The Boundary Element Method for the Helmholtz Equation ... - FEI VÅ B

The Boundary Element Method for the Helmholtz Equation ... - FEI VÅ B The Boundary Element Method for the Helmholtz Equation ... - FEI VÅ B

12.07.2015 Views

42 3 Boundary Integral EquationsSimilarly, applying the Neumann trace operator we get the Fredholm integral equation ofthe first kind(D κ γ 0,int u)(x) = 1 2 g N(x) − (K ∗ κg N )(x) for x ∈ ∂Ω. (3.35)Alternatively, we may consider the variational problems 1κ2 I + K γ 0,int u, s = ⟨V κ g N , s⟩ ∂Ω for all s ∈ H −1/2 (∂Ω),∂Ωand⟨D κ γ 0,int u, t⟩ ∂Ω = 12 I − K∗ κ g N , t∂Ωfor all t ∈ H 1/2 (∂Ω).corresponding to (3.34) and (3.35), respectively.To study the solvability of (3.34) and (3.35) let us first consider the Neumann eigenvalueproblem for the Laplace equation−∆uµ = µu µ in Ω,γ 1,int u µ = 0on ∂Ω.(3.36)Let µ ∈ R + be an eigenvalue of (3.36) with the corresponding eigensolution u µ . From(3.34) and (3.35) we obtain for κ 2 = µ12 γ0,int u µ (x) + (K κ γ 0,int u µ )(x) = (V κ γ 1,int u µ )(x) = 0 for x ∈ ∂Ω,(D κ γ 0,int u µ )(x) = 1 2 γ1,int u µ (x) − (K ∗ κγ 1,int u µ )(x) = 0 for x ∈ ∂Ω,implying that the function γ 0,int u µ belongs to the kernel of the boundary integral operatorsD κ and (1/2I + K κ ) and thus these operators are not invertible.For values of κ 2 not coinciding with eigenvalues of (3.36) both operators are injective.Since the hypersingular operator D κ is coercive, the boundary integral equation (3.35) isuniquely solvable.Theorem 3.27. If u ∈ H 1 (Ω, ∆ + κ 2 ) is a solution to the interior Neumann problem(3.32), then the Dirichlet trace γ 0,int u satisfies the boundary integral equation (3.35) and uhas the representation (3.33).Conversely, if γ 0,int u satisfies the boundary integral equation (3.35), then the representationformula (3.33) defines a solution u ∈ H 1 (Ω, ∆ + κ 2 ) to the interior Neumannproblem (3.32).

433.5.3 Interior Mixed Boundary Value ProblemIn many engineering problems we have to deal with mixed boundary conditions, i.e., withproblems of the type⎧⎪⎨∆u + κ 2 u = 0 in Ω,γ 0,int u = g D on Γ D ,(3.37)⎪⎩γ 1,int u = g N on Γ Nwith a bounded Lipschitz domain Ω, non-overlapping sets Γ D , Γ N such that Γ D ∪Γ N = ∂Ω,and functions g D ∈ H 1/2 (Γ D ) and g N ∈ H −1/2 (Γ N ). In the smooth case, the solution to(3.37) is given by the representation formulau(x) =γ 1,int u(y) v κ (x, y) ds y +Γ Dg N (y) v κ (x, y) ds yΓ N−Γ Dg D (y) ∂v κ∂n y(x, y) ds y −Γ Nγ 0,int u(y) ∂v κ∂n y(x, y) ds yfor x ∈ Ωwith unknown Dirichlet data γ 0,int u| ΓN and Neumann data γ 1,int u| ΓD . The missing Cauchydata can be obtained using any of the previously mentioned boundary integral equations(3.26), (3.27), (3.34) or (3.35). However, in this section we describe the so-called symmetricformulation using the single layer potential equation (3.26) and the hypersingular equation(3.35) simultaneously (see [17], Section 1.1.3).From Sections 3.5.1 and 3.5.2 we have the relations(V κ γ 1,int u)(x) = 1 2 γ0,int u(x) + (K κ γ 0,int u)(x) for x ∈ Γ D ⊂ ∂Ω,(D κ γ 0,int u)(x) = 1 2 γ1,int u(x) − (K ∗ κγ 1,int u)(x) for x ∈ Γ N ⊂ ∂Ω.(3.38)Let us define functionsH 1/2 (Γ N ) ∋ t := γ 0,int u − ˜g D ,H −1/2 (Γ D ) ∋ s := γ 1,int u − ˜g N(3.39)with some suitable extensions ˜g D , ˜g N defined on ∂Ω. Inserting the functions t, s into (3.38)we obtain the system of equations(V κ s)(x) − (K κ t)(x) = 1 2 ˜g D(x) + (K κ˜g D )(x) − (V κ˜g N )(x) for x ∈ Γ D ,(Kκs)(x) ∗ + (D κ t)(x) = 1 (3.40)2 ˜g N(x) − (Kκ˜g ∗ N )(x) − (D κ˜g D )(x) for x ∈ Γ Nequivalent to the variational formulationa(s, t, q, r) = F (q, r) for all q ∈ H −1/2 (Γ D ), r ∈ H 1/2 (Γ N ) (3.41)with unknown functions s ∈ H −1/2 (Γ D ), t ∈ H 1/2 (Γ N ), the bilinear forma(s, t, q, r) := ⟨V κ s, q⟩ ΓD − ⟨K κ t, q⟩ ΓD + ⟨K ∗ κs, r⟩ ΓN + ⟨D κ t, r⟩ ΓN

