12.07.2015 Views

A Survey on classifying spaces for families

A Survey on classifying spaces for families

A Survey on classifying spaces for families

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A <str<strong>on</strong>g>Survey</str<strong>on</strong>g> <strong>on</strong> <strong>classifying</strong><strong>spaces</strong> <strong>for</strong> <strong>families</strong>Wolfgang Lück ∗Fachbereich Mathematik und In<strong>for</strong>matikWestfälische Wilhelms-UniversitätMünsterEinsteinstr. 6248149 MünsterGermanylueck@math.uni-muenster.dehttp://www.math.unimuenster.de/u/lueckJune 2004


1. The G-CW -versi<strong>on</strong>Group means always locally compact Hausdorfftopological group with a countablebase <strong>for</strong> its topology.Definiti<strong>on</strong> 1. (G-CW -complex) A G-CW -complex X is a G-space together with aG-invariant filtrati<strong>on</strong>∅ = X −1 ⊆ X 0 ⊆ . . . ⊆ X n ⊆ . . . ⊆ ⋃n≥0X n = Xsuch that X carries the colimit topologywith respect to this filtrati<strong>on</strong> (i.e. a set C ⊆X is closed if and <strong>on</strong>ly if C ∩ X n is closedin X n <strong>for</strong> all n ≥ 0) and X n is obtainedfrom X n−1 <strong>for</strong> each n ≥ 0 by attachingequivariant n-dimensi<strong>on</strong>al cells, i.e. thereexists a G-pushout∐i∈I nG/H i × S n−1⏐↓∐i∈I nG/H i × D n∐i∈In qn i−−−−−−→−−−−−−→ ∐i∈In Qn iX n−1⏐↓X n


Remark 9. (Proper G-<strong>spaces</strong>) A COMnumerableG-space X is proper. Not everyproper G-space is COM-numerable. But aG-CW -complex X is proper if and <strong>on</strong>ly ifit is COM-numerable.Theorem 10. (Homotopy characterizati<strong>on</strong>of J F (G)) Let F be a family of subgroups.1. For any family F there exists a model<strong>for</strong> J F (G) whose isotropy groups bel<strong>on</strong>gto F;2. Two models <strong>for</strong> J F (G) are G-homotopyequivalent;3. For H ∈ F the H-fixed point set J F (G) His c<strong>on</strong>tractible.


3. Comparisi<strong>on</strong> of the twoversi<strong>on</strong>sThere is always a G-mapφ F : E F (G) → J F (G)which is unique up to G-homotopy.Example 11. Let G be totally disc<strong>on</strong>nected.Thenφ TR : EG → JGis a G-homotopy equivalence if and <strong>on</strong>ly ifG is discrete.Theorem 12. (EG = JG)) The G-map φ Fis a G-homotopy equivalence if F = COM,i.e. we get a G-homotopy equivalenceφ COM : EG ≃ −→ JG.Lemma 13. Let G be a totally disc<strong>on</strong>nectedgroup Then the following squarecommutes up to G-homotopy and c<strong>on</strong>sistsof G-homotopy equivalencesE COMOP (G) −→ J COMOP (G)⏐↓⏐↓EG −→ JG


4. Special modelsThere are interesting special models• Operator theoretic models;• G/K <strong>for</strong> an almost c<strong>on</strong>nected groupG with K ⊆ G maximal compact subgroup;• Acti<strong>on</strong>s <strong>on</strong> CAT(0)-<strong>spaces</strong>;• Acti<strong>on</strong>s <strong>on</strong> affine buildings;• The Rips complex <strong>for</strong> word-hyperbolicgroups;• The Borel-Serre compactificati<strong>on</strong> andarithmetic groups;


• Mapping class groups and Teichmüllerspace;• Out(F n ) and outer space.


