v2010.10.26 - Convex Optimization

v2010.10.26 - Convex Optimization v2010.10.26 - Convex Optimization

convexoptimization.com
from convexoptimization.com More from this publisher
12.07.2015 Views

606 APPENDIX A. LINEAR ALGEBRAFor A,B ∈ S n and A ≽ 0, B ≽ 0 (Example A.2.1.0.1)AB = BA ⇒ λ(AB) i =λ(A) i λ(B) i ≥ 0 ∀i ⇒ AB ≽ 0 (1477)AB = BA ⇒ λ(AB) i ≥ 0, λ(A) i λ(B) i ≥ 0 ∀i ⇔ AB ≽ 0 (1478)For A,B ∈ S n [202,7.7 prob.3] [203,4.2.13,5.2.1]A ≽ 0, B ≽ 0 ⇒ A ⊗ B ≽ 0 (1479)A ≽ 0, B ≽ 0 ⇒ A ◦ B ≽ 0 (1480)A ≻ 0, B ≻ 0 ⇒ A ⊗ B ≻ 0 (1481)A ≻ 0, B ≻ 0 ⇒ A ◦ B ≻ 0 (1482)where Kronecker and Hadamard products are symmetric.For A,B ∈ S n , (1450) A ≽ 0 ⇔ λ(A) ≽ 0 yetA ≽ 0 ⇒ δ(A) ≽ 0 (1483)A ≽ 0 ⇒ trA ≥ 0 (1484)A ≽ 0, B ≽ 0 ⇒ trA trB ≥ tr(AB) ≥ 0 (1485)[393,6.2] Because A≽0, B ≽0 ⇒ λ(AB)=λ( √ AB √ A)≽0 by(1463) and Corollary A.3.1.0.5, then we have tr(AB) ≥ 0.For A,B,C ∈ S n (Löwner)A ≽ 0 ⇔ tr(AB)≥ 0 ∀B ≽ 0 (378)A ≼ B , B ≼ C ⇒ A ≼ CA ≼ B ⇔ A + C ≼ B + CA ≼ B , A ≽ B ⇒ A = BA ≼ AA ≼ B , B ≺ C ⇒ A ≺ CA ≺ B ⇔ A + C ≺ B + C(transitivity)(additivity)(antisymmetry)(reflexivity)(strict transitivity)(strict additivity)(1486)(1487)For A,B ∈ R n×n x T Ax ≥ x T Bx ∀x ⇒ trA ≥ trB (1488)Proof. x T Ax≥x T Bx ∀x ⇔ λ((A −B) + (A −B) T )/2 ≽ 0 ⇒tr(A+A T −(B+B T ))/2 = tr(A −B)≥0. There is no converse.

A.3. PROPER STATEMENTS 607For A,B ∈ S n [393,6.2] (Theorem A.3.1.0.4)A ≽ B ⇒ trA ≥ trB (1489)A ≽ B ⇒ δ(A) ≽ δ(B) (1490)There is no converse, and restriction to the positive semidefinite conedoes not improve the situation. All-strict versions hold.A ≽ B ≽ 0 ⇒ rankA ≥ rankB (1491)A ≽ B ≽ 0 ⇒ detA ≥ detB ≥ 0 (1492)A ≻ B ≽ 0 ⇒ detA > detB ≥ 0 (1493)For A,B ∈ int S n + [34,4.2] [202,7.7.4]A ≽ B ⇔ A −1 ≼ B −1 , A ≻ 0 ⇔ A −1 ≻ 0 (1494)For A,B ∈ S n [393,6.2]A ≽ B ≽ 0 ⇒ √ A ≽ √ BA ≽ 0 ⇐ A 1/2 ≽ 0(1495)For A,B ∈ S n and AB = BA [393,6.2 prob.3]A ≽ B ≽ 0 ⇒ A k ≽ B k , k=1, 2,... (1496)A.3.1.0.1 Theorem. Positive semidefinite ordering of eigenvalues.For A,B∈ R M×M , place the eigenvalues of each symmetrized matrix intothe respective vectors λ ( 1(A 2 +AT ) ) , λ ( 1(B 2 +BT ) ) ∈ R M . Then [331,6]x T Ax ≥ 0 ∀x ⇔ λ ( A +A T) ≽ 0 (1497)x T Ax > 0 ∀x ≠ 0 ⇔ λ ( A +A T) ≻ 0 (1498)because x T (A −A T )x=0. (1432) Now arrange the entries of λ ( 1(A 2 +AT ) )and λ ( 1(B 2 +BT ) ) in nonincreasing order so λ ( 1(A 2 +AT ) ) holds the1largest eigenvalue of symmetrized A while λ ( 1(B 2 +BT ) ) holds the largest1eigenvalue of symmetrized B , and so on. Then [202,7.7 prob.1 prob.9] forκ ∈ Rx T Ax ≥ x T Bx ∀x ⇒ λ ( A +A T) ≽ λ ( B +B T)x T Ax ≥ x T Ixκ ∀x ⇔ λ ( 12 (A +AT ) ) ≽ κ1(1499)

A.3. PROPER STATEMENTS 607For A,B ∈ S n [393,6.2] (Theorem A.3.1.0.4)A ≽ B ⇒ trA ≥ trB (1489)A ≽ B ⇒ δ(A) ≽ δ(B) (1490)There is no converse, and restriction to the positive semidefinite conedoes not improve the situation. All-strict versions hold.A ≽ B ≽ 0 ⇒ rankA ≥ rankB (1491)A ≽ B ≽ 0 ⇒ detA ≥ detB ≥ 0 (1492)A ≻ B ≽ 0 ⇒ detA > detB ≥ 0 (1493)For A,B ∈ int S n + [34,4.2] [202,7.7.4]A ≽ B ⇔ A −1 ≼ B −1 , A ≻ 0 ⇔ A −1 ≻ 0 (1494)For A,B ∈ S n [393,6.2]A ≽ B ≽ 0 ⇒ √ A ≽ √ BA ≽ 0 ⇐ A 1/2 ≽ 0(1495)For A,B ∈ S n and AB = BA [393,6.2 prob.3]A ≽ B ≽ 0 ⇒ A k ≽ B k , k=1, 2,... (1496)A.3.1.0.1 Theorem. Positive semidefinite ordering of eigenvalues.For A,B∈ R M×M , place the eigenvalues of each symmetrized matrix intothe respective vectors λ ( 1(A 2 +AT ) ) , λ ( 1(B 2 +BT ) ) ∈ R M . Then [331,6]x T Ax ≥ 0 ∀x ⇔ λ ( A +A T) ≽ 0 (1497)x T Ax > 0 ∀x ≠ 0 ⇔ λ ( A +A T) ≻ 0 (1498)because x T (A −A T )x=0. (1432) Now arrange the entries of λ ( 1(A 2 +AT ) )and λ ( 1(B 2 +BT ) ) in nonincreasing order so λ ( 1(A 2 +AT ) ) holds the1largest eigenvalue of symmetrized A while λ ( 1(B 2 +BT ) ) holds the largest1eigenvalue of symmetrized B , and so on. Then [202,7.7 prob.1 prob.9] forκ ∈ Rx T Ax ≥ x T Bx ∀x ⇒ λ ( A +A T) ≽ λ ( B +B T)x T Ax ≥ x T Ixκ ∀x ⇔ λ ( 12 (A +AT ) ) ≽ κ1(1499)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!