12.07.2015 Views

NLO+PS matching and multijet merging - Institute for Particle ...

NLO+PS matching and multijet merging - Institute for Particle ...

NLO+PS matching and multijet merging - Institute for Particle ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

MC@NLO NLO-<strong>merging</strong> Conclusions<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong>Marek Schönherr<strong>Institute</strong> <strong>for</strong> <strong>Particle</strong> Physics PhenomenologyCambridge, 18/10/2012arXiv:1111.1220, arXiv:1201.5882arXiv:1207.5030, arXiv:1207.5031arXiv:1208.2815Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 1


MC@NLO NLO-<strong>merging</strong> ConclusionsIntroduction• Monte-Carlo event generators heavily used tools <strong>for</strong> fully exclusiveSM/BSM predictions on hadron level→ directly comparable to experimental data• st<strong>and</strong>ard LO+PS calculations have limited accuracy in regions probed bycurrent colliders→ multiple hard objects in final state• st<strong>and</strong>ard NLO calculations have limited accuracy in strongly hierarchicalconfigurations⇒ Tevatron <strong>and</strong> LHC allow <strong>for</strong> both at the same time• a number of solutions to combine the observable independent resummationof PS with fixed-order accuracy in hard multiparton final states exist⇒ imperative to know about implicit choices/assumptions <strong>and</strong> how toassess uncertainties <strong>for</strong> phenomenological studiesMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 2


MC@NLO NLO-<strong>merging</strong> ConclusionsMotivationPSLOLOLOLO pp → 2 with parton showers+ exponentiation of large IR logarithms− poor hard/wide angle emission patternvs.LO pp → n matrix elements+ dominant terms <strong>for</strong> hard/wide angle rad.− breakdown of α s-expansion in log. region• MEPS schemes: CKKW-type, MLM-typeLO+(N)LL accuracy in every jet multiplicity• scale setting scheme integral to preserve PS-resummation propertiesMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 3


MC@NLO NLO-<strong>merging</strong> ConclusionsMotivationMELO LO LO LOLO pp → 2 with parton showers+ exponentiation of large IR logarithms− poor hard/wide angle emission patternvs.LO pp → n matrix elements+ dominant terms <strong>for</strong> hard/wide angle rad.− breakdown of α s-expansion in log. region• MEPS schemes: CKKW-type, MLM-typeLO+(N)LL accuracy in every jet multiplicity• scale setting scheme integral to preserve PS-resummation propertiesMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 3


MC@NLO NLO-<strong>merging</strong> ConclusionsMotivationMEPSLOLOLOLOLOLOLOLO pp → 2 with parton showers+ exponentiation of large IR logarithms− poor hard/wide angle emission patternvs.LO pp → n matrix elements+ dominant terms <strong>for</strong> hard/wide angle rad.− breakdown of α s-expansion in log. region• MEPS schemes: CKKW-type, MLM-typeLO+(N)LL accuracy in every jet multiplicity• scale setting scheme integral to preserve PS-resummation propertiesMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 3


MC@NLO NLO-<strong>merging</strong> ConclusionsMotivationMEPSLOLOLOLOLOLOLOα k+ns (µ eff ) = α k s(µ) α s (t 1 ) · · · α s (t n )LO pp → 2 with parton showers+ exponentiation of large IR logarithms− poor hard/wide angle emission patternvs.LO pp → n matrix elements+ dominant terms <strong>for</strong> hard/wide angle rad.− breakdown of α s-expansion in log. region• MEPS schemes: CKKW-type, MLM-typeLO+(N)LL accuracy in every jet multiplicity• scale setting scheme integral to preserve PS-resummation propertiesMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 3


MC@NLO NLO-<strong>merging</strong> ConclusionsMotivationPSNLONLONLO• promote LOPS to NLOPS (POWHEG, MC@NLO)→ can assess uncertainties (part I)• combine NLOPS <strong>for</strong> successive multiplicities into incl. sample (MEPS@NLO),preserve NLO+(N)LL accuracy in every jet multiplicityrestore resummation wrt. to inclusive sample (part II)• scale setting scheme integral to preserve PS-resummation propertiesMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 4


MC@NLO NLO-<strong>merging</strong> ConclusionsMotivationMEPSNLONLONLONLONLONLONLO• promote LOPS to NLOPS (POWHEG, MC@NLO)→ can assess uncertainties (part I)• combine NLOPS <strong>for</strong> successive multiplicities into incl. sample (MEPS@NLO),preserve NLO+(N)LL accuracy in every jet multiplicityrestore resummation wrt. to inclusive sample (part II)• scale setting scheme integral to preserve PS-resummation propertiesMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 4


MC@NLO NLO-<strong>merging</strong> ConclusionsMotivationMEPSNLONLONLONLONLONLONLO• promote LOPS to NLOPS (POWHEG, MC@NLO)→ can assess uncertainties (part I)α k+ns (µ eff ) = α k s(µ) α s (t 1 ) · · · α s (t n )• combine NLOPS <strong>for</strong> successive multiplicities into incl. sample (MEPS@NLO),preserve NLO+(N)LL accuracy in every jet multiplicityrestore resummation wrt. to inclusive sample (part II)• scale setting scheme integral to preserve PS-resummation propertiesMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 4


00 1100 1100 1100 1100 11000 111 00 11000 111000 111000 111000 111111000011110000 11110000 11110000 11110000 11110000 11110000 11110000 11110000 111100000 111111110000011111111000001111111100000111111110000011111000 111000 111000 111000 111000 111000 111000 111000 111000 11100 11 000 11100 11 000 11100 11 000 111110011000111110000 1100 1100 1100 1100 1100 1100 1100 1100 11000000111111000000111111000000111111000 111000 111000 111000 111000 111000 11100000011111100000011111100000 111110000001111110000001111111111100000011111100000 111111111100000011111100000 11111000000111111 00000 1111100000 11111000000000000111111 00000 11111111111 00000011111100000 11111 00000011111100000 111110000 11110000 11110000 11110000 11110000 111100000 1111100000 1111100000 1111100000 1111100000 11111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000 111 000000111111000 111000 111000 111111000000 111000 111000 111000 11100000 1111100000 1111100000 1111100000 11111000 111000 111000 111000 111000 111000 111000 111000 111000 111000 111000 111000 111000 111000 111000 111000 111000 111000 111000 11100000011111100000011111100000011111100 1100 1100 1100 1100 1100 11000 111000 111000 111000 111000 111000 11100000 1111100000 1111100000 1111100000 11111000000111111000000111111000000111111000000111111 00000 11111000000111111 00000 11111000000111111 00000 11111000000111111 00000 111110000 11110000 11110000 11110000 11110000 111100 1100 1100 1100 1100 1100 110000 11110000 11110000 1111 000 1110000 1111 000 1110000 1111 000 1110000 1111 000 111000 111000 111000 111000 111000 111000 111000 111000 111000 111000 111000 111000 11100 1100 1100 1100 1100 110000 11110000 11110000 11110000 11110000 11110000 11110000 11110000 11110000 1111000 111000 111000 111000 111000 111000 111MC@NLO NLO-<strong>merging</strong> ConclusionsThe SHERPA event generator frameworkJHEP02(2009)007• Two multi-purpose Matrix Element (ME) generatorsAMEGIC++ JHEP02(2002)044COMIX JHEP12(2008)039CS subtraction EPJC53(2008)501• A Parton Shower (PS) generatorCSSHOWER++ JHEP03(2008)038• A multiple interaction simulationà la Pythia AMISIC++ hep-ph/0601012• A cluster fragmentation moduleAHADIC++ EPJC36(2004)381• A hadron <strong>and</strong> τ decay package HADRONS++• A higher order QED generator using YFS-resummationPHOTONS++ JHEP12(2008)018Sherpa’s traditional strength is the perturbative part of the eventMarek SchönherrMEPS (CKKW), MC@NLO, MENLOPS, MEPS@NLO→ full analytic control m<strong>and</strong>atory <strong>for</strong> consistency/accuracyIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 5


••••MC@NLO NLO-<strong>merging</strong> ConclusionsShort-comings of fixed-order QCD• poor description in phase spaceregions with strongly hierarchicalscales• poor perturbative jet-modeling(at most two constituents)• no hadronisation, MPI effects•10 510 410 310 22.42.221.81.61.41.210.8T )• very pronounced in inclusive &dijet production• jet-p ⊥ turn negative in <strong>for</strong>wardregion unless y-dependent scaleis used (e.g. H (y)σ [pb]MC/dataInclusive Jet Multiplicity (R=0.4)10 710 6Sherpa+BlackHat•ATLAS dataEur.Phys.J. C71 (2011) 1763Sherpa NLOµF = µR = 1 2 HT• • • • •2 3 4 5 6NjetBern et.al. arXiv:1112.3940Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 6


