v2010.10.26 - Convex Optimization

v2010.10.26 - Convex Optimization v2010.10.26 - Convex Optimization

convexoptimization.com
from convexoptimization.com More from this publisher
12.07.2015 Views

472 CHAPTER 5. EUCLIDEAN DISTANCE MATRIX(confer (1053))D ∈ EDM N⇔[ ][ ]0 1 1−D 2:N,2:N − [1 −D 2:N,1 ]T= −2VN 1 0 −D TDV N ≽ 01,2:Nand(1110)D ∈ S N hPositive semidefiniteness of that Schur complement insures nonnegativity(D ∈ R N×N+ ,5.8.1), whereas complementary inertia (1518) insures existenceof that lone negative eigenvalue of the Cayley-Menger form.Now we apply results from chapter 2 with regard to polyhedral cones andtheir duals.5.11.2.2 Ordered eigenspectraConditions (1107) specify eigenvalue [ membership ] to the smallest pointed0 1Tpolyhedral spectral cone for1 −EDM N :K λ {ζ ∈ R N+1 | ζ 1 ≥ ζ 2 ≥ · · · ≥ ζ N ≥ 0 ≥ ζ N+1 , 1 T ζ = 0}[ ]RN+= K M ∩ ∩ ∂HR −([ ])0 1T= λ1 −EDM N(1111)where∂H {ζ ∈ R N+1 | 1 T ζ = 0} (1112)is a hyperplane through the origin, and K M is the monotone cone(2.13.9.4.3, implying ordered eigenspectra) which is full-dimensional but isnot pointed;K M = {ζ ∈ R N+1 | ζ 1 ≥ ζ 2 ≥ · · · ≥ ζ N+1 } (436)K ∗ M = { [e 1 − e 2 e 2 −e 3 · · · e N −e N+1 ]a | a ≽ 0 } ⊂ R N+1 (437)

5.11. EDM INDEFINITENESS 473So because of the hyperplane,indicating K λ is not full-dimensional. Defining⎡⎡e T 1 − e T ⎤2A ⎢e T 2 − e T 3 ⎥⎣ . ⎦ ∈ RN×N+1 , B ⎢e T N − ⎣eT N+1we have the halfspace-description:dim aff K λ = dim∂H = N (1113)e T 1e T2 .e T N−e T N+1⎤⎥⎦ ∈ RN+1×N+1 (1114)K λ = {ζ ∈ R N+1 | Aζ ≽ 0, Bζ ≽ 0, 1 T ζ = 0} (1115)From this and (444) we get a vertex-description for a pointed spectral conethat is not full-dimensional:{ ([ ] ) †}ÂK λ = V N V N b | b ≽ 0(1116)ˆBwhere V N ∈ R N+1×N , and where [sic]ˆB = e T N ∈ R 1×N+1 (1117)and⎡e T 1 − e T ⎤2Â = ⎢e T 2 − e T 3 ⎥⎣ . ⎦ ∈ RN−1×N+1 (1118)e T N−1 − eT Nhold those[ rows]of A and B corresponding to conically independent rowsA(2.10) in VB N .Conditions (1107) can be equivalently restated in terms of a spectral conefor Euclidean distance matrices:⎧ ([ ]) [ ]⎪⎨ 0 1TRN+λ∈ KD ∈ EDM N ⇔ 1 −DM ∩ ∩ ∂HR − (1119)⎪⎩D ∈ S N h

472 CHAPTER 5. EUCLIDEAN DISTANCE MATRIX(confer (1053))D ∈ EDM N⇔[ ][ ]0 1 1−D 2:N,2:N − [1 −D 2:N,1 ]T= −2VN 1 0 −D TDV N ≽ 01,2:Nand(1110)D ∈ S N hPositive semidefiniteness of that Schur complement insures nonnegativity(D ∈ R N×N+ ,5.8.1), whereas complementary inertia (1518) insures existenceof that lone negative eigenvalue of the Cayley-Menger form.Now we apply results from chapter 2 with regard to polyhedral cones andtheir duals.5.11.2.2 Ordered eigenspectraConditions (1107) specify eigenvalue [ membership ] to the smallest pointed0 1Tpolyhedral spectral cone for1 −EDM N :K λ {ζ ∈ R N+1 | ζ 1 ≥ ζ 2 ≥ · · · ≥ ζ N ≥ 0 ≥ ζ N+1 , 1 T ζ = 0}[ ]RN+= K M ∩ ∩ ∂HR −([ ])0 1T= λ1 −EDM N(1111)where∂H {ζ ∈ R N+1 | 1 T ζ = 0} (1112)is a hyperplane through the origin, and K M is the monotone cone(2.13.9.4.3, implying ordered eigenspectra) which is full-dimensional but isnot pointed;K M = {ζ ∈ R N+1 | ζ 1 ≥ ζ 2 ≥ · · · ≥ ζ N+1 } (436)K ∗ M = { [e 1 − e 2 e 2 −e 3 · · · e N −e N+1 ]a | a ≽ 0 } ⊂ R N+1 (437)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!