12.07.2015 Views

Lectures on the Qualitative Theory Curves and Surfaces of ... - Unesp

Lectures on the Qualitative Theory Curves and Surfaces of ... - Unesp

Lectures on the Qualitative Theory Curves and Surfaces of ... - Unesp

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PrefaceThese Lecture Notes are addressed to <strong>the</strong> reader with some familiarity with <strong>the</strong> Foundati<strong>on</strong>s <strong>of</strong>Ordinary Differential Equati<strong>on</strong>s <strong>and</strong> Differential Geometry.The subject centers around <strong>the</strong> local geometry <strong>on</strong> a surface: Fundamental Forms, principalcurvatures, Gauss <strong>and</strong> Codazzi equati<strong>on</strong>s, Gauss–B<strong>on</strong>net Theorem. To represent a level, [9], [17],[20], [48], [50], [56], [74] <strong>and</strong> [75] can be menti<strong>on</strong>ed.The authors believe that from <strong>the</strong> Introducti<strong>on</strong> provided in <strong>the</strong>se Lecture Notes, <strong>the</strong> reader maygo to c<strong>on</strong>sult <strong>the</strong> papers quoted here, where more complete treatments <strong>and</strong> details are presented,<strong>and</strong> become interested in some <strong>of</strong> <strong>the</strong> many lines <strong>of</strong> advanced study <strong>and</strong> research open in <strong>the</strong> field<strong>of</strong> interacti<strong>on</strong> between Geometry <strong>and</strong> Analysis, outlined here.The scope <strong>of</strong> <strong>the</strong>se Lecture Notes is to illustrate <strong>the</strong> penetrati<strong>on</strong> <strong>of</strong> ideas such as genericity <strong>and</strong>structural stability <strong>of</strong> O.D.E’s in <strong>the</strong> development <strong>of</strong> <strong>the</strong> differential equati<strong>on</strong>s <strong>of</strong> classical geometry.These Lecture Notes are part <strong>of</strong> a more general work in current development.The authors are fellows <strong>of</strong> CNPq <strong>and</strong> d<strong>on</strong>e this work under <strong>the</strong> project CNPq 473747/2006-5.R<strong>on</strong>aldo GarciaJorge SotomayorGoiânia, September 20083


C<strong>on</strong>tentsPreface 31 Diff. Eq. <strong>of</strong> Classical Geometry 9Introducti<strong>on</strong> 91.1 The First Fundamental Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91.2 The Sec<strong>on</strong>d Fundamental Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101.3 Fundamental Equati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.4 Diff. Eq. <strong>of</strong> Curvature Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.5 Differential Equati<strong>on</strong>s <strong>of</strong> Asymptotic Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.6 Differential Equati<strong>on</strong>s <strong>of</strong> Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Classical Results <strong>on</strong> Curvature Lines 17Introducti<strong>on</strong> 172.1 Triple orthog<strong>on</strong>al systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.1.1 Ellipsoid with three different axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202.2 Envelopes <strong>of</strong> Regular <strong>Surfaces</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.3 Examples <strong>of</strong> Umbilics <strong>on</strong> Algebraic <strong>Surfaces</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . 232.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Global Principal Stability 27Introducti<strong>on</strong> 273.1 Lines <strong>of</strong> curvature near Darbouxian umbilics . . . . . . . . . . . . . . . . . . . . . . . . . . . 273.1.1 Preliminaries c<strong>on</strong>cerning umbilic points . . . . . . . . . . . . . . . . . . . . . . . . . . 273.2 Hyperbolic Principal Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.3 A Theorem <strong>on</strong> Principal Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.4 C<strong>on</strong>cluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 Bifurcati<strong>on</strong>s <strong>of</strong> Umbilics 37Introducti<strong>on</strong> 374.1 Umbilic Points <strong>of</strong> Codimensi<strong>on</strong> One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374.1.1 The D2,3 1 Umbilic Bifurcati<strong>on</strong> Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 404.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435


6 CONTENTS5 Stability <strong>of</strong> Asymptotic Lines 45Introducti<strong>on</strong> 455.1 Parabolic Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455.1.1 Computati<strong>on</strong> <strong>of</strong> <strong>the</strong> Sec<strong>on</strong>d Fundamental Form . . . . . . . . . . . . . . . . . . . . . 465.2 Stability <strong>of</strong> parabolic points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505.3 Stability <strong>of</strong> Periodic Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505.3.1 Regular Periodic Asymptotic Lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505.3.2 Folded periodic asymptotic lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525.4 Examples <strong>of</strong> Periodic Asymptotic Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545.4.1 A Hyperbolic periodic asymptotic line . . . . . . . . . . . . . . . . . . . . . . . . . . . 545.4.2 Semihyperbolic periodic asymptotic line . . . . . . . . . . . . . . . . . . . . . . . . . . 545.5 On a class <strong>of</strong> dense asymptotic lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565.6 Fur<strong>the</strong>r developments <strong>on</strong> asymptotic lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586 Closed Geodesics 61Introducti<strong>on</strong> 616.0.1 Closed Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616.0.2 Geodesics <strong>on</strong> <strong>Surfaces</strong> <strong>of</strong> Revoluti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636.0.3 Remarks <strong>on</strong> <strong>the</strong> Geodesic Flow <strong>on</strong> a Sphere . . . . . . . . . . . . . . . . . . . . . . . . 646.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Bibliography 66


List <strong>of</strong> Figures2.1 Triple orthog<strong>on</strong>al system <strong>of</strong> quadratic surfaces . . . . . . . . . . . . . . . . . . . . . 202.2 Curvature lines <strong>of</strong> <strong>the</strong> Ellipsoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.3 Canal surface with variable radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223.1 Darbouxian Umbilic Points, corresp<strong>on</strong>ding L α surface <strong>and</strong> lifted line fields. . . . . . 303.2 Lines <strong>of</strong> Curvature near Darbouxian Umbilic Points . . . . . . . . . . . . . . . . . . 314.1 Umbilic Point D2 1 <strong>and</strong> bifurcati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394.2 Lie-Cartan suspensi<strong>on</strong> D2,3 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414.3 Umbilic Point D2,3 1 <strong>and</strong> bifurcati<strong>on</strong>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435.1 Asymptotic lines near a parabolic line . . . . . . . . . . . . . . . . . . . . . . . . . . 485.2 Folded periodic asymptotic lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535.3 Asymptotic lines <strong>on</strong> <strong>the</strong> torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566.1 Geodesics <strong>on</strong> <strong>the</strong> surfaces <strong>of</strong> revoluti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . 647


8 LIST OF FIGURES


Chapter 1Differential Equati<strong>on</strong>s <strong>of</strong> ClassicalGeometryIntroducti<strong>on</strong>In this chapter <strong>the</strong> basic noti<strong>on</strong>s <strong>of</strong> differential geometry <strong>of</strong> curves <strong>and</strong> surfaces in R 3 will bereviewed. The differential equati<strong>on</strong>s <strong>of</strong> geodesics, principal curvature lines <strong>and</strong> asymptotic lines willbe obtained.The references for this chapter are [3], [9], [16], [17], [20], [42], [74] <strong>and</strong> [75].The principal curvature lines are <strong>the</strong> integral curves al<strong>on</strong>g <strong>the</strong> directi<strong>on</strong>s which <strong>the</strong> surfacebends extremely. It can be said that <strong>the</strong> <strong>the</strong>ory <strong>of</strong> curvature lines was founded by G. M<strong>on</strong>ge(1796), who determined explicitly <strong>the</strong> principal curvature lines <strong>of</strong> <strong>the</strong> ellipsoid with different axes.This is probably <strong>the</strong> first example in <strong>the</strong> literature <strong>of</strong> singular foliati<strong>on</strong>s.The geodesics is also a classical noti<strong>on</strong> <strong>and</strong> are obtained as a critical points (local minimizers <strong>of</strong><strong>the</strong> length) via <strong>the</strong> Calculus <strong>of</strong> Variati<strong>on</strong>s. They can be regarded, infinitesimally, as <strong>the</strong> curves <strong>of</strong>zero geodesic curvature.The asymptotic lines are characterized geometrically as <strong>the</strong> curves where <strong>the</strong> osculating planecoincides with <strong>the</strong> tangent plane <strong>of</strong> <strong>the</strong> surface.1.1 The First Fundamental FormLet α : M 2 → R 3 be a C r , r ≥ 4, immersi<strong>on</strong> <strong>of</strong> an oriented smooth surface M into R 3 .This space is oriented by a <strong>on</strong>ce for all fixed orientati<strong>on</strong> <strong>and</strong> is endowed with <strong>the</strong> Euclideaninner product 〈, 〉. Let N be <strong>the</strong> vector field orth<strong>on</strong>ormal to α defining <strong>the</strong> positive orientati<strong>on</strong> <strong>of</strong>M. This means that if (u,v) is a positive chart <strong>the</strong>n {α u ,α v ,N} is a positive frame in R 3 .The induced metric <strong>on</strong> T p M is defined by 〈u,v〉 p:= 〈Dα(p)u, Dα(p)v〉, where u, v ∈ T p M.In a local chart (u,v) : M → R 2 , c<strong>on</strong>sider a parametric curve c(t) = (u(t),v(t)). Then it followsthat x(t) = (α ◦ c)(t) is a curve <strong>and</strong> x ′ = α u u ′ + α v v ′ is a tangent vector <strong>of</strong> T p M, where p = c(0).Therefore, 〈x ′ ,x ′ 〉 = 〈α u ,α u 〉 (u ′ ) 2 + 2 〈α u ,α v 〉u ′ v ′ + 〈α v ,α v 〉 (v ′ ) 2 <strong>and</strong> <strong>the</strong> expressi<strong>on</strong>ds 2 = Edu 2 + 2Fdudv + Gdv 2 (1.1)9


10 CHAPTER 1. DIFF. EQ. OF CLASSICAL GEOMETRYwhere E = 〈α u ,α u 〉, F = 〈α u ,α v 〉 <strong>and</strong> 〈α v ,α v 〉, is called <strong>the</strong> first fundamental form <strong>of</strong> α. Thisform is positive definite, i.e., E > 0, G > 0 <strong>and</strong> EG − F 2 > 0.by:The distance, in <strong>the</strong> induced metric, between two points c(t 0 ) <strong>and</strong> c(t 1 ) <strong>on</strong> <strong>the</strong> curve c is defineds =∫ t1t 0√E( dudt )2 + 2F( dudt )(dv dt ) + G(dv dt )2 dtA change <strong>of</strong> coordinates u = u(x,y) <strong>and</strong> v = v(x,y) gives du = u x dx + u y dy <strong>and</strong> dv =v x dx + v y dy.Therefore,Edu 2 + 2Fdudv + Gdv 2 =E(u x dx + u y dy) 2 + 2F(u x dx + u y dy)(v x dx + v y dy) + G(v x dx + v y dy) 2=[E(u x ) 2 + 2Fu x v x + G(v x ) 2 ]dx 2 + 2[Eu x u y + F(u x v y + u y v x ) + Gv x v y ]dxdy (1.2)+[E(u y ) 2 + 2Fu y v y + G(v y ) 2 ]dy 2=Ēdx2 + 2 ¯Fdxdy + Ḡdy2The angle between two directi<strong>on</strong>s, defined in a local chart by, dx = α u du + α v dv <strong>and</strong> dy =α u δu + α v δv is defined by:cos θ = 〈dx,dy〉|dx||dy|Therefore <strong>the</strong> angle between <strong>the</strong> parametric curves u = c<strong>on</strong>stant <strong>and</strong> v = c<strong>on</strong>stant is given by:Fcos θ = √EG<strong>and</strong> sin θ =√EG−F 2√EG.1.2 The Sec<strong>on</strong>d Fundamental FormThe sec<strong>on</strong>d fundamental form is introduced in order to define <strong>the</strong> c<strong>on</strong>cept <strong>of</strong> curvature <strong>of</strong> asurface. Let x(s) = α(u(s),v(s)) be <strong>the</strong> spatial curve <strong>and</strong> suppose that |x ′ | = 1, i.e. , x isparametrized by arc length. The curvature vector k(s) = dTdxdswhere T(s) =dshas <strong>the</strong> orthog<strong>on</strong>aldecompositi<strong>on</strong> k = k n N + k g N ∧ T <strong>and</strong> k n is called <strong>the</strong> normal curvature <strong>and</strong> k g is called <strong>the</strong>geodesic curvature.From 〈T,N〉 = 0 it follows that 〈 dTds ,N〉 = − 〈 T, dN 〉ds <strong>and</strong> <strong>the</strong>refore kn = − 〈dα,dN〉〈dα,dα〉 .So it is obtainedk n = edu2 + 2fdudv + gdv 2Edu 2 + 2Fdudv + Gdv 2 .Here, e = − 〈α u ,N u 〉, 2f = −(〈α u ,N v 〉 + 〈a v ,N u 〉) <strong>and</strong> g = − 〈α v ,N v 〉.Also, as 〈α u ,N〉 = 〈α v ,N〉 = 0 it follows thate = 〈α uu ,N〉 , f = 〈α uv ,N〉, g = 〈α vv ,N〉 .Using <strong>the</strong> expressi<strong>on</strong> <strong>of</strong> N = αu∧αv|α u∧α v|it is obtained thate = [α u,α v ,α uu ]√EG − F2 , f = [α u,α v ,α uv ]√EG − F2 , g = [α u,α v ,α vv ]√EG − F2 ,where [.,.,.] means <strong>the</strong> mixed product <strong>of</strong> three vectors in R 3 .


1.3. FUNDAMENTAL EQUATIONS 11The quadratic formis called <strong>the</strong> sec<strong>on</strong>d fundamental form <strong>of</strong> α.II α = edu 2 + 2fdudv + gdv 2A change <strong>of</strong> coordinates u = u(x,y) <strong>and</strong> v = v(x,y) givesdu = u x dx + u y dy <strong>and</strong> dv = v x dx + v y dy.Thereforeedu 2 + 2fdudv + gdv 2 =e(u x dx + u y dy) 2 + 2f(u x dx + u y dy)(v x dx + v y dy) + g(v x dx + v y dy) 2= [e(u x ) 2 + 2fu x v x + g(v x ) 2 ]dx 2 + 2[eu x u y + f(u x v y + u y v x ) + gv x v y ]dxdy (1.3)+ [e(u y ) 2 + 2fu y v y + g(v y ) 2 ]dy 2= ēdx 2 + 2 ¯fdxdy + ḡdy 2The geodesic curvature k g is defined by <strong>the</strong> equati<strong>on</strong>k g = 〈 (N ∧ T),T ′〉 = [T,T ′ ,N].The unit vector T satisfies <strong>the</strong> equati<strong>on</strong> T = α u u ′ + α v v ′ , henceTherefore, <strong>the</strong> expressi<strong>on</strong> for k g is as follows:T ′ = α uu (u ′ ) 2 + 2α uv u ′ v ′ + α vv (v ′ ) 2 + u ′′ α u + v ′′ α v[Γ 2 11(u ′ ) 3 + (2Γ 2 12 − Γ 1 11)(u ′ ) 2 v ′ + (Γ 2 22 − 2Γ 1 12)u ′ (v ′ ) 2 − Γ 1 22(v ′ ) 3 + u ′ v ′′ − u ′′ v ′ ]√EG − F2For <strong>the</strong> parametric curves it follows that:√ √EG − F(k g ) v=c = Γ 2 2EG − F11E √ E , (k g) u=c = −Γ 1 222G √ G .In particular when <strong>the</strong> parametric curves are orthog<strong>on</strong>al (F = 0) it is obtained that:(k g )| v=v0 = − E v2E √ G = − dds 2ln √ E, (k g )| u=u0 =G u2G √ E = − dds 1ln √ G (1.4)The equati<strong>on</strong> above shows that <strong>the</strong> geodesic curvature depends <strong>on</strong>ly <strong>of</strong> <strong>the</strong> first fundamental form<strong>and</strong> <strong>the</strong>refore is an intrinsic entity.1.3 Fundamental Equati<strong>on</strong>sThe two fundamental forms, which define <strong>the</strong> length <strong>and</strong> curvature <strong>of</strong> curves <strong>on</strong> surfaces arerelated by <strong>the</strong> Fundamental Equati<strong>on</strong>s <strong>of</strong> Surface <strong>Theory</strong>.The first relati<strong>on</strong> is obtained writing <strong>the</strong> vectors α uu , α uv , α vv , N u <strong>and</strong> N v in terms <strong>of</strong> <strong>the</strong>frame {α u ,α v ,N}.Direct calculati<strong>on</strong> givesα uu = Γ 1 11 α u + Γ 2 11 α v + eNα uv = Γ 1 12 α u + Γ 2 12 α v + fNα vv = Γ 1 22 α u + Γ 2 22 α v + gN(1.5)(EG − F 2 )N v = (gF − fG)α u + (fF − gE)α v(EG − F 2 )N u = (fF − eG)α u + (eF − fE)α v


12 CHAPTER 1. DIFF. EQ. OF CLASSICAL GEOMETRYwhere <strong>the</strong> Christ<strong>of</strong>fel symbols are given by:Γ 1 11Γ 1 12Γ 1 22= EuG−2FuF+EvF2(EG−F 2 )= EvG−GuF2(EG−F 2 )= 2FvG−GuG−GvF2(EG−F 2 )Γ 2 11 = 2FuE−EvE+EuF2(EG−F 2 )Γ 2 12 = GuE−EvF2(EG−F 2 )Γ 2 11 = GvE−2FvF+GuF2(EG−F 2 )(1.6)Differentiating <strong>the</strong> equati<strong>on</strong>s (α uu ) v = (α uv ) u <strong>and</strong> (α uv ) v = (α vv ) u <strong>the</strong> following equati<strong>on</strong>s <strong>of</strong>compatibility are obtained.−E eg−f2 = ∂Γ2 EG−F 2 12∂u − ∂Γ2 11∂v + Γ1 12 Γ2 11 − Γ1 11 Γ2 12 + Γ2 12 Γ2 12 − Γ2 11 Γ2 22−F eg−f2 = ∂Γ1 EG−F 2 12∂u − ∂Γ1 11∂v + Γ1 12 Γ2 12 − Γ2 11 Γ1 22∂e∂v − ∂fThese equati<strong>on</strong>s are called <strong>the</strong> Equati<strong>on</strong>s <strong>of</strong> Codazzi(1.7)∂u= eΓ 1 12 + f(Γ2 12 − Γ1 11 ) − gΓ2 11 ,∂f∂v − ∂g∂u= eΓ 1 22 + f(Γ2 22 − Γ1 12 ) − gΓ2 12 . (1.8)Remark 1.3.1. The method <strong>of</strong> moving frames developed by E. Cartan is also useful to present <strong>the</strong>structure equati<strong>on</strong>s <strong>of</strong> Surface <strong>Theory</strong>. See [67].1.4 Differential Equati<strong>on</strong>s <strong>of</strong> Curvature LinesThe normal curvature in <strong>the</strong> directi<strong>on</strong> [du : dv] also denoted by λ = dv/du is given by:k n = edu2 + 2fdudv + gdv 2 e + 2fλ + gλ2Edu 2 =+ 2Fdudv + Gdv2 E + 2Fλ + Gλ 2.The extremal values <strong>of</strong> k n are characterized by dkndλ = 0.Direct calculati<strong>on</strong>s, applying <strong>the</strong> Lagrange multipliers, it results that:k n = III = f + gλF + Gλ = e + fλE + FλTherefore <strong>the</strong> quadratic equati<strong>on</strong> in λ is obtainedOr equivalently,(Fg − Gf)λ 2 + (Eg − Ge)λ + (Ef − Fe) = 0Fg − Gf)dv 2 + (Eg − Ge)dudv + (Ef − Fe)du 2 = 0 (1.9)⎛⎞dv 2 −dudv du 2⎜⎟det⎝E F G ⎠ = 0e f gAlso, <strong>the</strong> equati<strong>on</strong> above can be interpreted as <strong>the</strong> annihilati<strong>on</strong> <strong>of</strong> Jacobian <strong>of</strong> <strong>the</strong> map (du,dv) →(II(du,dv),I(du,dv)).∂(II,I)∂(du,dv)= 4(edu + fdv)(Fdu + Gdv) − 4(fdu + gdv)(Edu + Fdv) = 0


1.5. DIFFERENTIAL EQUATIONS OF ASYMPTOTIC LINES 13This equati<strong>on</strong> defines two directi<strong>on</strong>s dvdu , in which k n attains <strong>the</strong> extremal values, minimal <strong>and</strong>maximal. Its are called principal directi<strong>on</strong>s <strong>and</strong> <strong>the</strong> corresp<strong>on</strong>dent curvatures are called principalcurvatures.The normal curvature in <strong>the</strong> principal directi<strong>on</strong>s will be denoted by k 1 (minimal curvature) <strong>and</strong>k 2 (maximal curvature).The principal directi<strong>on</strong>s are well defined outside <strong>the</strong> points where <strong>the</strong> two fundamental formsare proporti<strong>on</strong>al, i. e. k 1 = k 2 . These points are called umbilic points <strong>and</strong> <strong>the</strong> set <strong>of</strong> umbilic pointswill be denoted by U α .Ano<strong>the</strong>r geometrical interpretati<strong>on</strong> <strong>of</strong> <strong>the</strong> differential equati<strong>on</strong> <strong>of</strong> curvature lines is obtainedfrom <strong>the</strong> Rodrigues’ equati<strong>on</strong>dN + kdp = 0, which defines <strong>the</strong> principal curvatures <strong>and</strong> <strong>the</strong>principal directi<strong>on</strong>s as eigenvalues <strong>and</strong> eigenvectors <strong>of</strong> <strong>the</strong> selfadjoint operator dN.Outside <strong>the</strong> umbilic set <strong>the</strong> principal directi<strong>on</strong>s are orthog<strong>on</strong>al <strong>and</strong> define two lines fields, calledprincipal lines fields which will be denoted by L 1 (α) <strong>and</strong> L 2 (α).In fact, it follows thatGλ 1 λ 2 + F(λ 1 + λ 2 )F + E= −1 [G(eF − fE) − F(eG − gE) − E(gF − Gf)] = 0gF − GfThe integral curves <strong>of</strong> <strong>the</strong>se line fields are called principal curvature lines or simply principallines. The principal foliati<strong>on</strong>s formed by <strong>the</strong> principal lines will be denoted by P 1 (α) <strong>and</strong> P 2 (α).The triple P α = {P 1 (α), P 2 (α), U α } is called <strong>the</strong> principal c<strong>on</strong>figurati<strong>on</strong> <strong>of</strong> <strong>the</strong> immersi<strong>on</strong> α.The implicit differential equati<strong>on</strong>H(u,v,[du : dv]) = (Fg − Gf)dv 2 + (Eg − Ge)dudv + (Ef − Fe)du 2 = 0defines in <strong>the</strong> projective bundle PM a surface H −1 (0). This surface in general is regular butcan present singularities.The line field in <strong>the</strong> chart (u,v,p), p = dvdu, defined by,∂X H = H p∂u + pH ∂p∂v − (H u + pH v ) ∂ ∂pis called a Lie-Cartan line field.In <strong>the</strong> chart (u,v,q), q = dudv, <strong>the</strong> line field is defined by,∂X H = qH q∂u + H ∂q∂v − (H v + qH u ) ∂ ∂q .The projecti<strong>on</strong>s <strong>of</strong> <strong>the</strong> integral curves <strong>of</strong> X H by π(u,v,[du : dv]) = (u,v) are <strong>the</strong> principalcurvature lines.The projecti<strong>on</strong> π is a double covering outside <strong>the</strong> umbilic set U α <strong>and</strong> π −1 (p 0 ) = P 1 (R) at anumbilic point p 0 .1.5 Differential Equati<strong>on</strong>s <strong>of</strong> Asymptotic LinesThe normal curvature in a directi<strong>on</strong> which makes an angle θ with a minimal principal directi<strong>on</strong>is given, from Euler’s <strong>the</strong>orem, by:k n = k 1 cos 2 θ + k 2 sin 2 θ


