v2010.10.26 - Convex Optimization

v2010.10.26 - Convex Optimization v2010.10.26 - Convex Optimization

convexoptimization.com
from convexoptimization.com More from this publisher
12.07.2015 Views

746 APPENDIX E. PROJECTION❇❇❇❇❇❇❇❇ x ❜❜R n⊥ ❙❇ ❜❇❇❇❇◗◗◗◗ ❙❙❙❙❙❙ ❜❜❜❜❜z❜y❜❜❜❜✧ ✧✧✧✧✧✧✧✧✧✧✧✧✧ R n❜❜❜C❜❜❜❜❜x −z ⊥ z −y ❜❇❜❇❇❇❇ ❜❜❜❜❜ ✧ ✧✧✧✧✧✧✧✧✧✧✧✧✧Figure 166: Closed convex set C belongs to subspace R n (shown boundedin sketch and drawn without proper perspective). Point y is uniqueminimum-distance projection of x on C ; equivalent to product of orthogonalprojection of x on R n and minimum-distance projection of result z on C .

E.9. PROJECTION ON CONVEX SET 747accomplished by first projecting orthogonally on that subspace, and thenprojecting the result on C ; [109,5.14] id est, the ordered product of twoindividual projections that is not commutable.Proof. (⇐) To show that, suppose unique minimum-distance projectionP C x on C ⊂ R n is y as illustrated in Figure 166;‖x − y‖ ≤ ‖x − q‖ ∀q ∈ C (2043)Further suppose P Rn x equals z . By the Pythagorean theorem‖x − y‖ 2 = ‖x − z‖ 2 + ‖z − y‖ 2 (2044)because x − z ⊥ z − y . (1907) [250,3.3] Then point y = P C x is the sameas P C z because‖z − y‖ 2 = ‖x − y‖ 2 − ‖x − z‖ 2 ≤ ‖z − q‖ 2 = ‖x − q‖ 2 − ‖x − z‖ 2which holds by assumption (2043).(⇒) Now suppose z = P Rn x and∀q ∈ C(2045)‖z − y‖ ≤ ‖z − q‖ ∀q ∈ C (2046)meaning y = P C z . Then point y is identical to P C x because‖x − y‖ 2 = ‖x − z‖ 2 + ‖z − y‖ 2 ≤ ‖x − q‖ 2 = ‖x − z‖ 2 + ‖z − q‖ 2by assumption (2046).∀q ∈ C(2047)This proof is extensible via translation argument. (E.4) Uniqueminimum-distance projection on a convex set contained in an affine subsetis, therefore, similarly accomplished.Projecting matrix H ∈ R n×n on convex cone K = S n ∩ R n×n+ in isomorphicR n2 can be accomplished, for example, by first projecting on S n and only thenprojecting the result on R n×n+ (confer7.0.1). This is because that projectionproduct is equivalent to projection on the subset of the nonnegative orthantin the symmetric matrix subspace.

E.9. PROJECTION ON CONVEX SET 747accomplished by first projecting orthogonally on that subspace, and thenprojecting the result on C ; [109,5.14] id est, the ordered product of twoindividual projections that is not commutable.Proof. (⇐) To show that, suppose unique minimum-distance projectionP C x on C ⊂ R n is y as illustrated in Figure 166;‖x − y‖ ≤ ‖x − q‖ ∀q ∈ C (2043)Further suppose P Rn x equals z . By the Pythagorean theorem‖x − y‖ 2 = ‖x − z‖ 2 + ‖z − y‖ 2 (2044)because x − z ⊥ z − y . (1907) [250,3.3] Then point y = P C x is the sameas P C z because‖z − y‖ 2 = ‖x − y‖ 2 − ‖x − z‖ 2 ≤ ‖z − q‖ 2 = ‖x − q‖ 2 − ‖x − z‖ 2which holds by assumption (2043).(⇒) Now suppose z = P Rn x and∀q ∈ C(2045)‖z − y‖ ≤ ‖z − q‖ ∀q ∈ C (2046)meaning y = P C z . Then point y is identical to P C x because‖x − y‖ 2 = ‖x − z‖ 2 + ‖z − y‖ 2 ≤ ‖x − q‖ 2 = ‖x − z‖ 2 + ‖z − q‖ 2by assumption (2046).∀q ∈ C(2047)This proof is extensible via translation argument. (E.4) Uniqueminimum-distance projection on a convex set contained in an affine subsetis, therefore, similarly accomplished.Projecting matrix H ∈ R n×n on convex cone K = S n ∩ R n×n+ in isomorphicR n2 can be accomplished, for example, by first projecting on S n and only thenprojecting the result on R n×n+ (confer7.0.1). This is because that projectionproduct is equivalent to projection on the subset of the nonnegative orthantin the symmetric matrix subspace.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!