12.07.2015 Views

On the number of critical periods for planar polynomial ... - Unesp

On the number of critical periods for planar polynomial ... - Unesp

On the number of critical periods for planar polynomial ... - Unesp

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Nonlinear Analysis 69 (2008) 1889–1903www.elsevier.com/locate/na<strong>On</strong> <strong>the</strong> <strong>number</strong> <strong>of</strong> <strong>critical</strong> <strong>periods</strong> <strong>for</strong> <strong>planar</strong> <strong>polynomial</strong> systemsAnna Cima a , Armengol Gasull a,∗ , Paulo R. da Silva ba Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spainb IBILCE–UNESP, CEP 15054–000 S. J. Rio Preto, São Paulo, BrazilReceived 11 April 2007; accepted 20 July 2007AbstractIn this paper we get some lower bounds <strong>for</strong> <strong>the</strong> <strong>number</strong> <strong>of</strong> <strong>critical</strong> <strong>periods</strong> <strong>of</strong> families <strong>of</strong> centers which are perturbations <strong>of</strong> <strong>the</strong>linear one. We give a method which lets us prove that <strong>the</strong>re are <strong>planar</strong> <strong>polynomial</strong> centers <strong>of</strong> degree l with at least 2[(l − 2)/2]<strong>critical</strong> <strong>periods</strong> as well as study concrete families <strong>of</strong> potential, reversible and Liénard centers. This last case is studied in more detailand we prove that <strong>the</strong> <strong>number</strong> <strong>of</strong> <strong>critical</strong> <strong>periods</strong> obtained with our approach does not increases with <strong>the</strong> order <strong>of</strong> <strong>the</strong> perturbation.c○ 2007 Elsevier Ltd. All rights reserved.MSC: 34C23; 37C10; 37C27Keywords: Period function; Critical <strong>periods</strong>; Perturbations; Potential systems; Reversible centers; Hamiltonian centers; Liénard centers1. IntroductionConsider <strong>the</strong> set V l <strong>of</strong> all <strong>the</strong> <strong>polynomial</strong> vector fields <strong>of</strong> <strong>the</strong> <strong>for</strong>ml∑ẋ = −y + P(x, y) = −y + P n (x, y),n=2l∑ẏ = x + Q(x, y) = x + Q n (x, y),n=2(1)having a center at <strong>the</strong> origin, where P n and Q n are homogeneous <strong>polynomial</strong>s <strong>of</strong> degree n. Given a vector field X ∈ V llet P be <strong>the</strong> period annulus <strong>of</strong> <strong>the</strong> center, i.e. <strong>the</strong> open subset <strong>of</strong> <strong>the</strong> phase plane <strong>for</strong>med by all <strong>the</strong> periodic orbits <strong>of</strong>X surrounding <strong>the</strong> origin. The period function T : P −→ R + associates with any point (x, y) ∈ P <strong>the</strong> period <strong>of</strong> <strong>the</strong>periodic orbit passing through (x, y). Since all <strong>the</strong> points belonging to <strong>the</strong> same periodic orbit γ have <strong>the</strong> same periodwe may denote by T (γ ) <strong>the</strong> period <strong>of</strong> <strong>the</strong> periodic orbit. We say that T is an increasing (resp. decreasing) functionif <strong>for</strong> any couple <strong>of</strong> periodic orbits γ 0 and γ 1 in P with γ 0 contained in <strong>the</strong> region surrounded by γ 1 , we have thatT (γ 1 ) − T (γ 0 ) > 0 (resp. T (γ 1 ) − T (γ 0 ) < 0). The local maximum or minimum <strong>of</strong> <strong>the</strong> period function are called<strong>critical</strong> <strong>periods</strong>.∗ Corresponding author. Tel.: +34 93 581 2909; fax: +34 93 581 2790.E-mail addresses: cima@mat.uab.cat (A. Cima), gasull@mat.uab.cat (A. Gasull), prs@ibilce.unesp.br (P.R. da Silva).0362-546X/$ - see front matter c○ 2007 Elsevier Ltd. All rights reserved.doi:10.1016/j.na.2007.07.031


