The Boundary Element Method for the Helmholtz Equation ... - FEI VÅ B

The Boundary Element Method for the Helmholtz Equation ... - FEI VÅ B The Boundary Element Method for the Helmholtz Equation ... - FEI VÅ B

12.07.2015 Views

46 3 Boundary Integral EquationsSimilarly, applying the Neumann trace operator we get the Fredholm integral equation ofthe first kind(D κ γ 0,ext u)(x) = − 1 2 g N(x) − (K ∗ κg N )(x) for x ∈ ∂Ω. (3.51)andInstead of equations (3.50) and (3.51) we may consider the variational problemsrespectively.− 1 2 I + K κ γ 0,ext u, s = ⟨V κ g N , s⟩ ∂Ω for all s ∈ H −1/2 (∂Ω),∂Ω⟨D κ γ 0,ext u, t⟩ ∂Ω =− 1 2 I − K∗ κ g N , t∂Ωfor all t ∈ H 1/2 (∂Ω), (3.52)The arguments for the unique solvability of the boundary integral equation (3.51) andthe corresponding variational problem (3.52) for κ 2 not coinciding with an eigenvalue of(3.36) are the same as in Section 3.5.2.Theorem 3.30. If u ∈ H 1 loc (Ωext , ∆ + κ 2 ) is a solution to the exterior Neumann problem(3.48), then the Dirichlet trace γ 0,ext u satisfies the boundary integral equation (3.51) andu has the representation (3.49).Conversely, if γ 0,ext u satisfies the boundary integral equation (3.51), then the representationformula (3.49) defines a solution u ∈ H 1 loc (Ωext , ∆ + κ 2 ) to the interior Neumannproblem (3.48).Note that Theorems 3.25 and 3.30 ensure that for all κ ∈ R + it holds− 1 2 I − K∗ κ g N ∈ Im D κand thus one of the methods mentioned at the end of the previous section can be used tocompute a solution to (3.51) with κ 2 coinciding with an eigenvalue of (3.36).3.5.6 Exterior Mixed Boundary Value ProblemFinally, let us consider the exterior mixed boundary value problem⎧⎪⎨⎪⎩ ∇u(x),x∥x∥∆u + κ 2 u = 0 in Ω ext ,γ 0,ext u = g D on Γ D ,γ 1,ext u = g N on Γ N , − iκu(x)1 = O ∥x∥ 2for ∥x∥ → ∞(3.53)

47with an unbounded domain Ω ext := R 3 \ Ω and boundary conditions g D ∈ H 1/2 (Γ D ),g N ∈ H −1/2 (Γ N ). In the smooth case the solution to (3.53) is given byu(x) = − γ 1,ext u(y) v κ (x, y) ds y − g N (y) v κ (x, y) ds yΓ D Γ N+ g D (y) ∂v κ(x, y) ds y + γ 0,ext u(y) ∂v κ(x, y) ds y for x ∈ Ω extΓ D∂n y Γ N∂n ywith unknown Cauchy data γ 0,ext u| ΓN and γ 1,ext u| ΓD . Similarly as for the interior mixedproblem we have the boundary integral equations(V κ γ 1,ext u)(x) = − 1 2 γ0,ext u(x) + (K κ γ 0,ext u)(x) for x ∈ Γ D ⊂ ∂Ω,(D κ γ 0,ext u)(x) = − 1 2 γ1,ext u(x) − (K ∗ κγ 1,ext u)(x) for x ∈ Γ N ⊂ ∂Ω.(3.54)Inserting the functions t, s defined by (3.39) into (3.54) yields(V κ s)(x) − (K κ t)(x) = − 1 2 ˜g D(x) + (K κ˜g D )(x) − (V κ˜g N )(x) for x ∈ Γ D ,(K ∗ κs)(x) + (D κ t)(x) = − 1 2 ˜g N(x) − (K ∗ κ˜g N )(x) − (D κ˜g D )(x) for x ∈ Γ N(3.55)and the equivalent variational formulationa(s, t, q, r) = F (q, r) for all q ∈ H −1/2 (Γ D ), r ∈ H 1/2 (Γ N ) (3.56)with unknown functions s ∈ H −1/2 (Γ D ), t ∈ H 1/2 (Γ N ), the bilinear forma(s, t, q, r) := ⟨V κ s, q⟩ ΓD − ⟨K κ t, q⟩ ΓD + ⟨K ∗ κs, r⟩ ΓN + ⟨D κ t, r⟩ ΓNand the right-hand sideF (q, r) := − 1 2 I + K κ ˜g D , q − ⟨V κ˜g N , q⟩ ΓD + − 1 Γ D2 I − K∗ κ ˜g N , r − ⟨D κ˜g D , r⟩ ΓN .Γ NTheorem 3.31. If u ∈ H 1 loc (Ωext , ∆ + κ 2 ) is a solution to the mixed problem (3.53), thenthe functions s, t satisfy the system of boundary integral equations (3.55) and u has therepresentationu(x) = −( V κ (s + ˜g N ))(x) + (W κ (t + ˜g D ))(x) for x ∈ Ω ext . (3.57)Conversely, if s, t satisfy the system of boundary integral equations (3.55), then therepresentation formula (3.57) defines a solution u ∈ H 1 loc (Ωext , ∆ + κ 2 ) to the interiormixed problem (3.53).