••••••••MC@NLO NLO-<strong>merging</strong> ConclusionsShort-comings of fixed-order QCD• poor description in phase spaceregions with strongly hierarchicalscales•10 310 210 1110 −1 21.81.61.41.210.8T )• poor perturbative jet-modeling(at most two constituents)• no hadronisation, MPI effects• very pronounced in inclusive &dijet production• jet-p ⊥ turn negative in <strong>for</strong>wardregion unless y-dependent scaleis used (e.g. H (y)dσ/dp ⊥ [pb/GeV]MC/data10 4 Transverse momentum of the leading jet (R=0.4)Sherpa+BlackHat•ATLAS dataEur.Phys.J. C71 (2011) 1763Sherpa NLOµF = µR = 1 2 HT• • • • • • • • •100 200 300 400 500 600 700 800p ⊥(leading jet) [GeV]Bern et.al. arXiv:1112.3940Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 6


•••••••••MC@NLO NLO-<strong>merging</strong> ConclusionsShort-comings of fixed-order QCD• poor description in phase spaceregions with strongly hierarchicalscales•10 310 210 1110 −110 −21.210.80.60.40.2T ) 0• poor perturbative jet-modeling(at most two constituents)• no hadronisation, MPI effects• very pronounced in inclusive &dijet production• jet-p ⊥ turn negative in <strong>for</strong>wardregion unless y-dependent scaleis used (e.g. H (y)dσ/dp ⊥ [pb/GeV]MC/data10 5 Transverse momentum of the 2nd leading jet (R=0.4)10 4Sherpa+BlackHat•ATLAS dataEur.Phys.J. C71 (2011) 1763Sherpa NLOµF = µR = 1 2 HT• • • • • • • • • •100 200 300 400 500 600 700 800p ⊥(2nd leading jet) [GeV]Bern et.al. arXiv:1112.3940Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 6


•••••••MC@NLO NLO-<strong>merging</strong> ConclusionsShort-comings of fixed-order QCD• poor description in phase spaceregions with strongly hierarchicalscales•10 210 1110 −110 −22.521.51T ) 0.5• poor perturbative jet-modeling(at most two constituents)• no hadronisation, MPI effects• very pronounced in inclusive &dijet production• jet-p ⊥ turn negative in <strong>for</strong>wardregion unless y-dependent scaleis used (e.g. H (y)dσ/dp ⊥ [pb/GeV]MC/data10 3 Transverse momentum of the 3rd leading jet (R=0.4)Sherpa+BlackHat•ATLAS dataEur.Phys.J. C71 (2011) 1763Sherpa NLOµF = µR = 1 2 HT• • • • • • • •100 150 200 250 300 350 400 450 500p ⊥(3rd leading jet) [GeV]Bern et.al. arXiv:1112.3940Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 6


MC@NLO NLO-<strong>merging</strong> ConclusionsCase study: Inclusive jet & dijet productionDescribe wealth of experimental data with a single sample (LHC@7TeV)MC@NLO di-jet production:Höche, MS arXiv:1208.2815• µ R/F = 1 4 H T , µ Q = 1 2 p ⊥• CT10 PDF (α s (m Z ) = 0.118)• hadron level calculationfully hadronised including MPI• virtual MEs from BLACKHATGiele, Glover, KosowerNucl.Phys.B403(1993)633-670Bern et.al. arXiv:1112.3940• p j1⊥> 20 GeV, pj2⊥> 10 GeVUncertainty estimates:µ QvariationMPIvariationµ F , µ Rvariation• µ R/F ∈ [ 1 2, 2] µdefR/F• µ Q ∈ [ 1 √2, √ 2] µ defQ• MPI activity in tr. region ± 10%Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 7


•••••MC@NLO NLO-<strong>merging</strong> ConclusionsCase study: Inclusive jet & dijet productionDescribe wealth of experimental data with a single sample (LHC@7TeV)MC@NLO di-jet production:Höche, MS arXiv:1208.2815• µ R/F = 1 4 H T , µ Q = 1 2 p ⊥• CT10 PDF (α s (m Z ) = 0.118)• hadron level calculationfully hadronised including MPI• virtual MEs from BLACKHATGiele, Glover, KosowerNucl.Phys.B403(1993)633-670Bern et.al. arXiv:1112.3940• p j1⊥> 20 GeV, pj2⊥> 10 GeVUncertainty estimates:• µ R/F ∈ [ 1 2, 2] µdefR/F• µ Q ∈ [ 1 √2, √ 2] µ defQ• MPI activity in tr. region ± 10%σ [pb]MC/data10 6 Inclusive jet multiplicity (anti-kt R=0.4)10 510 410 310 21.510.5µR, µF variationµ Q variationMPI variationSherpa+BlackHat•ATLAS dataEur.Phys.J. C71 (2011) 1763Sherpa MC@NLOµR = µF = 1 4 HT, µ Q = 1 2 p ⊥• • • • •2 3 4 5 6NjetMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 7


•••••••••••••••••••••••••••••••MC@NLO NLO-<strong>merging</strong> ConclusionsCase study: Inclusive jet & dijet productiondσ/dp ⊥ [pb/GeV]10 4 Jet transverse momenta (anti-kt R=0.4)10 310 210 110 −1 110 −210 −310 −410 −54th jet×10 −3Sherpa+BlackHat•ATLAS dataEur.Phys.J. C71 (2011) 1763Sherpa MC@NLOµR = µF = 1 4 HT, µ Q = 1 2 p ⊥µR, µF variationµ Q variationMPI variation3rd jet×10 −21st jet2nd jet×10 −1100 200 300 400 500 600 700 800p ⊥ [GeV]MC/data MC/data MC/data MC/data1.41.21Höche, MS arXiv:1208.2815• • • • • • • • •0.81st jet0.61.41.21• • • • • • • • • •0.82nd jet0.61.510.51.510.5• • • • • • • •• • • •3rd jet4th jet100 200 300 400 500 600 700 800p ⊥ [GeV]Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 8


•••••••••••••••••MC@NLO NLO-<strong>merging</strong> ConclusionsCase study: Inclusive jet & dijet productionR32MC/data0.80.60.40.23 jets over 2 jets ratio (anti-kt R=0.5)1µF, µR variationµ Q variationMPI variationSherpa+BlackHat01.21.11.00.90.8• •• • • • •• •• •• ••CMS dataPhys. Lett. B 702 (2011) 336Sherpa MC@NLOµR = µF = 1 4 HT, µ Q = 1 2 p ⊥• • • • • • • • • • • • • • • • • • • • • • • • • • • • • •0.2 0.5 1 2HT [TeV]3-jet-over-2-jet ratioHöche, MS arXiv:1208.2815• determined from incl. sample2-jet rate at NLO+NLL3-jet rate at LO+LL• common scale choices→ varied simultaneously• at large H T large MPIuncertainties→ better MPI physics needed(soft QCD)• similar description of relatedATLAS observablesMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 9


••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••MC@NLO NLO-<strong>merging</strong> ConclusionsCase study: Inclusive jet & dijet productiondσ/dp ⊥ [pb/GeV]Inclusive jet transverse momenta in different rapidity ranges10 810 710 610 510 410 310 210 110 −1 110 −210 −310 −410 −510 −610 −710 −810 −910 −10Sherpa+BlackHat•ATLAS dataPhys. Rev. D86 (2012) 014022Sherpa MC@NLOµR = µF = 1 4 HT, µ Q = 1 2 p ⊥Sherpa MC@NLOµR = µF = 4 1 H(y) T , µ Q = 1 2 p ⊥µR, µF variationµ Q variationMPI variation10 2 10 3p ⊥ [GeV]MC/data MC/data MC/data MC/data MC/data MC/data MC/data1.510.51.510.51.510.51.510.51.510.51.510.51.510.5Höche, MS arXiv:1208.2815• • • • • • • • • • • • • • • •|y| < 0.32 3• • • • • • • • • • • • • • • •0.3 < |y| < 0.82 3• • • • • • • • • • • • • • • •0.8 < |y| < 1.22 3• • • • • • • • • • • • • • •1.2 < |y| < 2.12 3• • • • • • • • • • • •2.1 < |y| < 2.82 3• • • • • • • • •• • • • • •2.8 < |y| < 3.62 33.6 < |y| < 4.410 2 10 3p ⊥ [GeV]Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 10


•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••MC@NLO NLO-<strong>merging</strong> ConclusionsCase study: Inclusive jet & dijet productionHöche, MS arXiv:1208.281510 19 Dijet invariant mass spectra in different rapidity ranges m12 [TeV]dσ/dm12 [pb/TeV]10 1810 1710 1610 1510 1410 1310 1210 1110 1010 910 810 710 610 510 410 310 210 1110 −1•ATLAS dataPhys. Rev. D86 (2012) 014022Sherpa MC@NLOµR = µF = 1 4 HT, µ Q = 1 2 p ⊥Sherpa MC@NLOµR = µF = 4 1 H(y) T , µ Q = 2 1 p ⊥µR, µF variationµ Q variationMPI variationSherpa+BlackHat10 −1 1MC/data MC/data MC/data MC/data MC/data MC/data MC/data MC/data MC/data1.510.51.510.51.510.51.510.51.510.51.510.51.510.51.510.51.510.54.0 < y ∗ < 4.413.5 < y ∗ < 4.013.0 < y ∗ < 3.512.5 < y ∗ < 3.012.0 < y ∗ < 2.511.5 < y ∗ < 2.011.0 < y ∗ < 1.51• •• • • • • • • • •• • • • • • • • • • • •• • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • •0.5 < y ∗ < 1.01• • • • • • • • • • • • • • • • • • • •y ∗ < 0.510 −1 1m 12 [GeV]Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 11