1892 A. Cima et al. / Nonlinear Analysis 69 (2008) 1889–1903Table 1Values <strong>of</strong> N l k (pot)k/l 2 3 4 5 6 7 81 0 0 0 1 1 2 22 0 0 2 2 4 4 63 0 0 1 1 2 3 44 0 1 2 2 4 5 65 0 0 1 1 3 3 46 0 0 2 2 4 4 67 0 0 2 2 3 – –8 0 1 – ≥3 – – –Proposition 3. With <strong>the</strong> above notation,[ ] l − 3N1 l = N 1 l (Ham) = N 1 l (rev) = N 1 l (pot) = ,2[ ] l − 2N2 l ≥ N 2 l (Ham) ≥ N 2 l (pot) = 2 .2Notice that from <strong>the</strong> previous results it follows that N 3 > N 3 2 (pot).Proposition 4. The <strong>number</strong>s Nk l (pot) <strong>for</strong> k ≤ 8 and l ≤ 8 are given in Table 1.We make some comments about <strong>the</strong> results <strong>of</strong> Table 1:– The results <strong>of</strong> <strong>the</strong> first two columns are not surprising because, as we have already said, it is proved in [5] thatN 2 (pot) = 0 and in [11] that N 3 (pot) = 1.– The results <strong>of</strong> our study give <strong>for</strong> <strong>the</strong> <strong>number</strong>s N 4 (pot) and N 5 (pot) <strong>the</strong> same lower bounds as are obtained in [5]by studying <strong>the</strong> period constants at <strong>the</strong> origin, namely 2 and 3, respectively.– The easiest open problem suggested by <strong>the</strong> above table is that <strong>of</strong> whe<strong>the</strong>r N 4 (pot) is 2 or greater.– The empty places in <strong>the</strong> last two rows correspond to values <strong>of</strong> k and l <strong>for</strong> which we have not been able to completeall <strong>the</strong> computations involved.The pro<strong>of</strong> <strong>of</strong> Proposition 3, as well as some examples showing that N8 5(pot) ≥ 3 and N 4 7 (pot) ≥ 5, are given inSection 4.Liénard centers are studied in Section 5. Recall that N 2 (Lie) = 0, see [2]. We prove <strong>the</strong> following result:Theorem 5. Fix l even. The following hold:(i) For any j ∈ N, N2 l j−1 (Lie) = 0 and N 2 l j (Lie) = N 2 l (Lie) ≤ l − 2.(ii) For l = 2, 4, 6 and 8 we have that N2 l (Lie) = l − 2.Note that <strong>the</strong> above results say that <strong>the</strong> maximum <strong>number</strong> <strong>of</strong> <strong>critical</strong> <strong>periods</strong> obtained by using our method doesnot increase when more T j (ρ) are considered. For instance this does not happen when we study potential systems;see Table 1. This property makes it natural to wonder whe<strong>the</strong>r N2 l(Lie) is or is not equal to N l (Lie), as happens <strong>for</strong>l = 2. Notice also that a pro<strong>of</strong> that N2 l (Lie) = l − 2 would give a new pro<strong>of</strong> <strong>of</strong> Theorem 1 in <strong>the</strong> case l even.Finally, reversible centers are studied in Section 6. In particular we have studied <strong>the</strong> case l = 2 and <strong>the</strong> maximum<strong>number</strong> <strong>of</strong> <strong>critical</strong> <strong>periods</strong> that we have found is 2, giving