14 CHAPTER 1. DIFF. EQ. OF CLASSICAL GEOMETRYThe directi<strong>on</strong>s where k n = 0 are called asymptotic directi<strong>on</strong>s <strong>and</strong> <strong>the</strong>refore are defined byII = edu 2 + 2fdudv + gdv 2 = 0.The line fields <strong>of</strong> asymptotic directi<strong>on</strong>s will be denoted by A 1 <strong>and</strong> A 2 . Its are called asymptoticline fields.It can be proved that <strong>the</strong> ordered pair {A 1 , A 2 } is well defined in <strong>the</strong> hyperbolic regi<strong>on</strong> <strong>of</strong> <strong>the</strong>surface, where <strong>the</strong>se directi<strong>on</strong>s are real.At <strong>the</strong> parabolic points defined by K = 0 <strong>the</strong> two asymptotic directi<strong>on</strong>s coincide <strong>and</strong> are welldefined when <strong>on</strong>e principal curvature is not zero.The triple A α = {A 1 , A 2 , P α } is called <strong>the</strong> asymptotic c<strong>on</strong>figurati<strong>on</strong> <strong>of</strong> <strong>the</strong> immersi<strong>on</strong> α.The method <strong>of</strong> Lie-Cartan can be developed to c<strong>on</strong>sider <strong>the</strong> implicit differential equati<strong>on</strong> <strong>of</strong>asymptotic lines as a surface in <strong>the</strong> projective bundle PM.The asymptotic lines are <strong>the</strong> projecti<strong>on</strong>s <strong>of</strong> <strong>the</strong> integral curves <strong>of</strong> Lie-Cartan line field. See [3].Propositi<strong>on</strong> 1.5.1. Let α be in Imm k,k (M, R 3 ). Suppose that H α = {p : K(p) ≤ 0} is a regularsurface with boundary ∂H a = P α . Then <strong>the</strong> implicit surface <strong>of</strong> <strong>the</strong> asymptotic directi<strong>on</strong>s L(u,v,[du :dv] = edu 2 +2fdudv+gdv 2 = 0 is a regular surface in <strong>the</strong> projective bundle PM <strong>and</strong> <strong>the</strong> Lie-Cartanline field X L = L p∂∂u + pL p ∂ ∂v − (L u + pL v ) ∂ ∂p is globally defined in L−1 (0) <strong>and</strong> it is singular at <strong>the</strong>points where <strong>the</strong> asymptotic directi<strong>on</strong>s are tangent to <strong>the</strong> parabolic set P α .The asymptotic foliati<strong>on</strong>s <strong>of</strong> α are <strong>the</strong> integral foliati<strong>on</strong>s A 1α <strong>of</strong> l 1α <strong>and</strong> A 2α <strong>of</strong> l 2α ; <strong>the</strong>y fill out<strong>the</strong> hyperbolic regi<strong>on</strong> H α . When n<strong>on</strong>-empty, <strong>the</strong> regi<strong>on</strong> H α is bounded by <strong>the</strong> set (generically, i.e.for most α ′ s, a regular curve [21], [47], [8], [10], P α <strong>of</strong> parabolic points <strong>of</strong> α, <strong>on</strong> which K α vanishes.On P α , <strong>the</strong> pair <strong>of</strong> asymptotic directi<strong>on</strong>s degenerate into a single <strong>on</strong>e or into <strong>the</strong> whole tangentplane (at flat umbilic points, which generically are disjoint from <strong>the</strong> parabolic curve).1.6 Differential Equati<strong>on</strong>s <strong>of</strong> GeodesicsThe geodesics are <strong>the</strong> curves <strong>on</strong> <strong>the</strong> surface <strong>of</strong> zero geodesic curvature.Also <strong>the</strong> geodesics are defined as <strong>the</strong> curves <strong>of</strong> shortest distance between two points.The equati<strong>on</strong> which defines <strong>the</strong> geodesic curvature k g <strong>of</strong> a curve parametrized by arc length sis given by <strong>the</strong> following expressi<strong>on</strong>:[Γ 2 11 (u′ ) 3 + (2Γ 2 12 − Γ1 11 )(u′ ) 2 v ′ + (Γ 2 22 − 2Γ1 12 )u′ (v ′ ) 2 − Γ 1 22 (v′ ) 3 + u ′ v ′′ − u ′′ v ′ ]√EG − F 2where u ′ = duds <strong>and</strong> v′ = dvds .Differentiating <strong>the</strong> equati<strong>on</strong>s 〈T ′ ,α u 〉 = 0 <strong>and</strong> 〈T ′ ,α v 〉 = 0 with respect to s <strong>the</strong> followingsystem is obtained.d 2 u+ Γ 1 ds 2 11 (du ds )2 + 2Γ 1 12 dudsd 2 v+ Γ 2 ds 2 11 (du ds )2 + 2Γ 2 12 dudsdvds + Γ1 22 (dvds )2 = 0dvds + Γ2 22 (dv ds )2 = 0Eliminating ds 2 = Edu 2 + 2Fdudv + Gdv 2 from <strong>the</strong> system above it follows that:(1.10)


1.7. EXERCISES 15d 2 vdu 2 = Γ1 22( dvdu )3 + (2Γ 1 12 − Γ 1 22)( dvdu )2 + (Γ 1 11 − 2Γ 2 12) dvdu − Γ2 11Or equivalently,d 2 udv 2 = Γ2 11( dudv )3 − (Γ 1 11 − 2Γ 2 12)( dudv )2 − (2Γ 1 12 − Γ 2 22) dudv − Γ1 22Propositi<strong>on</strong> 1.6.1. Let M be a regular surface <strong>of</strong> class C k , k ≥ 2. Then for every p ∈ M <strong>and</strong>v ∈ T p M, v ≠ 0, <strong>the</strong>re exist ǫ > 0 <strong>and</strong> an unique geodesic γ : (−ǫ,ǫ) → M such that γ(0) = p <strong>and</strong>γ ′ (0) = v.Pro<strong>of</strong>. This follows from <strong>the</strong> <strong>the</strong>orem <strong>of</strong> existence <strong>and</strong> uniqueness for ordinary differential equati<strong>on</strong>applied to <strong>the</strong> vector field defined by:u ′ = 1v ′ = w(1.11)w ′ = Γ 1 22 w3 + (2Γ 1 12 − Γ1 22 )w2 + (Γ 1 11 − 2Γ2 12 )w − Γ2 111.7 Exercises1) Let p be a n<strong>on</strong> umbilic point <strong>of</strong> S. Show that a neighborhood <strong>of</strong> p can be parametrized by principalcurvature lines. Write <strong>the</strong> Codazzi equati<strong>on</strong>s in a principal chart which is chacterized by f = F = 0.2) Let p be a hyperbolic point <strong>of</strong> S. Show that a neighborhood <strong>of</strong> p can be parametrized by asymptoticlines. Write <strong>the</strong> Codazzi equati<strong>on</strong>s in an asymptotic chart which is chacterized by e = g = 0.3) [ B<strong>on</strong>net coordinates <strong>on</strong> a c<strong>on</strong>vex surface ] Suppose M be a smooth surface in <strong>the</strong> euclidian spaceR 3 . Let p ∈ M such that K ≠ 0. <strong>and</strong> N : M → S 2 <strong>the</strong> normal Gauss map. Suppose an orth<strong>on</strong>ormalreferential such that N(p) = (0, 0, −1).Let also π : S 2 \ {(0, 0, 1)} → R 2 be <strong>the</strong> stereographic projecti<strong>on</strong>.C<strong>on</strong>sider <strong>the</strong> map β : U ⊂ R 2 → M defined by β = (π ◦ N) −1 .Introduce <strong>the</strong> support functi<strong>on</strong> f(u, v) = (1+u 2 + v 2 )D(u, v) where D is <strong>the</strong> distance (with signal) <strong>of</strong>T β(u,v) M <strong>and</strong> <strong>the</strong> origin 0 ∈ R 3 . So it follows that β(u, v) = x(u, v), y(u, v), z(u, v)) is given by:x(u, v) = 1 2 f u − u uf u + vf v − fu 2 + v 2 + 1y(u, v) = 1 2 f v − v uf u + vf v − fu 2 + v 2 + 1z(u, v) = uf u + vf v − fu 2 + v 2 + 1(1.12)i) Show that in <strong>the</strong> coordinates <strong>of</strong> B<strong>on</strong>net above <strong>the</strong> differential equati<strong>on</strong> <strong>of</strong> curvature lines is given by:f uv (du 2 − dv 2 ) + (f vv − f uu )dudv = 0 (1.13)ii) Let z = u+iv <strong>and</strong> ∂ ∂¯z = ∂∂u +i ∂∂v<strong>the</strong> c<strong>on</strong>jugate operator. Then show that equati<strong>on</strong> (1.13) is equivalentto Im(f¯z¯z d¯z 2 ) = Im(f zz dz 2 ) = 0. See also [11].


16 CHAPTER 1. DIFF. EQ. OF CLASSICAL GEOMETRY4) Show that <strong>the</strong> differential equati<strong>on</strong> <strong>of</strong> geodesics <strong>on</strong> an implicit surface F(x, y, z) = 0 is given by:F x F y F zdx dy dz= 0, F x dx + F y dy + F z dz = 0.∣d 2 x d 2 y d 2 z∣5) Show that <strong>the</strong> differential equati<strong>on</strong> <strong>of</strong> principal curvature lines <strong>on</strong> an implicit surface F(x, y, z) = 0 isgiven by:∣ dx dy dz ∣∣∣∣∣∣ F x F y F z = 0, F x dx + F y dy + F z dz = 0.∣dF x dF y dF z6) Let (u, v) be a local positive principal chart <strong>on</strong> a surface S. Express <strong>the</strong> geodesic curvatures (seeequati<strong>on</strong> (1.4)) <strong>of</strong> <strong>the</strong> coordinates lines in functi<strong>on</strong> <strong>of</strong> <strong>the</strong> principal curvatures k 1 <strong>and</strong> k 2 <strong>and</strong> <strong>the</strong>irderivatives, i.e., show thatk g | v=v0 (u, v 0 ) = −(k 2) uk 2 − k 1(u, v 0 ),k g | u=u0 (u 0 , v) = −(k 1) vk 2 − k 1(u, v 0 ),7) Given a parametric smooth surface α : U → R 3 define <strong>the</strong> square distance functi<strong>on</strong> D : U ×R 3 → R by<strong>the</strong> equati<strong>on</strong> D(u, v, p) = |p −α(u, v)| 2 . Geometrically D is a measure <strong>of</strong> c<strong>on</strong>tact between <strong>the</strong> surfaces<strong>and</strong> spheres in R 3 .In terms <strong>of</strong> singularities <strong>of</strong> D define <strong>the</strong> focal set <strong>of</strong> α <strong>and</strong> study its singularities. For a guide see [58].This subject is still a fecund source <strong>of</strong> current research.8) Show that <strong>the</strong> <strong>the</strong>ory <strong>of</strong> principal curvature lines <strong>on</strong> surfaces <strong>of</strong> R 3 <strong>and</strong> that <strong>of</strong> <strong>the</strong> unitary sphereS 3 ⊂ R 4 is <strong>the</strong> same. More precisely, c<strong>on</strong>sider <strong>the</strong> stereographic projecti<strong>on</strong> π : S 3 \ {N} → R 3 .Write <strong>the</strong> expressi<strong>on</strong> <strong>of</strong> pi in coordinates <strong>and</strong> show that π is a c<strong>on</strong>formal map. C<strong>on</strong>clude that π is ac<strong>on</strong>jugacti<strong>on</strong> between <strong>the</strong> principal c<strong>on</strong>figurati<strong>on</strong> <strong>of</strong> <strong>the</strong> surface S ⊂ R 3 <strong>and</strong> that <strong>of</strong> ¯S = π −1 (S) ⊂ S 3 .See [51] for a geometric pro<strong>of</strong> <strong>of</strong> <strong>the</strong> c<strong>on</strong>formality <strong>of</strong> π.9) Show that an oriented c<strong>on</strong>nected surface having both principal curvatures c<strong>on</strong>stant, or, equivalently,those such that <strong>the</strong> Mean <strong>and</strong> Gauss curvatures are c<strong>on</strong>stant, is an open set <strong>of</strong> <strong>the</strong> plane, <strong>of</strong> a sphere,or <strong>of</strong> a circular right cylinder. See [66].10) Let S be a surface <strong>of</strong> revoluti<strong>on</strong> parametrized byα(s, v) = (r(s)cos v, r(s)sin v, z(s)).C<strong>on</strong>sider a geodesic line γ(t) <strong>of</strong> S making an angle α(t) with <strong>the</strong> meridians <strong>and</strong> let r(t) <strong>the</strong> radius<strong>of</strong> <strong>the</strong> corresp<strong>on</strong>dent parallel. Write <strong>the</strong> diffeential equati<strong>on</strong> <strong>of</strong> <strong>the</strong> geodesic lines <strong>and</strong> show thatr(t)sin α(t) = cte.11) Let c be a closed principal line <strong>of</strong> a surface S. Show that a tubular neighoborhood <strong>of</strong> c can beparametrized such that <strong>the</strong> coordinates curves orthog<strong>on</strong>al to c are principal lines <strong>of</strong> S.


Chapter 2Classical Results <strong>on</strong> Curvature LinesIntroducti<strong>on</strong>In this chapter it will be c<strong>on</strong>sidered triple orthog<strong>on</strong>al systems <strong>of</strong> surfaces in R 3 , envelope <strong>of</strong>surfaces <strong>and</strong> also some examples <strong>of</strong> umbilic points <strong>on</strong> algebraic surfaces.The basic references for this chapter are [16], [20], [44], [48], [50], [74], [75] <strong>and</strong> [79].For beautiful illustrati<strong>on</strong>s <strong>of</strong> sculptures <strong>of</strong> surfaces see [22] <strong>and</strong> [43].2.1 Triple orthog<strong>on</strong>al systemsTheorem 2.1.1 (Joachimsthal Theorem). Let two surfaces M 1 <strong>and</strong> M 2 intersecting al<strong>on</strong>g a curveγ <strong>on</strong> which <strong>the</strong>ir normals N 1 <strong>and</strong> N 2 make c<strong>on</strong>stant angle, i.e. 〈N 1 ,N 2 〉 |γ is c<strong>on</strong>stant, <strong>and</strong> suchthat DN 1 γ ′ ∧ γ ′ = 0. Then also it is verified that DN 2 γ ′ ∧ γ ′ = 0. In o<strong>the</strong>r words, if two surfacesintersect with c<strong>on</strong>stant angle al<strong>on</strong>g a curve which is <strong>the</strong> uni<strong>on</strong> <strong>of</strong> principal lines <strong>and</strong> umbilic points<strong>of</strong> <strong>the</strong> first <strong>on</strong>e, this is also <strong>the</strong> case for <strong>the</strong> sec<strong>on</strong>d <strong>on</strong>e.C<strong>on</strong>versely, if DN 1 γ ′ ∧ γ ′ = 0 <strong>and</strong> DN 2 γ ′ ∧ γ ′ = 0 al<strong>on</strong>g a curve γ <strong>of</strong> intersecti<strong>on</strong> <strong>of</strong> M 1 <strong>and</strong>M 2 , <strong>the</strong>n <strong>the</strong> angle between <strong>the</strong> surfaces, i.e., 〈N 1 ,N 2 〉 | γ is c<strong>on</strong>stant.Pro<strong>of</strong>. By hypo<strong>the</strong>sis <strong>the</strong> mixed product [N 1 ,N 2 ,γ ′ ] is not zero. So, differentiating <strong>the</strong> equati<strong>on</strong>〈N 1 ,N 2 〉 = c it follows that [N 1 ,DN 2 (γ)γ ′ ,γ ′ ] = −[DN 1 (γ)γ ′ ,N 2 ,γ ′ ] = 0. This implies thatDN 2 (γ)γ ′ = λγ ′ . By Rodrigues formula it follows that γ is a cuvature line <strong>of</strong> M 2 . The reciprocalis direct. This ends <strong>the</strong> pro<strong>of</strong>.From this follows directly that <strong>the</strong> principal c<strong>on</strong>figurati<strong>on</strong>s for surfaces <strong>of</strong> revoluti<strong>on</strong> are given by<strong>the</strong> umbilic points which are at <strong>the</strong> poles <strong>and</strong> eventually <strong>on</strong> some parallels; <strong>the</strong> principal foliati<strong>on</strong>sare given by arcs <strong>of</strong> n<strong>on</strong> umbilical meridians <strong>and</strong> parallels.For a n<strong>on</strong> spherical ellipsoid <strong>of</strong> revoluti<strong>on</strong>, however, <strong>the</strong> unique umbilic points occur at <strong>the</strong>irpoles, as follows from a direct calculati<strong>on</strong>.Definiti<strong>on</strong> 2.1.2. A diffeomorphism preserving <strong>the</strong> orientati<strong>on</strong> H : U ⊂ R 3 → R 3 , where U is anopen set <strong>and</strong> such that〈H u ,H v 〉 = 〈H u ,H w 〉 = 〈H v ,H w 〉 = 0, H u = ∂H∂u17


18 CHAPTER 2. CLASSICAL RESULTS ON CURVATURE LINESis called a triple orthog<strong>on</strong>al system..The simple examples <strong>of</strong> triple orthog<strong>on</strong>al systems are <strong>the</strong> cylindrical <strong>and</strong> spherical coordinatesin 3-space.In cylindrical coordinates, two families are formed <strong>of</strong> planes <strong>and</strong> <strong>the</strong> o<strong>the</strong>r c<strong>on</strong>sists <strong>of</strong> circularcylinders.In spherical coordinates, <strong>the</strong> first family is formed <strong>of</strong> c<strong>on</strong>centric spheres with center at 0, <strong>the</strong>sec<strong>on</strong>d is formed <strong>of</strong> planes c<strong>on</strong>taining <strong>on</strong>e coordinate axis <strong>and</strong> <strong>the</strong> third is formed by c<strong>on</strong>es.For each coordinate fixed, for example, w <strong>the</strong> map (u,v) → H w (u,v) = H(u,v,w) is aparametrizati<strong>on</strong> <strong>of</strong> a surface.Lemma 2.1.1. Let p = |H u |, q = |H v | <strong>and</strong> r = |H w | The following relati<strong>on</strong>s holds,H u ∧ H w = qrp H uH w ∧ H u = prq H v〈H u ,H vw 〉 = 0 〈H v ,H uw 〉 = 0 〈H w ,H uv 〉 = 0〈H u ,H v ∧ H w 〉 = pqrH u ∧ H v = pqr H w(2.1)Pro<strong>of</strong>. C<strong>on</strong>sider <strong>the</strong> unitary vector fields N 1 = H u /|H u |, N 2 = H v /|H v | <strong>and</strong> N 3 = H w /|H w |.By <strong>the</strong> hypo<strong>the</strong>sis it follows that N 1 ∧N 2 = N 3 , N 2 ∧N 3 = N 1 , N 3 ∧N 1 = N 2 <strong>and</strong> 〈N 1 ,N 2 ∧ N 3 〉 =1. Then H u ∧ H v = pN 1 ∧ qN 2 = pqN 3 = pqr H w. The same for <strong>the</strong> o<strong>the</strong>r relati<strong>on</strong>s.Differentiating <strong>the</strong> equati<strong>on</strong> 〈H u ,H v 〉 = 0 in relati<strong>on</strong> to w it follows that 〈H uw ,H v 〉+〈H u ,H vw 〉 =0. Also it holds that 〈H uv ,H w 〉 + 〈H u ,H vw 〉 = 0 <strong>and</strong> 〈H uv ,H w 〉 + 〈H v ,H uw 〉 = 0.So, 〈H uw ,H v 〉 = − 〈H u ,H vw 〉 = −(− 〈H uv ,H w 〉) = − 〈H v ,H uw 〉. The same for <strong>the</strong> o<strong>the</strong>rrelati<strong>on</strong>s. This ends <strong>the</strong> pro<strong>of</strong>.Propositi<strong>on</strong> 2.1.1. C<strong>on</strong>sider <strong>the</strong> parametrized surfaces S 1 : (u,v) → H w (u,v) = H(u,v,w),S 2 : (w,u) → H v (w,u) = H(u,v,w) <strong>and</strong> S 3 : (v,w) → H u (v,w) = H(u,v,w).Then <strong>the</strong> coefficients <strong>of</strong> <strong>the</strong> first fundamental E i , F i <strong>and</strong> G i <strong>and</strong> <strong>of</strong> <strong>the</strong> sec<strong>on</strong>d fundamental forme i , f i <strong>and</strong> g i <strong>of</strong> <strong>the</strong> surfaces S i , i = 1,2,3 are given by:I 1 = p 2 du 2 + q 2 dv 2I 2 = r 2 dw 2 + p 2 du 2I 3 = q 2 dv 2 + r 2 dw 2II 1 = − pp wr du2 − qq wr dv2II 2 = − rr vq dw2 − pp vq du2II 3 = − qq up dv2 − rr up dw2 (2.2)Pro<strong>of</strong>. By <strong>the</strong> lemma 2.1.1 it follows that F i = f i = 0 for <strong>the</strong> three parametrized surfaces.The positive normal vector field to <strong>the</strong> surface S 1 is given by N 3 , for S 2 is N 2 <strong>and</strong> for S 3 is N 1 .C<strong>on</strong>sider <strong>the</strong> surface S 2 : (w,u) → H v (w,u). Then it follows that〈 〉Hve 2 = 〈N 2 , H ww 〉 =|H v | , H ww〈 〉Hvg 2 = 〈N 2 , H uu 〉 =|H v | , H uuThe same for <strong>the</strong> o<strong>the</strong>r two surfaces.= − 〈H vw , H w 〉/|H v | = − |H w| 2 v2q= − 〈H uv , H u 〉/|H v | = − |H u| 2 v2q= − rr vq= − pp vq .


2.1. TRIPLE ORTHOGONAL SYSTEMS 19Remark 2.1.3. The local inverse G <strong>of</strong> <strong>the</strong> diffeomorphism H = (h 1 ,h 2 ,h 3 ) is called an orthog<strong>on</strong>alcoordinate system in <strong>the</strong> space. That is (for G i = ∂G∂c i),〈G i ,G j 〉 = 0, for i ≠ j (2.3)as follows from a direct calculati<strong>on</strong> that gives G i = ∇h i /|∇h i | 2 .Theorem 2.1.4 (Dupin). The intersecti<strong>on</strong> <strong>of</strong> <strong>the</strong> level surface foliati<strong>on</strong>s M 2 (c 2 ) = {h 2 = c 2 } <strong>and</strong>M 3 (c 3 ) = {h 3 = c 3 } with a surface M 1 (a 1 ) = {h 1 = a 1 } produce <strong>on</strong> it a net <strong>of</strong> curves, al<strong>on</strong>g each<strong>of</strong> which, say γ, holds that DN 1 γ ′ ∧ γ′ = 0; that is, γ is <strong>the</strong> uni<strong>on</strong> <strong>of</strong> principal curves <strong>and</strong> umbilicpoints <strong>of</strong> M 1 .Pro<strong>of</strong>. Direct c<strong>on</strong>sequence <strong>of</strong> <strong>the</strong> propositi<strong>on</strong> 2.1.1.Remark 2.1.5. Notice that it has been proved that <strong>the</strong> coordinate surfaces <strong>of</strong> any orthog<strong>on</strong>al coordinatesystem G in <strong>the</strong> space meet al<strong>on</strong>g comm<strong>on</strong> principal curves. A fact that is actually equivalentto <strong>the</strong> previous formulati<strong>on</strong> <strong>of</strong> Dupin’s Theorem.Remark 2.1.6. By taking <strong>the</strong> ruled surfaces generated by <strong>the</strong> normal lines to a surface M al<strong>on</strong>gprincipal lines, two families N 1v , based <strong>on</strong> minimal principal lines (say, v =c<strong>on</strong>stant), <strong>and</strong> N 2u ,based <strong>on</strong> maximal principal <strong>on</strong>es (say u = c<strong>on</strong>stant), are produced. These families <strong>of</strong> surfaces,toge<strong>the</strong>r with <strong>the</strong> family M r given by parallel translati<strong>on</strong>, are triply orthog<strong>on</strong>al. This shows that atn<strong>on</strong> umbilic points, any surface can be embedded in a family <strong>of</strong> surfaces which is part <strong>of</strong> a triplyorthog<strong>on</strong>al system.To prove that inversi<strong>on</strong>s I(p) = p/|p| 2 preserve lines <strong>of</strong> curvature, use <strong>the</strong> fact that <strong>the</strong>se mapsare c<strong>on</strong>formal (i.e. preserve angles). Apply Dupin’s Theorem to <strong>the</strong> image <strong>of</strong> <strong>the</strong> triple orthog<strong>on</strong>alsystem <strong>of</strong> surfaces just defined.Remark 2.1.7. A family <strong>of</strong> surfaces given by h(u,v,w) = c, may be part <strong>of</strong> a triple orthog<strong>on</strong>alsystem if <strong>the</strong> functi<strong>on</strong> h satisfy <strong>the</strong> differential equati<strong>on</strong>See [81].( ) ∂div∂n rot(n) = 0, n = ∇h|∇h| .Theorem 2.1.8 (Darboux). Suppose that two families <strong>of</strong> orthog<strong>on</strong>al surfaces intercept al<strong>on</strong>g lines<strong>of</strong> curvature. Then <strong>the</strong>re exists a third family <strong>of</strong> surfaces orthog<strong>on</strong>al to <strong>the</strong> first two families.Pro<strong>of</strong>. C<strong>on</strong>sider two distribuiti<strong>on</strong>s ∆ 1 <strong>and</strong> ∆ 2 <strong>of</strong> tangent planes to <strong>the</strong> two families <strong>of</strong> orthog<strong>on</strong>alsurfaces. Define <strong>the</strong> distribuiti<strong>on</strong> ∆ 3 orthog<strong>on</strong>al to both ∆ 1 <strong>and</strong> ∆ 2 .Take unit vector fields X, Y such that X ∈ ∆ 1 ∩ ∆ 3 <strong>and</strong> Y ∈ ∆ 2 ∩ ∆ 3 .By hypo<strong>the</strong>sis, as <strong>the</strong> intersecti<strong>on</strong> between <strong>the</strong> two families are curvature lines, it follows that∇ X Y = fX <strong>and</strong> ∇ Y X = gY . So, <strong>the</strong> Lie bracket [X,Y ] = ∇ X Y − ∇ Y X = fX − gY ∈ ∆ 3 .Therefore ∆ 3 is integrable <strong>and</strong> by Frobenius <strong>the</strong>orem, see [13] <strong>and</strong> [74], <strong>the</strong> third family <strong>of</strong> surfacesexists.


