The Boundary Element Method for the Helmholtz Equation ... - FEI VÅ B

The Boundary Element Method for the Helmholtz Equation ... - FEI VÅ B The Boundary Element Method for the Helmholtz Equation ... - FEI VÅ B

12.07.2015 Views

56 4 Discretization and Numerical RealizationThe Galerkin equations (4.6) can thus be rewritten into the system of linear equationsV κ,h g N = 12 M h + K κ,hg D .The approximate solution to (3.24) can be obtained using the discretized representationformulau(x) ≈ u h (x) :=El=1g N lτ lv κ (x, y) ds y −Nj=1g D j∂Ωϕ j (y) ∂v κ∂n y(x, y) ds y . (4.11)Another approach to the discretization of the boundary integral equations is the collocationmethod. Because the relation (4.3) is valid for all x ∈ ∂Ω, we can insert themidpoints x k∗ into (4.3) to obtain the system of linear equationswithV κ,h g N =C E×E ∋ V κ,h [k, l] := 1 e4πτ iκ∥xk∗ −y∥l∥x k∗ − y∥ ds y,R E×N ∋ M h [k, j] := ϕ j (x k∗ ),C E×N ∋ K κ,h [k, j] :=∂Ωϕ j (y) 14π 12 M h + K κ,hg De iκ∥xk∗ −y∥∥x k∗ − y∥ 3 (1 − iκ∥xk∗ − y∥)⟨x k∗ − y, n(y)⟩ ds y .Contrary to the Galerkin scheme, the system matrix V κ,h arising from the collocationmethod is in general non-symmetric and the stability of the method is still an open problem.Although the collocation scheme can be derived for other boundary integral equations inthe same way, in the following sections we prefer the Galerkin discretization.4.3.2 Interior Neumann Boundary Value ProblemThe solution to the interior Neumann boundary value problem (3.32) is given by therepresentation formula (3.33) or by its discretized version (4.11). To compute the missingDirichlet data g D := γ 0,int u we use the hypersingular equation(D κ g D )(x) = 1 2 g N(x) − (K ∗ κg N )(x) for x ∈ ∂Ωor−γ 1,int ∂Ωg D (y) ∂v κ(x, y) ds y = 1 ∂n y 2 g N(x) − g N (y) ∂v κ(x, y) ds y∂Ω ∂n xfor x ∈ ∂Ω

57with∂v κ(x, y) = 1 e iκ∥x−y∥(iκ∥x − y∥ − 1)⟨x − y, n(x)⟩.∂n x 4π ∥x − y∥3 The corresponding variational problem reads 1⟨D κ g D , t⟩ ∂Ω =2 I − K∗ κ g N , t∂Ωfor all t ∈ H 1/2 (∂Ω). (4.12)Inserting the approximations of the Cauchy data (4.4), (4.5) into (4.12) we obtain theGalerkin equationsNgj D ⟨D κ ϕ j , ϕ i ⟩ ∂Ω =j=1El=1g N l 12 I − K∗ κψ l , ϕ iUsing Theorem 3.14, the left-hand side of (4.13) yieldsNgj D ⟨D κ ϕ j , ϕ i ⟩ ∂Ω =j=1withC N×N ∋ D κ,h [i, j] := 1 4π− κ24π∂Ω∂Ω∂Ω∂ΩFor the right-hand side of (4.13) we obtainandEl=1g N l 12 ψ l, ϕ iEgl N ⟨K∗ κψ l , ϕ i ⟩ ∂Ω =l=1===El=1El=1g N lg N lEl=1∂Ωg N l∂ΩNgj D D κ,h [i, j]j=1for all i ∈ {1, . . . , N}. (4.13)e iκ∥x−y∥∥x − y∥ ⟨curl ∂Ω ϕ j (y), curl ∂Ω ϕ i (x)⟩ ds y ds xe iκ∥x−y∥∥x − y∥ ϕ j(y)ϕ i (x)⟨n(x), n(y)⟩ ds y ds x .=∂ΩEl=1g N l1ϕ i (x) ds x =2 τ lϕ i (x)τ lEl=1g N l∂v κ∂n x(x, y) ds y ds x12 M h[l, i]1eϕ i (x)4π ∂Ωτ iκ∥x−y∥l∥x − y∥ 3 (iκ∥x − y∥ − 1)⟨x − y, n(x)⟩ ds y ds x1ϕ i (y)4πτ eiκ∥x−y∥l ∂Ω ∥x − y∥ 3 (1 − iκ∥x − y∥)⟨x − y, n(y)⟩ ds y ds xEgl N K κ,h[l, i]l=1(4.14)

56 4 Discretization and Numerical Realization<strong>The</strong> Galerkin equations (4.6) can thus be rewritten into <strong>the</strong> system of linear equationsV κ,h g N = 12 M h + K κ,hg D .<strong>The</strong> approximate solution to (3.24) can be obtained using <strong>the</strong> discretized representation<strong>for</strong>mulau(x) ≈ u h (x) :=El=1g N lτ lv κ (x, y) ds y −Nj=1g D j∂Ωϕ j (y) ∂v κ∂n y(x, y) ds y . (4.11)Ano<strong>the</strong>r approach to <strong>the</strong> discretization of <strong>the</strong> boundary integral equations is <strong>the</strong> collocationmethod. Because <strong>the</strong> relation (4.3) is valid <strong>for</strong> all x ∈ ∂Ω, we can insert <strong>the</strong>midpoints x k∗ into (4.3) to obtain <strong>the</strong> system of linear equationswithV κ,h g N =C E×E ∋ V κ,h [k, l] := 1 e4πτ iκ∥xk∗ −y∥l∥x k∗ − y∥ ds y,R E×N ∋ M h [k, j] := ϕ j (x k∗ ),C E×N ∋ K κ,h [k, j] :=∂Ωϕ j (y) 14π 12 M h + K κ,hg De iκ∥xk∗ −y∥∥x k∗ − y∥ 3 (1 − iκ∥xk∗ − y∥)⟨x k∗ − y, n(y)⟩ ds y .Contrary to <strong>the</strong> Galerkin scheme, <strong>the</strong> system matrix V κ,h arising from <strong>the</strong> collocationmethod is in general non-symmetric and <strong>the</strong> stability of <strong>the</strong> method is still an open problem.Although <strong>the</strong> collocation scheme can be derived <strong>for</strong> o<strong>the</strong>r boundary integral equations in<strong>the</strong> same way, in <strong>the</strong> following sections we prefer <strong>the</strong> Galerkin discretization.4.3.2 Interior Neumann <strong>Boundary</strong> Value Problem<strong>The</strong> solution to <strong>the</strong> interior Neumann boundary value problem (3.32) is given by <strong>the</strong>representation <strong>for</strong>mula (3.33) or by its discretized version (4.11). To compute <strong>the</strong> missingDirichlet data g D := γ 0,int u we use <strong>the</strong> hypersingular equation(D κ g D )(x) = 1 2 g N(x) − (K ∗ κg N )(x) <strong>for</strong> x ∈ ∂Ωor−γ 1,int ∂Ωg D (y) ∂v κ(x, y) ds y = 1 ∂n y 2 g N(x) − g N (y) ∂v κ(x, y) ds y∂Ω ∂n x<strong>for</strong> x ∈ ∂Ω

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!