MC@NLO NLO-<strong>merging</strong> ConclusionsCase study: Inclusive jet & dijet productionTry different scale• µ R/F = 1 4 H(y) TwithH (y)T= ∑ i∈jets p ⊥,i e 0.3|y boost−y i|with y boost = 1/n jets∑i∈jets y i• reduces to µ R/F = 1 2 p ⊥ e 0.3y∗with y ∗ = 1 2 |y 1 − y 2 | <strong>for</strong> 2 → 2<strong>and</strong> captures real emissiondynamicsEllis, Kunszt, Soper PRD40(1989)2188• better description of data atlarge rapidities, as expecteddescription of most other observablesworsenedneed proper description of <strong>for</strong>wardphysics (e.g. (B)FKL)MC/dataMC/dataMC/dataMC/dataMC/dataMC/dataMC/dataMC/dataMC/data1.510.51.510.51.510.51.510.51.510.51.510.51.510.51.510.51.510.54.0 < y ∗ < 4.413.5 < y ∗ < 4.013.0 < y ∗ < 3.512.5 < y ∗ < 3.012.0 < y ∗ < 2.511.5 < y ∗ < 2.011.0 < y ∗ < 1.51Höche, MS arXiv:1208.2815• •• • • • • • • • •• • • • • • • • • • • •• • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • •0.5 < y ∗ < 1.01• • • • • • • • • • • • • • • • • • • •y ∗ < 0.510 −1 1m 12 [GeV]Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 11


MC@NLO NLO-<strong>merging</strong> ConclusionsCase study: Inclusive jet & dijet productionMarek SchönherrTry different scale• µ R/F = 1 4 H(y) TwithH (y)T= ∑ i∈jets p ⊥,i e 0.3|y boost−y i|with y boost = 1/n jets∑i∈jets y i• reduces to µ R/F = 1 2 p ⊥ e 0.3y∗with y ∗ = 1 2 |y 1 − y 2 | <strong>for</strong> 2 → 2<strong>and</strong> captures real emissiondynamicsEllis, Kunszt, Soper PRD40(1989)2188• better description of data atlarge rapidities, as expecteddescription of most other observablesworsenedneed proper description of <strong>for</strong>wardphysics (e.g. (B)FKL)MC/dataMC/dataMC/dataMC/data1.41.210.80.61.41.210.80.61.510.51.510.5Höche, MS arXiv:1208.2815• • • • • • • • •1st jet• • • • • • • • • •2nd jet• • • • • • • •• • • •3rd jet4th jet100 200 300 400 500 600 700 800p ⊥ [GeV]IPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 11


•••••••••••••••••••••••••••••••••••••••••••••••••••••••MC@NLO NLO-<strong>merging</strong> ConclusionsCase study: Inclusive jet & dijet productionGap FractionInclusive jet transverse momenta in different rapidity ranges10Leading dijetselection•ATLAS dataJHEP 09 (2011) 053Sherpa MC@NLOMC/data1.510.5Höche, MS arXiv:1208.2815• • • • • • • • • • •240 GeV < ¯p ⊥ < 270 GeV8µR = µF = 1 4 HT, µ Q = 1 2 p ⊥µF, µR variationµ Q variationMPI variationMC/data1.510.5• • • • • • • • • • •210 GeV < ¯p ⊥ < 240 GeV642Sherpa+BlackHat240 GeV < ¯p ⊥ < 270 GeV+6• • • • •210 GeV < ¯p ⊥ < 240 GeV+5• • • •180 GeV < ¯p ⊥ < 210 GeV+4150 GeV < ¯p ⊥ < 180 GeV+3• • •• •• • •• • • •• •• •120 GeV < ¯p ⊥ < 150 GeV+290 GeV < ¯p ⊥ < 120 GeV+170 GeV < ¯p ⊥ < 90 GeV• •00 1 2 3 4 5 6∆yMC/data MC/data MC/data MC/data MC/data1.51• • • • • • • • • • • •0.5 180 GeV < ¯p ⊥ < 210 GeV1.51• • • • • • • • • • • •0.5 150 GeV < ¯p ⊥ < 180 GeV1.510.51.51• • • • • • • • • • • •120 GeV < ¯p ⊥ < 150 GeV• • • • • • • • • • • •90 GeV < ¯p ⊥ < 120 GeV0.51.51• • • • • • • • • • • •70 GeV < ¯p ⊥ < 90 GeV0.50 1 2 3 4 5 6∆yMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 12


•••••••••••••••••••••••••••••••••••••••••••••••••••••••••MC@NLO NLO-<strong>merging</strong> ConclusionsCase study: Inclusive jet & dijet productionGap FractionInclusive jet transverse momenta in different rapidity ranges10Forward-backwardselection•ATLAS dataJHEP 09 (2011) 053Sherpa MC@NLOMC/data1.510.5• • • • • • • • • •240 GeV < ¯p ⊥ < 270 GeVHöche, MS arXiv:1208.28158µR = µF = 1 4 HT, µ Q = 1 2 p ⊥µF, µR variationµ Q variationMPI variationMC/data1.510.5• • • • • • • • • • •210 GeV < ¯p ⊥ < 240 GeV642Sherpa+BlackHat240 GeV < ¯p ⊥ < 270 GeV+6• • •210 GeV < ¯p ⊥ < 240 GeV+5• •• • • •• •• •• • •• • •• •180 GeV < ¯p ⊥ < 210 GeV+4150 GeV < ¯p ⊥ < 180 GeV+3120 GeV < ¯p ⊥ < 150 GeV+290 GeV < ¯p ⊥ < 120 GeV+170 GeV < ¯p ⊥ < 90 GeV• •• •00 1 2 3 4 5 6∆yMC/data MC/data MC/data MC/data MC/data1.51• • • • • • • • • • • •0.5 180 GeV < ¯p ⊥ < 210 GeV1.51• • • • • • • • • • • •0.5 150 GeV < ¯p ⊥ < 180 GeV1.510.51.51• • • • • • • • • • • •120 GeV < ¯p ⊥ < 150 GeV• • • • • • • • • • • •90 GeV < ¯p ⊥ < 120 GeV0.51.51• • • • • • • • • • • •70 GeV < ¯p ⊥ < 90 GeV0.50 1 2 3 4 5 6∆yMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 13


MC@NLO NLO-<strong>merging</strong> ConclusionsCase study: Inclusive jet & dijet production• small-∆y region⇒ small uncertainty onadditional jet production• large-∆y region⇒ all uncertainties sizableMC/dataMC/data1.510.51.510.5• • • • • • • • • •240 GeV < ¯p ⊥ < 270 GeVHöche, MS arXiv:1208.2815• • • • • • • • • • •210 GeV < ¯p ⊥ < 240 GeVMarek Schönherr• small-¯p ⊥ region⇒ dominated by perturbativeuncertainties• large-¯p ⊥ region⇒ non-perturbativeuncertainties as large asperturbative uncertaintiesReduction of theoretical uncertaintynecessitates better underst<strong>and</strong>ingof soft QCD <strong>and</strong> nonfactorisablecontributionsMC/dataMC/dataMC/dataMC/dataMC/data1.510.51.510.51.510.51.510.51.51• • • • • • • • • • • •180 GeV < ¯p ⊥ < 210 GeV• • • • • • • • • • • •150 GeV < ¯p ⊥ < 180 GeV• • • • • • • • • • • •120 GeV < ¯p ⊥ < 150 GeV• • • • • • • • • • • •90 GeV < ¯p ⊥ < 120 GeV• • • • • • • • • • • •70 GeV < ¯p ⊥ < 90 GeV0.50 1 2 3 4 5 6∆yIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 13


•••••MC@NLO NLO-<strong>merging</strong> ConclusionsCase study: Inclusive jet & dijet productiondE/dη [GeV]MC/dataForward energy flow in dijet events, p jets⊥ > 20 GeV70060050040030020010001.41.210.8•CMS dataJHEP 1111 (2011) 148Sherpa MC@NLOµR = µF = 1 4 HT, µ Q = 1 2 p ⊥Sherpa+BlackHatµF, µR variationµ Q variationMPI variation• • • • •3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8ηForward energy flowHöche, MS arXiv:1208.2815• energy flow in rapidity intervalper event with a centralback-to-back di-jet pair• normalisation reduces µ R/F <strong>and</strong>µ Q dependence• dominated by MPI modelinguncertaintyMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 14