new support to <strong>the</strong> conjecture stated in [3] that N 2 (rev) = 2.2. Pro<strong>of</strong> <strong>of</strong> Theorem 2In this section we prove Theorem 2. (a) For <strong>the</strong> sake <strong>of</strong> simplicity, we only give <strong>the</strong> details <strong>for</strong> <strong>the</strong> computation <strong>of</strong>T k (ρ), k = 1, 2, 3. The T k (ρ) <strong>for</strong> k ≥ 4 can be obtained similarly. We start by finding <strong>the</strong> first terms <strong>of</strong> <strong>the</strong> solution


A. Cima et al. / Nonlinear Analysis 69 (2008) 1889–1903 1893r(θ, ε; ρ) = ∑ ∞i=0 r i (θ; ρ)ε i <strong>of</strong> (4) with <strong>the</strong> initial condition r(0, ε) = ρ. By replacing this expression in (4) weobtain thatr 0 (θ) ≡ ρ, r 1 (θ; ρ) =r 2 (θ; ρ) =∫ θNote that <strong>for</strong> any k ≥ 1,0∫ θ0A 1 (ρ, ψ)dψ,(A 2 (ρ, ψ) − A 1 (ρ, ψ)B 1 (ρ, ψ) + ∂ A )1∂r (ρ, ψ)r 1(ψ; ρ) dψ.B k (r(θ, ε; ρ), θ) = B k (ρ, θ) + ∂ B k∂r (ρ, θ)r 1(θ; ρ)ε + O(ε 2 )and that1∣1 + B 1 (r, θ)ε + B 2 (r, θ)ε 2 + B 3 (r, θ)ε 3 + O(ε 4 )= 1 + (−B 1 (r, θ))ε + (−B 2 (r, θ) + B1 2 (r, θ))ε2∣r=r(θ,ε;ρ)+ (−B 3 (r, θ) + 2B 1 (r, θ)B 2 (r, θ) − B1 3 (r, θ))ε3 + O(ε 4 )| r=r(θ,ε;ρ)(= 1 − εB 1 (ρ, θ) + ε 2 B1 2 (ρ, θ) − B 2(ρ, θ) − ∂ B )1(ρ, θ)r 1 (θ; ρ)∂r(+ ε 3 − ∂ B 1(ρ, θ)r 2 (θ; ρ) − ∂ B 2(ρ, θ)r 1 (θ; ρ) − 1 ∂ 2 B 1 (ρ, θ)∂r∂r2 ∂r 2 r1 2 (θ; ρ))∂ B 1 (ρ, θ)+ 2B 1 r 1 (θ; ρ) − B 3 (ρ, θ) +2B 1 (ρ, θ)B 2 (ρ, θ) − B1 3 ∂r(ρ, θ) + O(ε 4 ).From (3) we know that∫ 2π ∫dθ 2πT (ρ, ε) =0˙θ = 10 1 + B 1 (r, θ)ε + B 2 (r, θ)ε 2 + · · · ∣ dθr=r(θ,ε;ρ)∫ 2π∫ 2π(= 2π − ε B 1 (ρ, θ)dθ + ε 2 B1 2 (ρ, θ) − B 2(ρ, θ) − ∂ B )1(ρ, θ)r 1 (θ; ρ) dθ00∂r∫ 2π(+ ε 3 − ∂ B 1(ρ, θ)r 2 (θ; ρ) − ∂ B 2(ρ, θ)r 1 (θ; ρ) − 1 ∂ 2 B 1 (ρ, θ)0 ∂r∂r2 ∂r 2 r1 2 (θ; ρ))∂ B 1 (ρ, θ)+ 2B 1 r 1 (θ; ρ) −B 3 (ρ, θ) + 2B 1 (ρ, θ)B 2 (ρ, θ) − B1 3 ∂r(ρ, θ) dθ + O(ε 4 ),as we wanted to prove.(b) The result follows by applying <strong>the</strong> implicit function <strong>the</strong>orem to <strong>the</strong> equation0 = 1 ε k ∂T (ρ, ε)∂ρ= T k ′ (ρ) + O(ε). □3. Pro<strong>of</strong> <strong>of</strong> Theorem 1It is clear that Theorem 1 is a consequence <strong>of</strong> Proposition 3. We prove this in <strong>the</strong> sequel.Pro<strong>of</strong> <strong>of</strong> Proposition 3. We start by proving that N1lεP(x, y), ẏ = x + εQ(x, y). ThusT 1 (ρ) = −∫ 2π0B 1 (ρ, θ)dθ = −∫ 2π0≤ [l−32]. Take any center in V l <strong>of</strong> <strong>the</strong> <strong>for</strong>m ẋ = −y +∣x Q(x, y) − y P(x, y) ∣∣∣(x,y)=(ρρ 2dθ.cos θ,ρ sin θ)


andMoreover∫ 2π0B 2 (ρ, ψ)dψ =l∑(j=2A. Cima et al. / Nonlinear Analysis 69 (2008) 1889–1903 1895b 2 j−1The integrals ∫ 2π0B1 2dθ and ∫ 2π0l∑n=2n=2)(2 j)!4 j ( j!) 2 2π ρ 2 j−2 .( )∑n−1(2n + 1)!2πa 2m a 2n−2m(2n + 2)4m=1 n (n!) 2 ρ 2n−2∂ B 1∂r r 1dθ are given respectively by(l∑ ∑n−1() ) (2n + 1)!2πa 2m a 2n−2m (2n − 2m − 1) −(2m + 1)(2n + 2)4m=1n (n!) 2 ρ 2n−2 .Collecting all <strong>the</strong> above results, by using Theorem 2, we get that T 1 = 0 and <strong>the</strong> expression (7) <strong>for</strong> T 2 . Take k suchthat l = 2k or l = 2k + 1. In order to see that N2 l(pot) ≤ 2k − 2 we observe that T 2(ρ) is an even <strong>polynomial</strong> withouta constant term and we claim that its degree is 4k −2. If l = 2k, <strong>the</strong>n 2l−2 = 4k −2. If l = 2k +1, <strong>the</strong>n 2l−2 = 4k,but <strong>the</strong> coefficient <strong>of</strong> ρ 4k is zero. This is so because b 4k+1 = 0 (b i runs from i = 2 until 2k + 1) and a 2m a 2l−2m = 0<strong>for</strong> all m = 1, 2, . . . , l − 1 (a 2i takes <strong>the</strong> values a 2 until a 2k ). Hence, T2 ′ (ρ) has at most 2k − 2 positive zeros and wehave that N2 l (pot) ≤ 2k − 2.To prove that <strong>the</strong> equality holds we need to choose <strong>the</strong> values a 2 , a 4 , . . . , a 2k and b 3 , b 5 , . . . , b 2k−1 such that T2 ′(ρ)has arbitrary coefficients. Indeed this will be a consequence <strong>of</strong> <strong>the</strong> following <strong>for</strong>mula, which shows a kind <strong>of</strong> triangularstructure <strong>for</strong> <strong>the</strong> coefficients <strong>of</strong> <strong>the</strong> <strong>polynomial</strong>:T 2 (ρ) = −k∑{J 2 (n)b 2n−1 + f n (a 2 , a 4 , . . . , a 2k )} ρ 2n−2n=2{ (−1) l − 1+2+2k−1 ∑n=k+2}J 2 (k + 1)b 2k+1 + [J 1 (2, 2k) + J 1 (2k, 2)] a 2 a 2k + f k+1 (a 4 , a 6 , . . . , a 2k ) ρ 2k{[J 1 (2n − 2k, 2k) + J 1 (2k, 2n − 2k)] a 2n−2k a 2k+ f n (a 2n−2k+2 , a 2n−2k+4 , . . . , a 2k )} ρ 2n−2 + J 1 (2k, 2k)a 2 2k ρ4k−2 .Here <strong>the</strong> functions f n are <strong>polynomial</strong>s in <strong>the</strong>ir variables. Write T 2 (ρ) = ∑ 2k−1i=1 t 2iρ 2i . Consider a new <strong>polynomial</strong>τ(ρ) = ∑ 2k−1i=1 τ 2iρ 2i with τ 4k−2 positive and such that τ ′ (ρ) has 2k − 2 simple positive roots. Let us see how tochoose a 2 , a 4 , . . . , a 2k and b 3 , b 5 , . . . , b 2k−1 such that T 2 (ρ) = τ(ρ). We start by fixing a 2k such that t 4k−2 = τ 4k−2 .Notice that this is possible <strong>for</strong> <strong>the</strong> triangular structure <strong>of</strong> <strong>the</strong> <strong>for</strong>mula <strong>for</strong> <strong>the</strong> coefficient <strong>of</strong> ρ 4k−4 . We can continuewith <strong>the</strong> same procedure until we obtain t 2k . At this point we have fixed a 2k , a 2k−2 , . . . , a 4 , a 2 and b 2k+1 (if it exists).The rest <strong>of</strong> <strong>the</strong> coefficients can be easily obtained by choosing b 2k−1 , b 2k−3 , . . . , b 3 . □4. Potential systemsIn this section we give some details about <strong>the</strong> pro<strong>of</strong> <strong>of</strong> Proposition 4. To obtain <strong>the</strong> results given in Table 1 weapply <strong>the</strong> method developed in Theorem 2 to potential centers. For <strong>the</strong> sake <strong>of</strong> brevity we omit <strong>the</strong> statement <strong>of</strong> <strong>the</strong>result <strong>for</strong> k = 7. The lower bound <strong>for</strong> two representative examples, N4 7(pot) and N 8 5 (pot), is given in more detail at<strong>the</strong> end <strong>of</strong> <strong>the</strong> section.The following five sets <strong>of</strong> conditions, depending on <strong>the</strong> coefficients appearing in (8): a 2 , . . . , a 8 , b 2 , . . . , b 8 ,c 2 , . . . , c 8 , d 2 , . . . , d 8 , w 2 , . . . , w 8 , will be used in our analysis.(C1) a 3 = a 5 = a 7 = 0.(C2) a 6 = a 8(= 0, b 3 = 10 9 a2 2 , b 5)= 14 5 a 2a 4 , b 7 = 3625 a2 4 .(C3) c 7 =3564 6340a 4 b 4 + 15 8 a 2b 6 , c 5 = 8 ( 745a 4 b 2 + 7 4 a )2b 4 , c3 = 209 a 2b 2 .


