v2010.10.26 - Convex Optimization

v2010.10.26 - Convex Optimization v2010.10.26 - Convex Optimization

convexoptimization.com
from convexoptimization.com More from this publisher
12.07.2015 Views

672 APPENDIX D. MATRIX CALCULUSGradient of vector-valued function g(X) : R K×L →R N on matrix domainis a cubix[∇X(:,1) g 1 (X) ∇ X(:,1) g 2 (X) · · · ∇ X(:,1) g N (X)∇g(X) ∇ X(:,2) g 1 (X) ∇ X(:,2) g 2 (X) · · · ∇ X(:,2) g N (X). . .. . .. . .∇ X(:,L) g 1 (X) ∇ X(:,L) g 2 (X) · · · ∇ X(:,L) g N (X) ]= [ ∇g 1 (X) ∇g 2 (X) · · · ∇g N (X) ] ∈ R K×N×L (1767)while the second-order gradient has a five-dimensional representation;[∇∇X(:,1) g 1 (X) ∇∇ X(:,1) g 2 (X) · · · ∇∇ X(:,1) g N (X)∇ 2 g(X) ∇∇ X(:,2) g 1 (X) ∇∇ X(:,2) g 2 (X) · · · ∇∇ X(:,2) g N (X).........∇∇ X(:,L) g 1 (X) ∇∇ X(:,L) g 2 (X) · · · ∇∇ X(:,L) g N (X) ]= [ ∇ 2 g 1 (X) ∇ 2 g 2 (X) · · · ∇ 2 g N (X) ] ∈ R K×N×L×K×L (1768)The gradient of matrix-valued function g(X) : R K×L →R M×N on matrixdomain has a four-dimensional representation called quartix (fourth-ordertensor)⎡⎤∇g 11 (X) ∇g 12 (X) · · · ∇g 1N (X)∇g(X) ∇g⎢ 21 (X) ∇g 22 (X) · · · ∇g 2N (X)⎥⎣ . .. ⎦ ∈ RM×N×K×L (1769)∇g M1 (X) ∇g M2 (X) · · · ∇g MN (X)while the second-order gradient has six-dimensional representation⎡⎤∇ 2 g 11 (X) ∇ 2 g 12 (X) · · · ∇ 2 g 1N (X)∇ 2 g(X) ∇⎢2 g 21 (X) ∇ 2 g 22 (X) · · · ∇ 2 g 2N (X)⎥⎣ . .. ⎦ ∈ RM×N×K×L×K×L∇ 2 g M1 (X) ∇ 2 g M2 (X) · · · ∇ 2 g MN (X)(1770)and so on.

D.1. DIRECTIONAL DERIVATIVE, TAYLOR SERIES 673D.1.2Product rules for matrix-functionsGiven dimensionally compatible matrix-valued functions of matrix variablef(X) and g(X)while [53,8.3] [315]∇ X(f(X) T g(X) ) = ∇ X (f)g + ∇ X (g)f (1771)∇ X tr ( f(X) T g(X) ) = ∇ X(tr ( f(X) T g(Z) ) + tr ( g(X)f(Z) T))∣ ∣∣Z←X (1772)These expressions implicitly apply as well to scalar-, vector-, or matrix-valuedfunctions of scalar, vector, or matrix arguments.D.1.2.0.1 Example. Cubix.Suppose f(X) : R 2×2 →R 2 = X T a and g(X) : R 2×2 →R 2 = Xb . We wishto find∇ X(f(X) T g(X) ) = ∇ X a T X 2 b (1773)using the product rule. Formula (1771) calls for∇ X a T X 2 b = ∇ X (X T a)Xb + ∇ X (Xb)X T a (1774)Consider the first of the two terms:Á∂(XÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ∇ X (f)g = ∇ X (X T a)Xb= [ ]Á∇(X T a) 1 ∇(XÁ(1775)T a) 2 Xb⎤T a) 2∂X 11(1776)⎡⎥The gradient of X T a forms a cubix in R 2×2×2 ; a.k.a, third-order tensor.⎡∂(X T a) 1∂X 11Á Á∂(X T a) 1∂(X T a) 2∂X 12Á⎤(Xb) 1∂X 12∇ X (X T a)Xb =⎢ ⎥⎣ ⎦ ∈ R 2×1×2∂(X T a) 1∂(X T a) 2(Xb) ∂X 21∂X 212⎢⎥⎣⎦∂(X T a) 1∂X 22∂(X T a) 2∂X 22

D.1. DIRECTIONAL DERIVATIVE, TAYLOR SERIES 673D.1.2Product rules for matrix-functionsGiven dimensionally compatible matrix-valued functions of matrix variablef(X) and g(X)while [53,8.3] [315]∇ X(f(X) T g(X) ) = ∇ X (f)g + ∇ X (g)f (1771)∇ X tr ( f(X) T g(X) ) = ∇ X(tr ( f(X) T g(Z) ) + tr ( g(X)f(Z) T))∣ ∣∣Z←X (1772)These expressions implicitly apply as well to scalar-, vector-, or matrix-valuedfunctions of scalar, vector, or matrix arguments.D.1.2.0.1 Example. Cubix.Suppose f(X) : R 2×2 →R 2 = X T a and g(X) : R 2×2 →R 2 = Xb . We wishto find∇ X(f(X) T g(X) ) = ∇ X a T X 2 b (1773)using the product rule. Formula (1771) calls for∇ X a T X 2 b = ∇ X (X T a)Xb + ∇ X (Xb)X T a (1774)Consider the first of the two terms:Á∂(XÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ∇ X (f)g = ∇ X (X T a)Xb= [ ]Á∇(X T a) 1 ∇(XÁ(1775)T a) 2 Xb⎤T a) 2∂X 11(1776)⎡⎥The gradient of X T a forms a cubix in R 2×2×2 ; a.k.a, third-order tensor.⎡∂(X T a) 1∂X 11Á Á∂(X T a) 1∂(X T a) 2∂X 12Á⎤(Xb) 1∂X 12∇ X (X T a)Xb =⎢ ⎥⎣ ⎦ ∈ R 2×1×2∂(X T a) 1∂(X T a) 2(Xb) ∂X 21∂X 212⎢⎥⎣⎦∂(X T a) 1∂X 22∂(X T a) 2∂X 22

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!