strong>, D. A.; Laria, D. J. Phys. Chem. A 1999, 103, 5105-<br />

5112.<br />

(75) Shiokawa, K.; Kapral, R. J. Chem. Phys. 2002, 117, 7852-7863.<br />

(76) Vittad<strong>in</strong>i, A.; Sell<strong>on</strong>i, A.; Rotz<strong>in</strong>ger, F. P.; Grätzel, M. J. Phys. Chem. B<br />

2000, 104, 1300-1306.<br />

(77) M<strong>on</strong>ch, W. Semic<strong>on</strong>ductor Surfaces and Interfaces; Spr<strong>in</strong>ger Series <strong>in</strong><br />

Surface Sciences Spr<strong>in</strong>ger: Berl<strong>in</strong>, 1993; Vol. 26.<br />

(78) Kresse, G.; Furthmuller, J. Phys. ReV. B1996 54, 11169-11186 (http://<br />

cms.mpi.univie.ac.at/vasp/).<br />

(79) Kresse, G.; Furthmuller, J. Comp. Mat. Sci. 1996, 6, 15-50.<br />

(80) Diebold, U. Surf. Sci. Rep. 2003, 48, 53-229.<br />

(81) Perdew, J. P. In Electr<strong>on</strong>ic Structure <str<strong>on</strong>g>of</str<strong>on</strong>g> Solids 91; Ziesche, P., Eschrig,<br />

H., Eds.; Akademie Verlag: Berl<strong>in</strong>, 1991.


<str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Thermal</str<strong>on</strong>g> <str<strong>on</strong>g>Fluctuati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> IET <strong>in</strong> TiO2<br />

Figure 2. Local geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> the relaxed nanostructure next to the catechol<br />

adsorbate. The four types <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms <strong>in</strong>cluded <strong>in</strong> this simulati<strong>on</strong> (Ti, O, C,<br />

H) are represented by the colors green, red, turquoise, and white,<br />

respectively. The capp<strong>in</strong>g hydrogen i<strong>on</strong>s and oxygen i<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the semic<strong>on</strong>ductor<br />

lattice are <strong>in</strong>dicated, as is the hexacoord<strong>in</strong>ated Ti 4+ i<strong>on</strong> near the<br />

adsorbate, and the nearest <str<strong>on</strong>g>of</str<strong>on</strong>g> the two pentacoord<strong>in</strong>ated Ti 4+ i<strong>on</strong>s directly<br />

anchor<strong>in</strong>g the catechol adsorbate.<br />

functi<strong>on</strong>al (PW91) and ultras<str<strong>on</strong>g>of</str<strong>on</strong>g>t Vanderbilt pseudopotentials for model<strong>in</strong>g<br />

the core electr<strong>on</strong>s. 82,83 The Kohn-Sham (KS) Hamilt<strong>on</strong>ian is<br />

projected <strong>on</strong>to a plane-wave basis set, and high-efficiency iterative<br />

methods are used to obta<strong>in</strong> the KS eigenstates and eigenvalues. Selfc<strong>on</strong>sistency<br />

is accelerated by means <str<strong>on</strong>g>of</str<strong>on</strong>g> efficient charge density mix<strong>in</strong>g<br />

schemes. <str<strong>on</strong>g>Thermal</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong>s and nuclear trajectories <str<strong>on</strong>g>of</str<strong>on</strong>g> ab <strong>in</strong>itio<br />

MD simulati<strong>on</strong>s are computed by tak<strong>in</strong>g full advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

parallelized versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the code with a parallel SP2 supercomputer.<br />

The ph<strong>on</strong><strong>on</strong> spectral density, obta<strong>in</strong>ed as the Fourier transform <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the i<strong>on</strong>ic velocity autocorrelati<strong>on</strong> functi<strong>on</strong>, is c<strong>on</strong>sistent with previous<br />

calculati<strong>on</strong>s 41 as well as with the experimentally determ<strong>in</strong>ed normal<br />

modes <str<strong>on</strong>g>of</str<strong>on</strong>g> the TiO2-anatase semic<strong>on</strong>ductor <strong>in</strong> the 262-876 cm -1 range. 84<br />

Higher-frequency res<strong>on</strong>ances <str<strong>on</strong>g>of</str<strong>on</strong>g> the comb<strong>in</strong>ed catechol-semic<strong>on</strong>ductor<br />

crystal complex are mostly localized <strong>in</strong> the 800-1600 cm -1 range, the<br />

highest (at 3100 cm -1 ) corresp<strong>on</strong>d<strong>in</strong>g to the C-H stretch<strong>in</strong>g modes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the adsorbed catechol. Most relevant for the study <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terfacial electr<strong>on</strong><br />

transfer is the low-frequency porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the ph<strong>on</strong><strong>on</strong> spectrum, which<br />

is assigned to vibrati<strong>on</strong>al modes <str<strong>on</strong>g>of</str<strong>on</strong>g> the adsorbate <strong>in</strong> good agreement<br />

with earlier studies <str<strong>on</strong>g>of</str<strong>on</strong>g> the isolated catechol molecule. 57 These earlier<br />

ab <strong>in</strong>itio studies also found that the ground state vibrati<strong>on</strong>al frequencies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the catechol molecule are <strong>on</strong>ly slightly affected by photoexcitati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the molecule to the S1 electr<strong>on</strong>ic state. 57 Further, the delocalized<br />

vibrati<strong>on</strong>al modes <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2-anatase are expected to be <strong>on</strong>ly marg<strong>in</strong>ally<br />

affected by photoexcitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the adsorbate molecule or electr<strong>on</strong><br />

<strong>in</strong>jecti<strong>on</strong> <strong>in</strong>to the c<strong>on</strong>ducti<strong>on</strong> band (i.e., same vibrati<strong>on</strong>al frequencies).<br />

Therefore, it is reas<strong>on</strong>able to assume that nuclear moti<strong>on</strong> is quite<br />

<strong>in</strong>sensitive to changes <str<strong>on</strong>g>of</str<strong>on</strong>g> dist<strong>in</strong>ct electr<strong>on</strong>ic character dur<strong>in</strong>g the ultrafast<br />

<strong>in</strong>terfacial electr<strong>on</strong> transfer, an approximati<strong>on</strong> successfully applied <strong>in</strong><br />

previous studies <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>alized semic<strong>on</strong>ductors. 33,42<br />

2.2. Electr<strong>on</strong>ic Structure. Realistic simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terfacial<br />

electr<strong>on</strong>ic relaxati<strong>on</strong> face the challenge <str<strong>on</strong>g>of</str<strong>on</strong>g> model<strong>in</strong>g quantum dynamics<br />

<strong>in</strong> rather extended model systems s<strong>in</strong>ce f<strong>in</strong>ite size effects or even<br />

periodic boundary c<strong>on</strong>diti<strong>on</strong>s can produce <strong>in</strong>accurate results due to<br />

artificial recurrences <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>ic populati<strong>on</strong>. 41 To address these<br />

challenges, electr<strong>on</strong>ic relaxati<strong>on</strong> is simulated <strong>in</strong> 3 nm particles<br />

c<strong>on</strong>structed by the juxtapositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> three <str<strong>on</strong>g>of</str<strong>on</strong>g> the complex units described<br />

<strong>in</strong> secti<strong>on</strong> 2.1., extended al<strong>on</strong>g the [-101] and [010] crystallographic<br />

directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the TiO2-anatase structure (see Figure 3). Periodic<br />

boundary c<strong>on</strong>diti<strong>on</strong>s are applied al<strong>on</strong>g the unextended crystallographic<br />

directi<strong>on</strong> <strong>in</strong> each case.<br />

(82) Vanderbilt, D. Phys. ReV. B1990, 41, 7892-7895.<br />

(83) Laas<strong>on</strong>en, K.; Pasquarello, A.; Car, R.; Lee, C.; Vanderbilt, D. Phys. ReV.<br />

B 1993, 47, 10142-10153.<br />

(84) G<strong>on</strong>zalez, R. J.; Zallen, R.; Berger, H. Phys. ReV. B1997, 55, 7014-<br />

