12.07.2015 Views

Radiative Neutrino Mass Generation and Dark Matter - Institute for ...

Radiative Neutrino Mass Generation and Dark Matter - Institute for ...

Radiative Neutrino Mass Generation and Dark Matter - Institute for ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

OutlineOutline1 Introduction2 <strong>Neutrino</strong> <strong>Mass</strong> <strong>Generation</strong>3 <strong>Dark</strong> <strong>Matter</strong>4 A Concrete Model of <strong>Radiative</strong> SeesawConstraintsCoannihilation Effect of DMDirect Detection of (Leptophilic) DM5 Further Extension of <strong>Radiative</strong> SeesawSUSY with anomalous U(1)Indirect detection of DM with flavor symmetry6 SummaryTakashi Toma (IPPP) Internal Seminar 7th June 2013 2 / 34


<strong>Neutrino</strong> <strong>Mass</strong> <strong>Generation</strong><strong>Neutrino</strong> <strong>Mass</strong> <strong>Generation</strong> at Tree LevelInverse seesaw mechanismSmall lepton number violation (L/) → light neutrino masses.Three singlets S L are added.L = −ν L m D N R −NR cMSL c − 1 2 S LµSLc<strong>Mass</strong> matrix⎛0 m D 0⎝ mDT 0 M0 M T µ⎞⎠ →m ν ∼ m D M −1 µM T−1 m T D(if µ ≪ m D , M)Typical scale of µ is keV.M ∼ 10 TeV, m D ∼ 100 GeV → m ν ∼ 0.1 eV.Note : generally 1 2 N cR µ′ N R also exists.Takashi Toma (IPPP) Internal Seminar 7th June 2013 5 / 34


<strong>Neutrino</strong> <strong>Mass</strong> <strong>Generation</strong>Examples of ModelsExamples of ModelsZee modelSU(2) L U(1) Yφ 2 2 1h + 1 1· neutrino mass (1-loop level)Ma modelSU(2) L U(1) Y Z 2N i 1 0 −1η 2 1/2 −1· neutrino mass (1-loop level)· DM c<strong>and</strong>idates (N 1 or η 0 )V = µφ T 1 φ 2h −V = λ 52(φ † η ) 2Takashi Toma (IPPP) Internal Seminar 7th June 2013 7 / 34


<strong>Dark</strong> <strong>Matter</strong><strong>Dark</strong> <strong>Matter</strong>Takashi Toma (IPPP) Internal Seminar 7th June 2013 9 / 34


<strong>Dark</strong> <strong>Matter</strong>Nature of DM· stable (or long lifetime)· non-relativistic particle· electrically neutral· no electromagnetic interaction (at tree level)DM c<strong>and</strong>idateIn order to include DM we have to stabilize a particle.→ Z 2 parity· Neutralino, Lightest KK Particle, Right-h<strong>and</strong>ed neutrino,Gravitino, Axion etc..Takashi Toma (IPPP) Internal Seminar 7th June 2013 10 / 34


<strong>Dark</strong> <strong>Matter</strong>DM Thermal ProductionDM Thermal ProductionY = n/sDM number density is determined by decoupling from thermalbath in the universe.Number density follows the Boltzmann equation.dYdz = −ΓY eqHz[ ( YY eq) 2−1], z ≡ m T , Γ ≡ 〈σv〉n eq, Y ≡ n sapproximate solutionΩh 2 ≈ 1.04×109 [GeV −1 ]√g∗ m pl 〈σv〉= 0.12 (Planck)z = m/T↔ 〈σv〉 ≈ 3×10 −26 [cm 3 /s]= 3×10 −9 [GeV −2 ]Takashi Toma (IPPP) Internal Seminar 7th June 2013 11 / 34


<strong>Dark</strong> <strong>Matter</strong>Non-thermal ProductionNon-thermal production of DM arXiv:0810.4147· a metastable particle (χ 2 ) decays into DM (χ 1 )· simuletaneous Boltzmann equationdY 1dzdY 2dz= − Γ A1Y 1eqHz= − Γ A2Y 2eqHz[ ( ) ] 2 Y1−1Y 1eq[ ( ) ] 2 Y2−1Y 2eq+N decΓ 2Hz Y 2− Γ 2Hz Y 210 0 10 -2 10 0 10 2 10 4 10 6 10 8Y i = n i (z)/s(z)10 -210 -410 -610 -810 -1010 -1210 -1410 -16z = m 1 /TY 1Y 1eqY 2χ 2 → N dec χ 1 +XY 2eq〈σv〉 > 3×10 −26 [cm 3 /s]m 1 = 130 [GeV]m 2 = 300 [GeV] = 3.0x10 -25 [GeV -2 ] = 3.0x10 -26 [GeV -2 ]Γ 2 = 1.0x10 -24 [GeV]Γ −12 0.1 sExplaination of the positron<strong>and</strong> gamma-ray excess incosmic-ray observations?Takashi Toma (IPPP) Internal Seminar 7th June 2013 12 / 34