47with an unbounded domain Ω ext := R 3 \ Ω and boundary conditions g D ∈ H 1/2 (Γ D ),g N ∈ H −1/2 (Γ N ). In <strong>the</strong> smooth case <strong>the</strong> solution to (3.53) is given byu(x) = − γ 1,ext u(y) v κ (x, y) ds y − g N (y) v κ (x, y) ds yΓ D Γ N+ g D (y) ∂v κ(x, y) ds y + γ 0,ext u(y) ∂v κ(x, y) ds y <strong>for</strong> x ∈ Ω extΓ D∂n y Γ N∂n ywith unknown Cauchy data γ 0,ext u| ΓN and γ 1,ext u| ΓD . Similarly as <strong>for</strong> <strong>the</strong> interior mixedproblem we have <strong>the</strong> boundary integral equations(V κ γ 1,ext u)(x) = − 1 2 γ0,ext u(x) + (K κ γ 0,ext u)(x) <strong>for</strong> x ∈ Γ D ⊂ ∂Ω,(D κ γ 0,ext u)(x) = − 1 2 γ1,ext u(x) − (K ∗ κγ 1,ext u)(x) <strong>for</strong> x ∈ Γ N ⊂ ∂Ω.(3.54)Inserting <strong>the</strong> functions t, s defined by (3.39) into (3.54) yields(V κ s)(x) − (K κ t)(x) = − 1 2 ˜g D(x) + (K κ˜g D )(x) − (V κ˜g N )(x) <strong>for</strong> x ∈ Γ D ,(K ∗ κs)(x) + (D κ t)(x) = − 1 2 ˜g N(x) − (K ∗ κ˜g N )(x) − (D κ˜g D )(x) <strong>for</strong> x ∈ Γ N(3.55)and <strong>the</strong> equivalent variational <strong>for</strong>mulationa(s, t, q, r) = F (q, r) <strong>for</strong> all q ∈ H −1/2 (Γ D ), r ∈ H 1/2 (Γ N ) (3.56)with unknown functions s ∈ H −1/2 (Γ D ), t ∈ H 1/2 (Γ N ), <strong>the</strong> bilinear <strong>for</strong>ma(s, t, q, r) := ⟨V κ s, q⟩ ΓD − ⟨K κ t, q⟩ ΓD + ⟨K ∗ κs, r⟩ ΓN + ⟨D κ t, r⟩ ΓNand <strong>the</strong> right-hand sideF (q, r) := − 1 2 I + K κ ˜g D , q − ⟨V κ˜g N , q⟩ ΓD + − 1 Γ D2 I − K∗ κ ˜g N , r − ⟨D κ˜g D , r⟩ ΓN .Γ N<strong>The</strong>orem 3.31. If u ∈ H 1 loc (Ωext , ∆ + κ 2 ) is a solution to <strong>the</strong> mixed problem (3.53), <strong>the</strong>n<strong>the</strong> functions s, t satisfy <strong>the</strong> system of boundary integral equations (3.55) and u has <strong>the</strong>representationu(x) = −( V κ (s + ˜g N ))(x) + (W κ (t + ˜g D ))(x) <strong>for</strong> x ∈ Ω ext . (3.57)Conversely, if s, t satisfy <strong>the</strong> system of boundary integral equations (3.55), <strong>the</strong>n <strong>the</strong>representation <strong>for</strong>mula (3.57) defines a solution u ∈ H 1 loc (Ωext , ∆ + κ 2 ) to <strong>the</strong> interiormixed problem (3.53).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!