4.1. Operator Theoretic ModelLet C 0 (G) be the Banach space of complexvalued functi<strong>on</strong>s of G vanishing at infinitywith the supremum-norm. The group Gacts isometrically <strong>on</strong> C 0 (G) by (g ·f)(x) :=f(g −1 x) <strong>for</strong> f ∈ C 0 (G) and g, x ∈ G. LetP C 0 (G) be the subspace of C 0 (G) c<strong>on</strong>sistingof functi<strong>on</strong>s f such that f is notidentically zero and has n<strong>on</strong>-negative realnumbers as values.Theorem 14. (Operator theoretic model)The G-space P C 0 (G) is a model <strong>for</strong> JG.Example 15. Let G be discrete. Anothermodel <strong>for</strong> JG is the spaceX G = {f : G → [0, 1] | f has finite support,∑g∈Gf(g) = 1}with the topology coming from the supremumnorm.


Remark 16. (Simplicial Model) Let Gbe discrete. Let P ∞ (G) be the geometricrealizati<strong>on</strong> of the simplicial set whose k-simplices c<strong>on</strong>sist of (k+1)-tupels (g 0 , g 1 , . . . , g k )of elements g i in G. This also a model <strong>for</strong>EG.The <strong>spaces</strong> X G and P ∞ (G) have the sameunderlying sets but in general they havedifferent topologies. The identity map inducesa (c<strong>on</strong>tinuous) G-map P ∞ (G) → X Gwhich is a G-homotopy equivalence, but ingeneral not a G-homeomorphism


4.2. Almost C<strong>on</strong>nected GroupsThe following result is due to Abels.Theorem 17. Almost c<strong>on</strong>nected groups)Let G be a (locally compact Hausdorff)topological group. Suppose that G is almostc<strong>on</strong>nected, i.e. the group G/G 0 iscompact <strong>for</strong> G 0 the comp<strong>on</strong>ent of the identityelement. Then G c<strong>on</strong>tains a maximalcompact subgroup K which is unique up toc<strong>on</strong>jugati<strong>on</strong>. The G-space G/K is a model<strong>for</strong> JG.Theorem 18. (Discrete subgroups of almostc<strong>on</strong>nected Lie groups) Let L be aLie group with finitely many path comp<strong>on</strong>ents.Then L c<strong>on</strong>tains a maximal compactsubgroup K which is unique up toc<strong>on</strong>jugati<strong>on</strong>. The L-space L/K is a model<strong>for</strong> EL.If G ⊆ L is a discrete subgroup of L, thenL/K with the obvious left G-acti<strong>on</strong> is afinite dimensi<strong>on</strong>al G-CW -model <strong>for</strong> EG.


4.3. Acti<strong>on</strong>s <strong>on</strong> CAT(0)-<strong>spaces</strong>Theorem 19. (Acti<strong>on</strong>s <strong>on</strong> CAT(0)-<strong>spaces</strong>)Let G be a (locally compact Hausdorff)topological group. Let X be a proper G-CW -complex. Suppose that X has thestructure of a complete CAT(0)-space <strong>for</strong>which G acts by isometries. Then X is amodel <strong>for</strong> EG.Remark 20. This result c<strong>on</strong>tains as specialcase isometric G acti<strong>on</strong>s <strong>on</strong> simplyc<strong>on</strong>nectedcomplete Riemannian manifoldswith n<strong>on</strong>-positive secti<strong>on</strong>al curvature andG-acti<strong>on</strong>s <strong>on</strong> trees.


4.4. Affine BuildingsTheorem 21. (Affine buildings)Let Gbe a totally disc<strong>on</strong>nected group. Supposethat G acts <strong>on</strong> the affine building by simplicialautomorphisms such that each isotropygroup is compact. Then Σ is a model <strong>for</strong>both J COMOP (G) and JG and the barycentricsubdivisi<strong>on</strong> Σ ′ is a model <strong>for</strong> both E COMOP (G)and EG.Example 22 (Bruhat-Tits building). Animportant example is the case of a reductivep-adic algebraic group G and its associatedaffine Bruhat-Tits building β(G).Then β(G) is a model <strong>for</strong> JG and β(G) ′ isa model <strong>for</strong> EG by Theorem 21.