Concrete ModelA Concrete Model of <strong>Radiative</strong> SeesawTakashi Toma (IPPP) Internal Seminar 7th June 2013 13 / 34


Concrete ModelInteractions <strong>and</strong> <strong>Neutrino</strong> <strong>Mass</strong>esThe Simplest Model (Ma Model)New particlesSU(2) L U(1) Y Z 2N i 1 0 −1η 2 1/2 −1Interactions<strong>Neutrino</strong> mass generation at1-loop levelInclude DM c<strong>and</strong>idatesN 1 <strong>and</strong> η 0L = (D µ η) † (D µ η)+N i i∂/N i − M i2 Nc i N i +h αi l α η † N i +h.c.−V (φ,η)V (φ,η) = mφ 2 |φ|2 +mη|η| 2 2 + λ 12 |φ|4 + λ 22 |η|4)( )+λ 3 |φ| 2 |η| 2 +λ 4(φ † ηη † φ+ λ 52〈η〉 = 0 is assumed.φ <strong>and</strong> η do not mix after the symmetry breaking.assumed that new particles are less than a few TeV.[ ( 2 ( ) ] 2φ η) † + η † φTakashi Toma (IPPP) Internal Seminar 7th June 2013 14 / 34


Concrete Model<strong>Neutrino</strong> <strong>Mass</strong>esη 0 split after electroweak symmetry breaking.η 0 = 1 √2η R + i √2η I , mass eigenstates (η R ,η I )(m ν ) αβ=3∑ h αi h βi M i[mR2(4π) 2 mR 2 −M2 ii=1) m2log(RMi2 −∼ ( hΛh T) αβΛ = diag(Λ 1 ,Λ 2 ,Λ 3 )m 2 Im 2 I−M 2 i)] m2log(IMi2When λ 5 ≪ 1, m 2 R ≈ m2 I = M 2 η3∑ 2λ 5 h αi h βi 〈φ 0 〉 2 ( ) M2(m ν ) αβ≃(4π) 2 I iMi=1 iMη2I(x) = x (1+ x logx )1−x 1−xTakashi Toma (IPPP) Internal Seminar 7th June 2013 15 / 34


Concrete ModelConstraintsThe parameters are constrained by various aspects.<strong>Neutrino</strong> mass scale m ν ∼ 10 −1 eV<strong>Neutrino</strong> mixingU T PMNS m νU PMNS = diag(m 1 ,m 2 ,m 3 )Lepton flavor violation (LFV)µ → eγ : Br(µ → eγ) ≤ 2.4×10 −12 → 5.7×10 −13 (now)µ → 3e?Thermal relic density of DM· N 1 is assumed to be DM here.· Leptophilic DM.· degenerated with N 2 .Takashi Toma (IPPP) Internal Seminar 7th June 2013 16 / 34


Concrete ModelConstraintsTo derive the neutrino mass scale(λ 5 h 210 −11 ∼ M √ )i ∆m 2〈φ〉 0.05 eVThe structure of the neutrino mass matrix is determined by theYukawa matrix h αi .The flavor structure:⎛ ⎞ǫ 1 ǫ 2 h 3′h αi = ⎝ h 1 h 2 h 3⎠, ǫ i ≪ h ih 1 h 2 −h 3ǫ i are understood as deviations from the Tri-bimaximal mixing.→ sin 2 θ 12 = 1 3 +ǫ, sin2 θ 23 = 1 2 +ǫ′ , sin 2 θ 13 = 0+ǫ ′′ .U T PMNS m νU PMNS = diag(m 1 ,m 2 ,m 3 )Takashi Toma (IPPP) Internal Seminar 7th June 2013 17 / 34


Concrete ModelConstraintsConstraints from LFVBr(l α → l β γ) = 3α em64πG 2 F M4 η3∑∣i=1The experimental boundsBr(µ → eγ) < 2.4×10 −12Br(τ → µγ) < 4.4×10 −8Br(τ → eγ) < 3.3×10 −8( Mhαi ∗ 2) ∣ 2h i ∣∣∣βiF 2Mη2 Br(l α → l β ν α ν β )where Br(µ → eν µ ν e ) ≃ 1, Br(τ → µν τ ν µ ) ≃ 0.174,Br(τ → eν τ ν e ) ≃ 0.178.→ Yukawa couplings h αi should be small.orSpecial structure of Yukawa matrix.Takashi Toma (IPPP) Internal Seminar 7th June 2013 18 / 34