2.2. ENVELOPES OF REGULAR SURFACES 21M(u,v,w) = w 2 (u + w 2 )(v + w 2 ), W(a,b,c) = (a 2 − b 2 )(a 2 − c 2 ),u ∈ (−b 2 , −c 2 ) <strong>and</strong> v ∈ (−a 2 , −b 2 ).The first fundamental form <strong>of</strong> α is given by:I = ds 2 = Edu 2 + Gdv 2 = 1 4The sec<strong>on</strong>d fundamental form <strong>of</strong> α is given by:II = edu 2 + gdv 2 =(u − v)udu 2 + 1 h(u) 4(v − u)vdv 2h(v)abc(u − v)4 √ abc(v − u)uvh(u) du2 +4 √ uvh(v) dv2 ,where h(x) = (x + a 2 )(x + b 2 )(x + c 2 ). The √ four umbilic √ points (Darbouxian <strong>of</strong> type D 1 , seeapropositi<strong>on</strong> 2.3.1) are: (±x 0 ,0, ±z 0 ) = (±a2 −b 2 c,0, ±c2 −b 2).a 2 −c 2 c 2 −a 2Figure 2.2: Curvature lines <strong>of</strong> <strong>the</strong> Ellipsoid2.2 Envelopes <strong>of</strong> Regular <strong>Surfaces</strong>An <strong>on</strong>e parameter family <strong>of</strong> regular surfaces in R 3 can be defined by F(p,λ) = 0 where F :R 3 × R → R such that for each λ, ∇F λ ≠ 0, where F λ (.) = F(.,λ).The variati<strong>on</strong> <strong>of</strong> this family with respect to <strong>the</strong> parameter can be defined as F λ = ∂F∂λ. The setdefined byC = {(p,λ) |F(p,λ) = ∂F∂λ = 0}is called <strong>the</strong> characteristic set <strong>of</strong> <strong>the</strong> family.The projecti<strong>on</strong> π 1 (C) = E is called <strong>the</strong> envelope <strong>of</strong> <strong>the</strong> family. Here π 1 : R 3 × R → R 3 ,π 1 (p,λ) = p.Example 2.2.1. C<strong>on</strong>sider <strong>the</strong> family <strong>the</strong> <strong>on</strong>e parameter <strong>of</strong> spheres defined byF(x,y,z,λ) = (x − λ) 2 + y 2 + z 2 − r 2 = 0Therefore, F λ = −2(x − λ) = 0 <strong>and</strong> so <strong>the</strong> characteristic set is <strong>the</strong> hyperplane {x = λ} <strong>and</strong> <strong>the</strong>envelope is <strong>the</strong> cylinder y 2 + z 2 = r 2 .


22 CHAPTER 2. CLASSICAL RESULTS ON CURVATURE LINESExample 2.2.2. C<strong>on</strong>sider <strong>the</strong> family <strong>the</strong> <strong>on</strong>e parameter <strong>of</strong> spheres defined byF(x,y,z,λ) = (x − λ) 2 + y 2 + z 2 − r 2 + λTherefore, F λ = −2(x − λ) + 1 = 0 <strong>and</strong> so <strong>the</strong> characteristic set is <strong>the</strong> hyperplane {x = 1/2 − λ}<strong>and</strong> <strong>the</strong> envelope is <strong>the</strong> paraboloid x = −(y 2 + z 2 ) + r 2 + 1/4.Example 2.2.3. C<strong>on</strong>sider an <strong>on</strong>e parameter family <strong>of</strong> spheres <strong>of</strong> c<strong>on</strong>stant radius r with centersin a curve c(s). So <strong>the</strong> family can be represented by F(p,s) = ‖p − c(s)‖ 2 − r 2 = 0. Therefore itfollows that F s = −2 〈p − c(s),c ′ (s)〉. The envelope <strong>of</strong> this family is called a canal surface.When c(s) = (R cos s,Rsins,0) <strong>the</strong> envelope is a torus <strong>of</strong> revoluti<strong>on</strong> that can be parametrizedby α(s,θ) = c(s) + r cos θ(cos s,sins,0) + r sin θ(0,0,1).Intuitively <strong>the</strong> envelope E is tangent to <strong>the</strong> family <strong>of</strong> surface defined F λ (p) = 0. More precisely<strong>the</strong> following holdsPropositi<strong>on</strong> 2.2.1. Suppose that E is a regular surface <strong>and</strong> p ∈ E ∩ F −1λ(0). Then <strong>the</strong> tangentplane T p E coincides with <strong>the</strong> tangent plane <strong>of</strong> <strong>the</strong> surface F(p,λ) = 0.Pro<strong>of</strong>. We leave to <strong>the</strong> reader.Propositi<strong>on</strong> 2.2.2 (Vessiot). C<strong>on</strong>sider <strong>the</strong> <strong>on</strong>e parameter family <strong>of</strong> spheres with center c(s) <strong>and</strong>variable radius r(s) > 0. Suppose that <strong>the</strong> envelope <strong>of</strong> this family is a regular surface. Then <strong>the</strong>envelope can be parametrized byα(s,ϕ) = c(s) + r cos θ(s)T(s) + r(s)sin θ(s)[cos ϕN + sin ϕB]where cos θ(s) = −r ′ (s) <strong>and</strong> {T,N,B} is <strong>the</strong> Frenet frame <strong>of</strong> c. Moreover <strong>on</strong>e family <strong>of</strong> lines<strong>of</strong> curvature are circles <strong>of</strong> radius r(s)sinθ(s) <strong>and</strong> <strong>the</strong> o<strong>the</strong>r is defined by <strong>the</strong> Riccati differentialequati<strong>on</strong>dϕds= −τ(s) − k(s)cotg θ(s)sin ϕFigure 2.3: Canal surface with variable radiusPro<strong>of</strong>. The family <strong>of</strong> spheres is defined byF(s,p) = |p − c(s)| 2 − r(s) 2 = 0


26 CHAPTER 2. CLASSICAL RESULTS ON CURVATURE LINES10) Show that a family <strong>of</strong> quadricsx 2a(u) + y2b(u) + z2c(u) − 1 = 0,where a, b <strong>and</strong> c are smooth functi<strong>on</strong>s, bel<strong>on</strong>gs to a triply orthog<strong>on</strong>al system <strong>of</strong> surfaces if <strong>and</strong> <strong>on</strong>ly if<strong>the</strong> following differential equati<strong>on</strong> holdsa(b − c)a ′ + b(c − a)b ′ + c(a − b)c ′ = 0.(∗)Find special soluti<strong>on</strong>s <strong>of</strong> <strong>the</strong> differential equati<strong>on</strong> above.Suggesti<strong>on</strong>: Show that <strong>the</strong> soluti<strong>on</strong>s <strong>of</strong> <strong>the</strong> systemaa ′ = ah + g, bb ′ = bh + g, cc ′ = ch + g,where h = h(u) <strong>and</strong> g = g(u) are arbitrary smooth funci<strong>on</strong>ts, are soluti<strong>on</strong>s <strong>of</strong> (*). See [23].11) Show that <strong>the</strong> system given byx 2 + y 2 + z 2 = ux, z = vy, (x 2 + y 2 + z 2 ) 2 = w(y 2 + z 2 )defines a triply orthog<strong>on</strong>al system <strong>of</strong> surfaces. Visualize <strong>the</strong> shape <strong>of</strong> <strong>the</strong> surfaces.12) Show that a triply orthog<strong>on</strong>al system is given by:i) <strong>the</strong> hyperbolic paraboloids yz = ux,ii) <strong>the</strong> closed sheets <strong>of</strong> <strong>the</strong> surface(y 2 − z 2 ) 2 − 2a(2x 2 + y 2 + z 2 ) + a 2 = 0,iii) <strong>the</strong> open sheets <strong>of</strong> <strong>the</strong> same surface.13) C<strong>on</strong>sider <strong>the</strong> surface S parametrized by (u, v, h(u, v) where,h(u, v) = 1 2 (au2 + bv 2 ) + 1 6 (Au3 + 3Bu 2 v + 3Cuv 2 + Dv 3 )+ 124 (αu4 + 4βu 3 v + 6γu 2 v 2 + 4εuv 3 + δv 4 ) + · · ·(∗∗)Let c = c(s) be a principal curvature line <strong>of</strong> S passing through 0 <strong>and</strong> tangent to axis u. Let k <strong>and</strong> τbe, respectively, <strong>the</strong> curvature <strong>and</strong> <strong>the</strong> torsi<strong>on</strong> <strong>of</strong> c at 0. Show thatk 2 τ =(3a − b)AB − 3aBC(a − b) 2 − αβa − b .Find <strong>the</strong> corresp<strong>on</strong>dent relati<strong>on</strong> for <strong>the</strong> o<strong>the</strong>r principal curvature line <strong>and</strong> also determine <strong>the</strong> geodesiccurvatures <strong>of</strong> both principal lines at 0.14) Let S be <strong>the</strong> surface parametrized equati<strong>on</strong> (**) above. Write <strong>the</strong> series <strong>of</strong> Taylor <strong>of</strong> <strong>the</strong> principalcurvatures k 1 = k 1 (u, v) <strong>and</strong> k 2 = k 2 (u, v) at 0 up to order two <strong>and</strong> analyse <strong>the</strong> level sets <strong>of</strong> bothfuncti<strong>on</strong>s near 0, imposing generic c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> <strong>the</strong> coefficients (a, b, . . .,ε, δ).


Chapter 3Global Principal StabilityIntroducti<strong>on</strong>In this chapter we formulate <strong>and</strong> discuss <strong>the</strong> Global Principal Stability result for principalc<strong>on</strong>figurati<strong>on</strong>s <strong>of</strong> curvature lines.The results <strong>of</strong> this chapter are due to C. Gutierrez <strong>and</strong> J. Sotomayor, [38], [39] <strong>and</strong> [42].For a history about <strong>the</strong> <strong>the</strong>ory <strong>of</strong> qualitative <strong>the</strong>ory <strong>of</strong> principal lines see [72, 73] <strong>and</strong> for arecent survey see [34].3.1 Lines <strong>of</strong> curvature near Darbouxian umbilicsIn this secti<strong>on</strong> it will be reviewed <strong>the</strong> behavior <strong>of</strong> curvature lines near Darbouxian umbilics.3.1.1 Preliminaries c<strong>on</strong>cerning umbilic pointsDenote by PM 2 <strong>the</strong> projective tangent bundle over M 2 , with projecti<strong>on</strong> Π. For any chart (u,v)<strong>on</strong> an open set U <strong>of</strong> M 2 <strong>the</strong>re are defined two charts (u,v;p = dv/du) <strong>and</strong> (u,v;q = du/dv) whichcover Π −1 (U).The differential equati<strong>on</strong> (1.9) <strong>of</strong> principal lines, being quadratic, is well defined in <strong>the</strong> projectivebundle. Thus, for every α in I r ,L α = {τ g,α = 0, }defines a variety <strong>on</strong> PM 2 , which is regular <strong>and</strong> <strong>of</strong> class C r−2 over M 2 \ U α . It doubly covers M 2 \ U α<strong>and</strong> c<strong>on</strong>tains a projective line Π −1 (p) over each point p ∈ U α .Definiti<strong>on</strong> 3.1.1. A point p ∈ U α is Darbouxian if <strong>the</strong> following two c<strong>on</strong>diti<strong>on</strong>s hold:T : The variety L α is regular also over Π −1 (p). In o<strong>the</strong>r words, <strong>the</strong> derivative <strong>of</strong> τ g,α does notvanish <strong>on</strong> <strong>the</strong> points <strong>of</strong> projective line Π −1 (p). This means that <strong>the</strong> derivative in directi<strong>on</strong>stransversal to Π −1 (p) must not vanish.27


28 CHAPTER 3. GLOBAL PRINCIPAL STABILITYD : The principal line fields L i,α , i = 1,2 lift to a single line field L α <strong>of</strong> class C r−3 , tangent to L α ,which extends to a unique <strong>on</strong>e al<strong>on</strong>g Π −1 (p), <strong>and</strong> <strong>the</strong>re it has <strong>on</strong>ly hyperbolic singularities,which must be ei<strong>the</strong>rD 1 : a unique saddleD 2 : a unique node between two saddles, orD 3 : three saddles.For calculati<strong>on</strong>s it will be essential to express <strong>the</strong> Darbouxian c<strong>on</strong>diti<strong>on</strong>s in a M<strong>on</strong>ge local chart(u,v): (M 2 ,p) → (R 2 ,0) <strong>on</strong> M 2 , p ∈ U α , as follows.Take an isometry Γ <strong>of</strong> R 3 with Γ(α(p)) = 0 such that Γ(α(u,v)) = (u,v,h(u,v)), withh(u,v) = k 2 (u2 + v 2 ) + (a/6)u 3 + (b/2)uv 2 + (b ′ /2)u 2 v+(c/6)v 3 + (A/24)u 4 + (B/6)u 3 v(3.1)+(C/4)u 2 v 2 + (D/6)uv 3 + (E/24)v 4 + O((u 2 + v 2 ) 5/2 ).To obtain simpler expressi<strong>on</strong>s assume that <strong>the</strong> coefficient b ′ vanishes.This is achieved by means <strong>of</strong> a suitable rotati<strong>on</strong> in <strong>the</strong> (u,v)-plane.In <strong>the</strong> affine chart (u,v; p = dv/du) <strong>on</strong> P(M 2 ) around Π −1 (p), <strong>the</strong> variety L α is given by <strong>the</strong>following equati<strong>on</strong>.T (u,v,p) = L(u,v)p 2 + M(u,v)p + N(u,v) = 0, p = dv/du. (3.2)The functi<strong>on</strong>s L, M <strong>and</strong> N are obtained from equati<strong>on</strong> (1.9) <strong>and</strong> (3.1) as follows:L = h u h v h vv − (1 + h 2 v)h uvM = (1 + h 2 u )h vv − (1 + h 2 v )h uuN = (1 + h 2 u )h uv − h u h v h uu .Calculati<strong>on</strong> taking into account <strong>the</strong> coefficients in equati<strong>on</strong> 3.1, with b ′ = 0, gives:L(u,v) = − bv − (B/2)u 2 − (C − k 3 )uv − (D/2)v 2 + M 3 1 (u,v)M(u,v) =(b − a)u + cv + [(C − A)/2 + k 3 ]u 2 + (D − B)uv(3.3)+[(E − C)/2 − k 3 ]v 2 + M2(u,v)3N(u,v) =bv + (B/2)u 2 + (C − k 3 )uv + (D/2)v 2 + M3 3 (u,v),with M 3 i (u,v) = O((u2 + v 2 ) 3/2 ), i = 1, 2, 3.These expressi<strong>on</strong>s are obtained from <strong>the</strong> calculati<strong>on</strong> <strong>of</strong> <strong>the</strong> coefficients <strong>of</strong> <strong>the</strong> first <strong>and</strong> sec<strong>on</strong>dfundamental forms in <strong>the</strong> chart (u,v). See also [16, 38, 42]. With l<strong>on</strong>ger calculati<strong>on</strong>s, Darboux [16]gives <strong>the</strong> full expressi<strong>on</strong>s for any value <strong>of</strong> b ′ .Remark 3.1.2. The regularity c<strong>on</strong>diti<strong>on</strong> T in definiti<strong>on</strong> 3.1.1 is equivalent to impose that b(b −a) ≠ 0. In fact, this inequality also implies regularity at p = ∞. This can be seen in <strong>the</strong> chart(u,v; q = du/dv), at q = 0.Also this c<strong>on</strong>diti<strong>on</strong> is equivalent to <strong>the</strong> transversality <strong>of</strong> <strong>the</strong> curves M = 0, N = 0


3.1. LINES OF CURVATURE NEAR DARBOUXIAN UMBILICS 29The line field L α is expressed in <strong>the</strong> chart (u,v; p) as being generated by <strong>the</strong> vector field X = X α ,called <strong>the</strong> Lie-Cartan vector field <strong>of</strong> equati<strong>on</strong> (1.9), which is tangent to L α <strong>and</strong> is given by:˙u =∂T /∂p˙v =p∂T /∂p(3.4)ṗ = − (∂T /∂u + p∂T /∂v)Similar expressi<strong>on</strong>s hold for <strong>the</strong> chart (u,v;q = du/dv) <strong>and</strong> <strong>the</strong> pertinent vector field Y = Y α .The functi<strong>on</strong> T is a first integral <strong>of</strong> X = X α . The projecti<strong>on</strong>s <strong>of</strong> <strong>the</strong> integral curves <strong>of</strong> X α byΠ(u,v,p) = (u,v) are <strong>the</strong> lines <strong>of</strong> curvature. The singularities <strong>of</strong> X α are given by (0,0,p i ) wherep i is a root <strong>of</strong> <strong>the</strong> equati<strong>on</strong> p(bp 2 − cp + a − 2b) = 0.Assume that b ≠ 0, which occurs under <strong>the</strong> regularity c<strong>on</strong>diti<strong>on</strong> T, <strong>the</strong>n <strong>the</strong> singularities <strong>of</strong> X α<strong>on</strong> <strong>the</strong> surface L α are located <strong>on</strong> <strong>the</strong> p-axis at <strong>the</strong> points with coordinates p 0 , p 1 , p 2p 0 =0,p 1 =c/2b − √ (c/2b) 2 − (a/b) + 2,p 2 =c/2b + √ (c/2b) 2 − (a/b) + 2(3.5)Remark 3.1.3. [38] Assume <strong>the</strong> notati<strong>on</strong> established in equati<strong>on</strong> (3.1). Suppose that <strong>the</strong> transversalityc<strong>on</strong>diti<strong>on</strong> T : b(b − a) ≠ 0 <strong>of</strong> definiti<strong>on</strong> 3.1.1 <strong>and</strong> remark 3.1.2 holds. Let ∆ = −[(c/2b) 2 −(a/b)+2]. Calculati<strong>on</strong> <strong>of</strong> <strong>the</strong> hyperbolicity c<strong>on</strong>diti<strong>on</strong>s for singularities (3.5) <strong>of</strong> <strong>the</strong> vector field (3.4)–see [38]– have led to establish <strong>the</strong> following equivalences:D 1 ) ≡ ∆ > 0D 2 ) ≡ ∆ < 0 <strong>and</strong> 1 < a b ≠ 2D 3 ) ≡ a b < 1.See Figs. 3.2 <strong>and</strong> 3.1 for an illustrati<strong>on</strong> <strong>of</strong> <strong>the</strong> three possible types <strong>of</strong> Darbouxian umbilics. Thedistincti<strong>on</strong> between <strong>the</strong>m is expressed in terms <strong>of</strong> <strong>the</strong> coefficients <strong>of</strong> <strong>the</strong> 3-jet <strong>of</strong> equati<strong>on</strong> (3.1), aswell as in <strong>the</strong> lifting <strong>of</strong> singularities to <strong>the</strong> surface L α . See remarks 3.1.2 <strong>and</strong> 3.1.3.The subscript i = 1,2,3 <strong>of</strong> D i denotes <strong>the</strong> number <strong>of</strong> umbilic separatrices <strong>of</strong> p. These areprincipal lines which tend to <strong>the</strong> umbilic point p <strong>and</strong> separate regi<strong>on</strong>s <strong>of</strong> different patterns <strong>of</strong>approach to it. For Darbouxian points, <strong>the</strong> umbilic separatrices are <strong>the</strong> projecti<strong>on</strong> into M 2 <strong>of</strong> <strong>the</strong>saddle separatrices transversal to <strong>the</strong> projective line over <strong>the</strong> umbilic point.It can be proved that <strong>the</strong> <strong>on</strong>ly umbilic points for which α ∈ I r is locally C s -structurally stable,r > s ≥ 3, are <strong>the</strong> Darbouxian <strong>on</strong>es. See [45, 42].The implicit surface T (u,v,p) = 0 is regular in a neighborhood <strong>of</strong> <strong>the</strong> projective line if <strong>and</strong><strong>on</strong>ly if b(b − a) ≠ 0. Near <strong>the</strong> singular point p 0 = (0,0,0) <strong>of</strong> X α it follows that T v (p 0 ) = b ≠ 0 <strong>and</strong><strong>the</strong>refore, by <strong>the</strong> Implicit Functi<strong>on</strong> Theorem, <strong>the</strong>re exists a functi<strong>on</strong> v such that T (u,v(u,p),p) = 0.The functi<strong>on</strong> v = v(u,p) has <strong>the</strong> following Taylor expansi<strong>on</strong>v(u,p) = − B 2b u2 + a − b up + O(3).b


30 CHAPTER 3. GLOBAL PRINCIPAL STABILITYFigure 3.1: Darbouxian Umbilic Points, corresp<strong>on</strong>ding L α surface <strong>and</strong> lifted line fields.For future reference we record <strong>the</strong> expressi<strong>on</strong> <strong>the</strong> vector field X α in <strong>the</strong> chart (u,p).˙u =T p (u,v(u,p),p)[b(C − A + 2k 3 ) − cB]u 2 +b=(b − a)u + 1 2ṗ = − (T u + pT v )(u,v(u,p),p) =−Bu + (a − 2b)p − cp 2 + 1 [B(C − k 3 ) − a 41 b]u 22 b+ [b(A − C − 2k3 ) + a(k 3 − C)]up + O(3),bc(a − b)up + O(3)bwhere a 41 is ∂5 h∂u 4 ∂v , evaluated at (0,0). However, a 41 will have no influence in <strong>the</strong> qualitative analysisthat follows.Theorem 3.1.4 (Gutierrez, Sotomayor, 1982). Let p an umbilic point <strong>of</strong> an immersi<strong>on</strong> α given ina M<strong>on</strong>ge chart (u,v) by:Suppose <strong>the</strong> following c<strong>on</strong>diti<strong>on</strong>s:T) b(b − a) ≠ 0α(u,v) = (u,v, k 2 (u2 + v 2 ) + a 6 u3 + b 2 u2 v + c 6 v3 + o(4))D 1 ) ( c 2b )2 − a b + 2 < 0D 2 ) ( c2b )2 + 2 > a b > 1, a ≠ 2baD 3 )b < 1Then <strong>the</strong> behavior <strong>of</strong> lines <strong>of</strong> curvature near <strong>the</strong> umbilic point p, in <strong>the</strong> cases D 1 , D 2 <strong>and</strong> D 3 ,called Darbouxian Umbilics, is as in <strong>the</strong> Fig. 3.2An immersi<strong>on</strong> α ∈ M r , r ≥ 4, is C 3 − principally structurally stable at a point p ∈ U α if <strong>on</strong>ly if pis a Darbouxian umbilic point.(3.6)Remark 3.1.5. The descripti<strong>on</strong> <strong>of</strong> <strong>the</strong> curvature lines near umbilic points <strong>of</strong> analytic surfaces wasperformed by G. Darboux, [16]. He used <strong>the</strong> techniques <strong>of</strong> ordinary differential equati<strong>on</strong>s developedby H. Poincaré. For C k ,k ≥ 4, surfaces this analysis was d<strong>on</strong>e by Gutierrez <strong>and</strong> Sotomayor [38]<strong>and</strong> also by Bruce <strong>and</strong> Fidal [45].