4.5. The Rips Complex of aWord-Hyperbolic GroupThe Rips complex P d (G, S) of a group Gwith a symmetric finite set S of generators<strong>for</strong> a natural number d is the geometricrealizati<strong>on</strong> of the simplicial set whoseset of k-simplices c<strong>on</strong>sists of (k +1)-tuples(g 0 , g 1 , . . . g k ) of pairwise distinct elementsg i ∈ G satisfying d S (g i , g j ) ≤ d <strong>for</strong> all i, j ∈{0, 1, . . . , k}. The obvious G-acti<strong>on</strong> by simplicialautomorphisms <strong>on</strong> P d (G, S) inducesa G-acti<strong>on</strong> by simplicial automorphisms <strong>on</strong>the barycentric subdivisi<strong>on</strong> P d (G, S) ′Theorem 23. (Rips complex) Let G bea (discrete) group with a finite symmetricset of generators. Suppose that (G, S) isδ-hyperbolic <strong>for</strong> the real number δ ≥ 0.Let d be a natural number with d ≥ 16δ +8. Then the barycentric subdivisi<strong>on</strong> of theRips complex P d (G, S) ′ is a finite G-CW -model <strong>for</strong> EG.


4.6. Arithmetic GroupsArithmetic groups in a semisimple c<strong>on</strong>nectedlinear Q-algebraic group possess finite models<strong>for</strong> EG. Namely, let G(R) be the R-points of a semisimple Q-group G(Q) andlet K ⊆ G(R) a maximal compact subgroup.If A ⊆ G(Q) is an arithmetic group,then G(R)/K with the left A-acti<strong>on</strong> is amodel <strong>for</strong> E FIN (A) as already explained inTheorem 18. The A-space G(R)/K is notnecessarily cocompact.Theorem 24. Borel-Serre compactificati<strong>on</strong>)The Borel-Serre completi<strong>on</strong> of G(R)/Kis a finite A-CW -model <strong>for</strong> E FIN (A).


4.7. Mapping Class groupsLet Γ s g,r be the mapping class group ofan orientable compact surface F of genusg with s punctures and r boundary comp<strong>on</strong>ents.We will always assume that 2g +s + r > 2, or, equivalently, that the Eulercharacteristic of the punctured surface Fis negative. It is well-known that the associatedTeichmüller space T s g,r is a c<strong>on</strong>tractiblespace <strong>on</strong> which Γ s g,r acts properly.ActuallyTheorem 25. (Teichmüller space) TheΓ s g,r -space T s g,r is a model <strong>for</strong> E FIN (Γ s g,r ).


4.8. Outer AutomorphismGroups of Free groupsLet F n be the free group of rank n. Denoteby Out(F n ) the group of outer automorphismsof F n , i.e. the quotient of the groupof all automorphisms of F n by the normalsubgroup of inner automorphisms. Cullerand Vogtmann have c<strong>on</strong>structed a spaceX n called outer space <strong>on</strong> which Out(F n )acts with finite isotropy groups. It is analogousto the Teichmüller space of a surfacewith the acti<strong>on</strong> of the mapping classgroup of the surface.The space X n c<strong>on</strong>tains a spine K n whichis an Out(F n )-equivariant de<strong>for</strong>mati<strong>on</strong> retracti<strong>on</strong>.This space K n is a simplicialcomplex of dimensi<strong>on</strong> (2n − 3) <strong>on</strong> whichthe Out(F n )-acti<strong>on</strong> is by simplicial automorphismsand cocompact. Actually thegroup of simplicial automorphisms of K nis Out(F n ) by results due to Brids<strong>on</strong> andVogtman.Theorem 26. The barycentric subdivisi<strong>on</strong>K n ′ is a finite (2n − 3)-dimensi<strong>on</strong>al modelof E Out(F n ).