7017.<br />

ARTICLES<br />

Figure 3. TiO2-anatase nanostructures extended al<strong>on</strong>g the [-101] (upper<br />

structure) and [010] directi<strong>on</strong>s (lower structure).<br />

The electr<strong>on</strong>ic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> these extended 3 nm particles can be<br />

described accord<strong>in</strong>g to a tight b<strong>in</strong>d<strong>in</strong>g model Hamilt<strong>on</strong>ian ga<strong>in</strong>ed from<br />

the extended Hückel (EH) approach. 85,86 Advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> this method<br />

are that it requires a relatively small number <str<strong>on</strong>g>of</str<strong>on</strong>g> transferable parameters<br />

and is capable <str<strong>on</strong>g>of</str<strong>on</strong>g> provid<strong>in</strong>g accurate results for the energy bands <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

elemental materials (<strong>in</strong>clud<strong>in</strong>g transiti<strong>on</strong> metals) as well as compound<br />

bulk materials <strong>in</strong> various phases. 86 In additi<strong>on</strong>, the EH method is<br />

applicable to large extended systems and provides valuable <strong>in</strong>sight <strong>on</strong><br />

the role <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical b<strong>on</strong>d<strong>in</strong>g. 87 It is therefore most suitable to develop<br />

a clear chemical picture <str<strong>on</strong>g>of</str<strong>on</strong>g> the underly<strong>in</strong>g relaxati<strong>on</strong> dynamics at the<br />

semiquantitative level, <strong>in</strong> an effort to provide fundamental <strong>in</strong>sight <strong>on</strong><br />

the role played by <strong>in</strong>itial electr<strong>on</strong>ic state spatial distributi<strong>on</strong> and<br />

symmetry under c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>homogeneous broaden<strong>in</strong>g <strong>in</strong> the<br />

underly<strong>in</strong>g <strong>in</strong>jecti<strong>on</strong> mechanism.<br />

The EH Hamilt<strong>on</strong>ian is computed <strong>in</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> Slater-type orbitals<br />

� for the radial part <str<strong>on</strong>g>of</str<strong>on</strong>g> the atomic orbital (AO) wave functi<strong>on</strong>s, 41,88<br />

<strong>in</strong>clud<strong>in</strong>g the 4s, 4p, and 3d atomic orbitals <str<strong>on</strong>g>of</str<strong>on</strong>g> Ti 4+ i<strong>on</strong>s, the 2s and 2p<br />

atomic orbitals <str<strong>on</strong>g>of</str<strong>on</strong>g> O 2- i<strong>on</strong>s, the 2s and 2p atomic orbitals <str<strong>on</strong>g>of</str<strong>on</strong>g> C atoms,<br />

and the 1s atomic orbitals <str<strong>on</strong>g>of</str<strong>on</strong>g> H atoms. The AOs {|�i(t)〉} form a<br />

mobile (n<strong>on</strong>orthog<strong>on</strong>al) basis set due to nuclear moti<strong>on</strong>, with Sij(t) )<br />

〈�i(t)|�j(t)〉, the corresp<strong>on</strong>d<strong>in</strong>g time-dependent overlap matrix elements.<br />

The overlap matrix is computed us<strong>in</strong>g periodic boundary c<strong>on</strong>diti<strong>on</strong>s<br />

al<strong>on</strong>g the [010] or [-101] directi<strong>on</strong>s for the [-101] and [010] extended<br />

systems, respectively. Diag<strong>on</strong>alizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the EH Hamilt<strong>on</strong>ian predicts<br />

a 3.3 eV band gap for the 3.0 nm model system <strong>in</strong> its relaxed<br />

c<strong>on</strong>figurati<strong>on</strong> (see energy diagram <strong>in</strong> Figure 1). C<strong>on</strong>sider<strong>in</strong>g that the<br />

semic<strong>on</strong>ductor band gap is larger for smaller nanoparticles, the 3.3 eV<br />

band gap is c<strong>on</strong>sistent with the experimental band gap <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.2 eV for<br />

bulk TiO2-anatase, 3.4 eV for 2.4 nm particles, 89 and 3.7 eV for the<br />

1.2 nm model system. 41,90<br />

2.3. Simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong> Injecti<strong>on</strong>. We c<strong>on</strong>f<strong>in</strong>e ourselves to<br />

an approximate mixed quantum-classical method <strong>in</strong> which the electr<strong>on</strong>s<br />

are treated quantum mechanically and the nuclei classically. The nuclei<br />

evolve <strong>on</strong> an effective mean-field Potential Energy Surface (PES), Veff,<br />

accord<strong>in</strong>g to classical trajectories R � ) R � (t), with <strong>in</strong>itial c<strong>on</strong>diti<strong>on</strong>s<br />

specified by <strong>in</strong>dex �. The actual calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Veff, or equivalently <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the set <str<strong>on</strong>g>of</str<strong>on</strong>g> trajectories R � (t), is a difficult problem. 91 However, <strong>in</strong> the<br />

(85) McGlynn, S. P.; Vanquickenborne, L. G.; K<strong>in</strong>oshita, M.; Carroll, D. G.<br />

Introducti<strong>on</strong> to Applied Quantum Chemistry; Holt, R<strong>in</strong>ehart, and W<strong>in</strong>st<strong>on</strong><br />

Inc.: New York, 1972.<br />

(86) Cerdá, J.; Soria, F. Phys. ReV. B2000, 61, 7965-7971.<br />

(87) H<str<strong>on</strong>g>of</str<strong>on</strong>g>fmann, R. ReV. Mod. Phys. 1988, 60, 601-628.<br />

(88) For a numerical implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the method: Landrum, G. A; Glassy,<br />

W. V. The YAeHMOP project, http://yaehmop.sourceforge.net.<br />

(89) H<str<strong>on</strong>g>of</str<strong>on</strong>g>fmann, M. R.; Mart<strong>in</strong>, S. T.; Choi, W.; Bahnemann, D. W. Chem. ReV.<br />

1995, 95, 69-96.<br />

(90) Bredow, T.; Geudtner, G.; Jug, K. J. Chem. Phys. 1996, 105, 6395-6400.<br />

(91) Pechukas, P. Phys. ReV. 1969, 181, 166-174.<br />

J. AM. CHEM. SOC. 9 VOL. 127, NO. 51, 2005 18237


ARTICLES Abuabara et al.<br />

present applicati<strong>on</strong>, both the ground and excited electr<strong>on</strong>ic PESs <strong>in</strong>volve<br />

bound nuclear moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> similar frequencies. Therefore, Veff is nearly<br />

parallel to the ground state PES, and nuclear trajectories R � (t) are thus<br />

well-approximated accord<strong>in</strong>g to ab <strong>in</strong>itio DFT MD simulati<strong>on</strong>s.<br />

Propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the time-dependent electr<strong>on</strong>ic wave functi<strong>on</strong> is<br />

performed for each nuclear trajectory R � (t) by numerically exact<br />

<strong>in</strong>tegrati<strong>on</strong> (vide <strong>in</strong>fra) <str<strong>on</strong>g>of</str<strong>on</strong>g> the Time-Dependent Schröd<strong>in</strong>ger Equati<strong>on</strong><br />

(TDSE)<br />

Here, H(t) is the electr<strong>on</strong>ic EH Hamilt<strong>on</strong>ian described <strong>in</strong> secti<strong>on</strong> 2.2.,<br />

which depends implicitly <strong>on</strong> time through R � (t). Results reported <strong>in</strong><br />

secti<strong>on</strong> 3 are obta<strong>in</strong>ed by sampl<strong>in</strong>g <strong>in</strong>itial c<strong>on</strong>diti<strong>on</strong>s � for nuclear<br />

moti<strong>on</strong>, <strong>in</strong>tegrat<strong>in</strong>g the TDSE over the corresp<strong>on</strong>d<strong>in</strong>g ab <strong>in</strong>itio DFT<br />

nuclear trajectories, and averag<strong>in</strong>g expectati<strong>on</strong> values over the result<strong>in</strong>g<br />

time-evolved wave functi<strong>on</strong>s. C<strong>on</strong>verged results are typically obta<strong>in</strong>ed<br />

by averag<strong>in</strong>g over fewer than 50 <strong>in</strong>itial c<strong>on</strong>diti<strong>on</strong>s, represent<strong>in</strong>g the<br />

system thermalized under c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> room temperature and c<strong>on</strong>stant<br />

volume. However, all results are reported for averages over 100 <strong>in</strong>itial<br />

c<strong>on</strong>diti<strong>on</strong>s.<br />

The TDSE, <strong>in</strong>troduced by eq 1, is numerically <strong>in</strong>tegrated by<br />

expand<strong>in</strong>g the time-dependent electr<strong>on</strong> wave functi<strong>on</strong><br />

<strong>in</strong> the <strong>in</strong>stantaneous eigenstates |φq(t)〉 ) ∑iCi,q(t)|�i(t)〉 <str<strong>on</strong>g>of</str<strong>on</strong>g> the generalized<br />

eigenvalue problem H(t)C(t) ) S(t)C(t)E(t), with eigenvalues<br />

Eq(t).<br />

The propagati<strong>on</strong> scheme is based <strong>on</strong> the recursive applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the follow<strong>in</strong>g short-time approximati<strong>on</strong>:<br />

where the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the expansi<strong>on</strong> coefficients<br />