42 3 <strong>Boundary</strong> Integral <strong>Equation</strong>sSimilarly, applying <strong>the</strong> Neumann trace operator we get <strong>the</strong> Fredholm integral equation of<strong>the</strong> first kind(D κ γ 0,int u)(x) = 1 2 g N(x) − (K ∗ κg N )(x) <strong>for</strong> x ∈ ∂Ω. (3.35)Alternatively, we may consider <strong>the</strong> variational problems 1κ2 I + K γ 0,int u, s = ⟨V κ g N , s⟩ ∂Ω <strong>for</strong> all s ∈ H −1/2 (∂Ω),∂Ωand⟨D κ γ 0,int u, t⟩ ∂Ω = 12 I − K∗ κ g N , t∂Ω<strong>for</strong> all t ∈ H 1/2 (∂Ω).corresponding to (3.34) and (3.35), respectively.To study <strong>the</strong> solvability of (3.34) and (3.35) let us first consider <strong>the</strong> Neumann eigenvalueproblem <strong>for</strong> <strong>the</strong> Laplace equation−∆uµ = µu µ in Ω,γ 1,int u µ = 0on ∂Ω.(3.36)Let µ ∈ R + be an eigenvalue of (3.36) with <strong>the</strong> corresponding eigensolution u µ . From(3.34) and (3.35) we obtain <strong>for</strong> κ 2 = µ12 γ0,int u µ (x) + (K κ γ 0,int u µ )(x) = (V κ γ 1,int u µ )(x) = 0 <strong>for</strong> x ∈ ∂Ω,(D κ γ 0,int u µ )(x) = 1 2 γ1,int u µ (x) − (K ∗ κγ 1,int u µ )(x) = 0 <strong>for</strong> x ∈ ∂Ω,implying that <strong>the</strong> function γ 0,int u µ belongs to <strong>the</strong> kernel of <strong>the</strong> boundary integral operatorsD κ and (1/2I + K κ ) and thus <strong>the</strong>se operators are not invertible.For values of κ 2 not coinciding with eigenvalues of (3.36) both operators are injective.Since <strong>the</strong> hypersingular operator D κ is coercive, <strong>the</strong> boundary integral equation (3.35) isuniquely solvable.<strong>The</strong>orem 3.27. If u ∈ H 1 (Ω, ∆ + κ 2 ) is a solution to <strong>the</strong> interior Neumann problem(3.32), <strong>the</strong>n <strong>the</strong> Dirichlet trace γ 0,int u satisfies <strong>the</strong> boundary integral equation (3.35) and uhas <strong>the</strong> representation (3.33).Conversely, if γ 0,int u satisfies <strong>the</strong> boundary integral equation (3.35), <strong>the</strong>n <strong>the</strong> representation<strong>for</strong>mula (3.33) defines a solution u ∈ H 1 (Ω, ∆ + κ 2 ) to <strong>the</strong> interior Neumannproblem (3.32).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!