5. Relevance and Applicati<strong>on</strong>sof Classifying Spaces <strong>for</strong>Families5.1. Baum-C<strong>on</strong>nes C<strong>on</strong>jectureThe goal of the Baum-C<strong>on</strong>nes C<strong>on</strong>jectureis the computati<strong>on</strong> of the topological K-theory K n (C ∗ r (G)) of the reduced groupC ∗ -algebra of G.C<strong>on</strong>jecture 27 (Baum-C<strong>on</strong>nes C<strong>on</strong>jecture).The assembly map defined by takingthe equivariant indexasmb: K G n (JG) ∼ = −→ Kn (C ∗ r (G))is bijective <strong>for</strong> all n ∈ Z.


5.2. Farrell-J<strong>on</strong>es C<strong>on</strong>jectureLet G be a discrete group.associative ring with unit.Let R be aThe goal ofthe Farrell-J<strong>on</strong>es C<strong>on</strong>jecture is to computethe algebraic K-groups K n (RH) and thealgebraic L-groups L −∞ n (RG).C<strong>on</strong>jecture 28 (Farrell-J<strong>on</strong>es C<strong>on</strong>jecture).The assembly maps induced by theprojecti<strong>on</strong> E VCYC (G) → G/Gasmb: Hn G (E VCYC (G), K) → K n (RG);asmb: Hn G (E VCYC (G), L −∞ ) → L −∞ n (RG),are bijective <strong>for</strong> all n ∈ Z.


5.3. Completi<strong>on</strong> TheoremLet G be a discrete group. For a proper finiteG-CW -complex let KG ∗ (X) be its equivariantK-theory defined in terms of equivariantfinite dimensi<strong>on</strong>al complex vector bundlesover X. Let I ⊆ KG 0 (EG) be theaugmentati<strong>on</strong> ideal, i.e. the kernel of themap K 0 (EG) → Z sending the class ofan equivariant complex vector bundle toits complex dimensi<strong>on</strong>. Let KG ∗ (EG)Î bethe I-adic completi<strong>on</strong> of KG ∗ (EG) and letK ∗ (BG) be the topological K-theory ofBG.Theorem 29 (Completi<strong>on</strong> Theorem <strong>for</strong>discrete groups). Let G be a discrete groupsuch that there exists a finite model <strong>for</strong>EG. Then there is a can<strong>on</strong>ical isomorphismK ∗ (BG) ∼ = −→ K∗G (EG) Î .


5.4. Classifying Spaces <strong>for</strong>Equivariant BundlesThe equivariant K-theory <strong>for</strong> finite properG-CW -complexes appearing above can beextended to arbitrary proper G-CW -complexes(including the multiplicative structure) usingΓ-<strong>spaces</strong> in the sense of Segal and involving<strong>classifying</strong> <strong>spaces</strong> <strong>for</strong> equivariantvector bundles. These <strong>classifying</strong> <strong>spaces</strong><strong>for</strong> equivariant vector bundles are again<strong>classifying</strong> <strong>spaces</strong> of certain Lie groups andcertain <strong>families</strong>5.5. Equivariant Homology andCohomologyClassifying <strong>spaces</strong> <strong>for</strong> <strong>families</strong> play a role incomputati<strong>on</strong>s of equivariant homology andcohomology <strong>for</strong> compact Lie groups suchas equivariant bordism. Rati<strong>on</strong>al computati<strong>on</strong>sof equivariant (co-)-homology groupsare possible in general using Chern characters<strong>for</strong> discrete groups and proper G-CW -complexes


