The Boundary Element Method for the Helmholtz Equation ... - FEI VÅ B

The Boundary Element Method for the Helmholtz Equation ... - FEI VÅ B The Boundary Element Method for the Helmholtz Equation ... - FEI VÅ B

12.07.2015 Views

34 3 Boundary Integral EquationsAgain, the hypersingular operator is linear and there exists a constant c ∈ R + such that∥D κ t∥ H −1/2 (∂Ω) ≤ c∥t∥ H 1/2 (∂Ω)for all t ∈ H 1/2 (∂Ω).The hypersingular operator cannot be represented in the same way as the precedingoperators. For D κ t with a smooth enough density function t we have(D κ t)(x) = −γ 1 (W κ t)(x) = − limΩ∋˜x→x∈∂Ω ⟨n(x), ∇˜x(W κ t)(˜x)⟩.Recall, that for the double layer potential we have the representation∂v κ(W κ t)(˜x) = (˜x, y)t(y) ds y∂Ω ∂n y= 1 ⟨˜x − y, n(y)⟩e iκ∥˜x−y∥ 14π∥˜x − y∥ 3 − iκ∥˜x − y∥ 2 t(y) ds y .∂ΩInterchanging the limit with the computation of the normal derivative we obtainlim (W κt)(˜x)Ω∋˜x→x∈∂Ω= 14π lim⟨x − y, n(y)⟩eε→0 +y∈∂Ω iκ∥x−y∥ : ∥x−y∥≥εBy computing the normal derivative of the integrand we get1∥x − y∥ 3 −(D κ t)(x) = 14π lime⟨n(y),ε→0 +y∈∂Ω iκ∥x−y∥ n(x)⟩: ∥x−y∥≥ε+ ⟨x − y, n(y)⟩⟨x − y, n(x)⟩3∥x − y∥ 5 −iκ∥x − y∥ 2 t(y) ds y .iκ∥x − y∥ 2 − 1∥x − y∥ 33iκ∥x − y∥ 4 − κ 2 ∥x − y∥ 3 t(y) ds y . (3.13)Unfortunately, for ε → 0 + the integrand from (3.13) is not an integrable function. To expressD κ t explicitly we need some regularization procedure. For the Galerkin discretizationof the boundary integral equations we need to evaluate the bilinear form⟨D κ t, s⟩ ∂Ω := (D κ t)(x)s(x) ds x∂Ωinduced by the hypersingular operator. The following theorem gives us a representationusing surface curl operators.Theorem 3.14. For functions s, t ∈ H 1/2 (∂Ω) there holds the representation∂Ω(D κ t)(x)s(x) ds x = 1 4π− κ24π∂Ω∂Ω∂Ω∂Ωe iκ∥x−y∥∥x − y∥ ⟨curl ∂Ω t(y), curl ∂Ω s(x)⟩ ds y ds xe iκ∥x−y∥∥x − y∥ t(y)s(x)⟨n(x), n(y)⟩ ds y ds x

35with the surface curl operatorcurl ∂Ω t(y) := n(y) × ∇˜t(y)for y ∈ ∂Ω,where ˜t is some locally defined extension of t into the neighbourhood of ∂Ω.Proof. For the proof and more details see [13], Theorem 3.4.2 and [15], Theorem 3.3.22and Corrolary 3.3.24.Theorem 3.15. The hypersingular operator D κ : H 1/2 (∂Ω) → H −1/2 (∂Ω) is coercive.Proof. The proof is taken from [15], Lemma 3.9.8. The regularised hypersingular operatorD 0 + I corresponding to the Laplace equation is H 1/2 (∂Ω)-elliptic. Due to the compactembedding H 1/2 (∂Ω) ↩→↩→ H −1/2 (∂Ω) and the compactness of D κ − D 0 , the operatorC := I + D 0 − D κ : H 1/2 (∂Ω) → H −1/2 (∂Ω) is compact. Thus, we have⟨(D κ + C)t, t⟩ = ⟨(D 0 + I)t, t⟩ ≥ c∥t∥ 2 H 1/2 (∂Ω)for all t ∈ H 1/2 (∂Ω),which completes the proof.To conclude, for the jump of the Neumann trace of the double layer potential W κ t onthe boundary we have[γ 1 W κ t] := γ 1,ext W κ t − γ 1,int W κ t = 0 for all t ∈ H 1/2 (∂Ω). (3.14)3.5 Boundary Integral EquationsRecall that the solution to an interior boundary value problem for the Helmholtz equationcan be represented asu = −W κ γ 0,int u + V κ γ 1,int u in Ω.Applying the interior Dirichlet trace operator and using the definition of V κ and the property(3.11) we get the boundary integral equation 1γ 0,int u =2 I − K κ γ 0,int u + V κ γ 1,int u on ∂Ω (3.15)with the identity operator I. Similarly, applying the Neumann trace operator and using(3.9) and the definition of the hypersingular integral operator we obtain 1γ 1,int u = D κ γ 0,int u +2 I + K∗ κ γ 1,int u on ∂Ω. (3.16)The boundary integral equations (3.15), (3.16) can be rewritten as γ 0,int uγ 1,int = C int γ 0,int uu γ 1,int u