••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••MC@NLO NLO-<strong>merging</strong> ConclusionsResults: e + e − → hadrons1/σ dσ/dln(y23)MC/data1/σ dσ/dln(y45)MC/data10 −1 Durham jet resolution 3 → 2 (E CMS = 91.2 GeV)10 −210 −310 −410 −510 −61.41.210.80.6• • • • • • • • • • • • • • • • • • • • • • • • •• ALEPH dataMePs@NloMePs@Nlo µ/2...2µMEnloPSMEnloPS µ/2...2µMc@Nlo• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •1 2 3 4 5 6 7 8 9 10−ln(y23)Durham jet resolution 5 → 4 (E CMS = 91.2 GeV)• • • • • • • •10 −110 −210 −310 −410 −51.41.210.80.6Marek Schönherr• ALEPH dataMePs@NloMePs@Nlo µ/2...2µMEnloPSMEnloPS µ/2...2µMc@Nlo• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •4 5 6 7 8 9 10 11 12−ln(y45)• •• • •1/σ dσ/dln(y34)MC/data1/σ dσ/dln(y56)MC/dataDurham jet resolution 4 → 3 (E CMS = 91.2 GeV)• • • • • • • •10 −110 −210 −310 −410 −51.41.210.80.6• ALEPH dataMePs@NloMePs@Nlo µ/2...2µMEnloPSMEnloPS µ/2...2µMc@Nlo• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •2 3 4 5 6 7 8 9 10 11−ln(y34)Durham jet resolution 6 → 5 (E CMS = 91.2 GeV)• • • • • •10 −110 −210 −310 −410 −51.41.210.80.6• ALEPH dataMePs@NloMePs@Nlo µ/2...2µMEnloPSMEnloPS µ/2...2µMc@Nlo• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •4 5 6 7 8 9 10 11 12 13−ln(y56)• •• •• •ee → hadrons(2,3,4 @ NLO;5,6 @ LO)Jet resolutions(Durham measure)• MEPS@NLO vsMENLOPS• at y ≪ 1dominated byhadr. effects→ needsretuning• much improvedren. scaledependenceALEPH dataEPJC35(2004)457-486IPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 16


••••••••••••••••••••••••••••••••••••••••MC@NLO NLO-<strong>merging</strong> ConclusionsResults: e + e − → hadronsALEPH data EPJC35(2004)457-4861/σ dσ/dT10 1 Thrust (E CMS = 91.2 GeV)10 −1 110 −210 −3• •• •• •• •• • •• • • • • • •• ••ALEPH dataMePs@NloMePs@Nlo µ/2...2µMEnloPSMEnloPS µ/2...2µMc@Nlo1/σ dσ/dS10 1 Sphericity (E CMS = 91.2 GeV)10 −1 110 −210 −310 −4• • • • • • • • • • • • • • • • • • • • • • ••ALEPH dataMePs@NloMePs@Nlo µ/2...2µMEnloPSMEnloPS µ/2...2µMc@Nlo• •• •MC/data1.41.21• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •0.80.60.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95TMC/data1.41.21• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •0.80.60 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9SMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 17


••••••••••••MC@NLO NLO-<strong>merging</strong> ConclusionsResults: pp → W+jetsσ(W + ≥ Njet jets) [pb]10 4 Inclusive Jet Multiplicity10 310 210 1p jet⊥ > 30GeVATLAS dataMePs@NloMePs@Nlo µ/2...2µMEnloPSMEnloPS µ/2...2µMc@Nlop jet⊥ > 20GeV(×10)0 1 2 3 4 5Njetpp → W +jets (0,1,2 @ NLO; 3,4 @ LO)• µ R/F ∈ [ 1 2 , 2] µ defscale uncertainty much reduced• NLO dependence <strong>for</strong>pp → W +0,1,2 jetsLO dependence <strong>for</strong>pp → W +3,4 jets• Q cut = 30 GeV• good data descriptionATLAS data Phys.Rev.D85(2012)092002Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 18


••••••••••••••••••••••••MC@NLO NLO-<strong>merging</strong> ConclusionsResults: pp → W+jetsdσ/dp ⊥ [pb/GeV]MC/dataMC/data10 3 First Jet p ⊥10 210 110 −1 110 −210 −310 −41.510.51.510.5W+ ≥ 1 jet (×1)W+ ≥ 2 jets (×0.1)• •W+ ≥ 3 jets (×0.01)• ••ATLAS dataMePs@NloMePs@Nlo µ/2...2µMEnloPSMEnloPS µ/2...2µMc@Nlo• •• • • • • • • • • •• • • • • • • • • •pp → W +jets (0,1,2 @ NLO; 3,4 @ LO)• µ R/F ∈ [ 1 2 , 2] µ defscale uncertainty much reduced• NLO dependence <strong>for</strong>pp → W +0,1,2 jetsLO dependence <strong>for</strong>pp → W +3,4 jets• Q cut = 30 GeV• good data descriptionATLAS data Phys.Rev.D85(2012)092002MC/data1.510.5• • • • • • • • • •50 100 150 200 250 300Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 18


•••••••••••••••••••••••••••••MC@NLO NLO-<strong>merging</strong> ConclusionsResults: pp → W+jetsATLAS data Phys.Rev.D85(2012)092002∆R Distance of Leading JetsAzimuthal Distance of Leading Jetsdσ/d∆R [pb]1008060•ATLAS dataMePs@NloMePs@Nlo µ/2...2µMEnloPSMEnloPS µ/2...2µMc@Nlodσ/d∆φ [pb]14012010080•ATLAS dataMePs@NloMePs@Nlo µ/2...2µMEnloPSMEnloPS µ/2...2µMc@Nlo4060202• •• • • • •40202• •• •• • • •MC/data1.510.5• • • • • • • • • • • • • • • • • • • • • • • • • • • •MC/data1.510.5• • • • • • • • • • • • • • • •01 2 3 4 5 6 7 8∆R(First Jet, Second Jet)00 0.5 1 1.5 2 2.5 3∆φ(First Jet, Second Jet)Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 19


MC@NLO NLO-<strong>merging</strong> ConclusionsResults: pp → h+jetsdσ/dp (H)⊥ [fb/GeV]Ratio10 −1 110 −21.41.210.80.6p ⊥ distribution of the Higgs bosonPRELIMINARYHqT (NLO+NNLL)Sherpa MC@NLOSherpa MEPS@NLO0 20 40 60 80 100p (H)⊥ [GeV]pp → h+jets (0,1 @ NLO; 2 @ LO)• µ R/F ∈ [ 1 2 , 2] µ CKKWscale uncertainty much reduced• NLO dependence <strong>for</strong>pp → h+0,1 jetsLO dependence <strong>for</strong> pp → h+2jets• Q cut = 30 GeV• HqT: µ R/F ∈ [ 1 2 , 2] · 12 m hµ expR∝ ph ⊥Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 20


MC@NLO NLO-<strong>merging</strong> ConclusionsResults: pp → h+jetsdσ/dp (j 1)⊥ [fb/GeV]Ratiop ⊥ distribution of hardest jet: p (j 1)⊥10 −110 −210 −310 −41.41.210.80.6PRELIMINARYSherpa MC@NLOSherpa MEPS@NLO100 200 300 400 500p (j 1)⊥ [GeV]pp → h+jets (0,1 @ NLO; 2 @ LO)• µ R/F ∈ [ 1 2 , 2] µ CKKWscale uncertainty much reduced• NLO dependence <strong>for</strong>pp → h+0,1 jetsLO dependence <strong>for</strong> pp → h+2jets• Q cut = 30 GeV• HqT: µ R/F ∈ [ 1 2 , 2] · 12 m hµ expR∝ ph ⊥Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 20


MC@NLO NLO-<strong>merging</strong> ConclusionsConclusions• SHERPA’s MC@NLO <strong>for</strong>mulation allows full evaluation of perturbativeuncertainties (µ F , µ R , µ Q )• MC@NLO can be easily combined with MEPS → MENLOPS• MC@NLO is a necessary input <strong>for</strong> NLO <strong>merging</strong> → MEPS@NLO• MEPS@NLO gives full benefits of NLO calculations (scale dependences,normalisations) while also retaining full (N)LL accuracy of parton shower⇒ will be included in SHERPA-2.0.α (upcoming)Current release: SHERPA-1.4.2http://sherpa.hep<strong>for</strong>ge.org• better description of perturbative QCD is only part of the story to achievehigher precission <strong>for</strong> (hard) collider observablesMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 21


MC@NLO NLO-<strong>merging</strong> ConclusionsThank you <strong>for</strong> your attention!Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 22


•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••MC@NLO NLO-<strong>merging</strong> ConclusionsCase study: Inclusive jet & dijet production1/σ dσ/d∆φ [pb]Dijet azimuthal decorrelation in various p lead•CMS data10 5 Phys. Rev. Lett. 106 (2011) 122003Sherpa MC@NLOµR = µF = 4 1 HT, µ Q = 2 1 p ⊥10 4µR, µF variationµ Q variationMPI variation10 3×10 4×10 3MC/data MC/data1.510.51.510.5Höche, MS arXiv:1208.2815• • • • • • • • • •300 GeV < p lead⊥• • • • • • • • • • • • • • •200 GeV < p lead⊥ < 300 GeV10 210 1110 −110 −2⊥ bins ∆φ×10 2×10 1×10 0Sherpa+BlackHatMC/data MC/data MC/data1.510.51.510.51.510.5• • • • • • • • • • • • • • • • • • • •140 GeV < p lead⊥ < 200 GeV• • • • • • • • • • • • • • • • • • • •110 GeV < p lead⊥ < 140 GeV• • • • • • • • • • • • • • • • • • • •80 GeV < p lead⊥ < 110 GeV1.6 1.8 2 2.2 2.4 2.6 2.8 31.6 1.8 2 2.2 2.4 2.6 2.8 3∆φMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 23