B q (t + τ) ) ∑ p<br />

is approximated as follows<br />

{ ∂ i<br />

+<br />

∂t p H(t)} |Ψ� (t)〉 ) 0 (1)<br />

|Ψ � (t)〉 ) ∑ q<br />

|Ψ � (t + τ/2)〉 ≈ ∑ q<br />

B q (t)|φ q (t)〉 (2)<br />

B q (t)e -i/pEq(t)τ/2 |φq (t)〉 (3)<br />

B p (t)e -i/p[Ep(t)+Eq(t+τ)]τ/2 × 〈φq (t + τ)|φ p (t)〉 (4)<br />

B q (t + τ) ≈ B q (t)e -i/p[Eq(t)+Eq(t+τ)]τ/2<br />

<strong>in</strong> the limit <str<strong>on</strong>g>of</str<strong>on</strong>g> sufficiently th<strong>in</strong> time slices, τ.<br />

The <strong>in</strong>itial electr<strong>on</strong>ic state is chosen to corresp<strong>on</strong>d closely to the<br />

native catechol LUMO or catechol (LUMO+1) <str<strong>on</strong>g>of</str<strong>on</strong>g> the photoexcited<br />

surface complex. C<strong>on</strong>sider<strong>in</strong>g that the LUMO and LUMO+1 states <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

catechol anchor<strong>in</strong>g molecules are important comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the excited<br />

electr<strong>on</strong>ic states <str<strong>on</strong>g>of</str<strong>on</strong>g> dyes with high photo-to-current c<strong>on</strong>versi<strong>on</strong> efficiencies<br />

(e.g., catechol para-substituted with Ru(II)-polypyridyl<br />

complexes), the results presented <strong>in</strong> secti<strong>on</strong>s 3.1. and 3.2. are expected<br />

to provide fundamental <strong>in</strong>sight <strong>on</strong> the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <strong>on</strong> surface<br />

charge separati<strong>on</strong> mechanisms <strong>in</strong> molecular-based photo-optic devices.<br />

As discussed <strong>in</strong> the Introducti<strong>on</strong>, however, the reported results are also<br />

relevant to the electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> dynamics from the native excited states<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> catechol, even <strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> compet<strong>in</strong>g direct catechol-TiO2<br />

charge transfer excitati<strong>on</strong>s.<br />

The relaxati<strong>on</strong> dynamics is quantitatively described <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

expectati<strong>on</strong> values <str<strong>on</strong>g>of</str<strong>on</strong>g> observables computed as 〈Â〉 ) Tr{Fˆ(t)Â}, where<br />

Fˆ(t) is the reduced density operator associated with the electr<strong>on</strong>ic<br />

degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom<br />

Fˆ(t) ) ∑ �<br />

(5)<br />

p � |Ψ � (t)〉〈Ψ � (t)| (6)<br />

18238 J. AM. CHEM. SOC. 9 VOL. 127, NO. 51, 2005<br />

Figure 4. Ensemble average adsorbate populati<strong>on</strong>s P(t) <strong>in</strong> functi<strong>on</strong>alized<br />

catechol/TiO2 nanostructures extended al<strong>on</strong>g the [-101] (left panel) and<br />

[010] (right panel) crystallographic directi<strong>on</strong>s, after <strong>in</strong>stantaneous populati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a catechol-LUMO state. The room-temperature electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong><br />

dynamics (black squares) is compared to simulati<strong>on</strong>s at 0 K (solid l<strong>in</strong>es);<br />

that is, nuclei coord<strong>in</strong>ates are fixed at their fully relaxed c<strong>on</strong>figurati<strong>on</strong>, as<br />

well as simulati<strong>on</strong>s where nuclear positi<strong>on</strong>s are fixed <strong>in</strong> the <strong>in</strong>dividual<br />

members <str<strong>on</strong>g>of</str<strong>on</strong>g> the ensemble at their <strong>in</strong>itial room-temperature c<strong>on</strong>figurati<strong>on</strong>s<br />

throughout the <strong>in</strong>jecti<strong>on</strong> time (red triangles). Error bars represent the standard<br />

deviati<strong>on</strong> result<strong>in</strong>g from the ensemble average. Broken blue l<strong>in</strong>es are<br />

exp<strong>on</strong>ential fitt<strong>in</strong>g curves characteriz<strong>in</strong>g the relaxati<strong>on</strong> times: τ = 38 fs<br />

(dotted), τ = 6 fs (dashed), and τ = 2.5 fs (dot-dashed).<br />

with p� the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> sampl<strong>in</strong>g <strong>in</strong>itial c<strong>on</strong>diti<strong>on</strong>s, specified by <strong>in</strong>dex<br />

�, associated with the thermal ensemble <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclear c<strong>on</strong>figurati<strong>on</strong>s.<br />

The time-dependent survival probability <str<strong>on</strong>g>of</str<strong>on</strong>g> an <strong>in</strong>itial electr<strong>on</strong>ic state,<br />

or transient populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>dividual i<strong>on</strong>s, is then determ<strong>in</strong>ed by<br />

comput<strong>in</strong>g the time-dependent populati<strong>on</strong> P(t) as follows:<br />

where Pˆ S is the projecti<strong>on</strong> operator <strong>on</strong>to the subset S <str<strong>on</strong>g>of</str<strong>on</strong>g> atomic orbitals<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terest. In particular, computati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the transient populati<strong>on</strong> <strong>in</strong><br />

the <strong>in</strong>itially photoexcited catechol molecule, P(t), is def<strong>in</strong>ed accord<strong>in</strong>g<br />

to eq 7 with<br />

where the sum over atomic orbitals <strong>in</strong>cludes <strong>on</strong>ly atoms <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>itially<br />

photoexcited catechol adsorbate.<br />

3. Results<br />

P(t) ) Tr{Fˆ(t)Pˆ S } (7)<br />

Pˆ S ) ∑|�j 〉(S<br />

k<br />

j∈cat<br />

-1 ) jk 〈�k | (8)<br />

Results are presented and discussed <strong>in</strong> three subsecti<strong>on</strong>s.<br />

Secti<strong>on</strong> 3.1. presents simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> from the<br />

catechol LUMO <strong>in</strong>to TiO2-anatase nanostructures extended<br />

al<strong>on</strong>g the [-101] and [010] crystallographic directi<strong>on</strong>s. Secti<strong>on</strong><br />

3.2. presents analogous results for electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> from the<br />

catechol (LUMO+1). A discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the results is presented<br />

<strong>in</strong> secti<strong>on</strong> 3.3., with emphasis <strong>on</strong> the role played by <strong>in</strong>homogeneous<br />

broaden<strong>in</strong>g and n<strong>on</strong>adiabatic transiti<strong>on</strong>s <strong>in</strong> the underly<strong>in</strong>g<br />

relaxati<strong>on</strong> dynamics.<br />

3.1. Electr<strong>on</strong> Injecti<strong>on</strong> from the Catechol-LUMO. Figure<br />

4 compares the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> time-dependent electr<strong>on</strong>ic populati<strong>on</strong>s,<br />

associated with the <strong>in</strong>itially photoexcited surface complex,<br />

<strong>in</strong> functi<strong>on</strong>alized semic<strong>on</strong>ductors at room temperature (squares)<br />

and 0 K (solid l<strong>in</strong>e). The comparis<strong>on</strong> shows that roomtemperature<br />

thermal fluctuati<strong>on</strong>s significantly speed up the<br />

underly<strong>in</strong>g electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> dynamics. The overall relaxati<strong>on</strong><br />

dynamics at room temperature is largely described by a s<strong>in</strong>gle<br />

exp<strong>on</strong>ential decay with a characteristic time τ = 2.5 fs, reach<strong>in</strong>g<br />

complete transfer with<strong>in</strong> 10 fs <strong>in</strong> both functi<strong>on</strong>alized semic<strong>on</strong>ductors<br />

extended al<strong>on</strong>g the [-101] and [010] directi<strong>on</strong>s. In<br />

c<strong>on</strong>trast, electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> at low temperature <strong>in</strong>volves a primary<br />

charge separati<strong>on</strong> step with a characteristic time τ = 6 fs,<br />

followed by slower charge delocalizati<strong>on</strong> through the TiO2-


<str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Thermal</str<strong>on</strong>g> <str<strong>on</strong>g>Fluctuati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> IET <strong>in</strong> TiO2<br />

Figure 5. Ensemble averaged transient populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Ti 4+ 3d orbitals<br />

c<strong>on</strong>stitut<strong>in</strong>g the anatase c<strong>on</strong>ducti<strong>on</strong> band <str<strong>on</strong>g>of</str<strong>on</strong>g> nanostructures extended al<strong>on</strong>g<br />

the [-101] (left) and [010] (right) crystallographic directi<strong>on</strong>s, at 0 K (top)<br />

and room temperature (bottom).<br />

anatase crystal (e.g., a process characterized by a time c<strong>on</strong>stant<br />