3.2. HYPERBOLIC PRINCIPAL CYCLES 31Figure 3.2: Lines <strong>of</strong> Curvature near Darbouxian Umbilic Points3.2 Hyperbolic Principal CyclesA closed line <strong>of</strong> principal curvature is called a principal cycle.A principal cycle called hyperbolic if <strong>the</strong> first derivative <strong>of</strong> <strong>the</strong> Poincaré map associated to it isdifferent from <strong>on</strong>e.Lemma 3.2.1. Given a biregular closed curve c : [0,l] → R 3 parametrized by arc length s. Let k<strong>and</strong> τ <strong>the</strong> curvature <strong>and</strong> <strong>the</strong> torsi<strong>on</strong> <strong>of</strong> c. Then <strong>the</strong>re exists a surface c<strong>on</strong>taining c as a principalcycle if <strong>and</strong> <strong>on</strong>ly if ∫ l0τ(s)ds = 2kπPro<strong>of</strong>. Let {t,n,b} <strong>the</strong> Frenet frame associated to c. Write <strong>the</strong> normal vector <strong>of</strong> <strong>the</strong> surface in <strong>the</strong>form N = cos θ(s)n(s) + sin θ(s)b(s).Therefore N ′ (s) ∧ t = 0 ( Rodrigues equati<strong>on</strong> <strong>of</strong> curvature lines) if <strong>and</strong> <strong>on</strong>ly if θ ′ + τ(s) = 0. Soθ(s) = θ 0 + ∫ s0 τ(u)du <strong>and</strong> N(θ(l)) = N(θ 0) if <strong>and</strong> <strong>on</strong>ly if ∫ l0τ(u)du = 2kπ, k ∈ Z.Lemma 3.2.2. Let c : [0,l] → M 2 be a principal cycle parametrized by arc length u <strong>and</strong> length l.Then <strong>the</strong> expressi<strong>on</strong>:α(u,v) = (α ◦ c)(u) + v(N ∧ t)(u) + [ k 22 v2 + A(u,v)v 2 ]N(c(u)) (3.7)where A(u,0) = 0 <strong>and</strong> k 2 is <strong>the</strong> principal curvature <strong>of</strong> α, defines a local chart <strong>of</strong> class C ∞ aroundc.Pro<strong>of</strong>. Similar to lemma 5.1.1. The coefficient <strong>of</strong> v 2 stated in <strong>the</strong> lemma is given by k n (c(u),N ∧t) =k 2 (u).Propositi<strong>on</strong> 3.2.1. Letc : [0,l] → M 2 be a principal cycle l parametrized by arc length u <strong>and</strong><strong>of</strong> length l. Then <strong>the</strong> derivative <strong>of</strong> <strong>the</strong> Poincaré map Π, associated to it is given by:∫ llnΠ ′ −k 2′ (0) = du = 1 ∫dH√k 2 − k 1 2 H 2 − K0where H = k 1+k 22<strong>and</strong> K = k 1 k 2 are respectively <strong>the</strong> Mean Curvature <strong>and</strong> <strong>the</strong> Gaussian Curvature.Pro<strong>of</strong>. The Darboux equati<strong>on</strong>s for <strong>the</strong> positive frame {t,N ∧ t,N} are:ct ′ (u) = k g (u)(N ∧ t)(u) + k 1 N(u)(N ∧ t) ′ (u) = −k g (u)t(u)N ′ (u) = −k 1 (u)t(u)(3.8)


32 CHAPTER 3. GLOBAL PRINCIPAL STABILITYby:Direct calculati<strong>on</strong>s gives that:e(u,0) = k 1 , f(u,0) = 0, g(u,0) = k 2 ,f v (u,0) = k ′ 2, F v (u,0) = 0, G(u,0) = E(u,0) = 1.The differential equati<strong>on</strong> <strong>of</strong> <strong>the</strong> curvature lines in <strong>the</strong> neighborhood <strong>of</strong> <strong>the</strong> line {v = 0} is givenEf − Fe + (Eg − Ge) dv + (Fg − Gf)(dvdu du )2 = 0 (3.10)Denote by v(u,r) <strong>the</strong> soluti<strong>on</strong> <strong>of</strong> <strong>the</strong> 3.10 with initial c<strong>on</strong>diti<strong>on</strong> v(0,r) = r. Therefore <strong>the</strong> returnmap Π is clearly given by Π(r) = v(L,r).Differentiating equati<strong>on</strong> (3.10) with respect to r, <strong>and</strong> evaluating at v = 0, it results that:(3.9)[Eg − Ge](u,0)v ur (u,0) + [Ef − Fe] v (u,0)v r (u,0) = 0 (3.11)Therefore, using <strong>the</strong> expressi<strong>on</strong>s for [Ef − Fe] v (u,0) calculated in equati<strong>on</strong> (3.9), integrati<strong>on</strong><strong>of</strong> equati<strong>on</strong> (3.11) it is obtained:So,This ends <strong>the</strong> pro<strong>of</strong>.lnΠ ′ (0) =∫ l02ln Π ′ (0) =−k 2′ ∫ l[du = − k′ 2 − ]k′ 1du − k′ 1duk 2 − k 1 0 k 2 − k 1 k 2 − k 1∫ l0− k′ 1 + k′ 2k 2 − k 1du =∫ l0H ′−√ H 2 − K duPropositi<strong>on</strong> 3.2.2. Let c : [0,l] → M 2 be a principal cycle parametrized by arc length u <strong>and</strong> lengthl. Suppose that dk 1 |c ≠ 0. C<strong>on</strong>sider <strong>the</strong> deformati<strong>on</strong>α ǫ (u,v) = α(u,v) + ǫ k′ 12 v2 δ(v)N(c(u)) (3.12)where δ is a smooth functi<strong>on</strong> with small support <strong>and</strong> δ|V 0 = 1. Then for all ǫ ≠ 0 small c is ahyperbolic principal cycle <strong>of</strong> α ǫ .Pro<strong>of</strong>. Direct calculati<strong>on</strong> shows that c is a principal cycle <strong>and</strong> thatTherefore,This ends <strong>the</strong> pro<strong>of</strong>.Π ′ ǫ(0) = exp∫ l0k ′ 1− du.k 2 + ǫ − k 1dΠ ′ ∫ lǫ(0)(k 1 ′ | ǫ=0 = exp)2dǫ0 (k 2 − k 1 ) 2du ≠ 0.Propositi<strong>on</strong> 3.2.3. Let c be a hyperbolic principal cycle <strong>of</strong> length l. Then <strong>the</strong>re exists a principalchart (u,v), l−periodic in u such that differential equati<strong>on</strong> <strong>of</strong> curvature lines in a neighborhood <strong>of</strong>c is given bydu(dv − λdu) = 0,Rcλ = e− dk 2k 2 −k 1


3.3. A THEOREM ON PRINCIPAL STABILITY 33Pro<strong>of</strong>. See [25] <strong>and</strong> [26].An immersi<strong>on</strong> α ∈ M r is C s −Principally Structurally Stable at a principal cycle c if for everyneighborhood V c <strong>of</strong> c in M <strong>the</strong>re must be a neighborhood V α <strong>of</strong> α in M k,s such that for every mapβ ∈ V α <strong>the</strong>re must be a principal cycle c β in V c <strong>and</strong> a local homeomorphism h β <strong>on</strong> <strong>the</strong> domain suchthat h β : W c → W cβ between neighborhoods <strong>of</strong> c <strong>and</strong> c β , which maps c to c β <strong>and</strong> maps P 1,α |W c<strong>and</strong> P 2,α |W c respectively <strong>on</strong>to P 1,β |W cβ <strong>and</strong> P 2,β |W cβ .From <strong>the</strong> discussi<strong>on</strong> above we have <strong>the</strong> following.Propositi<strong>on</strong> 3.2.4 (Gutierrez, Sotomayor, 1982). An immersi<strong>on</strong> α ∈ M r , r ≥ 4, is C 3 − principallystructurally stable at a principal cycle c provided <strong>on</strong>e <strong>of</strong> <strong>the</strong> following equivalent c<strong>on</strong>diti<strong>on</strong>s,H 1 or H 2 , is satisfied:∫dkH 1 ) 1c k 2 −k 1= ∫ dk 2c k 2 −k 1≠ 0H 2 ) The cycle is a hyperbolic principal cycle <strong>of</strong> <strong>the</strong> principal foliati<strong>on</strong> which it bel<strong>on</strong>gs. That is, <strong>the</strong>Poincaré return map h associated to a transversal secti<strong>on</strong> to c at a point q is such that h ′ (q) ≠ 1.Remark 3.2.1. The higher derivatives <strong>of</strong> <strong>the</strong> Poincaré map Π near principal cycles was studiedin [40] <strong>and</strong> [25].3.3 A Theorem <strong>on</strong> Principal StabilityNext we will define <strong>the</strong> set S r (M) ⊂ M r such that:1. All <strong>the</strong> umbilic points, U α , <strong>of</strong> α are Darbouxian,2. All principal cycles <strong>of</strong> α are hyperbolic,3. The limit set <strong>of</strong> every principal line <strong>of</strong> α is <strong>the</strong> uni<strong>on</strong> <strong>of</strong> umbilic points <strong>and</strong> principal cycles,4. There is no umbilic or singular separatrix <strong>of</strong> α which is separatrix <strong>of</strong> two umbilic or twice aseparatrix <strong>of</strong> <strong>the</strong> same umbilic or singular point (i.e. homoclinic loops are not allowed).An immersi<strong>on</strong> α ∈ M r is said to be C s −Principally Structurally Stable if <strong>the</strong>re is a neighborhoodV α <strong>of</strong> α in M such that for every immersi<strong>on</strong> β ∈ V α <strong>the</strong>re exist a homeomorphism h β <strong>on</strong> <strong>the</strong> domainsuch that h β (U α ) = U β <strong>and</strong> h β maps lines <strong>of</strong> P 1,α , (resp. P 2,α ) <strong>on</strong> those <strong>of</strong> P 1,β ( resp. P 2,β .)Theorem 3.3.1 (Gutierrez, Sotomayor, 1982). Let r ≥ 4 <strong>and</strong> M be a compact oriented two manifold.Thena) The set S r (M) is open in M r,3 <strong>and</strong> every α ∈ S r (M) is C 3 -principally structurally stable.b) The set S r (M) is dense in M r,2 .A self sufficient presentati<strong>on</strong> <strong>of</strong> this <strong>the</strong>orem was given in [42].3.4 C<strong>on</strong>cluding RemarksAn open problem c<strong>on</strong>cerning <strong>the</strong> <strong>the</strong>orem 3.3.1 above is to prove (or disprove) that <strong>the</strong> setS r (M) is dense in M r,3 . The main point here is also related with <strong>the</strong> Closing-Lemma for PrincipalCurvature Lines.


34 CHAPTER 3. GLOBAL PRINCIPAL STABILITY3.5 Exercises1) C<strong>on</strong>sider <strong>the</strong> singular cubic surface defined byf(x, y, z) = x2a 2 + y2b 2 − z2 + rxyz = 0, (a − b)r ≠ 0.i) Perform an analysis <strong>of</strong> <strong>the</strong> qualitative behavior <strong>of</strong> <strong>the</strong> principal foliati<strong>on</strong>s near <strong>the</strong> point (0, 0, 0).ii) Perform an analysis <strong>of</strong> <strong>the</strong> principal foliati<strong>on</strong>s near <strong>the</strong> ends <strong>of</strong> f −1 (0).Suggesti<strong>on</strong>: Read <strong>the</strong> papers [27, 28].2) Give an explicit example <strong>of</strong> an algebraic surface having a hyperbolic principal cycle for each principalfoliati<strong>on</strong>. Suggesti<strong>on</strong>: See [28].3) C<strong>on</strong>sider <strong>the</strong> cubic surfacef(x, y, z) = x2a 2 + y2b 2 + z2 + rxyz − 1 = 0, (a − 1)(b − 1)(a − b)r ≠ 0.i) For r ≠ 0 small make an analysis <strong>of</strong> <strong>the</strong> umbilic points <strong>of</strong> S = f −1 (0).ii) Make simulati<strong>on</strong>s (c<strong>on</strong>jectures) about <strong>the</strong> possible global behavior <strong>of</strong> principal foliati<strong>on</strong>s <strong>of</strong> S.4) C<strong>on</strong>sider <strong>the</strong> algebraic surfacef(x, y, z) = z 2 − [(x − 2a) 2 + y 2 − a 2 ][(x + 2a) 2 + y 2 − a 2 ][r 2 − x 2 − y 2 ] = 0, r > 4a.i) Determine <strong>the</strong> umbilic set <strong>of</strong> S = f −1 (0).ii) Determine all planar principal lines <strong>of</strong> S.iii) Using <strong>the</strong> symmetry <strong>of</strong> S try to obtain <strong>the</strong> global principal c<strong>on</strong>figurati<strong>on</strong> <strong>of</strong> S.iv) Visualize <strong>the</strong> shape <strong>of</strong> S.5) C<strong>on</strong>sider <strong>the</strong> space <strong>of</strong> quadrics Q in R 3 with <strong>the</strong> topology <strong>of</strong> coefficients. Define <strong>the</strong> c<strong>on</strong>cept <strong>of</strong>strucutural principal stability in this space.i) Determine <strong>the</strong> dimensi<strong>on</strong> <strong>of</strong> Q.ii) Characterize <strong>the</strong> quadrics which are principally stable.iii) Show that <strong>the</strong> set <strong>of</strong> quadrics structurally stable S 0 is open <strong>and</strong> dense in Q.iv) Characterize <strong>the</strong> c<strong>on</strong>nect comp<strong>on</strong>ents <strong>of</strong> S 0 .6) In <strong>the</strong> space <strong>of</strong> quadrics Q define <strong>the</strong> c<strong>on</strong>cept <strong>of</strong> first order structural principal stability. See [71, 69]to see <strong>the</strong> analogy with vector fields <strong>on</strong> surfaces.i) Characterize <strong>the</strong> quadrics which are first order principally stable.ii) Characterize <strong>the</strong> c<strong>on</strong>nect comp<strong>on</strong>ents <strong>of</strong> S 0 .iii) Characterize <strong>the</strong> set Q \ (S 0 ∪ S 1 ). Here S 1 is <strong>the</strong> set <strong>of</strong> quadrics which are first order principallystable.


3.5. EXERCISES 357) C<strong>on</strong>sider <strong>the</strong> implicit differential equati<strong>on</strong>(g − HG)dv 2 + 2(f − HF)dudv + (e − HE)du 2 = 0.Here H = (k 1 +k 2 )/2 is <strong>the</strong> arithmetic mean curvature. The integral curves <strong>of</strong> <strong>the</strong> equati<strong>on</strong> above arecalled arithmetic curvature lines.i) Make a study <strong>of</strong> arithmetic curvature lines <strong>on</strong> <strong>the</strong> quadrics <strong>of</strong> R 3 .ii) Make an analysis <strong>of</strong> <strong>the</strong> arithmetic curvature lines near umbilic points <strong>and</strong> closed arithmetic curvaturelines. See [31, 32].


36 CHAPTER 3. GLOBAL PRINCIPAL STABILITY


Chapter 4Bifurcati<strong>on</strong>s <strong>of</strong> Umbilic Points <strong>and</strong>Principal Curvature LinesIntroducti<strong>on</strong>The local study <strong>of</strong> principal c<strong>on</strong>figurati<strong>on</strong>s around an umbilic point received c<strong>on</strong>siderable attenti<strong>on</strong>in <strong>the</strong> classical works <strong>of</strong> M<strong>on</strong>ge [24], Cayley [14], Darboux [16] <strong>and</strong> Gullstr<strong>and</strong> [1], am<strong>on</strong>go<strong>the</strong>rs.The study <strong>of</strong> <strong>the</strong> global features <strong>of</strong> principal c<strong>on</strong>figurati<strong>on</strong>s P α which remain topologically undisturbedunder small perturbati<strong>on</strong>s <strong>of</strong> <strong>the</strong> immersi<strong>on</strong> α –principal structural stability– was initiatedby Gutierrez <strong>and</strong> Sotomayor in [38, 39, 42].Two generic patterns <strong>of</strong> bifurcati<strong>on</strong>s <strong>of</strong> umbilic points appear in codimensi<strong>on</strong> <strong>on</strong>e. The first<strong>on</strong>e occurs due to <strong>the</strong> violati<strong>on</strong> <strong>of</strong> <strong>the</strong> Darbouxian c<strong>on</strong>diti<strong>on</strong> D, while T is preserved, leading to<strong>the</strong> pattern called D2 1 . The sec<strong>on</strong>d <strong>on</strong>e happens due to <strong>the</strong> violati<strong>on</strong> <strong>of</strong> c<strong>on</strong>diti<strong>on</strong> T, leading to <strong>the</strong>pattern denominated D2,3 1 .This chapter is based in [61] <strong>and</strong> is restricted <strong>on</strong>ly to <strong>the</strong> simplest bifurcati<strong>on</strong>s <strong>of</strong> umbilic points.4.1 Umbilic Points <strong>of</strong> Codimensi<strong>on</strong> OneHere will be studied <strong>the</strong> qualitative changes - bifurcati<strong>on</strong>s - <strong>of</strong> <strong>the</strong> principal c<strong>on</strong>figurati<strong>on</strong>s aroundn<strong>on</strong> Darbouxian umbilic points such that <strong>the</strong> regularity (or transversality) c<strong>on</strong>diti<strong>on</strong> T : b(a−b) ≠ 0,which implies <strong>the</strong>ir isolatedness, is preserved <strong>and</strong> <strong>on</strong>ly <strong>the</strong> c<strong>on</strong>diti<strong>on</strong> D is violated in <strong>the</strong> mildestpossible way.Definiti<strong>on</strong> 4.1.1. A point p ∈ U α is said to be <strong>of</strong> type D 1 2if <strong>the</strong> following holds:T : The variety L α is regular also over Π −1 (p). In o<strong>the</strong>r words, <strong>the</strong> derivative <strong>of</strong> τ g,α does notvanish <strong>on</strong> <strong>the</strong> points <strong>of</strong> projective line Π −1 (p). This means that <strong>the</strong> derivative in directi<strong>on</strong>stransversal to Π −1 (p) must not vanish.D2 1 : The principal line fields L i,α, i = 1,2 lift to a single line field L α <strong>of</strong> class C r−3 , tangent to L α ,which extends to a unique <strong>on</strong>e al<strong>on</strong>g Π −1 (p), <strong>and</strong> <strong>the</strong>re it has a hyperbolic saddle singularity<strong>and</strong> a saddle-node whose central manifold is located al<strong>on</strong>g <strong>the</strong> projective line over p.37


38 CHAPTER 4. BIFURCATIONS OF UMBILICSIn coordinates (u,v), as in <strong>the</strong> notati<strong>on</strong> above, this means thatT : b(a − b) > 0 <strong>and</strong> ei<strong>the</strong>r1) a/b = (c/2b) 2 + 2, or2) a/b = 2.We point out that due to <strong>the</strong> particular representati<strong>on</strong> <strong>of</strong> <strong>the</strong> 3-jets taken here, with b ′ = 0, <strong>the</strong>space a,b,c in <strong>the</strong> case 2) is not transversal, but tangent, to <strong>the</strong> manifold <strong>of</strong> jets with D 1 2 umbilics.Remark 4.1.2. The D2 1 umbilic point has two separatrices.The isolated <strong>on</strong>e is characterized by <strong>the</strong> fact that no o<strong>the</strong>r principal line which approaches <strong>the</strong>umbilic point is tangent to it.The o<strong>the</strong>r separatrix, called n<strong>on</strong>-isolated, has <strong>the</strong> property that every principal line distinct from<strong>the</strong> isolated <strong>on</strong>e, that approaches <strong>the</strong> point does so tangent to it.These separatrices bound <strong>the</strong> parabolic sector <strong>of</strong> lines <strong>of</strong> curvature approaching <strong>the</strong> point; <strong>the</strong>yalso c<strong>on</strong>stitute <strong>the</strong> boundary <strong>of</strong> <strong>the</strong> hyperbolic sector <strong>of</strong> <strong>the</strong> umbilic point.The bifurcati<strong>on</strong> illustrated in Fig. 4.1 shows that <strong>the</strong> n<strong>on</strong>-isolated separatrix disappears when<strong>the</strong> point D 1 2 changes to D 1 <strong>and</strong> that it turns into an isolated D 2 separatrix when it changes intoD 2 . It can be said that D 1 2 represents <strong>the</strong> simplest transiti<strong>on</strong> between D 1 <strong>and</strong> D 2 Darbouxianumbilic points, which occurs through <strong>the</strong> annihilati<strong>on</strong> <strong>of</strong> an umbilic separatrix – <strong>the</strong> n<strong>on</strong>-isolated<strong>on</strong>e –.The coefficients <strong>of</strong> <strong>the</strong> differential equati<strong>on</strong> <strong>of</strong> principal curvature lines (1.9) are given by:with M 3 i (u,v) = O((u2 + v 2 ) 3 2).L(u,v) = − bv − (B/2)u 2 − (C − k 3 )uv − (D/2)v 2 + M 3 1 (u,v)M(u,v) =(b − a)u + cv + [(C − A)/2 + k 3 ]u 2 + (D − B)uv(4.1)+[(E − C)/2 − k 3 ]v 2 + M2(u,v)3N(u,v) =bv + (B/2)u 2 + (C − k 3 )uv + (D/2)v 2 + M3 3 (u,v),C<strong>on</strong>diti<strong>on</strong> D 1 2 is equivalent to <strong>the</strong> existence <strong>of</strong> a n<strong>on</strong> zero double root for bp2 − cp + a − 2b = 0,which amounts to b ≠ 0 <strong>and</strong> p 1 = p 2 ≠ p 0 .Assuming b(b − a) ≠ 0, <strong>the</strong> curves L = 0 <strong>and</strong> M = 0 meet transversally at (0,0) if <strong>and</strong> <strong>on</strong>ly ifb ≠ a. It was shown in [38] that D 1 is satisfied if <strong>and</strong> <strong>on</strong>ly if <strong>the</strong> roots <strong>of</strong> bp 2 − cp + a − 2b = 0 aren<strong>on</strong> vanishing <strong>and</strong> purely imaginary.Also, D 2 is satisfied if <strong>and</strong> <strong>on</strong>ly if bt 2 − ct + a − 2b = 0 has two distinct n<strong>on</strong> zero real roots,p 1 , p 2 which verify p 1 p 2 > −1.This means that <strong>the</strong> rays tangent to <strong>the</strong> separatrices are pairwise distinct <strong>and</strong> c<strong>on</strong>tained in anopen right angular sector.The local c<strong>on</strong>figurati<strong>on</strong> <strong>of</strong> D2 1 is established now.Propositi<strong>on</strong> 4.1.1. Suppose that α ∈ I r ,r ≥ 5, satisfies c<strong>on</strong>diti<strong>on</strong> D2 1 at an umbilic point p. Then<strong>the</strong> local principal c<strong>on</strong>figurati<strong>on</strong> <strong>of</strong> α around p is that <strong>of</strong> Fig. 4.1 center.Pro<strong>of</strong>. C<strong>on</strong>sider <strong>the</strong> Lie-Cartan lifting X α as in equati<strong>on</strong> (3.4), which is <strong>of</strong> class C r−3 . If a = 2b ≠ 0<strong>and</strong> c ≠ 0, it follows that p 0 = (0,0,0) is an isolated singular point <strong>of</strong> quadratic saddle node type


4.1. UMBILIC POINTS OF CODIMENSION ONE 39with a center manifold c<strong>on</strong>tained in <strong>the</strong> projective line –<strong>the</strong> p axis–. In fact, <strong>the</strong> eigenvalues <strong>of</strong>DX α (0) are λ 1 = −b ≠ 0 <strong>and</strong> λ 2 = 0 <strong>and</strong> <strong>the</strong> p axis is invariant; <strong>the</strong>re X α , according to equati<strong>on</strong>(3.6) is given by ṗ = −cp 2 + o(2).The o<strong>the</strong>r singular point <strong>of</strong> X α is given by p 1 = (0,0, c b). It follows that⎡ ⎤−b −c 0⎢ ⎥DX α (0,0,p 1 ) = ⎣−c − c2 b0 ⎦where,A 1 A 2c 2 bA 1 = b2 c(A − k 3 − 2C) + bc 2 (2B − D) + c 3 (C − k 3 ) − b 3 Db 3A 2 = b2 c(B − 2D) + bc 2 (2C + k 3 − E) + b 3 (k 3 − C) + Dc 3b 3The n<strong>on</strong> zero eigenvalues <strong>of</strong> DX(0,0,p 1 ) are λ 1 = c2 b , λ 2 = − c2 +b 2b. In fact, p 1 is a hyperbolicsaddle point <strong>of</strong> X α having eigenvalues given by λ 1 <strong>and</strong> λ 2 .Similar analysis can be d<strong>on</strong>e when ( c2b )2 − a b + 1 = 0. In this case X α <strong>and</strong> p 1 = (0,0, c b ) is aquadratic saddle node, with a local center manifold c<strong>on</strong>tained in <strong>the</strong> projective line. The pointp 0 = (0,0,0) is a hyperbolic saddle <strong>of</strong> X α . This case is equivalent to <strong>the</strong> previous <strong>on</strong>e, after arotati<strong>on</strong> in (u,v) that sends de saddle-node to p = 0.Propositi<strong>on</strong> 4.1.2. Suppose that α ∈ I r ,r ≥ 5, satisfies c<strong>on</strong>diti<strong>on</strong> D2 1 at an umbilic point p. Then<strong>the</strong>re is a functi<strong>on</strong> B <strong>of</strong> class C r−3 <strong>on</strong> a neighborhood V <strong>of</strong> α <strong>and</strong> a neighborhood V <strong>of</strong> p such thatevery β ∈ V has a unique umbilic point p β in V .i) dB(α) ≠ 0ii) B(β) > 0 if <strong>and</strong> <strong>on</strong>ly if p β is Darbouxian <strong>of</strong> type D 1iii) B(β) < 0 if <strong>and</strong> <strong>on</strong>ly if p β is Darbouxian <strong>of</strong> type D 2iv) B(β) = 0 if <strong>and</strong> <strong>on</strong>ly if p β is <strong>of</strong> type D 1 2The principal c<strong>on</strong>figurati<strong>on</strong>s <strong>of</strong> β around p is that <strong>of</strong> Fig. 4.1, left, right <strong>and</strong> center, respectively.Figure 4.1: Umbilic Point D 1 2<strong>and</strong> bifurcati<strong>on</strong>Pro<strong>of</strong>. Since p is a transversal umbilic point <strong>of</strong> α, <strong>the</strong> existence <strong>of</strong> <strong>the</strong> neighborhoods V <strong>and</strong> V <strong>of</strong>p β follow from <strong>the</strong> Implicit Functi<strong>on</strong> Theorem. So we assume that after an isometry Γ β <strong>of</strong> R 3 , with


40 CHAPTER 4. BIFURCATIONS OF UMBILICSΓ β β(0) = 0, in <strong>the</strong> neighborhood V are defined coordinates (u,v), also depending <strong>on</strong> β, <strong>on</strong> whichit is represented as:h β (u,v) = k β2 (u2 + v 2 ) + a β6 u3 + b β2 uv2 + c β6 v3 + O(β;(u 2 + v 2 ) 4 ).Define <strong>the</strong> functi<strong>on</strong>B(β) = [ c β] 2 − a β+ 2,2b β b βwhose zeros define locally <strong>the</strong> manifold <strong>of</strong> immersi<strong>on</strong>s with a D 1 2 point.The derivative <strong>of</strong> this functi<strong>on</strong> in <strong>the</strong> directi<strong>on</strong> <strong>of</strong> <strong>the</strong> coordinate a is clearly n<strong>on</strong>-zero.4.1.1 The D 1 2,3Umbilic Bifurcati<strong>on</strong> PatternThe sec<strong>on</strong>d case <strong>of</strong> n<strong>on</strong>-Darbouxian umbilic point studied here, called D2,3 1 , happens when <strong>the</strong>regularity c<strong>on</strong>diti<strong>on</strong> T is violated.Definiti<strong>on</strong> 4.1.3. An umbilic point is said <strong>of</strong> type D2,3 1 if <strong>the</strong> transversality c<strong>on</strong>diti<strong>on</strong> T fails attwo points over <strong>the</strong> umbilic point, at which L α is n<strong>on</strong>-degenerate <strong>of</strong> Morse type.Propositi<strong>on</strong> 4.1.3. Suppose that α ∈ I r , r ≥ 5, <strong>and</strong> p be an umbilic point. Assume <strong>the</strong> notati<strong>on</strong>in equati<strong>on</strong> (3.1) with b ′ = 0, b = a ≠ 0 <strong>and</strong> b(C − A + 2k 3 ) − cB ≠ 0.right.Then p is <strong>of</strong> type D 1 2,3<strong>and</strong> <strong>the</strong> local principal c<strong>on</strong>figurati<strong>on</strong> <strong>of</strong> α around p is that <strong>of</strong> Fig. 2,Pro<strong>of</strong>. C<strong>on</strong>sider <strong>the</strong> Lie-Cartan lifting X α as in equati<strong>on</strong> (3.4), which is <strong>of</strong> class C r−3 . Imposinga = b ≠ 0, by equati<strong>on</strong>s (3.5) <strong>and</strong> (3.6), <strong>the</strong> singular points <strong>of</strong> X α are p 0 , p 1 <strong>and</strong> p 2 , roots <strong>of</strong> <strong>the</strong>equati<strong>on</strong> p(bp 2 − cp − b) = 0.In fact, if a = b ≠ 0, it follows that p 0 is a quadratic saddle node with center manifold transversalto <strong>the</strong> projective line.From equati<strong>on</strong> (3.6) <strong>the</strong> eigenvalues are λ 1 = 0 <strong>and</strong> λ 2 = −b <strong>and</strong> all <strong>the</strong> center manifolds W care tangent to <strong>the</strong> line p = − B b u. By invariant manifold <strong>the</strong>ory it follows that X|W c is locallytopologically equivalent towhere,It follows that˙u = 1 2[b(C − A + 2k 3 ) − cB]u 2 + o(2) := − χ b2b u2 + o(2). (4.2)⎡⎤0 −2bp i + c 0⎢⎥DX α (0,0,p i ) = ⎣ 0 −p i (2bp i − c) 0 ⎦B 1 B 2 3bp 2 i − 2cp i − bB 1 =(C − k 3 )p 3 i + (2B − D)p 2 i + (A − 2C − k 3 )p i − BB 2 =Dp 3 i + (2C + k3 − E)p 2 i + (B − 2D)p i + k 3 − C.The n<strong>on</strong>zero eigenvalues <strong>of</strong> DX α (0,0,p i ) are λ 1 = −2bp 2 i + cp i = −b(p 2 i + 1) <strong>and</strong> λ 2 = 3bp 2 i −2cp i − b = b(p 2 i + 1).