6. Finiteness C<strong>on</strong>diti<strong>on</strong>sThe questi<strong>on</strong>s whether there exists finitemodels, models of finite type or models orfinite-dimensi<strong>on</strong>al models <strong>for</strong> EG or wthatis the minimal value of dim(EG) is quiteinteresting and an obvious extenti<strong>on</strong> of thesame questi<strong>on</strong> <strong>for</strong> BG.Remark 30 (Algebraic criteri<strong>on</strong>). Let Gbe discrete. In the classical case <strong>on</strong>e canread off the possible dimensi<strong>on</strong> of BG fromthe homological algebra of ZG, in particularin terms of the cohomological dimensi<strong>on</strong>of the trivial ZG-modul Z. There areanalogous results <strong>for</strong> E F (G) if <strong>on</strong>e c<strong>on</strong>sidersmodules over the orbit category Or(G),in particular the c<strong>on</strong>stant c<strong>on</strong>travariant ZOr(G)-module Z F whose value is Z <strong>on</strong> G/H <strong>for</strong>H ∈ F and {0} <strong>on</strong> G/H <strong>for</strong> H ∉ F. Thisgives in principle a complete answer in algebraicterms but is often hard to apply inc<strong>on</strong>crete situati<strong>on</strong>s.


6.1. Some c<strong>on</strong>diti<strong>on</strong>s <strong>for</strong>finite-dimensi<strong>on</strong>al modelsAs an illustrati<strong>on</strong> we give a small selecti<strong>on</strong>of results <strong>on</strong> this topic to due to C<strong>on</strong>nolly,Dunwoody, Kropholler, Kozniewsky,L., Leary, Meintrup, Mislin and Nucinkisand others.Theorem 31 (Discrete subgroups of Liegroups). Let L be a Lie group with finitelymany path comp<strong>on</strong>ents. Let K ⊆ L be amaximal compact subgroup K. Let G ⊆ Lbe a discrete subgroup of L.Then L/K with the left G-acti<strong>on</strong> is a model<strong>for</strong> EG.Suppose additi<strong>on</strong>ally that G c<strong>on</strong>tains a torsi<strong>on</strong>freesubgroup ∆ ⊆ G of finite index.Then we havevcd(G) ≤ dim(L/K)and equality holds if and <strong>on</strong>ly if G\L iscompact.


Theorem 32 (A criteri<strong>on</strong> <strong>for</strong> 1-dimensi<strong>on</strong>almodels). Let G be a discrete group. Thenthere exists a 1-dimensi<strong>on</strong>al model <strong>for</strong> EGif and <strong>on</strong>ly the cohomological dimensi<strong>on</strong> ofG over the rati<strong>on</strong>als Q is less or equal to<strong>on</strong>e.Theorem 33. Virtual cohomological dimensi<strong>on</strong>and dim(EG) Let G be a discretegroup which c<strong>on</strong>tains a torsi<strong>on</strong>free subgroupof finite index and has virtual cohomologicaldimensi<strong>on</strong>vcd(G) ≤ d. Let l ≥0 be an integer such that the length l(H)of any finite subgroup H ⊂ G is boundedby l.Then we have vcd(G) ≤ dim(EG) <strong>for</strong> anymodel <strong>for</strong> EG and there exists a model <strong>for</strong>EG of dimensi<strong>on</strong> max{3, d} + l.


Example 34 (Virtually poly-cyclic groups).Let the group ∆ be virtually poly-cyclic,i.e. ∆ c<strong>on</strong>tains a subgroup ∆ ′ of finite index<strong>for</strong> which there is a finite sequence{1} = ∆ ′ 0 ⊆ ∆′ 1 ⊆ . . . ⊆ ∆′ n = ∆ ′ of subgroupssuch that ∆ ′ i−1 is normal in ∆′ i withcyclic quotient ∆ ′ i /∆′ i−1<strong>for</strong> i = 1, 2, . . . , n.Denote by r the number of elements i ∈{1, 2, . . . , n} with ∆ ′ i /∆′ ∼ i−1 = Z. The numberr is called the Hirsch rank. The group∆ c<strong>on</strong>tains a torsi<strong>on</strong>free subgroup of finiteindex. We call ∆ ′ poly-Z if r = n, i.e.all quotients ∆ ′ i /∆′ i−1are infinite cyclic.Then1. r = vcd(∆);2. r = max{i | H i (∆ ′ ; Z/2) ≠ 0} <strong>for</strong> <strong>on</strong>e(and hence all) poly-Z subgroup ∆ ′ ⊂∆ of finite index;3. There exists a finite r-dimensi<strong>on</strong>al model<strong>for</strong> E∆ and <strong>for</strong> any model E∆ we havedim(E∆) ≥ r.