τ = 38 fs <strong>in</strong> nanostructures extended al<strong>on</strong>g the [-101] directi<strong>on</strong>,<br />

as shown <strong>in</strong> Figure 4, left panel).<br />

C<strong>on</strong>sider<strong>in</strong>g that the 10 fs <strong>in</strong>jecti<strong>on</strong> time is small compared<br />

to the periods <str<strong>on</strong>g>of</str<strong>on</strong>g> most nuclear vibrati<strong>on</strong>s <strong>in</strong> the functi<strong>on</strong>alized<br />

nanostructure (e.g., TiO2-anatase normal modes are <strong>in</strong> the 262-<br />

876 cm -1 range 84 ), there is the n<strong>on</strong>trivial questi<strong>on</strong> as to whether<br />

thermal nuclear fluctuati<strong>on</strong>s speed up the underly<strong>in</strong>g <strong>in</strong>terfacial<br />

electr<strong>on</strong> transfer simply by <strong>in</strong>troduc<strong>in</strong>g <strong>in</strong>homogeneous broaden<strong>in</strong>g<br />

(i.e., broaden<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy levels and<br />

electr<strong>on</strong>ic coupl<strong>in</strong>gs), or whether nuclear moti<strong>on</strong> plays a<br />

significant role (e.g., <strong>in</strong>duc<strong>in</strong>g additi<strong>on</strong>al n<strong>on</strong>adiabatic transiti<strong>on</strong>s).<br />

To address this questi<strong>on</strong>, Figure 4 also shows results <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> c<strong>on</strong>sider<strong>in</strong>g the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>homogeneous<br />

broaden<strong>in</strong>g but exclud<strong>in</strong>g n<strong>on</strong>adiabatic effects due to nuclear<br />

moti<strong>on</strong> (red triangles). These results are obta<strong>in</strong>ed by comput<strong>in</strong>g<br />

ensemble averaged adsorbate populati<strong>on</strong>s, keep<strong>in</strong>g fixed the<br />

nuclear positi<strong>on</strong>s throughout the whole <strong>in</strong>jecti<strong>on</strong> time for each<br />

member <str<strong>on</strong>g>of</str<strong>on</strong>g> the thermal ensemble. The comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

results (red triangles) to time-dependent electr<strong>on</strong>ic populati<strong>on</strong>s<br />

obta<strong>in</strong>ed at 0 K (solid l<strong>in</strong>e) and room temperature (squares)<br />

<strong>in</strong>dicates that nuclear moti<strong>on</strong> is most resp<strong>on</strong>sible for the<br />

underly<strong>in</strong>g speed-up mechanism. It is therefore c<strong>on</strong>cluded that,<br />

although electr<strong>on</strong>ic states are perturbed and mixed <strong>in</strong> <strong>in</strong>dividual<br />

members <str<strong>on</strong>g>of</str<strong>on</strong>g> the thermal ensemble, additi<strong>on</strong>al relaxati<strong>on</strong> pathways<br />

become active <strong>on</strong>ly <strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>adiabatic<br />

transiti<strong>on</strong>s driven by nuclear moti<strong>on</strong>.<br />

To analyze the molecular orig<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the observed speed-up<br />

mechanism, Figure 5 presents the decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>ic<br />

populati<strong>on</strong> <strong>in</strong>jected <strong>in</strong> the semic<strong>on</strong>ductor host substrate<br />

<strong>in</strong>to <strong>in</strong>dividual populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the Ti 4+ dxz, dz 2,dyz, and dxy<br />

orbitals, the ma<strong>in</strong> c<strong>on</strong>stituent states <str<strong>on</strong>g>of</str<strong>on</strong>g> the TiO2 c<strong>on</strong>ducti<strong>on</strong><br />

band. 41,92-95 The dx 2 -y 2 orbitals are relatively un<strong>in</strong>volved <strong>in</strong> the<br />

(92) Burdett, J. K.; Hughbanks, T.; Miller, G. J.; Richards<strong>on</strong>, J. W., Jr.; Smith,<br />

J. V. J. Am. Chem. Soc. 1987, 109, 3639-3646.<br />

(93) Mo, S. D.; Ch<strong>in</strong>g, W. Y. Phys. ReV. B1995, 51, 13023-13032.<br />

(94) Asahi, R.; Taga, Y.; Mannstadt, W.; Freeman, A. J. Phys. ReV. B2000,<br />

61, 7459-7465.<br />

(95) Beltrán, A.; Sambrano, J. R.; Calatayud, M.; Sensato, F. R.; Andrés, J.<br />

Surf. Sci. 2001, 490, 116-124.<br />

ARTICLES<br />

Figure 6. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>ic populati<strong>on</strong> at 2.4 fs <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamics,<br />

visualiz<strong>in</strong>g the most populated 3d orbitals <str<strong>on</strong>g>of</str<strong>on</strong>g> Ti 4+ i<strong>on</strong>s at 0 K (left panels)<br />

and room temperature (right panels). The global Cartesian coord<strong>in</strong>ate<br />

directi<strong>on</strong>s corresp<strong>on</strong>d<strong>in</strong>g to the orbital labels are: xˆ right al<strong>on</strong>g the horiz<strong>on</strong>tal<br />

frame l<strong>in</strong>es; zˆ down al<strong>on</strong>g the vertical frame l<strong>in</strong>es; and yˆ out <str<strong>on</strong>g>of</str<strong>on</strong>g> the page.<br />

<strong>in</strong>jecti<strong>on</strong> process and therefore not c<strong>on</strong>sidered <strong>in</strong> the analysis.<br />

Figure 5 compares simulati<strong>on</strong>s at 0 K (top panels) and room<br />

temperature (bottom panels) for nanostructures extended al<strong>on</strong>g<br />

the [-101] (left panels) and [010] (right panels) crystallographic<br />

directi<strong>on</strong>s.<br />

Figure 5 shows that, at low temperature (upper panels), the<br />

early time dynamics is determ<strong>in</strong>ed by rapid <strong>in</strong>jecti<strong>on</strong> <strong>in</strong>to the<br />

Ti 4+ dxz and dz 2 orbitals (acceptor states), followed by an<br />

<strong>in</strong>creas<strong>in</strong>g populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the dyz and dxy orbitals. Note that the<br />

populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the dyz and dxy orbitals governs the dynamics at<br />

t > 5 fs, as the <strong>in</strong>itially populated dxz and dz 2 orbitals appear to<br />

quickly “saturate” at a certa<strong>in</strong> level <str<strong>on</strong>g>of</str<strong>on</strong>g> equilibrium populati<strong>on</strong>.<br />

At room temperature (bottom panels), the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong><br />

transfer to the dyz and dxy is significantly enhanced. This results<br />

<strong>in</strong> an <strong>in</strong>creased rate <str<strong>on</strong>g>of</str<strong>on</strong>g> delocalizati<strong>on</strong> s<strong>in</strong>ce the dyz and dxy states<br />

are the primary c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> delocalized states at the middle<br />

and bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>ducti<strong>on</strong> band. These results are c<strong>on</strong>sistent<br />

with a speed-up mechanism based <strong>on</strong> the enhanced rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

populati<strong>on</strong> transfer from acceptor states dxz and dz 2, <strong>in</strong> the vic<strong>in</strong>ity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the photoexcited adsorbate, to the manifold <str<strong>on</strong>g>of</str<strong>on</strong>g> Ti 4+ dyz and<br />

dxy states c<strong>on</strong>stitut<strong>in</strong>g delocalized MOs <strong>in</strong> the TiO2 c<strong>on</strong>ducti<strong>on</strong><br />

band.<br />

The underly<strong>in</strong>g relaxati<strong>on</strong> mechanism, after photoexcitati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the central catechol adsorbate, becomes evident from a simple<br />

populati<strong>on</strong> analysis <strong>in</strong> the STO basis show<strong>in</strong>g the spatial<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>jected charge associated with the Ti 4+ orbitals<br />

compris<strong>in</strong>g the c<strong>on</strong>ducti<strong>on</strong> band. Figure 6 presents the detailed<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>jected charge at a specific time (e.g., 2.4 fs),<br />

c<strong>on</strong>sider<strong>in</strong>g <strong>on</strong>ly atomic orbitals with populati<strong>on</strong> above a certa<strong>in</strong><br />

cut<str<strong>on</strong>g>of</str<strong>on</strong>g>f, for nanostructures extended al<strong>on</strong>g the [-101] directi<strong>on</strong>.<br />

Instantaneous isodensity surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>jected charge projected<br />