4.1. UMBILIC POINTS OF CODIMENSION ONE 41Figure 4.2: Lie-Cartan suspensi<strong>on</strong> D 1 2,3By invariant manifold <strong>the</strong>ory, (0,0,p i ) are saddles <strong>of</strong> X α . The phase portrait <strong>of</strong> X α near <strong>the</strong>sesingularities are as shown in Fig. 4.2.The two critical points p 1 <strong>and</strong> p 2 are <strong>of</strong> c<strong>on</strong>ic type <strong>on</strong> <strong>the</strong> variety L α over <strong>the</strong> umbilic point.These points are n<strong>on</strong>-degenerate or <strong>of</strong> Morse type, according to <strong>the</strong> analysis below. At <strong>the</strong>points (0,0,p i ) <strong>the</strong> variety T (u,v,p) = 0 is not regular. In fact:∇T (0,0,p) = [(b − a)p, −bp 2 + cp + b,0].Therefore, for a = b ≠ 0, at <strong>the</strong> two roots <strong>of</strong> <strong>the</strong> equati<strong>on</strong> −bp 2 + cp + b = 0 it follows that∇T (0,0,p i ) = (0,0,0),i = 1,2.The Hessian <strong>of</strong> T at p i = (0,0,p i ) isHess(T )(p i ) =⎡⎢⎣p i (−cB+b(C+2k 3 −A))bp i (c(k 3 −C)+b(D−B)b− p i(cD+b(C−E+2k 3 ))bp i (c(k 3 −C)+b(D−B))b0⎥c − 2bp i ⎦ .0 c − 2bp i 0Direct calculati<strong>on</strong>, using <strong>the</strong> notati<strong>on</strong> defined in equati<strong>on</strong> (4.2), givesdet(Hess(T )(0,0,p i )) = p i(−2bp i + c) 2 χb= p ib (4b2 + c 2 )χ ≠ 0.Therefore, (0,0,p i ) is a n<strong>on</strong> degenerate critical point <strong>of</strong> T <strong>of</strong> Morse type <strong>and</strong> index 1 or 2 –ac<strong>on</strong>e–, since T −1 (0) c<strong>on</strong>tains <strong>the</strong> projective line.Remark 4.1.4. Our analysis has shown <strong>the</strong> equivalence between <strong>the</strong> c<strong>on</strong>diti<strong>on</strong>s a) <strong>and</strong> b) thatfollow:a) The n<strong>on</strong>-vanishing <strong>on</strong> <strong>the</strong> Hessian <strong>of</strong> T <strong>on</strong> <strong>the</strong> critical points p 1 <strong>and</strong> p 2 over <strong>the</strong> umbilic.b) The presence <strong>of</strong> a saddle-node at p 0 <strong>on</strong> <strong>the</strong> regular porti<strong>on</strong> <strong>of</strong> <strong>the</strong> surface L α , with centralseparatrix transversal to <strong>the</strong> projective line over <strong>the</strong> umbilic.⎤


42 CHAPTER 4. BIFURCATIONS OF UMBILICSFur<strong>the</strong>r direct calculati<strong>on</strong> with equati<strong>on</strong> 4.1 gives that <strong>the</strong>se two c<strong>on</strong>diti<strong>on</strong>s are equivalent toc) The quadratic c<strong>on</strong>tact at <strong>the</strong> umbilic between <strong>the</strong> curves M = 0 <strong>and</strong> N = 0.In fact, from equati<strong>on</strong> (4.1) it follows that M(u,v(u)) = 0 for v = −(B/2b)u 2 + o(2) <strong>of</strong> classC r−2 . Therefore n(u) = N(u,v(u)) is <strong>of</strong> class C r−2 <strong>and</strong> n(u) = −(χ/2b)u 2 + o(2).Notice also that, unlike <strong>the</strong> o<strong>the</strong>r umbilic points discussed here, <strong>the</strong> two principal foliati<strong>on</strong>saround D2,3 1 are topologically distinct.One <strong>of</strong> <strong>the</strong>m, located <strong>on</strong> <strong>the</strong> parallel sheet, has two umbilic separatrices <strong>and</strong> two hyperbolicsectorsThe o<strong>the</strong>r, located <strong>on</strong> <strong>the</strong> saddle-node sheet, has three umbilic separatrices, <strong>on</strong>e parabolic <strong>and</strong>two hyperbolic sectors.The separatrix which is <strong>the</strong> comm<strong>on</strong> boundary <strong>of</strong> <strong>the</strong> hyperbolic sectors will be called hyperbolicseparatrix. See Figs. 3.1, 4.1 <strong>and</strong> Fig. 4.2 for illustrati<strong>on</strong>s.The bifurcati<strong>on</strong> analysis describes <strong>the</strong> eliminati<strong>on</strong> <strong>of</strong> two umbilic points D 2 <strong>and</strong> D 3 which, undera deformati<strong>on</strong> <strong>of</strong> <strong>the</strong> immersi<strong>on</strong>, collapse into a single umbilic point D2,3 1 , <strong>and</strong> <strong>the</strong>n, after a fur<strong>the</strong>rsuitable arbitrarily small perturbati<strong>on</strong>, <strong>the</strong> umbilic point is annihilated.Propositi<strong>on</strong> 4.1.4. Suppose that α ∈ I r ,r ≥ 5, satisfies c<strong>on</strong>diti<strong>on</strong> D2,3 1 at an umbilic point p.Then <strong>the</strong>re is a functi<strong>on</strong> B <strong>of</strong> class C r−3 <strong>on</strong> a neighborhood V <strong>of</strong> α <strong>and</strong> a neighborhood V <strong>of</strong> p suchthati) dB(α) ≠ 0ii) B(β) > 0 if <strong>and</strong> <strong>on</strong>ly if β has no umbilic points in V ,iii) B(β) < 0 if <strong>and</strong> <strong>on</strong>ly if β has two Darbouxian umbilic points <strong>of</strong> types D 2 <strong>and</strong> D 3 ,iv) B(β) = 0 if <strong>and</strong> <strong>on</strong>ly if β has <strong>on</strong>ly <strong>on</strong>e umbilic point in V , which is <strong>of</strong> type D 1 2,3 .The principal c<strong>on</strong>figurati<strong>on</strong>s <strong>of</strong> β around p are illustrated in Fig. 4.3, right, left <strong>and</strong> center,respectively.Pro<strong>of</strong>. Similar to that given in [69], page 15, for <strong>the</strong> saddle-node <strong>of</strong> vector fields, using <strong>the</strong> equivalencec) <strong>of</strong> remark 4.1.4. We define B as follows. An immersi<strong>on</strong> β in a neighborhood V <strong>of</strong> α <strong>and</strong>a neighborhood V <strong>of</strong> p can be written in a M<strong>on</strong>ge chart as a graph <strong>of</strong> a functi<strong>on</strong> h β (u,v). Theumbilic points <strong>of</strong> β are defined by <strong>the</strong> equati<strong>on</strong>M β = (1 + ((h β ) u ) 2 )(h β ) vv − (1 + ((h β ) v ) 2 )(h β ) uu = 0N β = (1 + ((h β ) u ) 2 )(h β ) uv − (h β ) u (h β ) v (h β ) uu = 0.For β in a neighborhood <strong>of</strong> α it follows that M β (u,v β (u)) = 0.Define B(β) = n β (u β ), where u β is <strong>the</strong> <strong>on</strong>ly critical point <strong>of</strong> n β (u) = N β (u,v β (u)).Taking h β (u,v) = h(u,v) + λuv, where h is as in equati<strong>on</strong> (3.1) it follows by direct calculati<strong>on</strong>that dB(β)dλ | λ=0 ≠ 0.The bifurcati<strong>on</strong> <strong>of</strong> <strong>the</strong> point D2,3 1 can be regarded as <strong>the</strong> simplest transiti<strong>on</strong> between umbilicsD 2 <strong>and</strong> D 3 <strong>and</strong> n<strong>on</strong> umbilic points. See <strong>the</strong> illustrati<strong>on</strong> in Fig. 4.3.(4.3)


4.2. EXERCISES 43Figure 4.3: Umbilic Point D 1 2,3<strong>and</strong> bifurcati<strong>on</strong>.4.2 Exercises1) Define suitable deformati<strong>on</strong>s <strong>of</strong> <strong>the</strong> surface f(x, y, z) = x 4 + y 4 + z 4 − 1 = 0 such that <strong>the</strong> resultantsurface has exactly 20 Darbouxian umbilics, 8 <strong>of</strong> type D 3 <strong>and</strong> 12 <strong>of</strong> type D 1 .2) C<strong>on</strong>sider <strong>the</strong> cubic surface defined byi) Write <strong>the</strong> equati<strong>on</strong> <strong>of</strong> umbilic points <strong>of</strong> f −1 (0).ii) Determine <strong>the</strong> Darbouxian umbilics <strong>of</strong> f −1 (0).f(x, y, z) = x 2 + y 2 + z 2 + rxyz − 1 = 0, r ≠ 0.3) Make a study <strong>of</strong> principal curvature lines near n<strong>on</strong> hyperbolic principal cycles <strong>and</strong> give an example <strong>of</strong>a surface having a semihyperbolic principal cycle. See [40] <strong>and</strong> [25].4) Determine <strong>the</strong> principal c<strong>on</strong>figurati<strong>on</strong> <strong>of</strong> <strong>the</strong> map α(u, v) = (u, uv, v 2 ) near <strong>the</strong> Whitney singular point(0, 0). See [60].5) Give examples <strong>of</strong> smooth surfaces having separatrix c<strong>on</strong>necti<strong>on</strong>s (homoclinic <strong>and</strong> heteroclinic) betweenDarbouxian umbilic points. For example in <strong>the</strong> ellipsoid we have c<strong>on</strong>necti<strong>on</strong>s between separatrices <strong>of</strong>Darbouxian umbilics <strong>of</strong> type D 1 . See [41].6) Give examples <strong>of</strong> smooth surfaces having lines <strong>of</strong> umbilic points <strong>and</strong> analyse <strong>the</strong> behavior <strong>of</strong> principallines near <strong>the</strong>se lines. See [33].7) Give an example <strong>of</strong> a surface,homeomorphic to S 2 , having exactly <strong>on</strong>e singular <strong>and</strong> no umbilic points.8) Give an example <strong>of</strong> a canal surface, homeomorphic to <strong>the</strong> torus, having no umbilic points, <strong>on</strong>e prinipalfoliati<strong>on</strong> having all principal lines closed <strong>and</strong> o<strong>the</strong>r principal foliati<strong>on</strong> having all principal lines dense.8) C<strong>on</strong>sider <strong>the</strong> surfacesf(x, y, z) = x2a 2 + y2b 2 + z2x2− 1 = 0, g(x, y, z) =c2 A 2 + y2B 2 − z2C 2 − 1 = 0.Suppose that f −1 (0) ∩ g −1 (0) is <strong>the</strong> uni<strong>on</strong> <strong>of</strong> principal curvature lines <strong>on</strong> both surfaces.Analyse <strong>the</strong> behavior <strong>of</strong> <strong>the</strong> principal foliati<strong>on</strong>s <strong>of</strong> <strong>the</strong> surface defined by h ǫ (x, y, z) = f(x, y, z)g(x, y, z)−ǫ = 0 for ǫ ≠ 0 small. Visualise <strong>the</strong> shape <strong>of</strong> h ǫ −1(0).Make simulati<strong>on</strong>s in a free s<strong>of</strong>tware disp<strong>on</strong>ible in <strong>the</strong> homepage <strong>of</strong> A. M<strong>on</strong>tesinos (Univ. Valencia,Espanha), http://www.uv.es/m<strong>on</strong>tesin


44 CHAPTER 4. BIFURCATIONS OF UMBILICS


Chapter 5Structural Stability <strong>of</strong> AsymptoticLinesIntroducti<strong>on</strong>In this chapter it will be c<strong>on</strong>sidered <strong>the</strong> simplest qualitative properties <strong>of</strong> <strong>the</strong> nets defined by<strong>the</strong> asymptotic lines <strong>of</strong> a surface immersed in Euclidean space.Asymptotic lines are defined <strong>on</strong>ly in <strong>the</strong> hyperbolic part <strong>of</strong> <strong>the</strong> surface, where two real asymptoticdirecti<strong>on</strong>s are defined. In <strong>the</strong> elliptic regi<strong>on</strong> <strong>the</strong> asymptotic directi<strong>on</strong>s are complex. At aparabolic point, if not planar, we have <strong>on</strong>ly <strong>on</strong>e asymptotic directi<strong>on</strong> with multiplicity two.C<strong>on</strong>diti<strong>on</strong>s for local structural stability around parabolic points <strong>and</strong> periodic asymptotic linesare established. This chapter is based mainly in [26] <strong>and</strong> [59]. The global <strong>the</strong>ory <strong>of</strong> structuralstability <strong>of</strong> <strong>the</strong> nets <strong>of</strong> asymptotic lines was developed in [59].5.1 Asymptotic Nets near Parabolic pointsIn this secti<strong>on</strong> it will be established <strong>the</strong> behavior <strong>of</strong> <strong>the</strong> asymptotic nets near parabolic points,in terms <strong>of</strong> geometric invariants <strong>of</strong> <strong>the</strong> immersi<strong>on</strong> α.Let c : [0,L] → M 2 be a regular arc <strong>of</strong> parabolic points, parametrized by arc length u. T<strong>of</strong>ix <strong>the</strong> notati<strong>on</strong>, suppose that k 2|c = 0 <strong>and</strong> k 1|c < 0, where k 1 <strong>and</strong> k 2 are <strong>the</strong> principal curvatures<strong>of</strong> <strong>the</strong> immersi<strong>on</strong> α. Let ϕ(u) <strong>the</strong> angle between c ′ (u) = t(u) <strong>and</strong> <strong>the</strong> principal directi<strong>on</strong> L 2 (α),corresp<strong>on</strong>ding to k 2 , at <strong>the</strong> point c(u). Denote by k g (u) <strong>the</strong> geodesic curvature <strong>of</strong> c at <strong>the</strong> pointc(u).The following lemma will be useful in what follows.Lemma 5.1.1. Let c : [0,L] → M 2 be a regular arc <strong>of</strong> parabolic points, parametrized by arclength u. Then <strong>the</strong> expressi<strong>on</strong>:α(u,v) = (α ◦ c)(u) + v(N ∧ t)(u) + [k ⊥ n (u)v 2 /2 + v 2 A(u,v)]N(c(u)) (5.1)where, A(u,0) = 0 <strong>and</strong> k ⊥ n (u) = k n (c(u),N ∧ t(u)), defines a local chart <strong>of</strong> class C ∞ around c.45


46 CHAPTER 5. STABILITY OF ASYMPTOTIC LINESPro<strong>of</strong>. The map α(u,v,w) = (α ◦c)(u)+v(N ∧t)(u)+wN(u) is a local diffeomorphism. Therefore,solving <strong>the</strong> equati<strong>on</strong> 〈α(u,v,w(u,v)),N(u)〉 = 0 <strong>and</strong> using <strong>the</strong> Hadamard lemma it follows <strong>the</strong>result asserted.5.1.1 Computati<strong>on</strong> <strong>of</strong> <strong>the</strong> Sec<strong>on</strong>d Fundamental FormIn what follows it will be calculated <strong>the</strong> coefficients <strong>and</strong> <strong>the</strong> derivatives <strong>of</strong> <strong>the</strong> sec<strong>on</strong>d fundamentalform <strong>of</strong> α in <strong>the</strong> chart introduced in 5.1.1.Calculati<strong>on</strong>s in <strong>the</strong> chart (u,v)The Darboux equati<strong>on</strong>s for <strong>the</strong> positive frame {t,N ∧ t,N} are:⎧t ⎪⎨′ (u) = k g (u)(N ∧ t)(u) + k n (u)N(u)(N ∧ t) ′ (u) = −k g (u)t(u) + τ g (u)N(u)⎪⎩(N) ′ (u) = −τ g (u)(N ∧ t)(u) − k n (u)t(u)(5.2)with τg 2 (u) = kn ⊥ (u)k n (u). This is because c is a parabolic curve.Also, using Euler’s formula, [75], [17], it follows that, kn ⊥ = k 1 cos 2 ϕ, k n = k 1 sin 2 ϕ , kn ⊥ +k n =2H <strong>and</strong> τ g = k 1 sin ϕcos ϕ.For <strong>the</strong> sake <strong>of</strong> simplicity in <strong>the</strong> expressi<strong>on</strong>s that follow, writeA = A(u,v),N = (N ◦ c)(u),kn ⊥ = k (u),k g = k g (u)Moreover <strong>the</strong> following notati<strong>on</strong> will be used:E = 〈α u ,α u 〉 e = 〈α u ∧ α v ,α u 〉F = 〈α u ,α v 〉 f = 〈α u ∧ α v ,α v 〉G = 〈α v ,α v 〉 g = 〈α u ∧ α v ,α v 〉Here E,F,G <strong>and</strong> e/ | α u ∧ α v |, f/ | α u ∧ α v | <strong>and</strong> g/ | α u ∧ α v | are respectively <strong>the</strong>coefficients <strong>of</strong> <strong>the</strong> first <strong>and</strong> sec<strong>on</strong>d fundamental forms <strong>of</strong> α, expressed in <strong>the</strong> chart(u,v).Differentiating equati<strong>on</strong> (5.1) <strong>and</strong> using equati<strong>on</strong> (5.2), obtain:α u = [1 − k g v − k n (k ⊥ n+ [τ g v + (k ⊥ n )′v22 + v2 A u ]Nv 22 + v2 A)]t − τ g (kn⊥ v 22 + v2 A)N ∧ t(5.3)α v = N ∧ t + (k ⊥ n v + 2vA + v 2 A v )N (5.4)α u ∧ α v = −[τ g v + (k ⊥ n )′ v 2 + v 2 A u + τ g (k ⊥ n− [(1 − k g v − k n (k ⊥ n[1 − k g v − k n (k ⊥ nv 22 + v2 A)(k ⊥ n v + 2vA + v2 A v )]tv 22 + v2 A))(k ⊥ n v + 2vA + v 2 A v )]N ∧ tv 22 + v2 A)]N(5.5)


5.1. PARABOLIC POINTS 47α uu = [−k g ′ v − k n((kn ⊥ )′v22 + v2 A u ) − k n ′ v 2(k⊥ n2 + v2 A)− k n (τ g v + (k ⊥ n )′v22 + v2 A u ) + k g τ g (k ⊥ n+ [k g (1 − k g v − k n (k ⊥ nv 22 + v2 A)]tv 22 + v2 A)) − τ g (τ g v + (k ⊥ n ) ′v22 + v2 A u )− τ ′ g((k ⊥ n ) v22 + v2 A) − τ g ((k ⊥ n ) ′v22 + v2 A u )]N ∧ t+ [k n (1 − k g v − k n (k ⊥ n+ τ ′ gv + (k ⊥ n ) ′′v22 + v2 A uu ]Nv 22 + v2 A)) − τ 2 g (k ⊥ nα uv = −[k g + k n (k ⊥ n v + 2vA + v 2 A v )]t+ [τ g + (k ⊥ n )′ v + 2vA u + v 2 A uv )]N− τ g (k ⊥ n v + 2vA + v2 A v )N ∧ tv 22 + v2 A)(5.6)(5.7)From equati<strong>on</strong>s (5.3) to (5.8) it results thatα vv = [k ⊥ n + 2A + 4vA + v2 A vv ]N (5.8)e(u,0) = k n (u) = k 1 sin 2 ϕf(u,0) = τ g (u) = k 1 sinϕcos ϕg(u,0) = k ⊥ n (u) = k 1 cos 2 ϕe v (u,0) = −k g (2k n + k ⊥ n ) + τ ′ gf v (u,0) = (k ⊥ n ) ′(5.9)g v (u,0) = −k g k ⊥ n + 6A vE v (u,0) = −2k g , F v (u,0) = 0, G v (u,0) = 0From <strong>the</strong> relati<strong>on</strong>, 2H(EG − F 2 ) 3 2 = eG − 2fF + gE <strong>and</strong> equati<strong>on</strong> (5.9) it follows that,6A v (u,0) = 2H v − 6k g H + k g (2k n + 4kn ⊥ ) − τ g ′ (5.10)Also, from K(EG − F 2 ) 2 = eg − f, <strong>and</strong> equati<strong>on</strong>s (5.9) <strong>and</strong> (5.10), it is obtained that,K v (u,0) = k g [k1 2 cos 2ϕ − 2τg 2 ] + k 1 τ g ′ − 2τ g (kn ⊥ ) ′ − 2H v k n ≠ 0,which expresses <strong>the</strong> c<strong>on</strong>diti<strong>on</strong> <strong>of</strong> regularity <strong>of</strong> <strong>the</strong> parabolic set in secti<strong>on</strong> 5.1.The main result <strong>of</strong> this secti<strong>on</strong> is formulated by <strong>the</strong> following,Propositi<strong>on</strong> 5.1.1. Let c be a curve <strong>of</strong> parabolic points as above. Then <strong>the</strong> following holds:i) If ϕ(u) ≠ 0 <strong>the</strong> asymptotic net, near c(u), is as shown in 5.1 (cuspidal type).ii ) If ϕ(u) = 0 <strong>and</strong> ϕ ′ (u) ≠ 0 <strong>the</strong>re are three cases:1. k g (u)/ϕ ′ (u) < 1,2. 1 < k g (u)/ϕ ′ (u) < 9


48 CHAPTER 5. STABILITY OF ASYMPTOTIC LINES3. 9 < k g (u)/ϕ ′ (u).In cases 1), 2) <strong>and</strong> 3) above <strong>the</strong> asymptotic net is as shown in <strong>the</strong> figure 5.1 <strong>and</strong> corresp<strong>on</strong>drespectively to <strong>the</strong> folded saddle, node <strong>and</strong> focus types parabolic points.Figure 5.1: Asymptotic lines near a parabolic linePro<strong>of</strong>. The cuspidal case: transversal crossingSuppose that <strong>the</strong> principal foliati<strong>on</strong> P 2 (α) is transversal to <strong>the</strong> parabolic line at <strong>the</strong> point u 0 ,this means that ϕ(u 0 ) ≠ 0.Using Hadamard lemma, write:e(u,v) = k n (u) + v[−k g (2k n + k ⊥ n ) + τ ′ g ] + vA 1(u,v),f(u,v) = τ g (u) + v(k ⊥ n ) ′ + v 2 A 2 (u,v),g(u,v) = k ⊥ n (u) + v[2H v − 6k g H + k g (2k n + 3k ⊥ n ) − τ ′ g ] + v2 A 3 (u,v),Then,with, k n (u) = k 1 sin 2 ϕ, k ⊥ n (u) = k 1 cos 2 ϕ, τ g (u) = k 1 sinϕcos ϕ.The differential equati<strong>on</strong> <strong>of</strong> <strong>the</strong> asymptotic lines are given by:Let v = w 2 . So, it follows that,⎧⎪⎨edu 2 + 2fdudv + gdv 2 = 0du/dv = −f ± [f2 − eg] 1 2edudv = −2wf e ± 2w2 W(u,v)e⎪⎩ u(u 0 ,0) = u 0.where W(u,0) = [K v (u,0)] 1 20 by transversality c<strong>on</strong>diti<strong>on</strong>s.Solving <strong>the</strong> Cauchy problem above it results that:u(u 0 ,v) = u 0 − cotgϕ(u 0 )v ± W(u 0 ,0)v 3 2 + ...Therefore near a cuspidal parabolic point <strong>the</strong> net <strong>of</strong> asymptotic lines is as shown in <strong>the</strong> Fig.5.1.