••••••••••••••••••••••••••••••MC@NLO NLO-<strong>merging</strong> ConclusionsCase study: Inclusive jet & dijet production1/N dN/dln(τ ⊥,C) [pb]Central transverse thrust in different leading jet p ⊥ ranges1.41.21•CMS dataPhys. Rev. Lett. 106 (2011) 122003Sherpa MC@NLOµR = µF = 1 4 HT, µ Q = 1 2 p ⊥µR, µF variationµ Q variationMPI variationMC/data1.41.210.80.6Höche, MS arXiv:1208.2815• • • • • • • • • • • •200 GeV < p jet 1⊥• •1.40.8• •1.20.6200 GeV < p jet 1⊥+0.7MC/data10.8• • • • • • • • • • • • • •• •0.6125 GeV < p jet 1⊥ < 200 GeV0.4125 GeV < p jet 1⊥ < 200 GeV+0.41.41.20.2090 GeV < p jet 1⊥ < 125 GeV+0.1• • •Sherpa+BlackHat-12 -10 -8 -6 -4 -2ln(τ ⊥,C)MC/data10.80.6• • • • • • • • • • • • •90 GeV < p jet 1⊥ < 125 GeV-12 -10 -8 -6 -4 -2ln(τ ⊥,C)Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 24


•••••••••••••••••••••••••••••••••••••MC@NLO NLO-<strong>merging</strong> ConclusionsCase study: Inclusive jet & dijet production1/N dN/dln(T m,C) [pb]Central transverse thrust minor in different leading jet p ⊥ ranges1.41.21•CMS dataPhys. Rev. Lett. 106 (2011) 122003Sherpa MC@NLOµR = µF = 1 4 HT, µ Q = 1 2 p ⊥µR, µF variationµ Q variationMPI variationMC/data1.41.210.80.61.4Höche, MS arXiv:1208.2815• • • • • • • • • • • •200 GeV < p jet 1⊥0.81.20.6200 GeV < p jet 1⊥+0.7MC/data10.8• • • • • • • • • • • • • •0.4125 GeV < p jet 1⊥ < 200 GeV+0.4• •0.61.41.2125 GeV < p jet 1⊥ < 200 GeV0.2090 GeV < p jet 1⊥ < 125 GeV+0.1Sherpa+BlackHat-6 -5 -4 -3 -2 -1ln(T m,C)MC/data10.80.6• • • • • • • • • • • • •90 GeV < p jet 1⊥ < 125 GeV-6 -5 -4 -3 -2 -1ln(T m,C)Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 25


MC@NLO NLO-<strong>merging</strong> ConclusionsGeneral NLO calculations• NLO calculation with subtraction methods∫]〈O〉 NLO = dΦ B[B(Φ B ) + V(Φ B ) + I(Φ B ) O(Φ B )∫ [+ dΦ R − ∑ i∫]+ dΦ R[R(Φ R )O(Φ R )]D (S)i (Φ R ) O(Φ Bi )• introduce second set of subtraction functions D (A)i• D (A)i<strong>and</strong> D (S)ineed to have same momentum maps <strong>and</strong> IR limit- full spin-correlations in collinear limit- full colour-correlations in soft limitMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 26


MC@NLO NLO-<strong>merging</strong> ConclusionsGeneral NLO calculations• NLO calculation with subtraction methods∫]〈O〉 NLO = dΦ B[B(Φ B ) + V(Φ B ) + I(Φ B ) O(Φ B )∫+∫+dΦ R[ ∑dΦ R[R(Φ R ) − ∑ iiD (A)i (Φ R ) O(Φ Bi ) − ∑ i]D (A)i (Φ R ) O(Φ R ) + 〈O〉 (A)corr• introduce second set of subtraction functions D (A)i• D (A)i<strong>and</strong> D (S)i]D (S)i (Φ R ) O(Φ Bi )need to have same momentum maps <strong>and</strong> IR limit- full spin-correlations in collinear limit- full colour-correlations in soft limit〈O〉 (A)corr = ∫ ∑ [dΦ R i D(A) i O(ΦR ) − O(Φ Bi ) ]Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 26


MC@NLO NLO-<strong>merging</strong> ConclusionsGeneral NLO calculations• NLO calculation with subtraction methods∫]〈O〉 NLO = dΦ B[B(Φ B ) + V(Φ B ) + I(Φ B ) O(Φ B )+ ∑ ∫ [dΦ R D (A)i (Φ R ) − D (S)i (Φ R )i∫+dΦ R[R(Φ R ) − ∑ i]D (A)i (Φ R ) O(Φ R ) + 〈O〉 (A)corr]O(Φ Bi )• introduce second set of subtraction functions D (A)i• D (A)i<strong>and</strong> D (S)ineed to have same momentum maps <strong>and</strong> IR limit- full spin-correlations in collinear limit- full colour-correlations in soft limitMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 26


MC@NLO NLO-<strong>merging</strong> ConclusionsGeneral NLO calculations• NLO calculation with subtraction methods∫]〈O〉 NLO = dΦ B[B(Φ B ) + V(Φ B ) + I(Φ B ) O(Φ B )+ ∑ ∫ [dΦ Bi dΦ i 1 D (A)ii∫ [+ dΦ R R(Φ R ) − ∑ i](Φ Bi , Φ i 1) − D (S)i (Φ Bi , Φ i 1) O(Φ Bi )]D (A)i (Φ R ) O(Φ R ) + 〈O〉 (A)corr• introduce second set of subtraction functions D (A)i• D (A)i<strong>and</strong> D (S)ineed to have same momentum maps <strong>and</strong> IR limit- full spin-correlations in collinear limit- full colour-correlations in soft limitMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 26


MC@NLO NLO-<strong>merging</strong> ConclusionsGeneral NLO calculations• NLO calculation with subtraction methods∫]〈O〉 NLO = dΦ B[B(Φ B ) + V(Φ B ) + I(Φ B ) O(Φ B )∫∑∫ [+ dΦ B∫+idΦ i 1dΦ R[R(Φ R ) − ∑ iD (A)i](Φ B , Φ i 1) − D (S)i (Φ B , Φ i 1) O(Φ B )]D (A)i (Φ R ) O(Φ R ) + 〈O〉 (A)corr• introduce second set of subtraction functions D (A)i• D (A)i<strong>and</strong> D (S)ineed to have same momentum maps <strong>and</strong> IR limit- full spin-correlations in collinear limit- full colour-correlations in soft limitMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 26


MC@NLO NLO-<strong>merging</strong> ConclusionsGeneral NLO calculations• NLO calculation with subtraction methods∫〈O〉 NLO = dΦ ¯B(A) B (Φ B ) O(Φ B )∫+dΦ R[R(Φ R ) − ∑ i]D (A)i (Φ R ) O(Φ R ) + 〈O〉 (A)corr• introduce second set of subtraction functions D (A)i• D (A)i<strong>and</strong> D (S)ineed to have same momentum maps <strong>and</strong> IR limit- full spin-correlations in collinear limit- full colour-correlations in soft limitMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 26


MC@NLO NLO-<strong>merging</strong> ConclusionsParton showers <strong>and</strong> resummation• parton shower/resummation kernel K i (Φ 1 ), Φ 1 = {t, z, φ}→ K i incorporates divergent propagator <strong>and</strong> DGLAP splitting kernels〈O〉 PS =∫dΦ B B(Φ B ) O(Φ B )=∫dΦ B B(Φ B ) O(Φ B ) +• Sudakov <strong>for</strong>m factor ∆ (K) (t, t ′ ) = exp[− ∫ ]t ′dΦt 1 K(Φ 1 )resummation features• 〈O〉 (K)corr generated by one parton shower stepcontainsMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 27


MC@NLO NLO-<strong>merging</strong> ConclusionsParton showers <strong>and</strong> resummation• parton shower/resummation kernel K i (Φ 1 ), Φ 1 = {t, z, φ}→ K i incorporates divergent propagator <strong>and</strong> DGLAP splitting kernels〈O〉 PS ==∫∫[∫dΦ B B(Φ B ) ∆ (K) (t 0 , µ 2 F ) O(Φ B ) +dΦ B B(Φ B ) O(Φ B ) +µ 2 Ft 0dΦ 1 K(Φ 1 ) ∆ (K) (t, µ 2 F ) O(Φ R )]• Sudakov <strong>for</strong>m factor ∆ (K) (t, t ′ ) = exp[− ∫ ]t ′dΦt 1 K(Φ 1 )resummation features• 〈O〉 (K)corr generated by one parton shower stepcontainsMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 27