<strong>on</strong>to the different Ti 4+ 3d orbitals are shown for nanostructures<br />

at 0 K (left panels) and room temperature (right panels). The<br />

comparis<strong>on</strong> shows that the net effect <str<strong>on</strong>g>of</str<strong>on</strong>g> thermal nuclear moti<strong>on</strong><br />

<strong>on</strong> the underly<strong>in</strong>g electr<strong>on</strong>ic relaxati<strong>on</strong> is an enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

J. AM. CHEM. SOC. 9 VOL. 127, NO. 51, 2005 18239


ARTICLES Abuabara et al.<br />

Figure 7. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> time-dependent adsorbate populati<strong>on</strong>s <strong>in</strong> functi<strong>on</strong>alized<br />

catechol/TiO2 nanostructures extended al<strong>on</strong>g the [-101] (left<br />

panel) and [010] (right panel) crystallographic directi<strong>on</strong>s, after <strong>in</strong>stantaneous<br />

populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a catechol-(LUMO+1) state <strong>in</strong> a surface catechol complex.<br />

Black squares represent P(t), corresp<strong>on</strong>d<strong>in</strong>g to simulati<strong>on</strong>s <strong>in</strong>clud<strong>in</strong>g thermal<br />

fluctuati<strong>on</strong>s and nuclear moti<strong>on</strong> averaged over 100 <strong>in</strong>itial c<strong>on</strong>diti<strong>on</strong>s �. Red<br />

triangles depict the analogous ensemble average over simulati<strong>on</strong>s c<strong>on</strong>ducted<br />

with nuclear positi<strong>on</strong>s frozen at their <strong>in</strong>itial c<strong>on</strong>figurati<strong>on</strong>s throughout the<br />

<strong>in</strong>jecti<strong>on</strong> time. Error bars represent the standard deviati<strong>on</strong> from the thermal<br />

ensemble average. The green l<strong>in</strong>e corresp<strong>on</strong>ds to simulati<strong>on</strong>s at 0 K, with<br />

nuclear positi<strong>on</strong>s frozen at fully relaxed c<strong>on</strong>figurati<strong>on</strong>s. The dot-dashed blue<br />

l<strong>in</strong>e is an exp<strong>on</strong>ential fitt<strong>in</strong>g curve characteriz<strong>in</strong>g the relaxati<strong>on</strong> time τ =<br />

2.5 fs (dot-dashed).<br />

delocalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>jected charge am<strong>on</strong>g dxy and dyz orbitals<br />

(panels a and b). In c<strong>on</strong>trast, little difference is observed when<br />

compar<strong>in</strong>g the distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> am<strong>on</strong>g the Ti 4+ dxz<br />

and dz 2 atomic orbitals at 0 K and room temperature (see Figure<br />

5 panels c and d). These results, which are c<strong>on</strong>sistent with Figure<br />

4, show that the underly<strong>in</strong>g speed-up mechanism is based <strong>on</strong><br />

the enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> transfer from acceptor states<br />

localized <strong>in</strong> the vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g> the photoexcited adsorbate to<br />

delocalized MOs <strong>in</strong> the host substrate. Analogous results are<br />

obta<strong>in</strong>ed from the populati<strong>on</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> nanostructures extended<br />

al<strong>on</strong>g the [010] crystallographic directi<strong>on</strong>.<br />

3.2. Electr<strong>on</strong> Injecti<strong>on</strong> from the Catechol (LUMO+1). This<br />

secti<strong>on</strong> analyzes the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> thermal nuclear fluctuati<strong>on</strong>s <strong>on</strong><br />

the electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> dynamics from the catechol (LUMO+1)<br />

state. The comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the results presented <strong>in</strong> this secti<strong>on</strong><br />

and the analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> from the catechol LUMO,<br />

presented <strong>in</strong> secti<strong>on</strong> 3.1., shows that both the electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong><br />

mechanism and the relaxati<strong>on</strong> time scales are sensitive to the<br />

spatial symmetry properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the d<strong>on</strong>or state, even under roomtemperature<br />

c<strong>on</strong>diti<strong>on</strong>s.<br />

Figure 7 shows results <str<strong>on</strong>g>of</str<strong>on</strong>g> time-dependent adsorbate populati<strong>on</strong>s,<br />

after <strong>in</strong>stantaneous populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the catechol (LUMO+1)<br />

state, <strong>in</strong> functi<strong>on</strong>alized nanostructures at room temperature<br />

(black squares), 0 K (green l<strong>in</strong>es), and simulati<strong>on</strong>s that <strong>in</strong>clude<br />

room-temperature <strong>in</strong>homogeneous broaden<strong>in</strong>g but exclude n<strong>on</strong>adiabatic<br />

effects due to nuclear moti<strong>on</strong> (red triangles). The<br />

exp<strong>on</strong>ential fitt<strong>in</strong>g curve (blue l<strong>in</strong>e), <strong>in</strong>cluded <strong>in</strong> Figure 7, def<strong>in</strong>es<br />

the characteristic time scale (τ = 2.5 fs) for electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong>.<br />

In c<strong>on</strong>trast to electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> from the catechol LUMO,<br />

the similarity between the <strong>in</strong>jecti<strong>on</strong> dynamics at room temperature<br />

(black squares) and 0 K (green l<strong>in</strong>es), depicted <strong>in</strong> Figure<br />

7, <strong>in</strong>dicates that nuclear moti<strong>on</strong> does not significantly affect<br />

the time scale for electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> from the catechol-<br />

(LUMO+1). Also <strong>in</strong> c<strong>on</strong>trast to the <strong>in</strong>jecti<strong>on</strong> dynamics from<br />

the catechol-LUMO, Figure 7 shows that c<strong>on</strong>sider<strong>in</strong>g <strong>on</strong>ly the<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>homogeneous broaden<strong>in</strong>g (i.e., without nuclear<br />

moti<strong>on</strong>) (red triangles) slows down the underly<strong>in</strong>g <strong>in</strong>terfacial<br />

electr<strong>on</strong> transfer dynamics from the catechol-(LUMO+1) state.<br />

It is therefore c<strong>on</strong>cluded that broaden<strong>in</strong>g the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

energy levels <strong>in</strong>to n<strong>on</strong>optimal states detrimentally affects the<br />

18240 J. AM. CHEM. SOC. 9 VOL. 127, NO. 51, 2005<br />

Figure 8. Ensemble-averaged transient populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Ti 4+ 3d orbitals<br />

c<strong>on</strong>stitut<strong>in</strong>g the anatase c<strong>on</strong>ducti<strong>on</strong> band <str<strong>on</strong>g>of</str<strong>on</strong>g> nanostructures extended al<strong>on</strong>g<br />

the [-101] (left) and [010] (right) crystallographic directi<strong>on</strong>s, at 0 K (top)<br />

and room temperature (bottom).<br />

str<strong>on</strong>g coupl<strong>in</strong>g mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> from the<br />

catechol-(LUMO+1).<br />

The comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> relaxati<strong>on</strong> curves corresp<strong>on</strong>d<strong>in</strong>g to roomtemperature<br />

electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> from the catechol-(LUMO) and<br />

catechol-(LUMO+1) states (see black squares <strong>in</strong> Figures 4 and<br />

7, respectively) shows that thermal fluctuati<strong>on</strong>s give rise to a<br />

generic 2.5 fs time scale for <strong>in</strong>jecti<strong>on</strong> from either the catechol-<br />

LUMO or catechol-(LUMO+1) <strong>in</strong> nanostructures extended<br />

al<strong>on</strong>g either the [-101] or [010] crystallographic directi<strong>on</strong>s.<br />

The similarity <strong>in</strong> time scales, for room-temperature electr<strong>on</strong><br />

<strong>in</strong>jecti<strong>on</strong> from the catechol-(LUMO) and catechol-(LUMO+1),<br />

<strong>in</strong>vites the questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> whether thermal fluctuati<strong>on</strong>s also lead<br />

to a corresp<strong>on</strong>d<strong>in</strong>gly generic <strong>in</strong>jecti<strong>on</strong> mechanism. To address<br />

this questi<strong>on</strong>, Figure 8 presents the decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>ic<br />

populati<strong>on</strong>, <strong>in</strong>jected from the catechol-(LUMO+1) state <strong>in</strong>to<br />

the populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the Ti 4+ orbitals dxz, dz 2, dyz, and dxy.<br />