5.1. PARABOLIC POINTS 49Remark 5.1.1. It follows from [3] that <strong>the</strong>re exist a system <strong>of</strong> coordinates (U,V ) near a cuspidalparabolic point such that <strong>the</strong> differential equati<strong>on</strong> <strong>of</strong> <strong>the</strong> asymptotic lines is given by (dV/dU) 2 = U.The singular case: point <strong>of</strong> quadratic tangency.Now suppose that τ g (u 0 ) = 0,u 0 = 0. This means that <strong>the</strong> parabolic line is tangent to <strong>the</strong>principal foliati<strong>on</strong> F 2 (α) at u 0 . In fact, at a parabolic point <strong>the</strong> principal directi<strong>on</strong> corresp<strong>on</strong>ding to<strong>the</strong> zero principal curvature is an asymptotic directi<strong>on</strong>. Suppose also that at <strong>the</strong> point <strong>of</strong> tangencyu 0 <strong>the</strong> c<strong>on</strong>tact above is quadratic, which is expressed by <strong>the</strong> c<strong>on</strong>diti<strong>on</strong>s τ g (0) = 0 <strong>and</strong> τ g ′ (0) ≠ 0.C<strong>on</strong>sider <strong>the</strong> implicit differential equati<strong>on</strong>,F(u,v,p) = e + 2fp + gp 2 = 0,<strong>and</strong> <strong>the</strong> line field given locally by <strong>the</strong> vector field X,⎧u ⎪⎨′ = F pX : v ′ = pF p⎪⎩p ′ = −(F u + pF v )p = dvduThe projecti<strong>on</strong>s <strong>of</strong> <strong>the</strong> integral curves <strong>of</strong> X by Π(u,v,p) = (u,v) are <strong>the</strong> asymptotic lines <strong>of</strong> α.The singularities <strong>of</strong> X in F −1 (0) are given by: (u 0 ,0,0), where τ g (u 0 ) = 0. Suppose u 0 = 0.It results that <strong>the</strong> Jacobian matrix <strong>of</strong> DX(0) is given by:⎛2f u 2f v 2g⎜DX(0) = ⎝ 0 0 0−e uu −e uv −(2f u + e v )⎞⎟⎠ (5.11)Using equati<strong>on</strong>s (5.9) <strong>and</strong> (5.11) it results that <strong>the</strong> eigenvalues <strong>of</strong> DX(0) are given by:λ 1 ,The eigenspace associated to λ i is given by:λ 2 = ( k⊥ n2 ){(k g − ϕ ′ ) ± [(k g − ϕ ′ )(k g − 9ϕ ′ )] 1 2 }E i = (1,0, ϕ′4 [(a − 1) ± √ (a − 1)(a − 9) − 4])where a = kgϕ ′ .The tangent space <strong>of</strong> Π −1 (P ) ∩ F −1 (0) at <strong>the</strong> point (u 0 ,0,0) is generated by (1,0,0).Therefore E i is transversal to <strong>the</strong> singular set Π −1 (P α ) ∩ {F = 0}.In <strong>the</strong> case <strong>of</strong> <strong>the</strong> saddle point (λ 1 λ 2 < 0), although <strong>the</strong> eigenspaces have inclinati<strong>on</strong>s <strong>of</strong> samesign, that is, (λ 1 − 2k ⊥ n ϕ ′ )(λ 2 − 2k ⊥ n ϕ ′ ) > 0, <strong>the</strong> vector (1,0,0) bisects <strong>the</strong> acute angle formed byE 1 <strong>and</strong> E 2 . This implies that <strong>the</strong> net <strong>of</strong> asymptotic lines near a saddle folded parabolic point is asshown in Fig. 5.1.In <strong>the</strong> case <strong>of</strong> a focus singularity (λ 1 = ¯λ 2 , Re(λ 1 ) ≠ 0) <strong>the</strong> net <strong>of</strong> asymptotic lines is as shownin Fig. 5.1.In <strong>the</strong> case <strong>of</strong> a nodal singularity (λ 1 λ 2 > 0) <strong>the</strong> two eigenspaces also have inclinati<strong>on</strong>s <strong>of</strong> <strong>the</strong>same sign, but here (1,0,0) bisects <strong>the</strong> obtuse angle formed by E 1 <strong>and</strong> E 2 . Also E 2 bisects <strong>the</strong> angleformed by (1,0,0) <strong>and</strong> E 1 (<strong>the</strong> tangent space to <strong>the</strong> str<strong>on</strong>g separatrice). Therefore near a nodalfolded parabolic point <strong>the</strong> net <strong>of</strong> asymptotic lines is as shown in Fig. 5.1.


50 CHAPTER 5. STABILITY OF ASYMPTOTIC LINES5.2 Structural stability at parabolic pointsAn immersi<strong>on</strong> α in I, is said to be C s -local asymptotic structurally stable, at p if it has aneighborhood N in <strong>the</strong> space I s such that for each β in N <strong>the</strong>re is a smooth diffeomorphism k β <strong>of</strong>{M, NE α } to {M, NE } such that β ◦ k β is local asymptotic topologically equivalent to α at k β (p).Theorem 5.2.1. For an open <strong>and</strong> dense set W <strong>of</strong> immersi<strong>on</strong>s in I s ,s ≥ 5, <strong>the</strong> asymptotic netnear a parabolic point as described in propositi<strong>on</strong> 5.1.1 are locally asymptotic stables.Pro<strong>of</strong>. Follows from propositi<strong>on</strong> 5.1.1 <strong>and</strong> by <strong>the</strong> main results <strong>of</strong> Bleeker <strong>and</strong> Wils<strong>on</strong> [10] <strong>and</strong>Feldman [21]. The c<strong>on</strong>structi<strong>on</strong> <strong>of</strong> <strong>the</strong> topological equivalence, using <strong>the</strong> method <strong>of</strong> can<strong>on</strong>icalregi<strong>on</strong>s, can be d<strong>on</strong>e in <strong>the</strong> same way as in [59].5.3 Stability <strong>of</strong> Periodic Asymptotic LinesIn this secti<strong>on</strong> will be established an integral expressi<strong>on</strong> for <strong>the</strong> derivative <strong>of</strong> <strong>the</strong> first returnmap <strong>of</strong> a regular periodic asymptotic line in terms <strong>of</strong> curvature functi<strong>on</strong>s <strong>of</strong> <strong>the</strong> immersi<strong>on</strong> α.Also, it will be shown how to deform <strong>the</strong> immersi<strong>on</strong> in order to hyperbolize a regular or a foldedperiodic asymptotic line.5.3.1 Regular Periodic Asymptotic Lines.Recall that a regular periodic asymptotic line is a closed asymptotic line which is disjoint from<strong>the</strong> parabolic points.Lemma 5.3.1. Let c : [0,L] → M 2 be a periodic asymptotic line parametrized by arc length u <strong>and</strong>length L. Then <strong>the</strong> expressi<strong>on</strong>:α(u,v) = (α ◦ c)(u) + v(N ∧ t)(u) + [H(u)v 2 + A(u,v)v 2 ]N(c(u)) (5.12)where A(u,0) = 0 <strong>and</strong> H is <strong>the</strong> Mean Curvature <strong>of</strong> α, defines a local chart <strong>of</strong> class C ∞ around c.Pro<strong>of</strong>. Similar to lemma 5.1.1. The coefficient <strong>of</strong> v 2 stated in <strong>the</strong> lemma is given by k ⊥ n .Using that k n (u) = k n (c(u),t(u)) = 0 for an asymptotic line <strong>and</strong> applying Euler’s formulafollows that, k ⊥ n + k n = 2H.Propositi<strong>on</strong> 5.3.1. Let c : [0,L] → M 2 be a regular periodic asymptotic line parametrized byarc length u <strong>and</strong> <strong>of</strong> length L. Then <strong>the</strong> derivative <strong>of</strong> <strong>the</strong> Poincaré map Π, associated to it is givenby:[∫ LΠ ′ (0) = exp0τ ′ g − 2k g (u)H(u)2τ g (u)where k g is <strong>the</strong> geodesic curvature <strong>of</strong> c <strong>and</strong> τ g = (−K) 1 2 is <strong>the</strong> geodesic torsi<strong>on</strong> <strong>of</strong> c.]duPro<strong>of</strong>. The Darboux equati<strong>on</strong>s for <strong>the</strong> positive frame {t,N ∧ t,N} are:


5.3. STABILITY OF PERIODIC LINES 51t ′ (u) = k g (u)(N ∧ t)(u)(N ∧ t) ′ (u) = −k g (u)t(u) + τ g (u)N(u)N ′ (u) = −τ g (u)(N ∧ t)(u)The same procedure <strong>of</strong> calculati<strong>on</strong> used in <strong>the</strong> lemma 5.1.1 gives that:(5.13)e(u,0) = 0, e v (u,0) = τ g ′ − 2H(u)k g(u)(5.14)f(u,0) = τ g (u) g(u,0) = 2H(u)The differential equati<strong>on</strong> <strong>of</strong> <strong>the</strong> asymptotic lines in <strong>the</strong> neighborhood <strong>of</strong> <strong>the</strong> line {v = 0} isgiven by:e + 2f dvdu + g(dv du )2 = 0 (5.15)Denote by v(u,r) <strong>the</strong> soluti<strong>on</strong> <strong>of</strong> <strong>the</strong> 5.15 with initial c<strong>on</strong>diti<strong>on</strong> v(0,r) = r. Therefore <strong>the</strong> returnmap Π is clearly given by Π(r) = v(L,r).Differentiating 5.15 with respect to r, it results that:g r v r (dv/du) 2 + (2gv ur + 2f v v r )(dv/du) + e v v r = 0Evaluating at v = 0, it follows that:2f(u,0)v ur (u,0) + e v (u,0)v r (u,0) = 0 (5.16)Therefore, using <strong>the</strong> expressi<strong>on</strong>s for f an e v found in equati<strong>on</strong> (5.14), integrati<strong>on</strong> <strong>of</strong> (5.16) it isobtained:This ends <strong>the</strong> pro<strong>of</strong>.ln Π′(0) =∫ L0−τ g ′ + 2Hk gdu2τ gRemark 5.3.1. From [74, pp. 282] it follows thatis a 1-form evaluated al<strong>on</strong>g an asymptotic line.ω = τ ′ g − 2k g (u)H(u)2τ gPropositi<strong>on</strong> 5.3.2. Let c : [0,L] → M 2 be a regular periodic asymptotic line <strong>of</strong> length L, parametrizedby arc length u, <strong>of</strong> <strong>the</strong> immersi<strong>on</strong> α.C<strong>on</strong>sider <strong>the</strong> following <strong>on</strong>e parameter deformati<strong>on</strong> <strong>of</strong> α:α ǫ (u,v) = α(u,v) + ǫw(u)δ(v)v 2 N(u)where δ | c = 1 <strong>and</strong> has small support. Then c is a regular periodic asymptotic line <strong>of</strong> α ǫ for all ǫsmall <strong>and</strong> <strong>the</strong> derivative <strong>of</strong> <strong>the</strong> Poincaré map Π αǫ , associated to it is given by:[∫ LΠ ′ α ǫ= exp0]k g (u)[H(u) + ǫw(u)]du .τ g (u)


52 CHAPTER 5. STABILITY OF ASYMPTOTIC LINESMoreover, taking w(u) = k g (u) holds that:d (Π′dǫαǫ(0) ) ∫ Lk g (u) 2| ǫ=0 =0 τ g (u) du ≠ 0In particular c is a hyperbolic periodic asymptotic line for α ǫ ,ǫ ≠ 0.Pro<strong>of</strong>. Performing <strong>the</strong> calculati<strong>on</strong> as in Lemma 5.3.1 it follows that:e(ǫ,u,0) = 0, f(ǫ,u,0) = τ g (u),g(ǫ,u,0) = 2(H(u) + ǫw(u)),e v (ǫ,u,0) = −2[H(u) + ǫw(u)]k g (u) + τ ′ g (u).Therefore {v = 0} is a closed asymptotic line for α ǫ . So applying Propositi<strong>on</strong> 5.3.1 to α ǫ <strong>and</strong>differentiating under <strong>the</strong> integrati<strong>on</strong> sign gives <strong>the</strong> result stated.Remark 5.3.2. In order see that k g | c is not identically zero for a periodic asymptotic line, weobserve that for an asymptotic line c, <strong>the</strong> geodesic curvature coincides with <strong>the</strong> ordinary curvature<strong>of</strong> c, c<strong>on</strong>sidered as a curve in E 3 . Therefore, if k g | c = 0, it follows that c must be a straight line.5.3.2 Folded periodic asymptotic linesHere will be established an integral expressi<strong>on</strong> for <strong>the</strong> derivative <strong>of</strong> <strong>the</strong> first return map <strong>of</strong> afolded periodic asymptotic line in terms <strong>of</strong> <strong>the</strong> curvature functi<strong>on</strong>s <strong>of</strong> <strong>the</strong> immersi<strong>on</strong> α.A folded periodic asymptotic line is a closed asymptotic curve c : [0,L] → M regular by parts,that is, <strong>the</strong>re exist a finite sequence <strong>of</strong> numbers a i ,0 = a 0 < a 1 < ... < a l = L, such thatc i = c | (ai ,a i+1: (a i ,a i+1 ) → IntH is an asymptotic line <strong>of</strong> α <strong>and</strong> p i = c(a i ) ∈ P α for i = 1,... ,l − 1.In o<strong>the</strong>r words, a folded periodic asymptotic line is <strong>the</strong> projecti<strong>on</strong> <strong>of</strong> a closed integral curve <strong>of</strong> <strong>the</strong>single line field L α defined <strong>on</strong> A, which intersects P α .Let c be a folded periodic asymptotic line. Near each point p i , c<strong>on</strong>sider two transversal secti<strong>on</strong>sto c,Σ 1,i <strong>and</strong> Σ 2,i , <strong>and</strong> <strong>the</strong> Poincaré map σ i : Σ 1,i → Σ 2,i . Denote by u j i = c i(a i ,a i+1 )∩Σ j,i ,j = 1,2.Denote by π i+1,i : Σ 2,i → Σ 1,i+1 <strong>the</strong> Poincaré map associated to c i . It follows that <strong>the</strong> Poincarémap associated to c,Π : Σ 1,1 → Σ 1,1 is given by:Π = π l−1,1 ◦ σ l−1 ... ◦ π i+1,i ◦ ... ◦ π 2,1 ◦ σ 1 .Propositi<strong>on</strong> 5.3.3. Let c : [0,L] → M 2 be a folded periodic asymptotic line <strong>of</strong> length L parametrizedby arc length u. Assume <strong>the</strong> notati<strong>on</strong> above. Then <strong>the</strong> derivative <strong>of</strong> <strong>the</strong> Poincaré map π i+1,iassociated to c i is given by:[ ∫ ]u 1i+1 −τ g(u) ′ + 2k g (u)H(u)π i+1,i (0) = expdu2τ g (u)u 2 iwhere k g is <strong>the</strong> geodesic curvature <strong>of</strong> c i <strong>and</strong> τ g = (−K) 1 2 is <strong>the</strong> geodesic torsi<strong>on</strong> <strong>of</strong> c i . Moreover <strong>the</strong>functi<strong>on</strong>s σ i are differentiable.Pro<strong>of</strong>. Near <strong>the</strong> point p i take a system <strong>of</strong> coordinates (U,V ) such that <strong>the</strong> asymptotic lines aregiven by <strong>the</strong> differential equati<strong>on</strong> (dU/dV ) 2 = U. See [3], [6] <strong>and</strong> Remark 5.1.1.In this system <strong>of</strong> coordinates σ i : {V = ǫ} → {V = ǫ} is clearly a translati<strong>on</strong> σ i (u,ǫ) = (u+c,ǫ).Therefore σ i is differentiable.


5.3. STABILITY OF PERIODIC LINES 53Figure 5.2: Folded periodic asymptotic lines5.3.1The expressi<strong>on</strong> for <strong>the</strong> derivative <strong>of</strong> π i+1,i can be obtained in <strong>the</strong> same way as in <strong>the</strong> Propositi<strong>on</strong>Propositi<strong>on</strong> 5.3.4. Let c : [0,L] → M 2 be a folded periodic asymptotic line parametrized by arclength u <strong>and</strong> <strong>of</strong> length L. Assume <strong>the</strong> notati<strong>on</strong> above.C<strong>on</strong>sider <strong>the</strong> following <strong>on</strong>e parameter deformati<strong>on</strong> <strong>of</strong> α:α ǫ (u,v) = α(u,v) + ǫw(u)δ(v)vN(u)where δ | c = 1 <strong>and</strong> has small support <strong>and</strong> supp (δ) ∩ c(a i ,a i+1 ) ≠ ∅.Then c is a folded asymptotic line <strong>of</strong> α ǫ for all ǫ small <strong>and</strong> <strong>the</strong> derivative <strong>of</strong> <strong>the</strong> Poincaré mapπ αǫ,i+1,i associated to it is given by:[ ∫ ]u 1Π ′ α = exp i+1 −τ g(u) ′ + 2k g (u)[H(u) + ǫw(u)]ǫ,i+1,i du .2τ g (u)Moreover, taking w(u) = k g (u) holds that:u 1 iddǫ (π α ǫ,i+1,i(0)) | ǫ=0 =∫ u 1i+1u 2 ik g (u) 2τ g (u) du ≠ 0In particular c is a hyperbolic periodic asymptotic folded line for α ǫ , ǫ ≠ 0.Pro<strong>of</strong>. Similar to <strong>the</strong> pro<strong>of</strong> <strong>of</strong> propositi<strong>on</strong> 5.3.2. Here <strong>on</strong>e must take an arc which is not a straigthline.From <strong>the</strong> c<strong>on</strong>siderati<strong>on</strong>s above we have <strong>the</strong> following.Theorem 5.3.3. Given a regular or folded asymptotic periodic line c <strong>of</strong> <strong>the</strong> immersi<strong>on</strong> α, <strong>the</strong>n<strong>the</strong>re exist a smooth <strong>on</strong>e parameter family <strong>of</strong> immersi<strong>on</strong>s α t such that for t > 0 small, c is ahyperbolic asymptotic line <strong>of</strong> α t which is structurally stable.


54 CHAPTER 5. STABILITY OF ASYMPTOTIC LINES5.4 Examples <strong>of</strong> Periodic Asymptotic LinesIn this secti<strong>on</strong> it will be given geometric c<strong>on</strong>structi<strong>on</strong>s <strong>of</strong> regular surfaces having periodic asymptoticlines.5.4.1 A Hyperbolic periodic asymptotic lineIn this subsecti<strong>on</strong> it will be c<strong>on</strong>sidered a surface having a hyperbolic asymptotic line c<strong>on</strong>tainedin interior <strong>of</strong> <strong>the</strong> regi<strong>on</strong> <strong>of</strong> negative Gaussian curvature.Propositi<strong>on</strong> 5.4.1. Let c : [0,L] → R 3 be a closed biregular curve, parametrized by arc length,such that <strong>the</strong> curvature k(s) <strong>and</strong> <strong>the</strong> torsi<strong>on</strong> τ(s) <strong>of</strong> c are different from zero for all s ∈ [0,L].C<strong>on</strong>sider <strong>the</strong> surfaceα(s,v) = c(s) + vN(s) + τ(s) v22 B(s)Here {T,N,B} is Frenet’s orth<strong>on</strong>ormal frame associated to c.Then c is a regular hyperbolic periodic asymptotic line.Pro<strong>of</strong>. Direct calculati<strong>on</strong> gives thate(s,0) = 0, f(s,0) = τ(s), e v (s,0) = τ ′ (s) − k(s)τ(s) g(s,0) = τ(s).The Poincaré map given by π(v 0 ) = v(L,v 0 ), where v is <strong>the</strong> soluti<strong>on</strong> <strong>of</strong> <strong>the</strong> differential equati<strong>on</strong>eds 2 + 2fdsdv + gdv 2 = 0with v(0,v 0 ) = v 0 , has <strong>the</strong> first derivative at 0 given by:This ends <strong>the</strong> pro<strong>of</strong>.π ′ (0) = exp∫ L0− e v2f (s,0)ds = exp ∫ L0k(s)2 ds ≠ 1Remark 5.4.1. <strong>Curves</strong> with <strong>the</strong> above propertied are, for example, <strong>the</strong> toroidal helices, [9]. Forappropriate pairs (m,n), <strong>the</strong> closed curve c m,n defined below has n<strong>on</strong> zero torsi<strong>on</strong>.c m,n (t) = ((R + r cos nt)cos mt,(R + r cos nt)sinmt,r sin nt)5.4.2 Semihyperbolic periodic asymptotic lineIn this secti<strong>on</strong> it will be c<strong>on</strong>sidered a ruled surface having a n<strong>on</strong> hyperbolic asymptotic linec<strong>on</strong>tained in interior <strong>of</strong> <strong>the</strong> regi<strong>on</strong> <strong>of</strong> negative Gaussian curvature. Under an integral c<strong>on</strong>diti<strong>on</strong> itwill be proved <strong>the</strong> semi hyperbolicity <strong>of</strong> a closed asymptotic line.Propositi<strong>on</strong> 5.4.2. Let c : [0,L] → R 3 be a closed biregular curve, parametrized by arc length,such that <strong>the</strong> curvature k(s) <strong>and</strong> <strong>the</strong> torsi<strong>on</strong> τ(s) <strong>of</strong> c are different from zero for all s ∈ [0,L].C<strong>on</strong>sider <strong>the</strong> ruled surfaceα(s,v) = c(s) + vN(s)


5.4. EXAMPLES OF PERIODIC ASYMPTOTIC LINES 55Then c is a regular semi hyperbolic periodic asymptotic line provided∫τ −1/2 dk ≠ 0.Pro<strong>of</strong>. Direct calculati<strong>on</strong> gives thatα s ∧ α v = −τvT + (1 − vk)Bcα ss = −k ′ vT + [k − (k 2 + τ 2 )v]N + τ ′ Bα sv = −kT + τBα vv = 0Therefore e = [α ss ,α s ,α v ], f = [α sv ,α s ,α v ] <strong>and</strong> g = [α vv ,α s ,α v ] are given by.e(s,v) = τ ′ (s)v + ( k τ )′ (s)τ 2 v 2f(s,v) = τ(s)g(s,v) = 0Therefore <strong>on</strong>e family <strong>of</strong> asymptotic lines is given by <strong>the</strong> straight lines s = cte <strong>and</strong> c is an asymptoticline <strong>of</strong> <strong>the</strong> o<strong>the</strong>r foliati<strong>on</strong>. The Poincaré map associated to c is defined by π(v 0 ) = v(L,v 0 ), wherev = v(s,v 0 ) is <strong>the</strong> soluti<strong>on</strong> <strong>of</strong> <strong>the</strong> differential equati<strong>on</strong>dvds = (s)v + ( k−τ′ τ )′ (s)τ 2 v 22τv(0,v 0 ) = v 0Direct integrati<strong>on</strong> <strong>of</strong> <strong>the</strong> first variati<strong>on</strong>al equati<strong>on</strong>evaluated at v = 0 gives,Therefore,dds ( dvdv 0) = − τ ′2τdvdv 0√ √dv τ(0) τ0(s) = √ = √dv 0 τ(s) τπ ′ (0) = ∂v∂v 0(0,L) = 1Also, <strong>the</strong> integrati<strong>on</strong> <strong>of</strong> <strong>the</strong> sec<strong>on</strong>d variati<strong>on</strong>al equati<strong>on</strong>,d vds (d2 dv02 ) = − τ ′ d 2 v2τ dv02 − ( dv ) 2 ( k dv 0 τ )′ τleads toThis ends <strong>the</strong> pro<strong>of</strong>.d 2 vdv 2 0∫ L √τ0= −0= − √ ∫τ 0 kd(τ −1/2 ) = √ ∫τ 0√ τ( k τ )′ τ(s)ds = − √ τ 0∫ Lcc0τ −1/2 dk√ τ(kτ )′ ds