A. Cima et al. / Nonlinear Analysis 69 (2008) 1889–1903 1897T 4,6 = 6340 a 4c 4 + 15 8 b 2b 6 − 3564 d 7 + 6380 b2 4 − 25936 a3 2 a 4 + 15 8 a 2c 6 ,T 4,8 = 9964 b 4b 6 + 385192 a 2c 8 − 100180 a2 2 a2 4 + 9964 a 4c 6 + 385192 b 2b 8 ,T 4,9 = 1172 a 2(35a 2 b 8 + 27a 4 b 6 ),T 4,10 = 1001640 a 4c 8 −T 4,11 = 11320 a 4(72a 4 b 6 + 245a 2 b 8 ),T 4,12 = 715512 b 6b 8 −69 0698000 a 2a 3 4 + 12871792 b2 6 + 1001640 b 4b 8 ,33 03316 000 a4 4 , T 4,13 = 1001320 a2 4 b 8, T 4,14 =12 15518 432 b2 8 .(e) If <strong>the</strong> coefficient values satisfy conditions (C1)–(C4) <strong>the</strong>n T 1 ≡ T 2 ≡ T 3 ≡ 0, T 4 (ρ) = π 385192 a 2c 8 ρ 8 andT 5 (ρ) = π ∑ 10l=1 T 5,lρ l with T 5,1 = T 5,3 = T 5,5 = T 5,7 = 0 andT 5,2 = 5 3 a 2d 2 − 3 4 w 3 + 5 3 b 2c 2 ,T 5,4 = − 5 8 w 5 + 7 4 b 2c 4 + 7 4 a 2d 4 − 14027 a3 2 b 2 + 7 4 b 4c 2 ,T 5,6 = 6340 b 4c 4 + 15 8 a 2d 6 − 3564 w 7 − 25936 a3 2 b 4 + 15 8 b 2c 6 ,T 5,8 = 9964 b 4c 6 + 385192 a 2d 8 + 385192 b 2c 8 ,T 5,9 = 38572 a2 2 c 8, T 5,10 = 1001640 b 4c 8 .(f) If <strong>the</strong> coefficient values satisfy conditions (C1)–(C5) <strong>the</strong>n T 1 ≡ T 2 ≡ T 3 ≡ 0, T 4 (ρ) = π 385192 a 2c 8 ρ 8 ,∑T 5 (ρ) = π[T 5,8 ρ 8 + T 5,9 ρ 9 + T 5,10 ρ 10 14] and T 6 (ρ) = π T 6,l ρ lwith T 6,1 = T 6,3 = T 6,5 = T 6,7 = T 6,13 = 0 andT 6,2 = 5 6 c2 2 − 3 4 v 3 + 5 3 a 2w 2 + 5 3 b 2d 2 ,T 6,4 = − 5 8 v 5 + 7 4 a 2w 4 + 7 4 c 2c 4 − 14027 a3 2 c 2 + 7 4 b 4d 2 − 709 a2 2 b2 2 + 7 4 b 2d 4 ,T 6,6 = 6340 b 4d 4 + 15 8 c 2c 6 − 3564 v 7 + 6380 c2 4 − 25936 a3 2 c 4 + 158 a 2w 6 + 1855324 a6 2 − 25912 a2 2 b 2b 4 + 158 b 2d 6 ,T 6,8 = 9964 b 4d 6 + 385192 a 2w 8 − 100180 a2 2 b2 4 + 9964 c 4c 6 + 385192 c 2c 8 − 16516 a3 2 c 6 + 385192 b 2d 8 ,T 6,9 = 1172 a 2(35a 2 d 8 + 27b 4 c 6 + 70b 2 c 8 ),T 6,10 = 1001640 c 4c 8 + 12871792 c2 6 + 1001640 b 4d 8 +38 8853456 a3 2 c 8,T 6,11 = 59364 a 2b 4 c 8 , T 6,12 = 715512 c 6c 8 , T 6,14 =l=112 15518 432 c2 8 .An example showing that N 7 4(pot) ≥ 5: Consider a system like in Proposition 6 satisfying conditions (C1)–(C3),a 4 = 1, b 6 = 0 and, <strong>of</strong> course, b 8 = c 8 = d 8 = w 8 = v 8 = y 8 = z 8 = 0. For this choice <strong>of</strong> parameters we have thatT 1 = T 2 = T 3 = 0 and


ThenwhereT 1 (ρ) ≡ 0 and T 2 (ρ) =A. Cima et al. / Nonlinear Analysis 69 (2008) 1889–1903 18992k∑n=2( )∑n−1a 2m a 2n−2m I (n, m) ρ 2n−2m=1I (n, m) = 2(n − 2m + 2n2 − 2nm)(2n)!4 n π, (11)(n + 1)(2n − 2m + 1)(n!) 2and a j = 0 <strong>for</strong> j 2k + 2.Pro<strong>of</strong>. These systems are given in polar coordinates bywithWe haveṙ = ε A 1 (r, θ) + ε 2 A 2 (r, θ), ˙θ = 1 + εB 1 (r, θ) + ε 2 B 2 (r, θ)A 1 =k∑a 2m r 2m cos 2m+1 θ, A 2 =m=1B 1 = − sin θT 1 (ρ) =∫ 2π0k∑a 2m r 2m−1 cos 2m θ,m=1(sin ψk∑b 2m r 2m cos 2m+1 θ,m=1B 2 = − sin θ)k∑a 2m r 2m−1 cos 2m ψ dψ = 0m=1k∑b 2m r 2m−1 cos 2m θ.because <strong>the</strong> integrand is an odd function. The derivative <strong>of</strong> B 1 with respect to r at (ρ, θ) is∂ B 1∂r= − sin θk∑(2m − 1)a 2m ρ 2m−2 cos 2m θ.m=1To compute T 2 we first need to know r 1 (θ):r 1 (θ) =∫ θ0A 1 (ρ, ψ)dψ =∫ θ0cos(ψ)m=1k∑a 2m ρ 2m cos 2m ψdψm=1( )k∑ m∑= (−1) l a 2mC m,l2l + 1 sin2l+1 θ ρ 2m .m=1 l=0The square B1 2 is given by( )2k∑ ∑n−1a 2m a 2n−2m sin 2 θ cos 2n θn=2 m=1ρ 2n−2with a j = 0 <strong>for</strong> j 2k + 2.The product − ∂ B 1∂r r 1 is given by( ( ))2k∑ ∑n−1m∑D m,l sin 2l+2 θ a 2m a 2n−2m cos 2n−2m θ ρ 2n−2 ,n=2 m=1 l=0where D m,l = (−1) l C m,l2n−2m−12l+1.Moreover∫ 2π0B 2 (ρ, ψ)dψ = 0,because it is a sum <strong>of</strong> integrals <strong>of</strong> products <strong>of</strong> <strong>the</strong> kind sin ψ cos l ψ.


