v2010.10.26 - Convex Optimization

v2010.10.26 - Convex Optimization v2010.10.26 - Convex Optimization

convexoptimization.com
from convexoptimization.com More from this publisher
12.07.2015 Views

32 CHAPTER 1. OVERVIEWto a given matrix H :minimize ‖−V (D − H)V ‖ 2 FDsubject to rankV DV ≤ ρD ∈ EDM Nminimize ‖D − H‖ 2 FDsubject to rankV DV ≤ ρD ∈ EDM Nminimize ‖ ◦√ D − H‖◦√ 2 FDsubject to rankV DV ≤ ρ◦√ √D ∈ EDMNminimize ‖−V ( ◦√ D − H)V ‖◦√ 2 FDsubject to rankV DV ≤ ρ◦√ √D ∈ EDMN(1310)We apply a convex iteration method for constraining rank. Known heuristicsfor rank minimization are also explained. We offer new geometrical proof, ofa famous discovery by Eckart & Young in 1936 [129], with particular regardto Euclidean projection of a point on that generally nonconvex subset ofthe positive semidefinite cone boundary comprising all semidefinite matriceshaving rank not exceeding a prescribed bound ρ . We explain how thisproblem is transformed to a convex optimization for any rank ρ .appendicesToolboxes are provided so as to be more self-contained:linear algebra (appendix A is primarily concerned with properstatements of semidefiniteness for square matrices),simple matrices (dyad, doublet, elementary, Householder, Schoenberg,orthogonal, etcetera, in appendix B),collection of known analytical solutions to some important optimizationproblems (appendix C),matrix calculus remains somewhat unsystematized when comparedto ordinary calculus (appendix D concerns matrix-valued functions,matrix differentiation and directional derivatives, Taylor series, andtables of first- and second-order gradients and matrix derivatives),

an elaborate exposition offering insight into orthogonal andnonorthogonal projection on convex sets (the connection betweenprojection and positive semidefiniteness, for example, or betweenprojection and a linear objective function in appendix E),Matlab code on Wıκımization to discriminate EDMs, to determineconic independence, to reduce or constrain rank of an optimal solutionto a semidefinite program, compressed sensing (compressive sampling)for digital image and audio signal processing, and two distinct methodsof reconstructing a map of the United States: one given only distancedata, the other given only comparative distance data.33

32 CHAPTER 1. OVERVIEWto a given matrix H :minimize ‖−V (D − H)V ‖ 2 FDsubject to rankV DV ≤ ρD ∈ EDM Nminimize ‖D − H‖ 2 FDsubject to rankV DV ≤ ρD ∈ EDM Nminimize ‖ ◦√ D − H‖◦√ 2 FDsubject to rankV DV ≤ ρ◦√ √D ∈ EDMNminimize ‖−V ( ◦√ D − H)V ‖◦√ 2 FDsubject to rankV DV ≤ ρ◦√ √D ∈ EDMN(1310)We apply a convex iteration method for constraining rank. Known heuristicsfor rank minimization are also explained. We offer new geometrical proof, ofa famous discovery by Eckart & Young in 1936 [129], with particular regardto Euclidean projection of a point on that generally nonconvex subset ofthe positive semidefinite cone boundary comprising all semidefinite matriceshaving rank not exceeding a prescribed bound ρ . We explain how thisproblem is transformed to a convex optimization for any rank ρ .appendicesToolboxes are provided so as to be more self-contained:linear algebra (appendix A is primarily concerned with properstatements of semidefiniteness for square matrices),simple matrices (dyad, doublet, elementary, Householder, Schoenberg,orthogonal, etcetera, in appendix B),collection of known analytical solutions to some important optimizationproblems (appendix C),matrix calculus remains somewhat unsystematized when comparedto ordinary calculus (appendix D concerns matrix-valued functions,matrix differentiation and directional derivatives, Taylor series, andtables of first- and second-order gradients and matrix derivatives),

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!