MC@NLO NLO-<strong>merging</strong> ConclusionsParton showers <strong>and</strong> resummation• parton shower/resummation kernel K i (Φ 1 ), Φ 1 = {t, z, φ}→ K i incorporates divergent propagator <strong>and</strong> DGLAP splitting kernels〈O〉 PS ==∫∫[∫dΦ B B(Φ B ) ∆ (K) (t 0 , µ 2 F ) O(Φ B ) +dΦ B B(Φ B ) O(Φ B ) +∫µ 2 Fµ 2 Ft 0dΦ R B · K(Φ 1 )t 0dΦ 1 K(Φ 1 ) ∆ (K) (t, µ 2 F ) O(Φ R )[]O(Φ R ) − O(Φ B ) + O(αs)2]• Sudakov <strong>for</strong>m factor ∆ (K) (t, t ′ ) = exp[− ∫ ]t ′dΦt 1 K(Φ 1 )resummation features• 〈O〉 (K)corr generated by one parton shower stepcontainsMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 27


MC@NLO NLO-<strong>merging</strong> ConclusionsParton showers <strong>and</strong> resummation• parton shower/resummation kernel K i (Φ 1 ), Φ 1 = {t, z, φ}→ K i incorporates divergent propagator <strong>and</strong> DGLAP splitting kernels〈O〉 PS ==∫∫[∫dΦ B B(Φ B ) ∆ (K) (t 0 , µ 2 F ) O(Φ B ) +dΦ B B(Φ B ) O(Φ B ) + 〈O〉 (K)corr + O(α 2 s)µ 2 Ft 0dΦ 1 K(Φ 1 ) ∆ (K) (t, µ 2 F ) O(Φ R )]• Sudakov <strong>for</strong>m factor ∆ (K) (t, t ′ ) = exp[− ∫ ]t ′dΦt 1 K(Φ 1 )resummation features• 〈O〉 (K)corr generated by one parton shower stepcontainsMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 27


MC@NLO NLO-<strong>merging</strong> ConclusionsGeneral <strong>NLO+PS</strong> <strong>matching</strong>∫[〈O〉 <strong>NLO+PS</strong> = dΦ ¯B(A) B (Φ B ) ∆ (A) (t 0 , µ 2 Q) O(Φ B )∫+dΦ R[R(Φ R ) − ∑ i∫ µ2QD (A) (Φ B , Φ 1 )+ dΦ 1t 0B(Φ B )]D (A)i (Φ R )O(Φ R ) + 〈O〉 (A)corr∆ (A) (t, µ 2 Q) O(Φ R )]• use D (A)i as resummation kernels• resummation phase space limited by µ 2 Q = t max→ starting scale of parton shower evolution→ should be of the order of the scale of the hard interaction• POWHEG <strong>and</strong> MC@NLO now differ in choice of D (A)i <strong>and</strong> µ 2 QMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 28


MC@NLO NLO-<strong>merging</strong> ConclusionsGeneral <strong>NLO+PS</strong> <strong>matching</strong>∫[〈O〉 <strong>NLO+PS</strong> = dΦ ¯B(A) B (Φ B ) ∆ (A) (t 0 , µ 2 Q) O(Φ B )∫+dΦ R[R(Φ R ) − ∑ i∫ µ2QD (A) (Φ B , Φ 1 )+ dΦ 1t 0B(Φ B )]D (A)i (Φ R )O(Φ R )∆ (A) (t, µ 2 Q) O(Φ R )]• use D (A)ias resummation kernels• resummation phase space limited by µ 2 Q = t max→ starting scale of parton shower evolution→ should be of the order of the scale of the hard interaction• POWHEG <strong>and</strong> MC@NLO now differ in choice of D (A)iMarek Schönherr∆ (A) (t, t ′ ) = exp[− ∫ ]t ′dΦt 1 D (A) /B= exp [ −α s log 2 t t+ . . . ]′<strong>and</strong> µ 2 QIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 28


MC@NLO NLO-<strong>merging</strong> ConclusionsGeneral <strong>NLO+PS</strong> <strong>matching</strong>∫[〈O〉 <strong>NLO+PS</strong> = dΦ ¯B(A) B (Φ B ) ∆ (A) (t 0 , µ 2 Q) O(Φ B )∫+dΦ R[R(Φ R ) − ∑ i∫ µ2QD (A) (Φ B , Φ 1 )+ dΦ 1t 0B(Φ B )]D (A)i (Φ R )O(Φ R )∆ (A) (t, µ 2 Q) O(Φ R )]• use D (A)ias resummation kernels• resummation phase space limited by µ 2 Q = t max→ starting scale of parton shower evolution→ should be of the order of the scale of the hard interaction• POWHEG <strong>and</strong> MC@NLO now differ in choice of D (A)iMarek Schönherr∆ (A) (t, t ′ ) = exp[− ∫ ]t ′dΦt 1 D (A) /B= exp [ −α s log 2 t t+ . . . ]′<strong>and</strong> µ 2 QIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 28


MC@NLO NLO-<strong>merging</strong> ConclusionsPOWHEGSpecial choices:Nason JHEP11(2004)040, Frixione et.al. JHEP11(2007)070• exponentiation kernel D (A)i = ρ i · R with ρ i = D (S)i / ∑ i D(S) i→ each ρ i · R contains only one divergence structure as defined by D (S)iConsequences:• no H-events, resummation scale µ 2 Q at kinematic limit 1 2 s had• in CS-subtraction instabilities in ρ i due to different cuts on R <strong>and</strong> D (S)i• exponentiation of R through matrix element corrected parton showerNLO accuracy depends crucially on presence of exact same terms insubtraction <strong>and</strong> parton showerModifications:• introduce suppression function f(p ⊥ ) = h 2 /(p 2 ⊥ + h2 ) Alioli et.al. JHEP04(2009)002→ D (A)i = ρ i · R · f(p ⊥ )→ continuous dampening of resummation kernel at large p ⊥Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 29


MC@NLO NLO-<strong>merging</strong> ConclusionsPOWHEGSpecial choices:Nason JHEP11(2004)040, Frixione et.al. JHEP11(2007)070• exponentiation kernel D (A)i = ρ i · R with ρ i = D (S)i / ∑ i D(S) i→ each ρ i · R contains only one divergence structure as defined by D (S)iConsequences:• no H-events, resummation scale µ 2 Q at kinematic limit 1 2 s had• in CS-subtraction instabilities in ρ i due to different cuts on R <strong>and</strong> D (S)i• exponentiation of R through matrix element corrected parton showerNLO accuracy depends crucially on presence of exact same terms insubtraction <strong>and</strong> parton showerModifications:• introduce suppression function f(p ⊥ ) = h 2 /(p 2 ⊥ + h2 ) Alioli et.al. JHEP04(2009)002→ D (A)i = ρ i · R · f(p ⊥ )→ continuous dampening of resummation kernel at large p ⊥Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 29


MC@NLO NLO-<strong>merging</strong> ConclusionsPOWHEGSpecial choices:Nason JHEP11(2004)040, Frixione et.al. JHEP11(2007)070• exponentiation kernel D (A)i = ρ i · R with ρ i = D (S)i / ∑ i D(S) i→ each ρ i · R contains only one divergence structure as defined by D (S)iConsequences:• no H-events, resummation scale µ 2 Q at kinematic limit 1 2 s had• in CS-subtraction instabilities in ρ i due to different cuts on R <strong>and</strong> D (S)i• exponentiation of R through matrix element corrected parton showerNLO accuracy depends crucially on presence of exact same terms insubtraction <strong>and</strong> parton showerModifications:• introduce suppression function f(p ⊥ ) = h 2 /(p 2 ⊥ + h2 ) Alioli et.al. JHEP04(2009)002→ D (A)i = ρ i · R · f(p ⊥ )→ continuous dampening of resummation kernel at large p ⊥Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 29


MC@NLO NLO-<strong>merging</strong> ConclusionsMC@NLO – traditional schemeSpecial choices:• exponentiation kernelConsequences:Frixione, Webber JHEP06(2002)029D (A)i = B · K i with K i parton shower kernels• resummation scale µ 2 Q = t max parton shower starting scale• in general, D (A)i only leading colour approximation <strong>and</strong> spin-avaragedNLO accuracy depends crucially on correctness of IR-limitModifications:• introduce soft modification function f(p ⊥ ) such thatFrixione, Nason, Webber JHEP08(2003)007∑B · Ki · f(p ⊥ )• f(p ⊥ ) process dependent in generalp ⊥ → 0−→∑ D (S)iMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 30


MC@NLO NLO-<strong>merging</strong> ConclusionsMC@NLO – traditional schemeSpecial choices:• exponentiation kernelConsequences:Frixione, Webber JHEP06(2002)029D (A)i = B · K i with K i parton shower kernels• resummation scale µ 2 Q = t max parton shower starting scale• in general, D (A)i only leading colour approximation <strong>and</strong> spin-avaragedNLO accuracy depends crucially on correctness of IR-limitModifications:• introduce soft modification function f(p ⊥ ) such thatFrixione, Nason, Webber JHEP08(2003)007∑B · Ki · f(p ⊥ )• f(p ⊥ ) process dependent in generalp ⊥ → 0−→∑ D (S)iMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 30