6.2. Reducti<strong>on</strong> to discretegroupsThe discretizati<strong>on</strong> G d of a topological groupG is the same group but now with the discretetopology.Theorem 35 (Passage from topologicalgroups to totally disc<strong>on</strong>nected groups).Let G be a locally compact sec<strong>on</strong>d countableHausdorff group. Put G := G/G 0 .Then there is a G-CW -model <strong>for</strong> EG thatis d-dimensi<strong>on</strong>al or finite or of finite typerespectively if and <strong>on</strong>ly if EG has a G-CW -model that is d-dimensi<strong>on</strong>al or finite or offinite type respectively.Theorem 36 (Passage from totally disc<strong>on</strong>nectedgroups to discrete groups).Let G be a locally compact totally disc<strong>on</strong>nectedHausdorff group and let F bea family of subgroups of G. Then there is aG-CW -model <strong>for</strong> E F (G) that is d-dimensi<strong>on</strong>alor finite or of finite type respectively if and<strong>on</strong>ly if there is a G d -CW -model <strong>for</strong> E F (G d )that is d-dimensi<strong>on</strong>al or finite or of finitetype respectively.


7. CounterexamplesThe following problem is stated by BrownIt created a lot of activities and many ofthe results stated above were motivated byit.Problem 37. For which discrete groups G,which c<strong>on</strong>tain a torsi<strong>on</strong>free subgroup offinite index and has virtual cohomologicaldimensi<strong>on</strong> ≤ d, does there exist a d-dimensi<strong>on</strong>al G-CW -model <strong>for</strong> EG?Leary and Nucinkis have c<strong>on</strong>structed manyvery interesting examples of discrete groupssome of which are listed below. Theirmain technical input is an equivariant versi<strong>on</strong>of the c<strong>on</strong>structi<strong>on</strong>s due to Bestvinaand Brady. These examples show that theanswer to the Problems 37 and to otherproblems appearing in the literature is notpositive in general. A group G is of typeVF if it c<strong>on</strong>tains a subgroup H ⊆ G of finiteindex <strong>for</strong> which there is a finite model<strong>for</strong> BH.


1. For any positive integer d there exist agroup G of type VF which has virtuallycohomological dimensi<strong>on</strong> ≤ 3d, but <strong>for</strong>which any model <strong>for</strong> EG has dimensi<strong>on</strong>≥ 4d;2. There exists a group G with a finitecyclic subgroup H ⊆ G such that G isof type VF but the centralizer C G H ofH in G is not of type FP ∞ ;3. There exists a group G of type VFwhich c<strong>on</strong>tains infinitely many c<strong>on</strong>jugacyclasses of finite subgroups;4. There exists an extensi<strong>on</strong> 1 → ∆ →G → π → 1 such that E∆ and EG havefinite G-CW -models but there is no G-CW -model <strong>for</strong> Eπ of finite type.


8. The Orbit Space of EGWe will see that in many computati<strong>on</strong>s ofthe group (co-)homology, of the algebraicK- and L-theory of the group ring or thetopological K-theory of the reduced C ∗ -algebra of a discrete group G a key problemis to determine the homotopy type ofthe quotient space G\EG of EG. The followingresult shows that this is a difficultproblem in general and can <strong>on</strong>ly be solvedin special cases where som extra geometricinput is available. It was proved byLeary and Nucinkis based <strong>on</strong> ideas due toBaumslag-Dyer-Heller and Kan and Thurst<strong>on</strong>.Theorem 38 (The homotopy type ofG\EG). Let X be a c<strong>on</strong>nected CW -complex.Then there exists a group G such thatG\EG is homotopy equivalent to X.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!