Concrete ModelConstraintsConstraint from DM Relic DensityThe lightest right-h<strong>and</strong>ed neutrino N 1 is assumed to be DMc<strong>and</strong>idate.The channel: N 1 N 1 → l α l β (t, u-channel)Expansion in terms of v 2 , σv = a+bv 2 +O(v 4 )Fermionic DM is often suppressed by chiral suppression.The annihilation cross section has no s-wave due to chiralsuppression.σv =τ∑α=e|h α1 | 424πM 2 1(M41 +M 4 η)( )M21 +Mη2 4v 2 ∝ v 2→ the Yukawa couplings h αi should be large.Takashi Toma (IPPP) Internal Seminar 7th June 2013 19 / 34


Concrete ModelCoannihilation of DMCoannihilation of DMIf N 2 is degenerated with N 1 (M 1 ≈ M 2 ), they can coannihilate:The effective annihilation cross section σ eff includesN 1 N 2 → l α l β , N 2 N 2 → l α l β .s-wave appears due to the coannihilation processN 1 N 2 → l α l β if the Yukawa h αi are complex.σ eff v = a eff +b eff v 2 , a eff ∝ Im(h ∗ 1h 2 ) ≠ 0.→ It is possible to be consistent with LFV <strong>and</strong> DM relic abundance.Takashi Toma (IPPP) Internal Seminar 7th June 2013 20 / 34


Concrete ModelAllowed parameter region from<strong>Neutrino</strong> mass <strong>and</strong> mixing Perturbativity |h i | < 1.5LFVDM relic abundance Ωh 2 = 0.12ξ ≡ Im(h ∗ 1 h 2)A: 2.00 < M η /M 1 < 9.80B: 1.20 < M η /M 1 < 2.00C: 1.05 < M η /M 1 < 1.20D: 1.00 < M η /M 1 < 1.051 DM mass 3 TeVTakashi Toma (IPPP) Internal Seminar 7th June 2013 21 / 34


Concrete ModelDirect Detection of DMDirect DetectionDetection RatedRdE R= ∑ nuclei∫ρ ⊙ 1m DM m detNuclei are made of quarks.→ Interactions with quarks areimportant.Many direct detectionexperiments are per<strong>for</strong>med.XENON100, CDMSII, DAMA,CoGeNT, CRESST, KIMS etc.v>v mindσdE Rvf ⊙ (v+v e )d 3 vdσ/dE R : cross section (Particle physics dependence)ρ ⊙ , v: DM local density, velocity (Astrophysics dependence)Takashi Toma (IPPP) Internal Seminar 7th June 2013 22 / 34


Concrete ModelDirect Detection of DMElastic scattering N 1 A → N 1 A is highly suppressed.Scattring with nuclei occurs inelastically in the model likeN 1 A → N 2 A.We need the effective coupling of N 1 N 2 γ.N 2γ ∗ =N 2γ ∗ +N 2η +l αl αl αη +η +γ ∗N 1N 1(L eff = ia 12 N 2 γ µ N 1 ∂ ν µ12)F µν +i N 2 σ µν N 1 F µν +ic 12 N 2 γ µ N 1 A µ2There are three types of interactions. a 12 , µ 12 , c 12 ∝ ξ ≡ Im(h2 ∗h 1)→ Charge int. a 12 <strong>and</strong> c 12 , Dipole int. µ 12 .N 1Takashi Toma (IPPP) Internal Seminar 7th June 2013 23 / 34


Concrete ModelDirect Detection of DMScattering with nucleiN 1l −N 2N 1η +N 2η + η +l −l −γγAAAAInelastic Scattering with nuclei occurs when δm 100 keVPhoton has small transter energy E R .Three types of cross sections are obtained.Charge-Charge coupling: σ CC ∼ (a 12 +c 12 ) 2 Z 2Dipole-Charge coupling: σ DC ∼ µ 2 12 Z2Dipole-Dipole coupling: σ DD ∼ µ 2 12 µ2 Nσ CD is suppressed.Takashi Toma (IPPP) Internal Seminar 7th June 2013 24 / 34


Concrete ModelDirect Detection of DMComparison of the couplings <strong>for</strong> M η /M 1 = 1.5CC coupling is dominant <strong>for</strong> rather small mass range.DD coupling is larger than DC coupling <strong>for</strong> DAMA <strong>and</strong> KIMS.→ dependence of µ NTakashi Toma (IPPP) Internal Seminar 7th June 2013 25 / 34