MC@NLO NLO-<strong>merging</strong> ConclusionsMC@NLO – traditional schemeSpecial choices:• exponentiation kernelConsequences:Frixione, Webber JHEP06(2002)029D (A)i = B · K i with K i parton shower kernels• resummation scale µ 2 Q = t max parton shower starting scale• in general, D (A)i only leading colour approximation <strong>and</strong> spin-avaragedNLO accuracy depends crucially on correctness of IR-limitModifications:• introduce soft modification function f(p ⊥ ) such thatFrixione, Nason, Webber JHEP08(2003)007∑B · Ki · f(p ⊥ )• f(p ⊥ ) process dependent in generalp ⊥ → 0−→∑ D (S)iMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 30


MC@NLO NLO-<strong>merging</strong> ConclusionsMC@NLO – D (A)i= D (S)ischemeSpecial choices:• exponentiation kernelConsequences:D (A)i• simplification of ¯B (A) -integral= D (S)i Θ(µ 2 Q − t)SH, FK, MS, FS arXiv:1111.1220• resummation scale µ 2 Q = t max set by phase space limitation of subtractionterms→ subtraction constrained in parton shower t needed <strong>for</strong> physicalresummation• trivially NLO correct independent of the process without arbitraryparameter choicesMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 31


MC@NLO NLO-<strong>merging</strong> ConclusionsMC@NLO – D (A)i= D (S)ischemeSpecial choices:• exponentiation kernelConsequences:D (A)i• simplification of ¯B (A) -integral= D (S)i Θ(µ 2 Q − t)SH, FK, MS, FS arXiv:1111.1220• resummation scale µ 2 Q = t max set by phase space limitation of subtractionterms→ subtraction constrained in parton shower t needed <strong>for</strong> physicalresummation• trivially NLO correct independent of the process without arbitraryparameter choicesMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 31


MC@NLO NLO-<strong>merging</strong> ConclusionsMC@NLO – D (A)i= D (S)ischemeImplemented in SHERPA – full-colour first parton shower emissionTricky point: D (A)i < 0 e.g. <strong>for</strong> subleading colour dipolesUse modified Sudakov veto algorithmSH, FK, MS, FS arXiv:1111.1220• Assume f(t) as function to be generated, <strong>and</strong> overestimate g(t)St<strong>and</strong>ard probability <strong>for</strong> one acceptance with n rejections{ ∫f(t)t1} n[g(t) g(t) exp ∏ ∫ tn+1(− d¯t g(¯t)dt i 1 − f(t ) { ∫ ti+1} ]i)g(t i ) exp − d¯t g(¯t)g(t i )ti=1ti−1ti• Can split weight into MC <strong>and</strong> analytic part using auxiliary function h(t){f(t)g(t) h(t) exp −∫ t1w(t, t 1 , . . . , t n ) = g(t)h(t)t} n[∏ ∫ tn+1d¯t h(¯t)n∏i=1i=1ti−1g(t i ) h(t i ) − f(t i )h(t i ) g(t i ) − f(t i )(dt i 1 − f(t ) {i)h(t i ) exp −g(t i )∫ ti+1ti} ]d¯t h(¯t)Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 32


MC@NLO NLO-<strong>merging</strong> ConclusionsMC@NLO – D (A)i= D (S)ischemeImplemented in SHERPA – full-colour first parton shower emissionTricky point: D (A)i < 0 e.g. <strong>for</strong> subleading colour dipolesUse modified Sudakov veto algorithmSH, FK, MS, FS arXiv:1111.1220• Assume f(t) as function to be generated, <strong>and</strong> overestimate g(t)St<strong>and</strong>ard probability <strong>for</strong> one acceptance with n rejections{ ∫f(t)t1} n[g(t) g(t) exp ∏ ∫ tn+1(− d¯t g(¯t)dt i 1 − f(t ) { ∫ ti+1} ]i)g(t i ) exp − d¯t g(¯t)g(t i )ti=1ti−1ti• Can split weight into MC <strong>and</strong> analytic part using auxiliary function h(t){f(t)g(t) h(t) exp −∫ t1w(t, t 1 , . . . , t n ) = g(t)h(t)t} n[∏ ∫ tn+1d¯t h(¯t)n∏i=1i=1ti−1g(t i ) h(t i ) − f(t i )h(t i ) g(t i ) − f(t i )(dt i 1 − f(t ) {i)h(t i ) exp −g(t i )∫ ti+1ti} ]d¯t h(¯t)Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 32


MC@NLO NLO-<strong>merging</strong> ConclusionsMC@NLO – D (A)i= D (S)ischemeImplemented in SHERPA – full-colour first parton shower emissionTricky point: D (A)i < 0 e.g. <strong>for</strong> subleading colour dipolesUse modified Sudakov veto algorithmSH, FK, MS, FS arXiv:1111.1220• Can split weight into MC <strong>and</strong> analytic part using auxiliary function h(t){f(t)g(t) h(t) exp −∫ t1w(t, t 1 , . . . , t n ) = g(t)h(t)Identify f(t), g(t), h(t):t} n[∏ ∫ tn+1d¯t h(¯t)n∏i=1i=1ti−1g(t i ) h(t i ) − f(t i )h(t i ) g(t i ) − f(t i )• f(t) determined by MC@NLO ⇒ D (A)i• h(t) determined by parton shower ⇒ D (PS)i• g(t) can be chosen freely ⇒ const. · fconstraints: sign(f) = sign(g), |f| ≤ |g|(dt i 1 − f(t ) {i)h(t i ) exp −g(t i )∫ ti+1ti} ]d¯t h(¯t)Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 32


MC@NLO NLO-<strong>merging</strong> ConclusionsNLO <strong>merging</strong>LO <strong>merging</strong>:• LO accuracy <strong>for</strong> n ≤ n max -jet processes• preserve LL accuracy of the parton showerNLO <strong>merging</strong>:• NLO accuracy <strong>for</strong> n ≤ n max -jet processes• preserve LL accuracy of the parton showerCatani, Krauss, Kuhn, Webber JHEP11(2001)063Lönnblad JHEP05(2002)046Höche, Krauss, Schumann, Siegert JHEP05(2009)053Hamilton, Richardson, Tully JHEP11(2009)038Lönnblad, Prestel JHEP03(2012)019Lavesson, Lönnblad JHEP12(2008)070Höche, Krauss, MS, Siegert arXiv:1207.5030Gehrmann, Höche, Krauss, MS, Siegert arXiv:1207.5031Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 33


MC@NLO NLO-<strong>merging</strong> ConclusionsNLO <strong>merging</strong>〈O〉 MEPS@NLO∫=∫+∫+dΦ n ¯B(A) n[∆ (A)n (t 0 , µ 2 Q) O n∫ µ2Q+t 0[dΦ n+1 R n − D (A)dΦ n+1 ¯B(A) n+1×[[dΦ D (A)n1nB nHöche, Krauss, MS, Siegert arXiv:1207.5030Gehrmann, Höche, Krauss, MS, Siegert arXiv:1207.5031∆ (A)n (t n+1 , µ 2 Q) Θ(Q cut − Q) O n+1]]Θ(Q cut − Q) ∆ (PS)n (t n+1 , µ 2 Q) O n+1∫ ]µ2QdΦ 1 K n¯B n+1 t n+11 + B n+1∆ (A)n+1 (t 0, t n+1 ) O n+1 +∫ tn+1t 0∆ (PS)n (t n+1 , µ 2 Q) Θ(Q − Q cut )dΦ 1D (A)n+1B n+1∆ (A)n+1 (t n+2, t n+1 ) O n+2]∫ []+ dΦ n+2 R n+1 − D (A)n+1 ∆ (PS)n+1 (t n+2, t n+1 ) ∆ (PS)n (t n+1 , µ 2 Q) Θ(Q − Q cut ) O n+2Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 34


MC@NLO NLO-<strong>merging</strong> ConclusionsNLO <strong>merging</strong>〈O〉 MEPS@NLO∫=∫+∫+dΦ n ¯B(A) n[∆ (A)n (t 0 , µ 2 Q) O n∫ µ2Q+t 0[dΦ n+1 R n − D (A)dΦ n+1 ¯B(A) n+1×[[dΦ D (A)n1nB nHöche, Krauss, MS, Siegert arXiv:1207.5030Gehrmann, Höche, Krauss, MS, Siegert arXiv:1207.5031∆ (A)n (t n+1 , µ 2 Q) Θ(Q cut − Q) O n+1]]Θ(Q cut − Q) ∆ (PS)n (t n+1 , µ 2 Q) O n+1∫ ]µ2QdΦ 1 K n¯B n+1 t n+11 + B n+1∆ (A)n+1 (t 0, t n+1 ) O n+1 +∫ tn+1t 0∆ (PS)n (t n+1 , µ 2 Q) Θ(Q − Q cut )dΦ 1D (A)n+1B n+1∆ (A)n+1 (t n+2, t n+1 ) O n+2]∫ []+ dΦ n+2 R n+1 − D (A)n+1 ∆ (PS)n+1 (t n+2, t n+1 ) ∆ (PS)n (t n+1 , µ 2 Q) Θ(Q − Q cut ) O n+2Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 34