56 CHAPTER 5. STABILITY OF ASYMPTOTIC LINES5.5 On a class <strong>of</strong> dense asymptotic linesThe goal <strong>of</strong> this secti<strong>on</strong> is to present examples <strong>of</strong> folded recurrent asymptotic lines.The goal <strong>of</strong> this secti<strong>on</strong> is to present examples <strong>of</strong> folded recurrent asymptotic lines.Propositi<strong>on</strong> 5.5.1. Let T 2 be <strong>the</strong> torus <strong>of</strong> revoluti<strong>on</strong>, obtained by <strong>the</strong> rotati<strong>on</strong> <strong>of</strong> <strong>the</strong> circle (x −R) 2 + z 2 = r 2 ,r < R, around <strong>the</strong> z axis. Then <strong>the</strong> qualitative behavior <strong>of</strong> <strong>the</strong> asymptotic lines is asshown in <strong>the</strong> figure 5.3 Moreover <strong>the</strong> return map Π : S(R) → S(R), where S(R) = {(x,y,z) :x 2 + y 2 = R 2 ,z = −r}, is a rotati<strong>on</strong> by an angle equal to 4RT(r/R), whereT( r R ) = ∞ ∑n=02a nn! ( r 1 × 3 × . . . × (2n − 1) Γ( 1R )n 2, with a n = )Γ(2n + 1 4 )2 n Γ(2n + 3 4 ) .Figure 5.3: Asymptotic lines <strong>on</strong> <strong>the</strong> torusPro<strong>of</strong>. C<strong>on</strong>sider <strong>the</strong> following parametrizati<strong>on</strong> <strong>of</strong> <strong>the</strong> torus <strong>of</strong> revoluti<strong>on</strong>:(u,v) → (cos v(R + r cos u),sin v(R + r cos u),r sin u)Performing <strong>the</strong> calculati<strong>on</strong> <strong>of</strong> <strong>the</strong> sec<strong>on</strong>d fundamental form, it is obtained that,e(u,v) = R 2 , f(u,v) = 0, g(u,v) = R(R + r cos u)cos u.Therefore <strong>the</strong> differential equati<strong>on</strong> <strong>of</strong> <strong>the</strong> asymptotic lines is:F(u,v,du/dv) = R(du/dv) 2 + cos u(R + r cos u) = 0.Writing p = du/dv, c<strong>on</strong>sider <strong>the</strong> vector field X defined by <strong>the</strong> differential equati<strong>on</strong>(u ′ ,v ′ ,p ′ ) = (F p ,pF p , −(F u + pF v )).After multiplying X by 1/p it results that:(u ′ ,v ′ ,p ′ ) = (2Rp2R,Rsin u + r sin 2u).C<strong>on</strong>sider also <strong>the</strong> projected vector field,{u ′ = 2RpY :p ′ = R sinu + r sin 2u


5.6. FURTHER DEVELOPMENTS ON ASYMPTOTIC LINES 57Notice that <strong>the</strong> orbit <strong>of</strong> Y through ( π 2 ,0) reaches (3π 2 ,0).In fact, from <strong>the</strong> first integral <strong>of</strong> Y ,G(u,p) = Rp 2 + R cos u + r cos 2u,2it follows that ( π 2 ,0) <strong>and</strong> (3π 2 ,0) are in <strong>the</strong> same c<strong>on</strong>nected comp<strong>on</strong>ent <strong>of</strong> G−1 ( −r2 ).The time spent by an orbit that starts at ( π 2 ,0) to reach <strong>the</strong> point (3π 2,0) can be calculated asfollows:As dudtFrom G(u,p) = r 2= 2Rp, it follows that:it results that:p = {[−r(1 + cos 2u) − 2R cos u]} 1 2 .2RT = R 1 2∫ 3π2π2du[− cos u(r cos u + R)] 1 2∫ π2= 20du[sin u(1 − r R sin .u)]1 2It follows from [36, pp. 369 –950], that <strong>the</strong> analytic functi<strong>on</strong> T( r R) has <strong>the</strong> following expansi<strong>on</strong>in seriesT( r R ) = ∞ ∑n=02a nn! ( r 1 × 3 × . . . × (2n − 1) Γ( 1R )n 2, where a n = )Γ(2n + 1 4 )2 n Γ(2n + 3 4 ) .Therefore, from dv/dt = 2R, it follows that an arc <strong>of</strong> <strong>the</strong> asymptotic line that starts at <strong>the</strong> point( π 2 ,v 0) ends at <strong>the</strong> point ( 3π 2 ,v 1), where v 1 is given by v 1 = 2RT ∓ v.So <strong>the</strong> return map Π : {v = − π 2 } → {v = −π 2} is given byΠ(v 0 ) = v 0 + 4RT( r R ).As T is clearly n<strong>on</strong> c<strong>on</strong>stant, it is possible to select r <strong>and</strong> R such that <strong>the</strong> rotati<strong>on</strong> number ,see [54] <strong>and</strong> [53], <strong>of</strong> Π is irrati<strong>on</strong>al.5.6 Fur<strong>the</strong>r developments <strong>on</strong> asymptotic linesThe geometric form described above was taken from [29].The local analysis <strong>of</strong> asymptotic lines near parabolic points was also studied in [7], [8] <strong>and</strong> [47].A global <strong>the</strong>orem <strong>of</strong> stability <strong>of</strong> nets <strong>of</strong> asymptotic lines was obtained in [59].The dynamical aspects <strong>of</strong> asymptotic lines is a source <strong>of</strong> many difficult problems.One is <strong>the</strong> “Closing Lemma”, i.e. <strong>the</strong> eliminati<strong>on</strong> <strong>of</strong> recurrent asymptotic lines disjoint from<strong>the</strong> parabolic set <strong>and</strong> <strong>of</strong> folded recurrent asymptotic lines.The sec<strong>on</strong>d kind <strong>of</strong> recurrences was given by torus <strong>of</strong> revoluti<strong>on</strong>, see secti<strong>on</strong> 5.5.The first kind <strong>of</strong> recurrences was studied by R. Garcia <strong>and</strong> J. Sotomayor [35] in embedded torus<strong>of</strong> S 3 with suitable deformati<strong>on</strong>s <strong>of</strong> <strong>the</strong> Clifford torus.Ano<strong>the</strong>r problem is about <strong>the</strong> existence <strong>of</strong> isolated regular closed asymptotic lines in tubes <strong>and</strong>also a c<strong>on</strong>tinuum <strong>of</strong> closed asymptotic lines. This kind <strong>of</strong> questi<strong>on</strong> is important in <strong>the</strong> open problem<strong>of</strong> rigidity <strong>of</strong> compact surfaces <strong>of</strong> genus different from zero <strong>and</strong> also in <strong>the</strong> study <strong>of</strong> complete surfaceswith negative Gaussian curvature.


58 CHAPTER 5. STABILITY OF ASYMPTOTIC LINESAno<strong>the</strong>r kind <strong>of</strong> questi<strong>on</strong> is about <strong>the</strong> structure <strong>of</strong> <strong>the</strong> parabolic set <strong>of</strong> a surface, for example,in surfaces which are graph (x,y,p(x,y) <strong>of</strong> a polynomial p ∈ R[x,y].A c<strong>on</strong>crete questi<strong>on</strong> is <strong>the</strong> following: Given a functi<strong>on</strong> K which local <strong>and</strong> global c<strong>on</strong>diti<strong>on</strong>sthis functi<strong>on</strong> must satisfies in order that K −1 = 0 is <strong>the</strong> parabolic set <strong>of</strong> a surface with Gaussiancurvature K? This questi<strong>on</strong> was c<strong>on</strong>sidered by V. Arnold,[5].For compact surfaces, <strong>the</strong> functi<strong>on</strong> K must satisfy preliminarily <strong>the</strong> equati<strong>on</strong> established by <strong>the</strong>Gauss-B<strong>on</strong>net Theorem5.7 Exercises1) C<strong>on</strong>sider <strong>the</strong> embedded tube defined by∫SKdS = 2πχ(S).α(s, v) = c(s) + r cosvn(s) + r sin vb(s), r > 0.Here c is a closed Frenet curve with k > 0 <strong>and</strong> torsi<strong>on</strong> τ.i) Show that <strong>the</strong> hyperbolic regi<strong>on</strong> <strong>of</strong> α is diffeomorphic to a cylinder <strong>and</strong> <strong>the</strong> parabolic set is uni<strong>on</strong> <strong>of</strong>two regular curves.ii) Characterize <strong>the</strong> parabolic points (regular, folded saddle, etc.) in terms <strong>of</strong> (k, τ) <strong>and</strong> <strong>the</strong>ir derivatives.iii) Examine <strong>the</strong> possible global behavior <strong>of</strong> asymptotic foliati<strong>on</strong>s in <strong>the</strong> tube.iv) Let c be a c<strong>on</strong>nected comp<strong>on</strong>ent <strong>of</strong> f −1 (0)∩g −1 (0), where f(x, y, z) = x 2 +y 2 +z 2 −1 <strong>and</strong> g(x, y, z) =x 2a+ y22 b− 1. Classify <strong>the</strong> parabolic points <strong>of</strong> <strong>the</strong> tube with center c.22) C<strong>on</strong>sider <strong>the</strong> surface S defined by <strong>the</strong> graph <strong>of</strong> <strong>the</strong> polynomial p(x, y) = k 2 (x2 + y 2 ) + x 3 − 3xy 2 .i) Determine <strong>the</strong> parabolic set <strong>of</strong> S.ii) Classify <strong>the</strong> parabolic points <strong>of</strong> S.iii) Examine <strong>the</strong> global behavior <strong>of</strong> asymptotic foliati<strong>on</strong>s <strong>on</strong> S, including <strong>the</strong> behavior near <strong>the</strong> infinity.3) Give examples <strong>of</strong> surfaces (try algebraic) such that:i) The parabolic set is <strong>the</strong> uni<strong>on</strong> <strong>of</strong> two regular curves <strong>and</strong> <strong>the</strong> hyperbolic regi<strong>on</strong> is diffeomorphic to acylinder.ii) The parabolic set is <strong>the</strong> uni<strong>on</strong> <strong>of</strong> three regular curves <strong>and</strong> <strong>the</strong> hyperbolic regi<strong>on</strong> is diffeomorphic to anoriented boundary surface S with Euler characteristic equal to ψ(S) = −1.iii) The parabolic set is a regular curve <strong>and</strong> <strong>the</strong> hyperbolic regi<strong>on</strong> is diffeomorphic to a disk.4) Show that <strong>the</strong> quartic algebraic surface defined byp(x, y, z) = 3z 4 + 2(1 + 4xy)z 2 − 2(x 2 + y 2 ) 2 + 8xy − 1 = 0,determines a smooth negatively curved surface S ⊂ R 3 homeomorphic to <strong>the</strong> doubly punctured torus,which has Euler characteristic equal to −2.i) Perform a qualitative analysis <strong>of</strong> <strong>the</strong> asymptotic foliati<strong>on</strong>s near <strong>the</strong> ends <strong>of</strong> p −1 (0).ii) Visualize <strong>the</strong> shape <strong>of</strong> p −1 (0).


5.7. EXERCISES 59Suggesti<strong>on</strong>: See [15].5) Analyze <strong>the</strong> behavior <strong>of</strong> asymptotic lines near <strong>the</strong> Whitney singularities <strong>of</strong> an immersi<strong>on</strong> <strong>of</strong> a surfacein R 3 . Suggesti<strong>on</strong>: See [78].6) Let N : S → S 2 be <strong>the</strong> normal map associated to a surface S ⊂ R 3 . Classify <strong>the</strong> parabolic points <strong>of</strong>S in terms <strong>of</strong> <strong>the</strong> singularities (folds <strong>and</strong> cusps) <strong>of</strong> N. See [7] <strong>and</strong> [8].7) Let α : S → S 3 be a smooth immersi<strong>on</strong> <strong>of</strong> a surface S.. Define <strong>the</strong> first <strong>and</strong> sec<strong>on</strong>d fundamentalforms <strong>of</strong> α with respect to <strong>the</strong> metric <strong>of</strong> S 3 induced by <strong>the</strong> can<strong>on</strong>ical metric <strong>of</strong> R 4 <strong>and</strong> to <strong>the</strong> normalN α = (α u ∧ α v ∧ α)/|α u ∧ α v ∧ α|.A curve c : I → S is called an asymptotic line if II α (c(s))(c ′ (s), c ′ (s)) = 0i) Let α : S 1 × S 1 → S 3 defined byThe surface α(S 1 × S 1 ) is <strong>the</strong> Clifford torus..α(u, v) = 1 √2(cosu, sin u, cosv, sin v).i) Write <strong>the</strong> differential equati<strong>on</strong> <strong>of</strong> asymptotic lines <strong>of</strong> α.ii) Show that <strong>the</strong> asymptotic lines <strong>of</strong> <strong>the</strong> Clifford torus are defined globally <strong>and</strong> are circles.8) Let α : S → R 4 be a smooth immersi<strong>on</strong> <strong>of</strong> a compact two dimensi<strong>on</strong>al surface S <strong>and</strong> suppose that<strong>the</strong>re exists a unitary normal vector field N α al<strong>on</strong>g α.Define <strong>the</strong> sec<strong>on</strong>d fundamental form <strong>of</strong> α relative to N α by <strong>the</strong> equati<strong>on</strong>II α (u, v)(du, dv) = 〈 D 2 α(u, v)(du, dv) 2 , N α〉= 〈α vv , N α 〉dv 2 + 2 〈α uv , N α 〉dudv + 〈α uu , N α 〉du 2=edu 2 + 2fdudv + gdv 2 .Make a study <strong>of</strong> <strong>the</strong> asymptotic lines <strong>of</strong> α relative to N α defined by <strong>the</strong> equati<strong>on</strong> edu 2 +2fdudv+gdv 2 =0.9) Give an example <strong>of</strong> a ruled surface in R 3 having two hyperbolic asymptotic lines.10) C<strong>on</strong>sider <strong>the</strong> parametric surface defined byx(u, v) = 12A [(a + u)3 + (a + v) 3 ]y(u, v) = 12B [(b + u)3 + (b + v) 3 ]z(u, v) = 12C [(a + c)3 + (a + c) 3 ]Obtain <strong>the</strong> differential equati<strong>on</strong> <strong>of</strong> asymptotic lines <strong>and</strong> show that <strong>the</strong> soluti<strong>on</strong>s are given by11) C<strong>on</strong>sider <strong>the</strong> parametric surface defined byu + ±v = c.x(u, v) =A(u − a) m (v − a) my(u, v) =B(u − b) m (v − b) mz(u, v) =C(u − c) m (v − c) m , m ∈ N.Obtain <strong>the</strong> differential equati<strong>on</strong> <strong>of</strong> <strong>the</strong> asymptotic lines <strong>and</strong> find <strong>the</strong> soluti<strong>on</strong>s.


60 CHAPTER 5. STABILITY OF ASYMPTOTIC LINES12) Show that <strong>the</strong>re is no triple system <strong>of</strong> surfaces cutting mutually in <strong>the</strong> asymptotic lines <strong>of</strong> <strong>the</strong>sesurfaces. See [19].13) C<strong>on</strong>sider <strong>the</strong> ”osculator” tube defined byα(s, v) = c(s) + r cosvt(s) + r sin vn(s), r > 0.Here c is a Frenet curve with k > 0 <strong>and</strong> torsi<strong>on</strong> τ <strong>and</strong> {t, n, b} is <strong>the</strong> Frenet frame.i) Characterize <strong>the</strong> curves c such that <strong>the</strong> ”osculator” tube defined above is a regular surface.ii) Analyse <strong>the</strong> geometry <strong>of</strong> <strong>the</strong> tube, classifying <strong>the</strong> elliptic, parabolic <strong>and</strong> hyperbolic points <strong>and</strong> also<strong>the</strong> singular points.ii) Analyse <strong>the</strong> principal <strong>and</strong> asymptotic lines <strong>of</strong> <strong>the</strong> tube.14) Make a study <strong>of</strong> extrinsic geometry <strong>of</strong> surfaces <strong>of</strong> codimensi<strong>on</strong> two in R 4 . In particular analyse <strong>the</strong>asymptotic lines, mean directi<strong>on</strong>ally curved lines <strong>and</strong> axial curvature lines. See [12], [30], [52], [63]<strong>and</strong> [64].


Chapter 6Closed Geodesics <strong>on</strong> <strong>Surfaces</strong>Introducti<strong>on</strong>Geometrical <strong>and</strong> dynamical aspects <strong>of</strong> geodesics <strong>on</strong> surfaces is a classical subject <strong>of</strong> differentialgeometry. See for example, [2], [4], [9], [16], [46], [49], [56], [57], [76], [77].In this chapter <strong>the</strong> derivative <strong>of</strong> <strong>the</strong> Poincaré map associated to a closed geodesic line will beobtained in a elementary way.6.0.1 Closed GeodesicsLemma 6.0.1. Let c : I → M 2 be a closed geodesic line parametrized by arc length. Then <strong>the</strong>Darboux frame is given by:T ′= k n N(N ∧ T) ′ = τ g NN ′ = −k n T − τ g N ∧ T(6.1)Moreover, τ g = (k 2 −k 1 )sin θ cos θ <strong>and</strong> k n = k 1 cos 2 θ+k 2 sin 2 θ, where k 1 <strong>and</strong> k 2 are <strong>the</strong> principalcurvatures <strong>and</strong> θ is <strong>the</strong> angle between c ′ (u) = T(u) <strong>and</strong> <strong>the</strong> principal directi<strong>on</strong> corresp<strong>on</strong>ding to <strong>the</strong>principal curvature k 1 .Pro<strong>of</strong>. From <strong>the</strong> Euler equati<strong>on</strong> k n = k 1 cos 2 θ + k 2 sin 2 θ. Also <strong>the</strong> geodesic torsi<strong>on</strong> given by τ g =(k 2 − k 1 )sin θ cos θ.Lemma 6.0.2. Let α : M → R 3 be an immersi<strong>on</strong> <strong>of</strong> class C k , k ≥ 4, <strong>and</strong> c be a closed geodesiccurve <strong>of</strong> α, parametrized by arc length <strong>and</strong> <strong>of</strong> length l. Then <strong>the</strong> expressi<strong>on</strong>,α(u,v) = c(u) + v(N ∧ T)(u) + [k ⊥ n (u)v2 2 + A(u,v)v3 6 ]N(u),defines a local chart (u,v) <strong>of</strong> class C k−5 in a neighborhood <strong>of</strong> c.Pro<strong>of</strong>. The curve c is <strong>of</strong> class C k−1 <strong>and</strong> <strong>the</strong> map α(u,v,w) = c(u)+v(N ∧T)(u)+wN(u) is <strong>of</strong> classC k−2 <strong>and</strong> is a local diffeomorphism in a neighborhood <strong>of</strong> <strong>the</strong> axis u. In fact [α u ,α v ,α w ](u,0,0) = 1.Therefore <strong>the</strong>re is a functi<strong>on</strong> W(u,v) <strong>of</strong> class C k−2 such that α(u,v,W(u,v)) is a parametrizati<strong>on</strong><strong>of</strong> a tubular neighborhood <strong>of</strong> α ◦ c. Now for each u, W(u,v) is just a parametrizati<strong>on</strong> <strong>of</strong> <strong>the</strong> curve61


62 CHAPTER 6. CLOSED GEODESICS<strong>of</strong> intersecti<strong>on</strong> between α(M) <strong>and</strong> <strong>the</strong> normal plane generated by {(N ∧ T)(u),N(u)}. This curve<strong>of</strong> intersecti<strong>on</strong> is tangent to (N ∧ T)(u) at v = 0 <strong>and</strong> notice that kn ⊥ = k n(N ∧ T)(u). Therefore,α(u,v,W(u,v)) = c(u) + v(N ∧ T)(u) + [ k⊥ n2v 2 + A(u,v) v3 6 ]N(u),where A is <strong>of</strong> class C k−5 . This ends <strong>the</strong> pro<strong>of</strong>.In <strong>the</strong> chart (u,v) c<strong>on</strong>structed above it is obtained:E(u,v) = 1 + (τ 2 g − k nk ⊥ n )v2 + h.o.tF(u,v) = k ⊥ n τ v22 + h.o.tG(u,v) = 1 + (k ⊥ n )2 v 2 + h.o.te(u,v) = k n + h.o.tf(u,v) = τ g (u) + h.o.tg(u,v) = k ⊥ n + h.o.t(6.2)where in <strong>the</strong> expressi<strong>on</strong>s above, E = 〈α u ,α u 〉, F = 〈α u ,α v 〉, G = 〈α v ,α v 〉, e = 〈α u ∧ α v ,α uu 〉,f = 〈α u ∧ α v ,α uv 〉 <strong>and</strong> g = 〈α u ∧ α v ,α vv 〉.Therefore <strong>the</strong> Christ<strong>of</strong>fel symbols are given by:Γ 1 11 = o(v 2 ), Γ 1 12 = v(τ2 g − k n k ⊥ n ) + o(v 2 ), Γ 1 22 = k⊥ n τ g v + o(v 2 )Γ 2 12 = o(v 2 ), Γ 2 11 = v(k nk ⊥ n − τ2 g ) + o(v2 ), Γ 2 22 = (k⊥ n )2 v + o(v 2 )(6.3)So <strong>the</strong> differential equati<strong>on</strong> <strong>of</strong> geodesic lines is given by:dvdu= wdwdu= [k n τ g w 3 − k 2 n w2 + (τ 2 g − k nk ⊥ n )]v + o(v2 )(6.4)Propositi<strong>on</strong> 6.0.1. Let α : M → R 3 be an immersi<strong>on</strong> <strong>of</strong> class C k , k ≥ 4, <strong>and</strong> c be a closedgeodesic curve <strong>of</strong> α, parametrized by arc length <strong>and</strong> <strong>of</strong> length l. Then <strong>the</strong> derivative <strong>of</strong> <strong>the</strong> Poincarémap π(v 0 ,w 0 ) = (v(l,v 0 ,w 0 ),w(l,v 0 ,w 0 )) at (v 0 ,w 0 ) = (0,0) associated to equati<strong>on</strong> (6.4) satisfies<strong>the</strong> following linear system:∂∂uMoreover det(π ′ (0)) = 1.(∂v∂v 0∂w∂v 0)∂v∂w 0∂w∂w 0=(0 1−K(u) 0)(∂v∂v 0∂w∂v 0)∂v∂w 0∂w∂w 0Pro<strong>of</strong>. Direct calculati<strong>on</strong> shows that K = k n kn ⊥−τ2 g . Therefore differentiating 6.4 <strong>the</strong> result follows.The asserti<strong>on</strong> that det(π ′ (0)) = 1 it follows from Liouville formula for flows, [70].Propositi<strong>on</strong> 6.0.2. Let α : M → R 3 be an immersi<strong>on</strong> <strong>of</strong> class C k , k ≥ 4, <strong>and</strong> c be a closed geodesiccurve <strong>of</strong> α, parametrized by arc length <strong>and</strong> <strong>of</strong> length l. Suppose that K| c = k 0 . Then detπ ′ (0) = 1<strong>and</strong> <strong>the</strong> eigenvalues <strong>of</strong> π ′ (0) are given by λ 1 = − √ −k 0 <strong>and</strong> λ 2 = √ −k 0 . Therefore if k 0 < 0 <strong>the</strong>periodic geodesic line c is hyperbolic <strong>and</strong> if k 0 > 0 <strong>the</strong> closed geodesic is simple.Pro<strong>of</strong>. The result follows from <strong>the</strong> direct integrati<strong>on</strong> <strong>of</strong> linear system with c<strong>on</strong>stant coefficients6.5.(6.5)


636.0.2 Geodesics <strong>on</strong> <strong>Surfaces</strong> <strong>of</strong> Revoluti<strong>on</strong>Let c : R → R 3 , c(u) = (r(u),0,z(u)), be a regular curve parametrized by arc length <strong>and</strong>c<strong>on</strong>sider <strong>the</strong> surface <strong>of</strong> revoluti<strong>on</strong>α(u,v) = (r(u)cos v,r(u)sin v,z(u)).The first fundamental form is given by: I α = ds 2 = du 2 + r(u) 2 dv 2 .The Christ<strong>of</strong>fel symbols are given by:Γ 1 11 = 0 Γ 2 11 = 0Γ 1 12 = 0 Γ 2 12 = Gu2G = r′rΓ 2 11 = 0 Γ 1 22 = −G u = −2r ′ r(6.6)Therefore <strong>the</strong> differential equati<strong>on</strong> <strong>of</strong> <strong>the</strong> geodesic lines is given by:d 2 uds 2d 2 vds 2−G u ( dvds )2 = 0+ Gu du dvG ds ds = 0ds 2 = du 2 + r(u) 2 dv 2 .From <strong>the</strong> sec<strong>on</strong>d equati<strong>on</strong> above it follows that:(6.7)d 2 vds 2ds = − G u dudvG ds dsdsTherefore integrating <strong>the</strong> equati<strong>on</strong> above it results that,G dvds = cWriting <strong>the</strong> unitary tangent vector to <strong>the</strong> geodesic c(s) = (u(s),v(s)) in <strong>the</strong> form c ′ (s) =(cos β(s),sin β(s)), where β is <strong>the</strong> angle <strong>of</strong> <strong>the</strong> geodesic c with <strong>the</strong> meridians it follows that:flow.G dvds = r(u(s))2 sin β(s) = cThis relati<strong>on</strong> is called Clairaut formula <strong>and</strong> it corresp<strong>on</strong>ds to a first integral <strong>of</strong> <strong>the</strong> geodesicSubstituting <strong>the</strong> Clairaut’s formula in <strong>the</strong> equati<strong>on</strong> for ds 2 it results,c 2 du 2 + G(c 2 − G)dv 2 = 0 (6.8)The soluti<strong>on</strong>s <strong>of</strong> <strong>the</strong> binary equati<strong>on</strong> above are <strong>the</strong> geodesics c<strong>on</strong>tained in <strong>the</strong> level set <strong>of</strong> <strong>the</strong> firstintegral G dvds = c.Propositi<strong>on</strong> 6.0.3. Let u 0 be a parallel such that G(u 0 ) = c 2 . Then <strong>the</strong> following holds:1. If u = u 0 is not a geodesic <strong>the</strong>n <strong>the</strong> behavior <strong>of</strong> equati<strong>on</strong> (6.8) near u = u 0 is as shown in <strong>the</strong>picture 6.1 a).2. The parallel u = u 0 is a geodesic if <strong>and</strong> <strong>on</strong>ly if u 0 is a critical point <strong>of</strong> r(u). Moreover, u = u 0is a minimum <strong>of</strong> r <strong>the</strong> behavior <strong>of</strong> <strong>the</strong> differential equati<strong>on</strong> 6.8 near <strong>the</strong> parallel {u = u 0 } isas shown in <strong>the</strong> picture 6.1 b) below.