35with <strong>the</strong> surface curl operatorcurl ∂Ω t(y) := n(y) × ∇˜t(y)<strong>for</strong> y ∈ ∂Ω,where ˜t is some locally defined extension of t into <strong>the</strong> neighbourhood of ∂Ω.Proof. For <strong>the</strong> proof and more details see [13], <strong>The</strong>orem 3.4.2 and [15], <strong>The</strong>orem 3.3.22and Corrolary 3.3.24.<strong>The</strong>orem 3.15. <strong>The</strong> hypersingular operator D κ : H 1/2 (∂Ω) → H −1/2 (∂Ω) is coercive.Proof. <strong>The</strong> proof is taken from [15], Lemma 3.9.8. <strong>The</strong> regularised hypersingular operatorD 0 + I corresponding to <strong>the</strong> Laplace equation is H 1/2 (∂Ω)-elliptic. Due to <strong>the</strong> compactembedding H 1/2 (∂Ω) ↩→↩→ H −1/2 (∂Ω) and <strong>the</strong> compactness of D κ − D 0 , <strong>the</strong> operatorC := I + D 0 − D κ : H 1/2 (∂Ω) → H −1/2 (∂Ω) is compact. Thus, we have⟨(D κ + C)t, t⟩ = ⟨(D 0 + I)t, t⟩ ≥ c∥t∥ 2 H 1/2 (∂Ω)<strong>for</strong> all t ∈ H 1/2 (∂Ω),which completes <strong>the</strong> proof.To conclude, <strong>for</strong> <strong>the</strong> jump of <strong>the</strong> Neumann trace of <strong>the</strong> double layer potential W κ t on<strong>the</strong> boundary we have[γ 1 W κ t] := γ 1,ext W κ t − γ 1,int W κ t = 0 <strong>for</strong> all t ∈ H 1/2 (∂Ω). (3.14)3.5 <strong>Boundary</strong> Integral <strong>Equation</strong>sRecall that <strong>the</strong> solution to an interior boundary value problem <strong>for</strong> <strong>the</strong> <strong>Helmholtz</strong> equationcan be represented asu = −W κ γ 0,int u + V κ γ 1,int u in Ω.Applying <strong>the</strong> interior Dirichlet trace operator and using <strong>the</strong> definition of V κ and <strong>the</strong> property(3.11) we get <strong>the</strong> boundary integral equation 1γ 0,int u =2 I − K κ γ 0,int u + V κ γ 1,int u on ∂Ω (3.15)with <strong>the</strong> identity operator I. Similarly, applying <strong>the</strong> Neumann trace operator and using(3.9) and <strong>the</strong> definition of <strong>the</strong> hypersingular integral operator we obtain 1γ 1,int u = D κ γ 0,int u +2 I + K∗ κ γ 1,int u on ∂Ω. (3.16)<strong>The</strong> boundary integral equations (3.15), (3.16) can be rewritten as γ 0,int uγ 1,int = C int γ 0,int uu γ 1,int u

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!