MC@NLO NLO-<strong>merging</strong> ConclusionsNLO <strong>merging</strong>〈O〉 MEPS@NLO∫=∫+∫+dΦ n ¯B(A) n[∆ (A)n (t 0 , µ 2 Q) O n∫ µ2Q+t 0[dΦ n+1 R n − D (A)dΦ n+1 ¯B(A) n+1×[[dΦ D (A)n1nB nHöche, Krauss, MS, Siegert arXiv:1207.5030Gehrmann, Höche, Krauss, MS, Siegert arXiv:1207.5031∆ (A)n (t n+1 , µ 2 Q) Θ(Q cut − Q) O n+1]]Θ(Q cut − Q) ∆ (PS)n (t n+1 , µ 2 Q) O n+1∫ ]µ2QdΦ 1 K n¯B n+1 t n+11 + B n+1∆ (A)n+1 (t 0, t n+1 ) O n+1 +∫ tn+1t 0∆ (PS)n (t n+1 , µ 2 Q) Θ(Q − Q cut )dΦ 1D (A)n+1B n+1∆ (A)n+1 (t n+2, t n+1 ) O n+2]∫ []+ dΦ n+2 R n+1 − D (A)n+1 ∆ (PS)n+1 (t n+2, t n+1 ) ∆ (PS)n (t n+1 , µ 2 Q) Θ(Q − Q cut ) O n+2Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 34


MC@NLO NLO-<strong>merging</strong> ConclusionsNLO <strong>merging</strong>〈O〉 MEPS@NLO∫=∫+∫+dΦ n ¯B(A) n[∆ (A)n (t 0 , µ 2 Q) O n∫ µ2Q+t 0[dΦ n+1 R n − D (A)dΦ n+1 ¯B(A) n+1×[[dΦ D (A)n1nB nHöche, Krauss, MS, Siegert arXiv:1207.5030Gehrmann, Höche, Krauss, MS, Siegert arXiv:1207.5031∆ (A)n (t n+1 , µ 2 Q) Θ(Q cut − Q) O n+1]]Θ(Q cut − Q) ∆ (PS)n (t n+1 , µ 2 Q) O n+1∫ ]µ2QdΦ 1 K n¯B n+1 t n+11 + B n+1∆ (A)n+1 (t 0, t n+1 ) O n+1 +∫ tn+1t 0∆ (PS)n (t n+1 , µ 2 Q) Θ(Q − Q cut )dΦ 1D (A)n+1B n+1∆ (A)n+1 (t n+2, t n+1 ) O n+2]∫ []+ dΦ n+2 R n+1 − D (A)n+1 ∆ (PS)n+1 (t n+2, t n+1 ) ∆ (PS)n (t n+1 , µ 2 Q) Θ(Q − Q cut ) O n+2Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 34


MC@NLO NLO-<strong>merging</strong> ConclusionsNLO <strong>merging</strong>〈O〉 MEPS@NLO∫=∫+∫+dΦ n ¯B(A) n[∆ (A)n (t 0 , µ 2 Q) O n∫ µ2Q+t 0[dΦ n+1 R n − D (A)dΦ n+1 ¯B(A) n+1×[[dΦ D (A)n1nB nHöche, Krauss, MS, Siegert arXiv:1207.5030Gehrmann, Höche, Krauss, MS, Siegert arXiv:1207.5031∆ (A)n (t n+1 , µ 2 Q) Θ(Q cut − Q) O n+1]]Θ(Q cut − Q) ∆ (PS)n (t n+1 , µ 2 Q) O n+1∫ ]µ2QdΦ 1 K n¯B n+1 t n+11 + B n+1∆ (A)n+1 (t 0, t n+1 ) O n+1 +∫ tn+1t 0∆ (PS)n (t n+1 , µ 2 Q) Θ(Q − Q cut )dΦ 1D (A)n+1B n+1∆ (A)n+1 (t n+2, t n+1 ) O n+2]∫ []+ dΦ n+2 R n+1 − D (A)n+1 ∆ (PS)n+1 (t n+2, t n+1 ) ∆ (PS)n (t n+1 , µ 2 Q) Θ(Q − Q cut ) O n+2Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 34


MC@NLO NLO-<strong>merging</strong> ConclusionsNLO <strong>merging</strong>〈O〉 MEPS@NLO∫=∫+∫+dΦ n ¯B(A) n[∆ (A)n (t 0 , µ 2 Q) O n∫ µ2Q+t 0[dΦ n+1 R n − D (A)dΦ n+1 ¯B(A) n+1×[[dΦ D (A)n1nB nHöche, Krauss, MS, Siegert arXiv:1207.5030Gehrmann, Höche, Krauss, MS, Siegert arXiv:1207.5031∆ (A)n (t n+1 , µ 2 Q) Θ(Q cut − Q) O n+1]]Θ(Q cut − Q) ∆ (PS)n (t n+1 , µ 2 Q) O n+1∫ ]µ2QdΦ 1 K n¯B n+1 t n+11 + B n+1∆ (A)n+1 (t 0, t n+1 ) O n+1 +∫ tn+1t 0∆ (PS)n (t n+1 , µ 2 Q) Θ(Q − Q cut )dΦ 1D (A)n+1B n+1∆ (A)n+1 (t n+2, t n+1 ) O n+2]∫ []+ dΦ n+2 R n+1 − D (A)n+1 ∆ (PS)n+1 (t n+2, t n+1 ) ∆ (PS)n (t n+1 , µ 2 Q) Θ(Q − Q cut ) O n+2Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 34


MC@NLO NLO-<strong>merging</strong> ConclusionsNLO <strong>merging</strong>〈O〉 MEPS@NLO∫=∫+∫+dΦ n ¯B(A) n[∆ (A)n (t 0 , µ 2 Q) O n∫ µ2Q+t 0[dΦ n+1 R n − D (A)dΦ n+1 ¯B(A) n+1×[[dΦ D (A)n1nB nHöche, Krauss, MS, Siegert arXiv:1207.5030Gehrmann, Höche, Krauss, MS, Siegert arXiv:1207.5031∆ (A)n (t n+1 , µ 2 Q) Θ(Q cut − Q) O n+1]]Θ(Q cut − Q) ∆ (PS)n (t n+1 , µ 2 Q) O n+1∫ ]µ2QdΦ 1 K n¯B n+1 t n+11 + B n+1∆ (A)n+1 (t 0, t n+1 ) O n+1 +∫ tn+1t 0∆ (PS)n (t n+1 , µ 2 Q) Θ(Q − Q cut )dΦ 1D (A)n+1B n+1∆ (A)n+1 (t n+2, t n+1 ) O n+2]∫ []+ dΦ n+2 R n+1 − D (A)n+1 ∆ (PS)n+1 (t n+2, t n+1 ) ∆ (PS)n (t n+1 , µ 2 Q) Θ(Q − Q cut ) O n+2Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 34


MC@NLO NLO-<strong>merging</strong> ConclusionsNLO <strong>merging</strong> – Generation of MC counterterm[1 + B ∫ ]µ2Qn+1dΦ 1 K n¯B n+1 t n+1• same <strong>for</strong>m as exponent of Sudakov <strong>for</strong>m factor ∆ (PS)n (t n+1 , µ 2 Q )• truncated parton shower on n-parton configuration underlying n + 1-partonevent1 no emission → retain n + 1-parton event as is2 first emission at t ′ with Q > Q cut, multiply event weight with B n+1/¯B (A)n+1 ,restart evolution at t ′ , do not apply emission kinematics3 treat every subsequent emission as in st<strong>and</strong>ard truncated vetoed shower• generates [1 + B ∫ ]µ2Qn+1dΦ 1 K n ∆¯B (PS)n (t n+1 , µ 2 Q)n+1 t n+1⇒ identify O(α s ) counterterm with the emitted emissionMarek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 35


MC@NLO NLO-<strong>merging</strong> ConclusionsNLO <strong>merging</strong>Renormalisation scales:• determined by clustering using PS probabilities <strong>and</strong> taking the respectivenodal values t iα s (µ 2 ∏R )k = k α s (t i )i=1• change of scales µ R → ˜µ R in MEs necessitates one-loop counter term()α s (˜µ 2 R) k 1 − α s(˜µ 2 R ) k∑β 0 ln t i2π˜µ 2 RFactorisation scale:• µ F determined from core n-jet process• change of scales µ F → ˜µ F in MEs necessitates one-loop counter term(B n (Φ n ) α s(˜µ 2 R ) log µ2 ∑ n ∫ )1Fdz2π ˜µ 2 Fx az P ac(z) f c (x a /z, ˜µ 2 F ) + . . .c=q,gi=1Marek SchönherrIPPP Durham<strong>NLO+PS</strong> <strong>matching</strong> <strong>and</strong> <strong>multijet</strong> <strong>merging</strong> 36

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!