The Boundary Element Method for the Helmholtz Equation ... - FEI VÅ B

The Boundary Element Method for the Helmholtz Equation ... - FEI VÅ B The Boundary Element Method for the Helmholtz Equation ... - FEI VÅ B

12.07.2015 Views

54 4 Discretization and Numerical Realizationthe well studied Galerkin scheme based on the corresponding variational formulations. Toapproximate the Dirichlet and Neumann boundary data we use continuous piecewise affinefunctions and piecewise constant functions, respectively.4.3.1 Interior Dirichlet Boundary Value ProblemThe solution to the interior Dirichlet boundary value problem (3.24) is given by the representationformula (3.25) with unknown Neumann data g N := γ 1,int u. To compute themissing values we use the Fredholm integral equation of the first kind(V κ g N )(x) = 1 2 g D(x) + (K κ g D )(x) for x ∈ ∂Ωor equivalentlyg N (y)v κ (x, y) ds y = 1 2 g D(x) +∂Ωwith the fundamental solution v κ and the normal derivative∂Ωg D (y) ∂v κ∂n y(x, y) ds y for x ∈ ∂Ω (4.3)∂v κ(x, y) = 1 e iκ∥x−y∥(1 − iκ∥x − y∥)⟨x − y, n(y)⟩.∂n y 4π ∥x − y∥3 The corresponding variational formulation reads 1⟨V κ g N , s⟩ ∂Ω =2 I + K κ g D , sor∂Ω∂Ωfor all s ∈ H −1/2 (∂Ω)s(x) g N (y)v κ (x, y) ds y ds x∂Ω= 1 s(x)g D (x) ds x + s(x) g D (y) ∂v κ(x, y) ds y ds x .2 ∂Ω∂Ω ∂Ω ∂n yWe seek the solution in the approximate formg N ≈ g N,h :=Egl N ψ l ∈ T ψ (∂Ω) (4.4)l=1which can be identified with a vector g N ∈ C E . Furthermore, we use the L 2 projection toapproximate the given Dirichlet datag D ≈ g D,h :=Ngj D ϕ j ∈ T ϕ (∂Ω), (4.5)j=1

55which corresponds to a vector g D ∈ C N . The solution g N,h is given by the GalerkinequationsEgl N ⟨V κψ l , ψ k ⟩ ∂Ω =l=1Nj=1For the left-hand side of (4.6) we obtainwithg D jEgl N ⟨V κψ l , ψ k ⟩ ∂Ω =l=1C E×E ∋ V κ,h [k, l] :==τ k 12 I + K κϕ j , ψ kEl=1El=1The right-hand side of (4.6) yieldswithandNj=1g D j 12 I + K κϕ j , ψ k===Nj=1Nj=1Nj=1g D jg D jg D j 12 12C E×N ∋ K κ,h [k, j] :=∂Ωg N lg N l∂Ωτ k∂Ωfor all k ∈ {1, . . . , E}. (4.6)ψ k (x) ψ l (y)v κ (x, y) ds y ds x∂Ωτ lv κ (x, y) ds y ds x =τ lv κ (x, y) ds y ds x = 14π∂ΩEgl N V κ,h[k, l]l=1τ kτ le iκ∥x−y∥∥x − y∥ ds y ds x . (4.7) ψ k (x)ϕ j (x) ds x + ψ k (x) ϕ j (y) ∂v κ(x, y) ds y ds x∂Ω ∂Ω ∂n yτ kϕ j (x) ds x +τ k 12 M h[k, j] + K κ,h [k, j]τ k= 14π∂Ωϕ j (y) ∂v κ∂n y(x, y) ds y ds xR E×N ∋ M h [k, j] := ϕ j (x) ds xτ k(4.8)∂Ω τ kϕ j (y) ∂v κ∂n y(x, y) ds y ds x (4.9)∂Ωϕ j (y) eiκ∥x−y∥∥x − y∥ 3 (1 − iκ∥x − y∥)⟨x − y, n(y)⟩ ds y ds x .(4.10)

54 4 Discretization and Numerical Realization<strong>the</strong> well studied Galerkin scheme based on <strong>the</strong> corresponding variational <strong>for</strong>mulations. Toapproximate <strong>the</strong> Dirichlet and Neumann boundary data we use continuous piecewise affinefunctions and piecewise constant functions, respectively.4.3.1 Interior Dirichlet <strong>Boundary</strong> Value Problem<strong>The</strong> solution to <strong>the</strong> interior Dirichlet boundary value problem (3.24) is given by <strong>the</strong> representation<strong>for</strong>mula (3.25) with unknown Neumann data g N := γ 1,int u. To compute <strong>the</strong>missing values we use <strong>the</strong> Fredholm integral equation of <strong>the</strong> first kind(V κ g N )(x) = 1 2 g D(x) + (K κ g D )(x) <strong>for</strong> x ∈ ∂Ωor equivalentlyg N (y)v κ (x, y) ds y = 1 2 g D(x) +∂Ωwith <strong>the</strong> fundamental solution v κ and <strong>the</strong> normal derivative∂Ωg D (y) ∂v κ∂n y(x, y) ds y <strong>for</strong> x ∈ ∂Ω (4.3)∂v κ(x, y) = 1 e iκ∥x−y∥(1 − iκ∥x − y∥)⟨x − y, n(y)⟩.∂n y 4π ∥x − y∥3 <strong>The</strong> corresponding variational <strong>for</strong>mulation reads 1⟨V κ g N , s⟩ ∂Ω =2 I + K κ g D , sor∂Ω∂Ω<strong>for</strong> all s ∈ H −1/2 (∂Ω)s(x) g N (y)v κ (x, y) ds y ds x∂Ω= 1 s(x)g D (x) ds x + s(x) g D (y) ∂v κ(x, y) ds y ds x .2 ∂Ω∂Ω ∂Ω ∂n yWe seek <strong>the</strong> solution in <strong>the</strong> approximate <strong>for</strong>mg N ≈ g N,h :=Egl N ψ l ∈ T ψ (∂Ω) (4.4)l=1which can be identified with a vector g N ∈ C E . Fur<strong>the</strong>rmore, we use <strong>the</strong> L 2 projection toapproximate <strong>the</strong> given Dirichlet datag D ≈ g D,h :=Ngj D ϕ j ∈ T ϕ (∂Ω), (4.5)j=1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!