12.07.2015 Views

Negative index material (from metamaterial to liquid crystals)

Negative index material (from metamaterial to liquid crystals)

Negative index material (from metamaterial to liquid crystals)

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Outline of research workWhat is NIM?What is the applications of NIM?How <strong>to</strong> achieve NIMDiscussion and ConclusionFuture work3


What is NIM?airCondition for NIM:airDouble-negative NIM:4


<strong>Negative</strong> refraction‣Snell’s lawWhat is NIM?‣Boundary condition:tangential components of E & H areconstant.5


<strong>Negative</strong> refraction‣Snell’s lawWhat is NIM?‣Boundary condition:tangential components of E & H areconstant.6


<strong>Negative</strong> refraction‣Snell’s lawWhat is NIM?‣Boundary condition:tangential components of E & H areconstant.7


What is applications of NIM?1. Superlens & hyperlens• Sub-wavelength imaging;• Memory s<strong>to</strong>rageDNAobjectDNAobject2. Optical transformation• Optical cloaking• Light concentra<strong>to</strong>r8


How <strong>to</strong> achieve NIM?Ordinary meta<strong>material</strong>– Electrical meta<strong>material</strong>sElectric polarizability α


How <strong>to</strong> achieve NIM?Ordinary meta<strong>material</strong>– Electrical meta<strong>material</strong>sRelative dielectric constant:10


How <strong>to</strong> achieve NIM?Ordinary meta<strong>material</strong>– Electrical meta<strong>material</strong>sRelative dielectric constant:For metal,11


How <strong>to</strong> achieve NIM?Ordinary meta<strong>material</strong>– Magnetic meta<strong>material</strong>s(Split-ring resona<strong>to</strong>rs)12


How <strong>to</strong> achieve NIM?Ordinary meta<strong>material</strong>– Magnetic meta<strong>material</strong>s(Split-ring resona<strong>to</strong>rs)13


How <strong>to</strong> achieve NIM?Ordinary meta<strong>material</strong>( )kHESRRHkEFishnetNature 455. 2008.14


Chiral meta<strong>material</strong>How <strong>to</strong> achieve NIM?Eigenvalues:15E.Plum etc, “Meta<strong>material</strong> with negative <strong>index</strong> due <strong>to</strong> chirality”, Physical Review B. 79 (2009).


Meta<strong>material</strong> with LC?How <strong>to</strong> achieve NIM?‣Structured meta<strong>material</strong> has negative refractive <strong>index</strong> up <strong>to</strong>visible frequency range. The manufacture technique iswell established;‣LC is a anisotropic media, and can be reconfiguredelectrically.meta<strong>material</strong>LC?Electricallytunable NIM16


Meta<strong>material</strong> with LC!‣Nematic LC-NIM:How <strong>to</strong> achieve NIM?Liquid <strong>crystals</strong>hellcoreStructure of the nanosphereDispersing metallic particles in the LC hostI.C.Khoo’s group, Penn. State U. , Opt. Lett. 2006.17


Meta<strong>material</strong> with LC!‣Nematic LC-NIM:How <strong>to</strong> achieve NIM?Liquid <strong>crystals</strong>hellcoreWhere,N—volume density of particle;18


Meta<strong>material</strong> with LC!‣Chiral LC-NIM:How <strong>to</strong> achieve NIM?Nanoparticlesattached <strong>to</strong> chiralcomponents lowerdielectric permittivityChiral <strong>liquid</strong> crystal doped with nanoparticlesDr. Prasad group, U. SUNY at Buffalo, Opt. Exp. 2007.19


Conclusion‣<strong>Negative</strong> refractive <strong>index</strong> can be achieved by3-D nano-structured meta<strong>material</strong>s (SRR, Fishnetand chiral structure);‣Traditional nematic LC with nanoparticles(nanostructures) can create tunable negativerefractive <strong>index</strong>;‣Chiral LC with nanoparticles can also offer excitingnegative refractive <strong>index</strong>.20


Future interesting work‣ Simulation on optical cloakingdispersed in <strong>liquid</strong> crystal.with nanorods‣ Dispersing nanorods in nematic LC by using polymerstablization technique <strong>to</strong> form certain nanorodsdispersion pattern.‣Dispersing nanorods in chiral LC by using polymerstablization technique <strong>to</strong> achieve NIM.21


Optical cloaking:(Computer simulation)Extended exampleV.M.Shalaev’s group, Nature 224-227. 2007.22


Optical cloaking:(Computer simulation)Extended exampleV.M.Shalaev’s group, Nature 224-227. 2007.23


Optical cloaking:(experiment)Extended exampleOleg D.Lavren<strong>to</strong>vich’s group, Applied Physics Lett., 2009.24


Optical cloaking:(experiment)Extended exampleCloak areaOleg D.Lavren<strong>to</strong>vich’s group, Applied Physics Lett., 2009.25


Thanks for your attentionand questions!26


Optical cloaking 2:(experiment)Extended exampleXiang Zhang’s group, Nature. Mat. 568-571, 2009.27


Optical cloaking 2:(experiment)Extended exampleXiang Zhang’s group, Nature. Mat. 568-571, 2009.28


Electromagnetic Material PropertiesThe electromagnetic response of a <strong>material</strong> is defined by itselectromagnetic properties: permittivity ε and permeability µµε no transmission0, µ < 0= −εµ0<strong>Negative</strong> IndexMaterialsConventionalMaterialsε >n0, µ > 0= +εµSplit Ringsε > 0 , µ


How <strong>to</strong> achieve NIM?Ordinary meta<strong>material</strong>(Split-ring resona<strong>to</strong>rs)30


Superlens & hyperlens31


How <strong>to</strong> achieve NIM?Ordinary meta<strong>material</strong>– Electrical meta<strong>material</strong>s32


How <strong>to</strong> achieve NIM?Ordinary meta<strong>material</strong>– Magnetic meta<strong>material</strong>s(Split-ring resona<strong>to</strong>rs)33

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!