Simulati<strong>on</strong>s at 0 K (top panels) are compared to simulati<strong>on</strong>s at<br />

room temperature (bottom panels) for semic<strong>on</strong>ductor nanostructures<br />

extended al<strong>on</strong>g the [-101] (left panels) and [010] (right<br />

panels) crystallographic directi<strong>on</strong>s. Figure 8 shows that thermal<br />

nuclear moti<strong>on</strong> does not significantly affect the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong><br />

transfer <strong>in</strong>to the different Ti 4+ 3d orbitals, <strong>in</strong>dicat<strong>in</strong>g that the<br />

underly<strong>in</strong>g electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> mechanism is not significantly<br />

affected by thermal moti<strong>on</strong>. Moreover, compar<strong>in</strong>g the orbital<br />

populati<strong>on</strong>s across Figures 5 and 8 supports the general<br />

c<strong>on</strong>clusi<strong>on</strong> that the mechanisms for electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> from the<br />

catechol-LUMO and catechol-(LUMO+1) rema<strong>in</strong> significantly<br />

different, even at room temperature, although with similar<br />

characteristic times.<br />

3.3. Discussi<strong>on</strong>. The comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> time-dependent adsorbate<br />

populati<strong>on</strong>s, result<strong>in</strong>g from electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> dynamics from<br />

different <strong>in</strong>itial states and under different c<strong>on</strong>diti<strong>on</strong>s (see Figures<br />

4 and 7) <strong>in</strong>dicates that electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> from catechol-LUMO<br />

and LUMO+1 <strong>in</strong>to anatase semic<strong>on</strong>ductors is accelerated by<br />

room-temperature thermal fluctuati<strong>on</strong>s, proceed<strong>in</strong>g accord<strong>in</strong>g<br />

to ultrafast mechanisms characterized by a s<strong>in</strong>gle relaxati<strong>on</strong> time<br />

τ ) 2.5 fs. The computed time scale is comparable to the sub-<br />

3-fs time scale reported by Schnadt et al. 20 for <strong>in</strong>terfacial electr<strong>on</strong><br />

transfer from other excited electr<strong>on</strong>ic states (e.g., the LUMO+1<br />

and LUMO+2) <str<strong>on</strong>g>of</str<strong>on</strong>g> aromatic adsorbates such as (bi)is<strong>on</strong>icot<strong>in</strong>ic


<str<strong>on</strong>g>Influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Thermal</str<strong>on</strong>g> <str<strong>on</strong>g>Fluctuati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> IET <strong>in</strong> TiO2<br />

Figure 9. Isodensity surface describ<strong>in</strong>g the electr<strong>on</strong>ic density <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

catechol-LUMO (left panel) and catechol-(LUMO+1) (right panel) states.<br />

acid to TiO2 semic<strong>on</strong>ductors. The analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the detailed<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>jected charge (see Figures 5 and 8) <strong>in</strong>dicates<br />

that, although possess<strong>in</strong>g similar characteristic times, electr<strong>on</strong><br />

<strong>in</strong>jecti<strong>on</strong> mechanisms rema<strong>in</strong> sensitive to the particular spatial<br />

charge distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the d<strong>on</strong>or state, even under roomtemperature<br />

c<strong>on</strong>diti<strong>on</strong>s.<br />

C<strong>on</strong>sider<strong>in</strong>g the significant amount <str<strong>on</strong>g>of</str<strong>on</strong>g> research effort reported<br />

<strong>in</strong> recent years, it is important to place the results reported <strong>in</strong><br />

this paper with<strong>in</strong> the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> related studies. 23,24,33,39-41,46,47<br />

We beg<strong>in</strong> with a comparis<strong>on</strong> to our earlier study <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terfacial<br />

electr<strong>on</strong> transfer <strong>in</strong> catechol/anatase semic<strong>on</strong>ductors at low<br />

temperature limit. 41 Under such c<strong>on</strong>diti<strong>on</strong>s, the differences<br />

between <strong>in</strong>jecti<strong>on</strong> mechanisms from the catechol-LUMO and<br />

LUMO+1 are ultimately attributed to the significantly different<br />

character <str<strong>on</strong>g>of</str<strong>on</strong>g> the LUMO and LUMO+1 states <str<strong>on</strong>g>of</str<strong>on</strong>g> the catechol<br />

adsorbate (see Figure 9). Although both states have an equal<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> nodes, the <strong>in</strong>jecti<strong>on</strong> mechanism from the catechol-<br />

LUMO is ma<strong>in</strong>ly “through space” s<strong>in</strong>ce the <strong>in</strong>jected electr<strong>on</strong><br />

must tunnel from the catechol-LUMO to the hexacoord<strong>in</strong>ated<br />

Ti 4+ i<strong>on</strong> (see Ti(6) i<strong>on</strong> <strong>in</strong> Figure 2) due to the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>jugated<br />

π system electr<strong>on</strong> density near the l<strong>in</strong>k<strong>in</strong>g oxygen atoms (see<br />

Figure 4). The Ti 4+ i<strong>on</strong> thus becomes a bottleneck for charge<br />

<strong>in</strong>jecti<strong>on</strong> <strong>in</strong> nanostructures extended al<strong>on</strong>g the [-101] directi<strong>on</strong>.<br />

In c<strong>on</strong>trast, <strong>in</strong>jecti<strong>on</strong> from the catechol-(LUMO+1), <strong>in</strong> which<br />

a nodal plane <strong>in</strong> the electr<strong>on</strong> density bisects the catechol<br />

molecule (see Figure 7), proceeds through chemical b<strong>on</strong>ds<br />

associated with the two pentacoord<strong>in</strong>ated Ti 4+ i<strong>on</strong>s directly<br />

anchor<strong>in</strong>g the adsorbate (see Ti(5) i<strong>on</strong>s <strong>in</strong> Figure 2) and quickly<br />

delocalizes al<strong>on</strong>g the [010] crystallographic directi<strong>on</strong> <strong>on</strong> the<br />

surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the TiO2-anatase, before separat<strong>in</strong>g from the surface<br />

by delocalizati<strong>on</strong> al<strong>on</strong>g the [101] directi<strong>on</strong> (i.e., further <strong>in</strong>to the<br />

semic<strong>on</strong>ductor).<br />

The results reported <strong>in</strong> this paper <strong>in</strong>dicates that <strong>in</strong>homogeneous<br />

broaden<strong>in</strong>g partially breaks the nodal symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

d<strong>on</strong>or state, slightly mix<strong>in</strong>g the two <strong>in</strong>jecti<strong>on</strong> pathways.<br />

However, such a perturbati<strong>on</strong> <strong>on</strong>ly marg<strong>in</strong>ally alters the<br />

underly<strong>in</strong>g mechanism and time scales, as shown <strong>in</strong> Figures 4<br />

and 7, slightly speed<strong>in</strong>g up or slow<strong>in</strong>g down the transfer process.<br />

However, room-temperature thermal fluctuati<strong>on</strong>s enhance n<strong>on</strong>adiabatic<br />

processes between those MOs <strong>in</strong>volved <strong>in</strong> the primary<br />

<strong>in</strong>jecti<strong>on</strong> process (composed <str<strong>on</strong>g>of</str<strong>on</strong>g> the dxz and dz 2 AOs <str<strong>on</strong>g>of</str<strong>on</strong>g> Ti 4+ )<br />

and those resp<strong>on</strong>sible for electr<strong>on</strong>ic delocalizati<strong>on</strong> (composed<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the dyz and dxy AOs <str<strong>on</strong>g>of</str<strong>on</strong>g> Ti 4+ ). Therefore, the result<strong>in</strong>g effect<br />

<strong>on</strong> electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> from the catechol-LUMO is a net speed<br />

up <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terfacial electr<strong>on</strong> transfer s<strong>in</strong>ce the acceptor state <strong>in</strong> the<br />

hexacoord<strong>in</strong>ated Ti 4+ i<strong>on</strong> is no l<strong>on</strong>ger a bottleneck for charge<br />

<strong>in</strong>jecti<strong>on</strong>, as it is at low temperature. In c<strong>on</strong>trast, <strong>in</strong>jecti<strong>on</strong> from<br />

the LUMO+1, rely<strong>in</strong>g primarily <strong>on</strong> a “through-b<strong>on</strong>d” mecha-<br />

ARTICLES<br />

nism with rapid delocalizati<strong>on</strong>, is not so significantly affected<br />

by thermal fluctuati<strong>on</strong>s.<br />

The ma<strong>in</strong> c<strong>on</strong>clusi<strong>on</strong> suggested by the analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>jected charge, shown <strong>in</strong> Figures 4-8, is that thermal nuclear<br />

moti<strong>on</strong> is largely resp<strong>on</strong>sible for speed<strong>in</strong>g up the electr<strong>on</strong><br />

<strong>in</strong>jecti<strong>on</strong> mechanism <strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>homogeneous broaden<strong>in</strong>g.<br />