1900 A. Cima et al. / Nonlinear Analysis 69 (2008) 1889–1903withThenT 2 =2k∑n=2I 1 (n) =( )∑n−1a 2m a 2n−2m I 1 (n) ρ 2n−2 +m=1∫ 2π02k∑n=2sin 2 θ cos 2n θdθ, I 2 (n, m, l) =( ( ))∑n−1m∑D m,l a 2m a 2n−2m I 2 (n, m, l) ρ 2n−2 (12)m=1 l=0∫ 2πThe recurrent integrals I 1 and I 2 which appear in (12) are respectivelyI 1 =0sin 2l+2 θ cos 2n−2m θdθ.(2n)!4 n n!(n + 1)! π, I (2n − 2m)!(2l + 1)!2 =4 n−m+l (n − m)!(l)!(l + 1 + n − m)! π. □Remark 8. Fix some l = 2k. Note that <strong>for</strong> all s = 1, 2, . . . , k,I (2s, s) =2(4s)!16 s (2s + 1) 2 ((2s − 1)!) 2 π ≠ 0.Let T 2 (ρ) be given by Proposition 7. Then <strong>the</strong> condition T 2 (ρ) ≡ 0 is equivalent to <strong>the</strong> condition a 2 = a 4 = · · · =a 2k = 0.By using <strong>the</strong> same tools as in <strong>the</strong> pro<strong>of</strong> <strong>of</strong> Theorem 2(a) it is not difficult to prove <strong>the</strong> following result.Proposition 9. Fix j ∈ N. Assume that <strong>for</strong> any small ε, equationṙ = ∑ i≥ jA i (r, θ)ε i ,˙θ = 1 + ∑ B i (r, θ)ε i , (13)i≥ jhas a center at <strong>the</strong> origin. Let T (ρ, ε) = 2π + ∑ ∞i=1 T i (ρ)ε i be <strong>the</strong> period <strong>of</strong> <strong>the</strong> solution <strong>of</strong> (13) that passes through<strong>the</strong> point θ = 0 and r = ρ. Then T 1 = T 2 = · · · = T j−1 = 0,T m (ρ) = −T 2 j (ρ) =∫ 2π0∫ 2π0where r 1 (θ; ρ) = ∫ θ0 A j(ρ, ψ)dψ.(B m (ρ, θ)dθ, <strong>for</strong> m = j, j + 1, . . . , 2 j − 1,B 2 j (ρ, θ) − B 2 j(ρ, θ) − ∂ B )j(ρ, θ)r 1 (θ; ρ) dθ,∂rBy using <strong>the</strong> same arguments as in <strong>the</strong> pro<strong>of</strong> <strong>of</strong> Proposition 7 we get:Proposition 10. Fix l = 2k and j ≥ 1. Considerẋ = −y +∞∑i= j( )k∑ε i a2m i x2m , ẏ = x, (14)m=1and <strong>the</strong> period function T (ρ, ε) = 2π + ∑ ∞i=1 T i (ρ)ε i <strong>of</strong> <strong>the</strong> solution <strong>of</strong> (14) that passes through <strong>the</strong> point θ = 0 andr = ρ. Then T 1 = T 2 = · · · = T 2 j−1 = 0 and( )2k∑ ∑n−1T 2 j (ρ) = a j 2m a j 2n−2m I (n, m) ρ 2n−2 .n=2 m=1Theorem 11. Fix an even <strong>number</strong> l. Then <strong>for</strong> any j ∈ N, N l 2 j−1 (Lie) = 0, N l 2 j (Lie) = N l 2 (Lie) and N l 2 (Lie) ≤l − 2.


