12.07.2015 Views

v2010.10.26 - Convex Optimization

v2010.10.26 - Convex Optimization

v2010.10.26 - Convex Optimization

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

D.1. DIRECTIONAL DERIVATIVE, TAYLOR SERIES 685from which it follows→Ydg 2 (X) = ∑ i,j∑k,l∂ 2 g(X)∂X kl ∂X ijY kl Y ij = ∑ i,j∂∂X ij→Ydg(X)Y ij (1828)Yet for all X ∈ domg , any Y ∈R K×L , and some open interval of t∈Rg(X+ t Y ) = g(X) + t dg(X) →Y+ 1 →Yt2dg 2 (X) + o(t 3 ) (1829)2!which is the second-order Taylor series expansion about X . [219,18.4][152,2.3.4] Differentiating twice with respect to t and subsequent t-zeroingisolates the third term of the expansion. Thus differentiating and zeroingg(X+ t Y ) in t is an operation equivalent to individually differentiating andzeroing every entry g mn (X+ t Y ) as in (1826). So the second directionalderivative of g(X) : R K×L →R M×N becomes [277,2.1,5.4.5] [34,6.3.1]→Ydg 2 (X) = d2dt 2 ∣∣∣∣t=0g(X+ t Y ) ∈ R M×N (1830)which is again simplest. (confer (1809)) Directional derivative retains thedimensions of g .D.1.6directional derivative expressionsIn the case of a real function g(X) : R K×L →R , all its directional derivativesare in R :→Ydg(X) = tr ( ∇g(X) T Y ) (1831)→Ydg 2 (X) = tr(∇ X tr ( ∇g(X) T Y ) ) ( )T→YY = tr ∇ X dg(X) T Y(→Ydg 3 (X) = tr ∇ X tr(∇ X tr ( ∇g(X) T Y ) ) ) ( )T TY →YY = tr ∇ X dg 2 (X) T Y(1832)(1833)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!