These effects serve to accelerate the overall <strong>in</strong>terfacial<br />

electr<strong>on</strong> transfer process without affect<strong>in</strong>g the dependence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the underly<strong>in</strong>g mechanism <strong>on</strong> the particular symmetry properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the photoexcited state <strong>in</strong> the d<strong>on</strong>or adsorbate molecule.<br />

We c<strong>on</strong>t<strong>in</strong>ue with a comparis<strong>on</strong> to a valuable series <str<strong>on</strong>g>of</str<strong>on</strong>g> recent<br />

theoretical studies, based <strong>on</strong> the Anders<strong>on</strong>-Newns Hamilt<strong>on</strong>ian,<br />

<strong>in</strong>clud<strong>in</strong>g a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dye-semic<strong>on</strong>ductor electr<strong>on</strong> transfer<br />

due to Ramakrishna, Willig, and May 46,47 and recent work by<br />

Thoss, K<strong>on</strong>dov and Wang 40 <strong>on</strong> the behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> similar models.<br />

Both studies <strong>in</strong>volve general theoretical treatments <str<strong>on</strong>g>of</str<strong>on</strong>g> a s<strong>in</strong>gle<br />

electr<strong>on</strong>ic d<strong>on</strong>or state coupled to a quasi-c<strong>on</strong>t<strong>in</strong>uum <str<strong>on</strong>g>of</str<strong>on</strong>g> semic<strong>on</strong>ductor<br />

acceptor states, with coupl<strong>in</strong>g to a bath <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum<br />

harm<strong>on</strong>ic oscillators.<br />

The study <str<strong>on</strong>g>of</str<strong>on</strong>g> Ramakrishna and co-workers <strong>in</strong>dicates that<br />

electr<strong>on</strong> transfer from an excited dye state is essentially<br />

<strong>in</strong>dependent <str<strong>on</strong>g>of</str<strong>on</strong>g> vibrati<strong>on</strong>al modes, under c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> either<br />

c<strong>on</strong>stant (str<strong>on</strong>g) electr<strong>on</strong>ic coupl<strong>in</strong>g between d<strong>on</strong>or and acceptor<br />

<strong>in</strong> the wide-band limit or <strong>in</strong> the zero-reorganizati<strong>on</strong> energy limit.<br />

In this fastest case, electr<strong>on</strong>ic <strong>in</strong>jecti<strong>on</strong> will be <strong>in</strong>dependent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

temperature and will not be modulated by vibrati<strong>on</strong>al wave<br />

packet moti<strong>on</strong>. It is judged with<strong>in</strong> this study that a temperature<br />

dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>jecti<strong>on</strong> will, however, be observable <strong>in</strong> most<br />

realistic systems, where the density <str<strong>on</strong>g>of</str<strong>on</strong>g> states or the electr<strong>on</strong>ic<br />

coupl<strong>in</strong>g between d<strong>on</strong>or and acceptor states varies significantly.<br />

Therefore, <strong>in</strong>jecti<strong>on</strong> rates computati<strong>on</strong>s based solely <strong>on</strong> electr<strong>on</strong>ic<br />

coupl<strong>in</strong>g are expected to be overestimated.<br />

The study <str<strong>on</strong>g>of</str<strong>on</strong>g> Thoss, Wang and co-workers presents a similar<br />

analysis, c<strong>on</strong>clud<strong>in</strong>g that <strong>in</strong> cases where vibrati<strong>on</strong>al degrees <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

freedom have a significant effect <strong>on</strong> the electr<strong>on</strong>ic dynamics<br />

nuclear wave packets will modulate the electr<strong>on</strong>ic <strong>in</strong>jecti<strong>on</strong>,<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten lead<strong>in</strong>g to slower or <strong>in</strong>complete <strong>in</strong>jecti<strong>on</strong>. These results<br />

are c<strong>on</strong>sistent with electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> occurr<strong>in</strong>g much faster than<br />

vibrati<strong>on</strong>al relaxati<strong>on</strong>. This analysis is therefore c<strong>on</strong>sistent with<br />

previous experimental studies, report<strong>in</strong>g the footpr<strong>in</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclear<br />

wave packet moti<strong>on</strong> <strong>on</strong> electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> <strong>in</strong> other functi<strong>on</strong>alized<br />

TiO2 semic<strong>on</strong>ductors. 23,24<br />

As po<strong>in</strong>ted out by Thoss, Wang and co-workers, 40 these<br />

related theoretical studies are expected to be most relevant to<br />

systems where the d<strong>on</strong>or state is energetically situated close to<br />

the bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>ducti<strong>on</strong> band, where the electr<strong>on</strong>ic coupl<strong>in</strong>g<br />

between adsorbate and semic<strong>on</strong>ductor is weak, or where the<br />

system is prepared significantly displaced from the equilibrium<br />

geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> the d<strong>on</strong>or state. It is therefore important to note<br />

that such c<strong>on</strong>diti<strong>on</strong>s are partially <strong>in</strong>compatible with the catechol/<br />

TiO2-anatase system, where d<strong>on</strong>or states are energetically<br />

embedded <strong>in</strong> the TiO2 c<strong>on</strong>ducti<strong>on</strong> band and str<strong>on</strong>gly coupled<br />

to the semic<strong>on</strong>ductor acceptor states. Furthermore, the d<strong>on</strong>or<br />

adsorbates are prepared close to their nuclear equilibrium<br />

geometries s<strong>in</strong>ce the equilibrium positi<strong>on</strong>s and vibrati<strong>on</strong>al<br />

frequencies are <strong>on</strong>ly slightly affected by photoexcitati<strong>on</strong> to<br />

bound excited states (e.g., HOMO-LUMO excitati<strong>on</strong>s). 57<br />

The treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>ic relaxati<strong>on</strong>, presented <strong>in</strong> this paper,<br />

implicitly assumes negligible reorganizati<strong>on</strong> energy λ <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

surface complex dur<strong>in</strong>g the <strong>in</strong>jecti<strong>on</strong> time. This approximati<strong>on</strong><br />

J. AM. CHEM. SOC. 9 VOL. 127, NO. 51, 2005 18241


ARTICLES Abuabara et al.<br />

is c<strong>on</strong>sistent with the wide-band limit, imply<strong>in</strong>g that λ is small<br />

relative to the width <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>ducti<strong>on</strong> band (i.e., λ , 5 eV)<br />

and agrees with the fact that the <strong>in</strong>ternal reorganizati<strong>on</strong> energies<br />

associated with aromatic organic molecules are typically <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> a tenth <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong> Volt. However, <strong>in</strong> c<strong>on</strong>trast to the<br />

general formulati<strong>on</strong>s, we compute the electr<strong>on</strong>ic structure at the<br />

atomistic level, allow<strong>in</strong>g for an explicit descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the density<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> states and electr<strong>on</strong>ic coupl<strong>in</strong>gs. Thus it is not by design that<br />

our simulati<strong>on</strong>s explore the str<strong>on</strong>g coupl<strong>in</strong>g limit, but rather as<br />

a characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>ic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the catechol/<br />

anatase system. The explicit treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>ic coupl<strong>in</strong>gs<br />

also allows <strong>on</strong>e to <strong>in</strong>vestigate aspects that might be bey<strong>on</strong>d the<br />

limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> model systems, <strong>in</strong>clud<strong>in</strong>g the detailed molecular<br />

orig<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the speed up mechanism. This process is attributed to<br />

n<strong>on</strong>adiabatic transiti<strong>on</strong>s between acceptor states <strong>in</strong> the vic<strong>in</strong>ity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the molecular adsorbate and states delocalized throughout<br />

the host substrate. The explicit atomistic model also allows <strong>on</strong>e<br />

to predict a m<strong>in</strong>imal effect <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclear dynamics <strong>on</strong> the primary<br />

electr<strong>on</strong> transfer event that populates acceptor states <strong>in</strong> the<br />

vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g> the photoexcited adsorbate s<strong>in</strong>ce high <strong>in</strong>jecti<strong>on</strong> rates<br />

are predicted for catechol/anatase systems even under low<br />

temperature c<strong>on</strong>diti<strong>on</strong>s. The explicit atomistic simulati<strong>on</strong>s also<br />

suggest that the experimental detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a vibrati<strong>on</strong>al impr<strong>in</strong>t<br />

<strong>on</strong> the underly<strong>in</strong>g electr<strong>on</strong>ic dynamics would be unlikely <strong>in</strong> the<br />

catechol/TiO2 system s<strong>in</strong>ce the overall <strong>in</strong>jecti<strong>on</strong> is completed<br />

with<strong>in</strong> 10 fs under room-temperature c<strong>on</strong>diti<strong>on</strong>s.<br />

F<strong>in</strong>ally, it is important to compare the results reported <strong>in</strong> this<br />

paper with a recent series <str<strong>on</strong>g>of</str<strong>on</strong>g> studies by Prezhdo and coworkers,<br />