A. Cima et al. / Nonlinear Analysis 69 (2008) 1889–1903 1901Pro<strong>of</strong>. The first two assertions follow from <strong>the</strong> above three propositions and Remark 8. To see <strong>the</strong> third one, fromProposition 7 we get that( )l∑ ∑n−1T 2 ′ (ρ) = ρ (2n − 2) a 2m a 2n−2m I (n, m) ρ 2n−4n=2m=1and, hence, <strong>the</strong> maximum <strong>number</strong> <strong>of</strong> positive solutions <strong>of</strong> T2 ′ is l − 2. □To end this section we fix small even values <strong>of</strong> l and study <strong>the</strong> <strong>number</strong>s N l 2 (Lie). Recall that N 2 (Lie) = 0, see [2],so we take l ≥ 4. We proveProposition 12. N2 l (Lie) = l − 2, <strong>for</strong> l = 4, 6, 8.Pro<strong>of</strong>. Assume that a 4 ≠ 0. By using Proposition 7 we have that( 1T 2 (ρ) = π3 a2 2 ρ2 + 2 ( 53 a 2a 4 ρ 4 +8 a 2a 6 + 7 )20 a2 4 ρ 6( 27+40 a 4a 6 + 7 ) ( 29712 a 2a 8 ρ 8 +896 a2 6 + 77 )120 a 4a 8 ρ 10 + 143224 a 6a 8 ρ 12 + 715 )2304 a2 8 ρ14 .Thus we have that(T 2 ′ (ρ) = πa2 2 ρ 23 + 8 3Note that+(1485 a62448 a22(a 4ρ 2 21+a 2 10)+ 77 a 4 a 812a 2 2a 2 4a 2 2ρ 8 + 42956( 2T 2 ′ (ρ) = πa2 2 ρ 3 + 8 ( 213 R + 10 + 15 )4 b+) (a 6ρ 4 +a 2a 2 2a 2 2+ 15 27 a 4 a 645 a22 + 14 3)a 6 a 8ρ 10 + 5005 a82 ρ 12 .1152( 27R 2 +5 b + 14 )3 c R 3)a 8ρ 6a 2( 1485448 b2 + 77 )12 c R 4 + 42956 bcR5 + 5005 )1152 c2 R 6 := πa2 2 ρ P(b, c, R),where R := a 4 ρ 2 /a 2 , b := a 2 a 6 /a4 2 and c := a2 2 a 8/a4 3.It is not difficult to check that <strong>the</strong> <strong>polynomial</strong> equations in <strong>the</strong> variable R, P(0, 0, R) = 0, P(0.1, 0, R) = 0 andP(0.1, 0.0009, R) = 0 have two, four and six simple negative solutions, respectively. In <strong>the</strong> first two cases we cansolve exactly <strong>the</strong> equations, while in <strong>the</strong> third one we use <strong>the</strong> Sturm sequence <strong>of</strong> P(0.1, 0.0009, R) in <strong>the</strong> interval[−150, 0]. By taking suitable a 2 , a 4 , a 6 and a 8 <strong>the</strong> result follows. □Theorem 5 follows from Theorem 11 and Proposition 12.Remark 13. (i) We know that N2 l(Lie) ≤ l − 2. It seems natural to believe that N 2 l (Lie) is indeed this upper boundbut we have only proved this fact <strong>for</strong> l = 2, 4, 6 and 8. Our approach can also be used to study bigger values <strong>of</strong> l.(ii) In [1] it is proved that all <strong>the</strong> period constants <strong>of</strong> Liénard centers are positive or zero. So <strong>the</strong> standard tools usedto bifurcate <strong>critical</strong> <strong>periods</strong> from <strong>the</strong> origin do not work in this case. <strong>On</strong> <strong>the</strong> o<strong>the</strong>r hand our approach can be usedto obtain <strong>critical</strong> <strong>periods</strong> bifurcating from periodic orbits far from <strong>the</strong> origin.6. Reversible systemsIn this section we give an example that proves that N 2 6(rev) ≥ 2. Indeed our construction <strong>of</strong> <strong>the</strong> example havingtwo <strong>critical</strong> <strong>periods</strong> shows that with our method no more <strong>critical</strong> <strong>periods</strong> can be obtained, unless we go to higher orderperturbations. In fact, if <strong>the</strong> conjecture given in [3] is true, even going to higher order perturbations <strong>the</strong> maximum<strong>number</strong> <strong>of</strong> expected <strong>critical</strong> points is 2. Un<strong>for</strong>tunately we have not been able to per<strong>for</strong>m all <strong>the</strong> computations <strong>for</strong> amore general perturbation.


1902 A. Cima et al. / Nonlinear Analysis 69 (2008) 1889–1903Considerẋ = −y + ε(a 1 x 2 + a 2 y 2 ) + ε 2 (b 1 x 2 + b 2 y 2 ) + ε 3 (c 1 x 2 + c 2 y 2 ) + ε 4 (d 1 x 2 + d 2 y 2 ),ẏ = x + ε(a 3 xy) + ε 2 (b 3 xy) + ε 3 (c 3 xy) + ε 4 (d 3 xy).By using Theorem 2 we obtain thatT 2 (ρ) = T 2,2 (a)ρ 2 = π )(4a1 2 12+ 10a2 2 + 10a 1a 2 − a 2 a 3 + a3 2 − 5a 1a 3 ρ 2 ,(15)andT 4 (ρ) = T 4,2 (a, b, c)ρ 2 + T 4,4 (a)ρ 4 ,where T 4,2 is a homogeneous <strong>polynomial</strong> <strong>of</strong> degree 2 in a, b, c andT 4,4 (a) =π (168a 3 a2 2 1152a 1 + a3 4 + 3080a3 2 a 1 − 2a 2 a3 3 + 1540a4 2 + 400a4 1 + 369a2 3 a2 1 − 712a 3a13)+ 1424a 2 a1 3 − 58a3 3 a 1 +700a 3 a2 3 + 21a2 3 a2 2 − 828a 3a 2 a1 2 + 126a2 3 a 2a 1 + 2772a2 2 a2 1 .A solution <strong>of</strong> T 2,2 (a) = T 4,4 (a) = 0 isa 3 = 1, a 2 = s/5, a 1 = (33 − 18s)/(10s + 155),where s = (−11 + √ 105)/4.Now we consider system (15) fixing <strong>the</strong> above values <strong>of</strong> a. Moreover we take all <strong>the</strong> o<strong>the</strong>r parameters equal to zeroexcept c 3 = 1 and c 1 = (−55 + 13 √ 105)/320.For <strong>the</strong>se values <strong>of</strong> <strong>the</strong> parameters we have that: T k (ρ) ≡ 0, k = 2, 3, 4, 5 and T 6 (ρ) isπ(2279 − 221 √ 10510 240ρ 2 + 1701 − 167√ 10548 000)ρ 4 + 371 − 33√ 105ρ 6 .3 600 000The equation T6 ′ (ρ) = 0 has two positive simple roots and <strong>the</strong>re<strong>for</strong>e, according Theorem 2, <strong>the</strong> system (15), <strong>for</strong> εsufficiently small, has at least two <strong>critical</strong> <strong>periods</strong>, as we wanted to prove. □After this paper was finished a related paper appeared; see [9]. There <strong>the</strong> authors prove that <strong>for</strong> any l even <strong>the</strong>reare Liénard equations having at least l − 2 <strong>critical</strong> <strong>periods</strong>; see our Theorem 5.AcknowledgementsThe authors are supported by <strong>the</strong> joint project CAPES–MECD grant HBP2003–0017. The first two authors arealso supported by grants MTM2005-06098-C02-1 and 2005SGR-00550. The third author is partially supported by aFAPESP-BRAZIL grant 10246-2.References[1] A. Cima, A. Gasull, V. Mañosa, F. Mañosas, Algebraic properties <strong>of</strong> <strong>the</strong> Liapunov and period constants, Rocky Mountain J. Math. 27 (1997)471–501.[2] C. Chicone, The monotonicity <strong>of</strong> <strong>the</strong> period function <strong>for</strong> <strong>planar</strong> Hamiltonian vector fields, J. Differential Equations 69 (1987) 310–321.[3] C. Chicone, Review <strong>of</strong> reference [8] in Math. Sci. Net., ref 94h:58072.[4] C. Chicone, F. Dumortier, Finiteness <strong>for</strong> <strong>critical</strong> <strong>periods</strong> <strong>of</strong> <strong>planar</strong> analytic vector fields, Nonlinear Anal. 20 (1993) 315–335.[5] C. Chicone, M. Jacobs, Bifurcations <strong>of</strong> <strong>critical</strong> <strong>periods</strong> <strong>for</strong> plane vector fields, Trans. Amer. Math. Soc. 102 (1998) 706–710.[6] C.J. Christopher, N.G. Lloyd, Polynomial systems: A lower bound <strong>for</strong> <strong>the</strong> Hilbert <strong>number</strong>s, Proc. Roy. Soc. London Ser. A 450 (1995)219–224.[7] C.B. Collins, The period function <strong>of</strong> some <strong>polynomial</strong> systems <strong>of</strong> arbitrary degree, Differential Integral Equations 9 (1996) 251–266.[8] W.A. Coppel, L. Gavrilov, The period function <strong>of</strong> a Hamiltonian quadratic system, Differential Integral Equations 6 (1993) 1357–1365.[9] P. De Maesschalck, F. Dumortier, The period function <strong>of</strong> classical Liénard equations, J. Differential Equations 233 (2007) 380–403.[10] A. Gasull, A. Guillamon, V. Mañosa, F. Mañosas, The period function <strong>for</strong> Hamiltonian systems with homogeneous nonlinearities,J. Differential Equations 139 (1997) 237–260.[11] L. Gavrilov, Remark on <strong>the</strong> <strong>number</strong> <strong>of</strong> <strong>critical</strong> points <strong>of</strong> <strong>the</strong> period, J. Differential Equations 101 (1993) 58–65.


A. Cima et al. / Nonlinear Analysis 69 (2008) 1889–1903 1903[12] J.P. Françoise, The successive derivatives <strong>of</strong> <strong>the</strong> period function <strong>of</strong> a plane vector field, J. Differential Equations 146 (1998) 320–335.[13] Ju.S. Il’yashenko, The appearance <strong>of</strong> limit cycles under a perturbation <strong>of</strong> <strong>the</strong> equation dw/dz = −R z /R w , where R(z, w) is a <strong>polynomial</strong>,Mat. Sb. (NS) 78 (1969) 360–373 (in Russian).[14] I. Itenberg, E. Shustin, Singular points and limit cycles <strong>of</strong> <strong>planar</strong> <strong>polynomial</strong> vector fields, Duke Math. J. 102 (2000) 1–37.[15] C. Rousseau, B. Toni, Local bifurcations <strong>of</strong> <strong>critical</strong> <strong>periods</strong> in vector fields with homogeneous nonlinearities <strong>of</strong> <strong>the</strong> third degree, Canad. J.Math. 36 (1993) 473–484.[16] C. Rousseau, B. Toni, Local bifurcations <strong>of</strong> <strong>critical</strong> <strong>periods</strong> in <strong>the</strong> reduced Kukles system, Canad. J. Math. 49 (1997) 338–358.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!