Concrete ModelDirect Detection of DMδ = 0 keVδ = 40 keVThe inelastic cross section (CC coupling) is enhanced if DM <strong>and</strong>η are highly degenerated (light blue region).→ the behavor of the loop function in the effective couplings.Enhanced by a 12 ∝ M2 1m 2 lwhen M 1 ≈ M ηSome parameter space can be investigated by XENON1T.Takashi Toma (IPPP) Internal Seminar 7th June 2013 26 / 34


Extensions of <strong>Radiative</strong> SeesawExtensions of <strong>Radiative</strong> SeesawTakashi Toma (IPPP) Internal Seminar 7th June 2013 27 / 34


Extensions of <strong>Radiative</strong> Seesaw1. Supersymmetry with anomalous U(1) AA pair of inert Higgs η u <strong>and</strong> η d is required.Break gauge coupling unification at GUT scale because ofadditional inert Higgs doublets ηU(1) A anomaly cancellation by Green-Schwarz mechanismδL = − g2 A TrQ A32π 2 α(x)ǫ µνρσ F µν F ρσL = aǫ µνρσ F µν F ρσ , a → a+δ GS α(x)Remain accidental Z 2 parity after the U(1) A breakingTakashi Toma (IPPP) Internal Seminar 7th June 2013 28 / 34


Extensions of <strong>Radiative</strong> SeesawInteresting featuresZ 2 is softly broken → metastable DMlifetime is determined by charge assignment of U(1) Aτ ∝ exp(δ −1GS ), δ GS = TrQ A48π 2We have Multi-component DM (R-parity <strong>and</strong> softly broken Z 2 )Neutralino <strong>and</strong> the lightest Z 2 odd particle.The positron excess of AMS-02 <strong>and</strong> PAMELA is explained bythe decay of DM.l αψ N1¯l βχTakashi Toma (IPPP) Internal Seminar 7th June 2013 29 / 34


Extensions of <strong>Radiative</strong> Seesaw2. Flavor SymmetryIntroduce flavor symmetry to derive neutrino mixing.θ 12 = 34 ◦ , θ 23 = −45 ◦ , θ 13 = −9 ◦DM decay channel is also controlled by the symmetry.Allowed interaction of DMs X <strong>and</strong> X ′Decay rateL = λ XΛ 2LLEc X c + λ X ′Λ 2 LLEc X c′dΓ Xdx = |λ X| 2 m 5 X48(4π) 3 Λ 4x2 (21−16x), x = 2E em XΓ X = |λ X| 2 m 5 X16(4π) 3 Λ 4Takashi Toma (IPPP) Internal Seminar 7th June 2013 30 / 34


Extensions of <strong>Radiative</strong> SeesawPositron flux from DMdΦdE =v e ρ(r)4πb(E)m X∫ mX /2EAstrophysical dependences are in I(E,E ′ )e + /(e + +e - ) [GeV -1 cm -2 s -1 sr -1 ]10 0 10 0 10 1 10 2 10 310 -110 -2arXiv:1304.2680PAMELAAMS-02BackgroundBackground + <strong>Dark</strong> <strong>Matter</strong>E [GeV]dE ′dΓ XdE ′ I(E,E′ )small dump around 120 GeVe : µ : τ = 1 : 1 : 1 becauseof the flavor symmetryTwo-component DMBest fit :m X = 244 GeV, Γ X = 1.2×10 28 s.m X ′ = 1360 GeV, Γ X ′ = 2.4×10 27 s.Takashi Toma (IPPP) Internal Seminar 7th June 2013 31 / 34


SummarySummary1 The SM should be extended to include neutrino masses <strong>and</strong> DM.2 In some <strong>Radiative</strong> Seesaw models, neutrino masses <strong>and</strong> DM arerelated.3 Coannihilation plays an important role to be consistent with allthe constraints.4 Due to small mass difference between N 1 <strong>and</strong> N 2 , inelasticscattering between DM <strong>and</strong> nuclei is possible even if the DM isleptophilic.Takashi Toma (IPPP) Internal Seminar 7th June 2013 32 / 34


Future WorksFuture Works1 Gamma-ray from DM annihilation.E 2 · dJ/dE [GeV/cm 2 /s/sr]10 -510 -610 -710 0 10 1 10 2E [GeV]Required cross section :σv ∼ 10 −27 [cm 3 /s]↔ relic density of DMσv ∼ 10 −26 [cm 3 /s]Large cross section is required ↔ DM relic density2 Lepton Flavor Violation µ → 3e.When Yukawa coupling is large enough, µ → 3e can be largerthan µ → eγ→ <strong>Radiative</strong> Seesaw or Inverse Seesaw3 The other extensions of the SM.(model building of new radiative seesaw)Takashi Toma (IPPP) Internal Seminar 7th June 2013 33 / 34


Thank you <strong>for</strong> your attention!Takashi Toma (IPPP) Internal Seminar 7th June 2013 34 / 34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!