33,37,39 report<strong>in</strong>g a thermal nuclear moti<strong>on</strong> comp<strong>on</strong>ent<br />

to the electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terfacial electr<strong>on</strong> transfer <strong>in</strong><br />

alizar<strong>in</strong>/rutile semic<strong>on</strong>ductors. The mechanism by which nuclear<br />

thermal fluctuati<strong>on</strong>s speed up the overall electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong><br />

dynamics <strong>in</strong> that system, however, seems to be significantly<br />

different from the catalytic effect <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclear moti<strong>on</strong> <strong>in</strong> catechol/<br />

anatase semic<strong>on</strong>ductors. This is not surpris<strong>in</strong>g, however, s<strong>in</strong>ce<br />

the d<strong>on</strong>or states <strong>in</strong> the alizar<strong>in</strong>/rutile system are <str<strong>on</strong>g>of</str<strong>on</strong>g>f-res<strong>on</strong>ance<br />

relative to the c<strong>on</strong>ducti<strong>on</strong> band. Nuclear moti<strong>on</strong> opens previously<br />

forbidden electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> channels by br<strong>in</strong>g<strong>in</strong>g these <str<strong>on</strong>g>of</str<strong>on</strong>g>fres<strong>on</strong>ant<br />

d<strong>on</strong>or states <str<strong>on</strong>g>of</str<strong>on</strong>g> alizar<strong>in</strong> surface complexes <strong>in</strong> res<strong>on</strong>ance<br />

with the c<strong>on</strong>ducti<strong>on</strong> band. In c<strong>on</strong>trast, the d<strong>on</strong>or states <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

catechol surface complexes are already <strong>in</strong> res<strong>on</strong>ance with the<br />

manifold <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>ic states <strong>in</strong> the TiO2 c<strong>on</strong>ducti<strong>on</strong> band,<br />

analogously to dye surface complexes with high photo-to-current<br />

c<strong>on</strong>versi<strong>on</strong> efficiencies (e.g., catechol para-substituted with Ru-<br />

(II)-polypyridyl complexes). The speed-up mechanism reported<br />

for catechol/anatase semic<strong>on</strong>ductors here<strong>in</strong>, while different from<br />

the alizar<strong>in</strong>/rutile <strong>in</strong>terface, should be particularly relevant to<br />

the understand<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature effects <strong>on</strong> surface charge<br />

separati<strong>on</strong> mechanisms <strong>in</strong> typical molecular-based photo-optic<br />

devices, especially c<strong>on</strong>sider<strong>in</strong>g that photovoltaic devices usually<br />

<strong>in</strong>volve d<strong>on</strong>or adsorbate states <strong>in</strong> res<strong>on</strong>ance with acceptor states<br />

<strong>in</strong> the semic<strong>on</strong>ductor c<strong>on</strong>ducti<strong>on</strong> band.<br />

4. C<strong>on</strong>clusi<strong>on</strong>s<br />

In this paper, we have shown that room-temperature nuclear<br />

fluctuati<strong>on</strong>s significantly affect the <strong>in</strong>terfacial electr<strong>on</strong> transfer<br />

18242 J. AM. CHEM. SOC. 9 VOL. 127, NO. 51, 2005<br />

dynamics <strong>in</strong> TiO2-anatase semic<strong>on</strong>ductors functi<strong>on</strong>alized with<br />

catechol. Our results are noteworthy s<strong>in</strong>ce catechol is a prototype<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> aromatic anchor<strong>in</strong>g ligands up<strong>on</strong> which a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

molecular structures can be attached for specific functi<strong>on</strong>alities.<br />

This work has been accomplished by implement<strong>in</strong>g a methodology<br />

developed <strong>in</strong> previous work, 41-43 comb<strong>in</strong><strong>in</strong>g ab <strong>in</strong>itio DFT<br />

molecular dynamics simulati<strong>on</strong>s and quantum dynamics propagati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> transient electr<strong>on</strong>ic excitati<strong>on</strong>s based <strong>on</strong> a timedependent<br />

extended Hückel model Hamilt<strong>on</strong>ian.<br />

We have shown that <strong>in</strong>terfacial electr<strong>on</strong> transfer <strong>in</strong> catechol/<br />

TiO2 at room temperature can be described by a s<strong>in</strong>gle<br />

exp<strong>on</strong>ential decay, with a characteristic time τ = 2.5 fs that<br />

quantitatively describes the relaxati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>ic populati<strong>on</strong><br />

<strong>in</strong> the <strong>in</strong>itially photoexcited catechol adsorbate. In additi<strong>on</strong>, it<br />

is reported that thermal fluctuati<strong>on</strong>s reduce the anisotropic<br />

character <str<strong>on</strong>g>of</str<strong>on</strong>g> charge diffusi<strong>on</strong> al<strong>on</strong>g different directi<strong>on</strong>s <strong>in</strong> the<br />

anatase crystal and make similar the electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> rates from<br />

adsorbate states <str<strong>on</strong>g>of</str<strong>on</strong>g> different spatial charge distributi<strong>on</strong>. It is also<br />

shown that, despite this apparent homogenizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the time<br />

scales <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>jecti<strong>on</strong>, the <strong>in</strong>terfacial electr<strong>on</strong> transfer mechanisms<br />

from electr<strong>on</strong>ic states <str<strong>on</strong>g>of</str<strong>on</strong>g> different character rema<strong>in</strong> dist<strong>in</strong>ct even<br />

<strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> room-temperature thermal fluctuati<strong>on</strong>s. These<br />

results complement and c<strong>on</strong>trast earlier studies <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong><br />

<strong>in</strong>jecti<strong>on</strong> under cryogenic temperature c<strong>on</strong>diti<strong>on</strong>s 41 and lend<br />

support to the <strong>in</strong>terpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental data suggest<strong>in</strong>g<br />

ultrafast (sub-10-fs) electr<strong>on</strong> <strong>in</strong>jecti<strong>on</strong> <strong>in</strong> similarly str<strong>on</strong>gly<br />

coupled semic<strong>on</strong>ductor-dye systems. 19-21 The l<strong>on</strong>ger time<br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>jected electr<strong>on</strong> <strong>in</strong> large systems, and its<br />

possible correlati<strong>on</strong> with the hole <strong>in</strong> the adsorbate m<strong>on</strong>olayer,<br />

is a subject <str<strong>on</strong>g>of</str<strong>on</strong>g> current study.<br />

We have shown that, <strong>in</strong> c<strong>on</strong>trast to the <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclear<br />

moti<strong>on</strong> <strong>on</strong> the <strong>in</strong>terfacial electr<strong>on</strong> transfer <strong>in</strong> other functi<strong>on</strong>alized<br />

semic<strong>on</strong>ductors, the catechol/anatase system <strong>in</strong>volves d<strong>on</strong>or<br />

states embedded <strong>in</strong> the c<strong>on</strong>ducti<strong>on</strong> band <str<strong>on</strong>g>of</str<strong>on</strong>g> the host substrate.<br />

Therefore, thermal nuclear fluctuati<strong>on</strong>s simply speed up the<br />

<strong>in</strong>terfacial electr<strong>on</strong> transfer by creat<strong>in</strong>g additi<strong>on</strong>al n<strong>on</strong>adiabatic<br />

relaxati<strong>on</strong> pathways between electr<strong>on</strong> acceptor states, localized<br />

<strong>in</strong> the vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g> the adsorbate, and delocalized states extended<br />

throughout the semic<strong>on</strong>ductor material.<br />

Acknowledgment. V.S.B. acknowledges supercomputer time<br />

from the Nati<strong>on</strong>al Energy Research Scientific Comput<strong>in</strong>g<br />

(NERSC) Center and f<strong>in</strong>ancial support from Research Corporati<strong>on</strong>,<br />

Research Innovati<strong>on</strong> Award # RI0702, a Petroleum<br />

Research Fund Award from the American Chemical Society<br />

PRF # 37789-G6, a junior faculty award from the F. Warren<br />

Hellman Family, the Nati<strong>on</strong>al Science Foundati<strong>on</strong> (NSF) Career<br />

Program Award CHE # 0345984, the NSF Nanoscale Exploratory<br />

Research (NER) Award ECS # 0404191, the Alfred P.<br />

Sloan Fellowship (2005-2006) from the Sloan Foundati<strong>on</strong>, a<br />

Camille Dreyfus Teacher-Scholar Award for 2005, a Yale Junior<br />

Faculty Fellowship <strong>in</strong> the Natural Sciences (2005), and startup<br />

package funds from the Provost’s <str<strong>on</strong>g>of</str<strong>on</strong>g>fice at Yale University.<br />

JA055185U

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!