64 CHAPTER 6. CLOSED GEODESICSFigure 6.1: Geodesics <strong>on</strong> <strong>the</strong> surfaces <strong>of</strong> revoluti<strong>on</strong>Pro<strong>of</strong>. C<strong>on</strong>sider <strong>the</strong> implicit surfaceF(v,u,p) = c 2 p 2 + r(u) 2 (c 2 − r(u) 2 ) = 0,p = dudvThe Lie-Cartan vector field X = (F p ,pF p , −(F v + pF u )) is equivalent (modulus divisi<strong>on</strong> by p)to <strong>the</strong> vector field Y given by:v ′ = 2c 2u ′ = 2c 2 pp ′ = −r ′ (u)r(u)(2c 2 − 4r(u) 2 )If r(u 0 ) = c <strong>and</strong> r ′ (u 0 ) = 0 it follows that curve ϕ(t) = (2c 2 t + v 0 ,u 0 ,0) is an integral soluti<strong>on</strong><strong>of</strong> <strong>the</strong> equati<strong>on</strong> above with initial c<strong>on</strong>diti<strong>on</strong> (v 0 ,u 0 ,0).If r(u 0 ) = c <strong>and</strong> r ′ (u 0 ) ≠ 0 it follows that curve ϕ(t) = (u 0 + 2c 2 t + · · · ,v 0 + 2r ′ (u 0 )c 5 t 2 +· · · ,2r ′ (u 0 )c 3 t + · · · ) is an integral soluti<strong>on</strong> <strong>of</strong> Y , with initial c<strong>on</strong>diti<strong>on</strong> (v 0 ,u 0 ,0). Therefore <strong>the</strong>projecti<strong>on</strong> <strong>of</strong> this integral curve <strong>on</strong> <strong>the</strong> plane vu has quadratic c<strong>on</strong>tact with <strong>the</strong> parallel {u = u 0 }.This ends <strong>the</strong> pro<strong>of</strong>.6.0.3 Remarks <strong>on</strong> <strong>the</strong> Geodesic Flow <strong>on</strong> a SphereThe geodesic flow <strong>on</strong> a sphere S n is described by a sec<strong>on</strong>d order differential equati<strong>on</strong>u ′′ = λuAs 〈u,u ′ 〉 = 0 it follows that 〈u ′′ ,u〉+〈u ′ ,u ′ 〉 = 0 <strong>and</strong> that λ = −|u ′ | 2 . Therefore <strong>the</strong> differentialequati<strong>on</strong> <strong>of</strong> <strong>the</strong> geodesic flow <strong>on</strong> a sphere is given by:u ′′ = −|u ′ | 2 u (6.9)C<strong>on</strong>sidering <strong>the</strong> functi<strong>on</strong> H(u,v) = 1 2 |u|2 |v| 2 , restricted to <strong>the</strong> tangent bundle given by {(u,v) :|u| = 1, 〈u,v〉 = 0}, <strong>the</strong> equati<strong>on</strong> (6.9) is given by <strong>the</strong> Hamilt<strong>on</strong>ian vector field˙u = ∂H∂v˙v = − ∂H∂uDirect analysis shows that all <strong>the</strong> geodesic lines <strong>of</strong> equati<strong>on</strong> (6.9) are closed.The dynamics <strong>of</strong> <strong>the</strong> geodesic flow in c<strong>on</strong>vex hypersurfaces close to <strong>the</strong> unitary sphere is extremelyrich <strong>and</strong> it is an important area <strong>of</strong> research.For an analysis <strong>of</strong> <strong>the</strong> geodesic flow near closed geodesics <strong>on</strong> Riemannian manifolds see [80].


6.1. EXERCISES 656.1 Exercises1) Show that <strong>the</strong> ellipsoidx 2a 2 + y2b 2 + z2c 2 − 1 = 0, 0 < a < b < chas three closed planar geodesics. Discuss <strong>the</strong> type <strong>of</strong> each closed planar geodesic (elliptic or hyperbolic).ii) Show that <strong>the</strong>re are closed geodesics <strong>of</strong> arbitrary length in <strong>the</strong> ellipsoid <strong>of</strong> revoluti<strong>on</strong> a = b < c.iii) Show that <strong>the</strong>re are closed geodesics <strong>of</strong> arbitrary length in <strong>the</strong> ellipsoid <strong>of</strong> three different axes 0 < a


66 CHAPTER 6. CLOSED GEODESICS15) C<strong>on</strong>sider <strong>the</strong> semi-plane R 2 + = {(u, v) : v > 0} with <strong>the</strong> metric ds 2 = du 2 + 1vdv 2 . Determine <strong>the</strong>2geodesics <strong>of</strong> R 2 + with respect to this metric.16) Make a study <strong>of</strong> various geometrical variati<strong>on</strong>al problems. For example, c<strong>on</strong>sider <strong>the</strong> following functi<strong>on</strong>al∫F(c) = k(s) 2 ds, s is <strong>the</strong> arc lengthin <strong>the</strong> space <strong>of</strong> regular curves with positive curvature kwith end points fixed.Determine <strong>the</strong> critical points <strong>of</strong> F.cC = {c : [a, b] → R 3 , c(a) = c a , c ′ (a) = c 1 a , c(b) = c b, c ′ (b) = c 1 b }17) Give an example <strong>of</strong> a real analytic Moebius b<strong>and</strong> with Gauss curvature negative in R 3 <strong>and</strong> havingclosed geodesics.18) Give an example <strong>of</strong> a real analytic developable Moebius b<strong>and</strong> in R 3 <strong>and</strong> having closed geodesics.


Bibliography[1] Gullstr<strong>and</strong> A. Zur kenntiss der kreispunkte. Acta Math, 29, 1905.[2] D. Anosov. Geodesic flows <strong>on</strong> closed riemmannian manifolds <strong>of</strong> negative curvature. Proc. SketlovInstitute <strong>of</strong> Ma<strong>the</strong>matics. Amer. Math Soc. Transl. 1969., 90:209 pp., 1967.[3] V. Arnold. Geometrical Methods in <strong>the</strong> <strong>Theory</strong> <strong>of</strong> Ordinary Differential Equati<strong>on</strong>s. Springer-Verlag,1983.[4] V. Arnold. Ma<strong>the</strong>matical Methods <strong>of</strong> Classical Mechanics. Springer-Verlag, 1989.[5] V. Arnold. On <strong>the</strong> problem <strong>of</strong> realizati<strong>on</strong> <strong>of</strong> a given gaussian curvature functi<strong>on</strong>. Topol. MethodsN<strong>on</strong>linear Analysis, 11:199–206, 1998.[6] V. Arnold <strong>and</strong> Eds. Y. Iliashenko. Soviet Encyclopedia <strong>of</strong> Dynamical Systems, volume 01. Springer-Verlag.[7] T. Banch<strong>of</strong>f, T. Gaffney, <strong>and</strong> C. McCroy. Cusps <strong>of</strong> Gauss Maps, volume 55. Pitman Res. Notes inMath, 1982.[8] T. Banch<strong>of</strong>f <strong>and</strong> R. Thom. Sur les points paraboliques d’une surface: erratum et complements. C.R.Acad. Sc.Paris, Serie A, 291:503–505, 1981.[9] M. Berger <strong>and</strong> B. Gostiaux. Introducti<strong>on</strong> to Differential Geometry. Springer-Verlag, 1987.[10] D. Bleeker <strong>and</strong> L. Wils<strong>on</strong>. Stability <strong>of</strong> gauss maps. Illinois J. Math., 22:279 – 289, 1978.[11] F. Mercuri C. Gutierrez <strong>and</strong> S. Bringas. On a c<strong>on</strong>jecture <strong>of</strong> carathéodory: Analyticity versus smoothness.Experimental Ma<strong>the</strong>matics, 5:33–37, 1996.[12] R. Tribuzy V. Guíñez C. Gutierrez, I. Guadalupe. Lines <strong>of</strong> curvature <strong>on</strong> surfaces immersed in R 4 . Bol.Soc. Brasil. Mat., 28:233–251, 1997.[13] C. Camacho <strong>and</strong> A. L. Neto. Introdução a Teoria Geométrica das Folheações. Projeto Euclides, CNPq,IMPA, 1981.[14] A. Cayley. On differential equati<strong>on</strong>s <strong>and</strong> umbilici. Philos. Mag., Coll. Works, Vol. VI, 26:373 – 379,441 – 452, 1863.[15] Chris C<strong>on</strong>nel <strong>and</strong> Mohammad Ghomi. Topology <strong>of</strong> negatively curved real affine algebraic surfaces.www.math.gatech.edu/ ghomi/Papers/, page 27 pages, 2007.[16] G. Darboux. Leç<strong>on</strong>s sur la théorie générale des surfaces, volume I, IV. Gauthiers-Villars, Paris, 1896.[17] M. do Carmo. Differential Geometry <strong>of</strong> curves <strong>and</strong> surfaces. Prentice Hall, New Jersey, 1976.[18] M. do Carmo. Geometria Riemanniana. Projeto Euclides, IMPA, 1988.[19] L. P. Eisenhart. A dem<strong>on</strong>strati<strong>on</strong> <strong>of</strong> <strong>the</strong> impossibility <strong>of</strong> a triply asymptotic system <strong>of</strong> surfaces. Bull.Amer. Math. Soc., 07:184–186, 1901.67


68 BIBLIOGRAPHY[20] L. P. Eisenhart. A Treatise <strong>on</strong> Differential Geometry <strong>of</strong> <strong>Curves</strong> <strong>and</strong> <strong>Surfaces</strong>. Dover Publicati<strong>on</strong>s, Inc.,1950.[21] E. Feldman. On parabolic <strong>and</strong> umbilic points <strong>on</strong> hypersurfaces. Trans. Amer. Math. Soc., 127:1–28.[22] G. Fischer. Ma<strong>the</strong>matical Models. Vieweg, 1986.[23] A. R. Forsyth. <str<strong>on</strong>g>Lectures</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> Differential Geometry <strong>of</strong> <strong>Curves</strong> <strong>and</strong> <strong>Surfaces</strong>. Cambridge Univ. Press,1920.[24] M<strong>on</strong>ge G. Sur les lignes de courbure de la surface de l’ellipsoide. Journ. Ecole Polytech., II cah.[25] R. Garcia <strong>and</strong> J. Sotomayor. Lines <strong>of</strong> curvature near principal cycles. Annals <strong>of</strong> Global Analysis <strong>and</strong>Geometry, 10:199–218, 1992.[26] R. Garcia <strong>and</strong> J. Sotomayor. Lines <strong>of</strong> curvature near hyperbolic principal cycles. Pitman ResearchNotes in Ma<strong>the</strong>matics Series, Edited by R. Bam<strong>on</strong>, R. Labarca, J. Lewowicz <strong>and</strong> J. Palis, 285:255–262,1993.[27] R. Garcia <strong>and</strong> J. Sotomayor. Lines <strong>of</strong> curvature near singular points <strong>of</strong> implicit surfaces. Bulletin deSciences Ma<strong>the</strong>matiques, 117:313–331, 1993.[28] R. Garcia <strong>and</strong> J. Sotomayor. Lines <strong>of</strong> curvature <strong>on</strong> algebraic surfaces. Bulletin des Sciences Ma<strong>the</strong>matiques,120:367–395, 1996.[29] R. Garcia <strong>and</strong> J. Sotomayor. Structural stability <strong>of</strong> parabolic points <strong>and</strong> periodic asymptotic lines.Matemática C<strong>on</strong>temporânea, Soc. Bras. Matemática, 12:83–102, 1997.[30] R. Garcia <strong>and</strong> J. Sotomayor. Lines <strong>of</strong> axial curvature <strong>on</strong> surfaces immersed in R 4 . Differential Geometry<strong>and</strong> its Applicati<strong>on</strong>s, 12:253–269, 2000.[31] R. Garcia <strong>and</strong> J. Sotomayor. Structurally stable c<strong>on</strong>figurati<strong>on</strong>s <strong>of</strong> lines <strong>of</strong> mean curvature <strong>and</strong> umbilicpoints <strong>on</strong> surfaces immersed in R 3 . Publ. Matemátiques, 45:431–466, 2001.[32] R. Garcia <strong>and</strong> J. Sotomayor. Lines <strong>of</strong> mean curvature <strong>on</strong> surfaces immersed in R 3 . Qualit. <strong>Theory</strong> <strong>of</strong>Dyn. Syst., 5:137–183, 2004.[33] R. Garcia <strong>and</strong> J. Sotomayor. On <strong>the</strong> patterns <strong>of</strong> principal curvature lines around a curve <strong>of</strong> umbilicpoints. Anais da Acad. Brasileira de Ciências, 77:13–24, 2005.[34] R. Garcia <strong>and</strong> J. Sotomayor. Lines <strong>of</strong> curvature <strong>on</strong> surfaces, historical comments <strong>and</strong> recent developments.São Paulo Journal <strong>of</strong> Math. Sciences, 2:40, 2008.[35] R. Garcia <strong>and</strong> J. Sotomayor. Tori embedded in S 3 with dense asymptotic lines. Preprint, page 7, 2008.[36] I. Gradshteyn <strong>and</strong> I. Ryzhik. Table <strong>of</strong> Integrals, Series <strong>and</strong> Products. Academic Press, 1965.[37] W. Guilfoyle B., Klingenberg. On <strong>the</strong> space <strong>of</strong> oriented affine lines in R 3 . Archiv Math., 82:81–84, 2004.[38] C. Gutierrez <strong>and</strong> J. Sotomayor. Structurally stable c<strong>on</strong>figurati<strong>on</strong>s <strong>of</strong> lines <strong>of</strong> principal curvature. Asterisque,98-99:195–215, 1982.[39] C. Gutierrez <strong>and</strong> J. Sotomayor. An approximati<strong>on</strong> <strong>the</strong>orem for immersi<strong>on</strong>s with structurally stablec<strong>on</strong>figurati<strong>on</strong>s <strong>of</strong> lines <strong>of</strong> principal curvature. Springer Lect. Notes in Math, 1007:332 – 368, 1983.[40] C. Gutierrez <strong>and</strong> J. Sotomayor. Closed lines <strong>of</strong> curvature <strong>and</strong> bifurcati<strong>on</strong>. Bol. Soc. Bras. Mat., 17:1–19,1986.[41] C. Gutierrez <strong>and</strong> J. Sotomayor. Periodic lines <strong>of</strong> curvature bifurcating from darbouxian umbilicalc<strong>on</strong>necti<strong>on</strong>s. Lect. Notes in Math., 1455:196–229, 1990.


BIBLIOGRAPHY 69[42] C. Gutierrez <strong>and</strong> J. Sotomayor. Lines <strong>of</strong> Curvature <strong>and</strong> Umbilic Points <strong>on</strong> <strong>Surfaces</strong>, Brazilian 18 thMath. Coll., IMPA, 1991, Reprinted as Structurally C<strong>on</strong>figurati<strong>on</strong>s <strong>of</strong> Lines <strong>of</strong> Curvature <strong>and</strong> UmbilicPoints <strong>on</strong> <strong>Surfaces</strong>, M<strong>on</strong>ografias del IMCA. M<strong>on</strong>ografias del IMCA, Lima, Peru, 1998.[43] D. Hilbert <strong>and</strong> S. Cohn Vossen. Geometry <strong>and</strong> <strong>the</strong> Imaginati<strong>on</strong>. Chelsea, 1952.[44] H. Hopf. Differential Geometry in <strong>the</strong> Large, volume 1000. <str<strong>on</strong>g>Lectures</str<strong>on</strong>g> Notes in Math. Springer Verlag,1979.[45] J. Bruce J. <strong>and</strong> D. Fidal. On binary differential equati<strong>on</strong>s <strong>and</strong> umbilics. Proc. Royal Soc. Edinburgh,111A:147–168, 1989.[46] A. Katok <strong>and</strong> B. Hasselblatt. Introducti<strong>on</strong> to <strong>the</strong> Modern <strong>Theory</strong> <strong>of</strong> Dynamical Systems, volume 54.Cambridge Univ. Press, 1995.[47] Y. Kergosian <strong>and</strong> R. Thom. Sur les points paraboliques des surfaces. Compt. Rendus Acad. Scien.Paris, 290,A:705–710, 1980.[48] W. Klingenberg. A Course in Differential Geometry, volume 51. Springer-Verlag, Graduate Texts,1978.[49] W. Klingenberg. Riemannian Geometry. Walter de Gruyter, 1982.[50] M. Fernández L. Cordero <strong>and</strong> A. Gray. Geometria diferencial de curvas y superficies. Addis<strong>on</strong>-WesleyIberoamericana, 1995.[51] R. Langevin. Set <strong>of</strong> Spheres <strong>and</strong> Applicati<strong>on</strong>s. XIII Escola de Geometria Diferencial, USP, 2004.[52] L. F. Mello. Mean directi<strong>on</strong>ally curved lines <strong>on</strong> surfaces immersed in R 4 . Publ. Mat., 47:415–440.[53] W. Melo <strong>and</strong> J. Palis. Introdução aos Sistemas Dinâmicos. Projeto Euclides, CNPq, IMPA, 1977.[54] W. Melo <strong>and</strong> S. van Strien. One Dimensi<strong>on</strong>al Dyanamics. Springer Verlag, 1993.[55] G. M<strong>on</strong>ge. Journ. de l’Ecole Polytech, II e , 1796, Applicati<strong>on</strong>s de l’Algebre a la Geometrie. Paris, 1850.[56] V. Ovskienko <strong>and</strong> T. Tabachnikov. Projective Differential Geometry Old <strong>and</strong> New. Cambridge UniversityPress, 2005.[57] H. Poincaré. Sur les lignes géodésiques sur les surfaces c<strong>on</strong>vexes. Trans. <strong>of</strong> Amer. Math. Society,06:237–274, 1905.[58] Porteous I. R. Geometric Differentiati<strong>on</strong>. Cambridge University Press, 1994.[59] C. Gutierrez R. Garcia <strong>and</strong> J. Sotomayor. Structural stability <strong>of</strong> asymptotic lines <strong>on</strong> surfaces immersedin R 3 . Bulletin des Sciences Mathématiques, 123:599–622, 1999.[60] C. Gutierrez R. Garcia <strong>and</strong> J. Sotomayor. Lines <strong>of</strong> principal curvature around umbilics p<strong>and</strong> whitneyumbrellas. Tôhoku Ma<strong>the</strong>matical Journal, 52:163–172, 2000.[61] C. Gutierrez R. Garcia <strong>and</strong> J. Sotomayor. Bifurcati<strong>on</strong>s <strong>of</strong> umbilic points <strong>and</strong> related principal cycles.Journ. Dyn. <strong>and</strong> Diff. Eq., 16:321–346, 2004.[62] J. Llibre R. Garcia <strong>and</strong> J. Sotomayor. Lines <strong>of</strong> principal curvature <strong>on</strong> canal surfaces in R 3 . Anais daAcad. Brasileira de Ciências, 78:405–415, 2006.[63] L. F. Mello R. Garcia <strong>and</strong> J. Sotomayor. Principal mean curvature foliati<strong>on</strong>s <strong>on</strong> surfaces immersed inR 4 . EQUADIFF 2003 World Sci. Publ., Hackensack, NJ, pages 939–950, 2006.[64] Maria A. S. Ruas R. Garcia, D.K H. Mochida; M. El Carmem R Fuster. Inflecti<strong>on</strong> points <strong>and</strong> topology<strong>of</strong> surfaces in 4-space. Trans <strong>of</strong> Amer. Math. Society, 352:3029–3043, 2000.


70 BIBLIOGRAPHY[65] N. George R. Garcia <strong>and</strong> R. Langevin. Hol<strong>on</strong>omy <strong>of</strong> a foliati<strong>on</strong> by principal curvature lines. Bull. <strong>of</strong>Braz. Math. Soc., 39:to appear, 2008.[66] A. Ros <strong>and</strong> S. M<strong>on</strong>tiel. <strong>Curves</strong> <strong>and</strong> <strong>Surfaces</strong>. Grad. Studies in Math. 69, Amer.. Math. Society, 2005.[67] W. Chen S. Chern <strong>and</strong> K. Lam. <str<strong>on</strong>g>Lectures</str<strong>on</strong>g> <strong>on</strong> Differential Geometry, volume 01. World Scientific, 1999.[68] M. Salvai. On <strong>the</strong> geometry <strong>of</strong> <strong>the</strong> space <strong>of</strong> oriented lines in euclidean space. Manuscripta Math.,118:181–189.[69] J. Sotomayor. Generic <strong>on</strong>e parameter families <strong>of</strong> vector fields <strong>on</strong> two dimensi<strong>on</strong>al manifolds. Publ.Math. I.H.E.S, 43:5–46.[70] J. Sotomayor. Lições de Equações Diferenciais Ordinárias. Projeto Euclides, CNPq, IMPA, 1979.[71] J. Sotomayor. Curvas Definidas por Equações Diferenciais no Plano. Brazilian 13 th Math. Coll., IMPA,1981.[72] J. Sotomayor. O elipsóide de m<strong>on</strong>ge. Matemática Universitária, 15:33–47, 1993.[73] J. Sotomayor. El elipsoide de m<strong>on</strong>ge y las líneas de curvatura. Materials Matematics, Jornal Eletrônico,Universitat Aut. de Barcel<strong>on</strong>a, 1:1–25, 2007.[74] M. Spivak. A Comprehensive Introducti<strong>on</strong> to Differential Geometry, volume III. Publish <strong>of</strong> Perish,Berkeley, 1979.[75] D. Struik. <str<strong>on</strong>g>Lectures</str<strong>on</strong>g> <strong>on</strong> Classical Differential Geometry. Addis<strong>on</strong> Wesley, 1950, Reprinted by Dover,New York, 1988.[76] T. Tabachnikov. Projectively equivalent metrics, exact transverse line fields <strong>and</strong> <strong>the</strong> geodesic flow <strong>on</strong><strong>the</strong> ellipsoid. Comment. Math. Helv., 74:306–321.[77] F. Takens. Hamilt<strong>on</strong>ian systems: Generic propeties <strong>of</strong> closed orbits <strong>and</strong> local perturbati<strong>on</strong>s. Math.Ann., 188:304–312, 1970.[78] F. Tari. On pairs <strong>of</strong> geometric foliati<strong>on</strong>s <strong>on</strong> a cross-cap. Tohoku Math. Journal, 59:233–258, 2007.[79] E. Vessiot. Leç<strong>on</strong>s de Géometrie Supérieure. Librarie Scientifique J. Hermann, Paris, 1919.[80] F.Takens W. Klingenberg. Generic properties <strong>of</strong> geodesic flows. Comm. Math. Helvetica, 197:323–334,1972.[81] C. E. Wea<strong>the</strong>rburn. On lamé families <strong>of</strong> surfaces. Ann. <strong>of</strong> Math., 28:301–308, 1926/27.


Indexasymptoticc<strong>on</strong>figurati<strong>on</strong>, 14directi<strong>on</strong>s, 14folded line, 52foliati<strong>on</strong>s, 14line fields, 14nets, 45asymptotic linehyperbolic , 54semi hyperbolic , 54folded, 52dense, 56periodic, 50B<strong>on</strong>net coordinates, 15Clairaut formula, 63Closing-Lemma, 33curvaturesgeodesic, 11maximal, 13minimal, 13Darboux equati<strong>on</strong>sasymptotic line, 46geodesic, 61principal lines, 31Differential Equati<strong>on</strong>sAsymptotic Lines, 13Codazzi , 12Curvature Lines, 12Geodesics, 14Ricatti , 23Rodrigues, 13fundamental formfirst, 9sec<strong>on</strong>d, 10Gauss map, 15geodesicflow , 64lines, 14principally stable, 33parabolic points, 45principalc<strong>on</strong>figurati<strong>on</strong>, 13curvature lines, 13cycle, 31directi<strong>on</strong>s, 13rotati<strong>on</strong> number, 57s<strong>of</strong>tware, 43stereographic projecti<strong>on</strong>, 16Structural stabilityparabolic point, 50surfaceenvelope <strong>of</strong>, 21canal, 22ellispoid, 21rigid, 57ruled , 54Weingarten, 25TheoremDarboux, 19Dupin, 19Gutierrez <strong>and</strong> Sotomayor, 33Joachimsthal, 17Vessiot, 22torus<strong>of</strong> revoluti<strong>on</strong>, 56Clifford , 59triple orthog<strong>on</strong>al system, 18umbilicbifurcati<strong>on</strong>s, 42Darbouxian , 27points, 13type D2,3, 1 40type D2, 1 37immersi<strong>on</strong>71

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!