icolls - Sustainable Tourism CRC

icolls - Sustainable Tourism CRC icolls - Sustainable Tourism CRC

crctourism.com.au
from crctourism.com.au More from this publisher
30.11.2012 Views

ECOLOGY, THREATS AND MANAGEMENT OPTIONS FOR SMALL ESTUARIES AND ICOLLS 22 WOO 1 WOO 2 WOO 3 JER 1 JER 2 AINS 1 TALL 1 TALL 2 TALL 3 BEL 1 BEL 2 BEL 3 TAY 1 Eklonia radiata 5.75 0.35 Hormosira banksii Avicennia pneumatophores 4.01 0.00 Chara spp. 4.70 0.00 Nymphaea spp. 7.72 0.00 Salvinia molesta 3.79 0.00 3.87 0.00 Seston 6.57 0.00 1.91 0.00 6.80 0.00 5.94 0.00 4.06 0.00 -2.59 0.00 14.09 0.00 1.68 0.00 6.86 0.00 2.24 0.00 2.87 0.00 Juncus spp. 13.47 0.00 17.02 0.00 13.32 0.00 3.76 0.00 4.47 0.00 3.05 0.00 Cyperus spp. 2.73 0.00 0.41 0.00 2.48 0.00 5.08 0.00 1.08 0.00 3.38 0.00 Avicennia marina Aegiceras corniculatum Acrostichum speciosum 2.95 0.65 2.58 0.00 2.32 0.00 14.28 0.00 16.44 0.00 5.44 0.00 3.37 0.00 3.58 0.00 4.85 0.00 10.24 0.00 17.00 0.00 7.14 0.00 1.89 0.00 Succulent 12.77 0.00 19.78 0.00 20.65 0.00 7.97 0.00 Phragmites australis Riparian Vegetation 11.42 0.00 15.92 0.00 11.95 0.00 -1.77 0.00 -1.17 0.00 -1.61 0.00 1.10 0.00 -2.02 0.00 2.76 0.00 7.42 0.00 -0.38 0.00 5.90 0.00 3.36 0.00 -1.16 0.00 -1.89 0.00 -2.16 0.00 Grasses 1.11 0.00 0.67 0.00 0.88 0.00 9.32 0.00 13.74 0.00 -1.03 0.00 2.65 0.00 3.79 0.00 Anisoptera 6.97 0.00 4.65 0.00 4.38 0.00 Coleoptera 5.53 0.00 5.00 0.00 Corixidae (Hemiptera) 7.04 0.00 0.31 0.00 21.59 0.00 8.44 0.00 Ephmeroptera 4.08 0.00 Zygoptera 6.28 0.00 Notonectidae (Hemiptera) 8.20 0.00 2.79 0.00 Trichoptera 4.13 0.00 Gerridae (Hemiptera) Nepidae (Hemiptera) Saccostrea glomerata 5.23 0.23 Jellyfish 8.68 0.00 Marphysa spp. 10.32 0.00 5.74 0.00 6.00 0.00 22.39 0.26 23.64 0.01 7.38 0.64 6.75 0.00 Ligia australiensis 3.00 0.00 Amphipods 2.00 0.00 Callianassa australiensis Macrobrachium spp. 6.53 0.23 6.20 0.17 4.90 0.30 Clibanarius spp. 6.00 0.00 5.80 0.15 Mictyris longicarpus Halicarcinus spp. Ocypode cordimana Bivalvia (Mollusca) 2.13 0.00 15.87 0.00 22.42 0.00 5.17 0.00 5.90 0.00 9.18 0.00 21.37 0.00 5.03 0.00 14.24 0.00 6.18 0.00 4.31 0.00 Donax deltoides 4.30 0.00 4.00 0.00 18.96 0.15 6.58 0.11 Pyrazus ebeninus Austrocochlea porcata Metapenaeus bennettae 6.36 0.50 5.30 0.40 5.73 0.38 7.24 0.00 23.2 0.00 8.61 0.45 5.75 0.00 7.39 0.33 9.43 0.44 Fingerlings 7.48 0.00 Gambusia spp. 11.20 0.38 11.92 4.57 Mogurnda spp. 8.77 0.00

Hypseleotris spp. Pseudomugil signifer Philypnodon spp. ECOLOGY, THREATS AND MANAGEMENT OPTIONS FOR SMALL ESTUARIES AND ICOLLS WOO 1 WOO 2 WOO 3 JER 1 JER 2 AINS 1 TALL 1 TALL 2 TALL 3 BEL 1 BEL 2 BEL 3 TAY 1 8.10 0.25 11.70 0.15 8.42 0.00 Terapon jarbua 21.79 0.22 Centropogon australis Anguilla anguilla Gobiomorphus spp. Ambassis marianus Arothron manilensis Gerres subfasciatus (large) Gerres subfasciatus (small) Acanthopagrus australis (large) Acanthopagrus australis (small) Rhabdosargus sarba Platycephalus fuscus (large) Platycephalus fuscus (medium) Platycephalus fuscus (small) Sillago ciliata (large) Sillago ciliata (medium) Sillago ciliata (small) Mugil cephalus (large) Mugil cephlaus (medium) Mugil cephalus (small) 9.40 0.00 12.00 0.15 17.19 0.13 7.88 0.03 23.45 0.61 8.91 0.17 8.90 0.23 17.86 0.00 12.62 0.00 7.49 0.00 8.80 0.35 7.90 0.00 20.36 0.54 24.64 0.00 7.46 0.58 9.80 0.40 15.88 3.46 9.48 0.09 9.27 0.57 9.51 0.00 11.00 0.20 9.80 0.00 11.80 0.19 10.43 0.43 24.25 0.12 9.32 0.08 11.72 0.00 11.77 0.00 10.10 0.35 27.03 2.03 28.25 0.00 9.55 0.05 11.74 0.00 10.60 0.00 20.58 0.00 11.75 0.00 12.02 0.00 10.64 0.00 25.07 0.00 10.92 0.00 10.26 0.00 12.21 0.00 17.01 0.00 9.64 0.39 9.76 0.00 9.24 0.00 11.10 0.30 9.50 0.00 23.49 0.39 25.79 0.54 10.20 0.65 9.94 0.00 9.41 0.00 10.99 0.00 10.60 0.45 8.40 0.00 10.47 0.00 9.88 0.00 9.32 0.00 11.30 0.10 20.94 0.83 22.26 1.45 7.87 0.24 8.62 0.00 7.90 0.74 11.36 0.00 5.95 0.75 10.45 2.97 7.32 0.10 10.00 2.56 Achylopa nigra 11.55 0.00 7.27 0.00 27.76 0.00 Bufo marinus 5.93 0.55 Larus novaehollandiae 9.66 0.00 10.68 0.00 Mixing model analyses of the importance of marine, terrestrial and freshwater carbon sources to consumers in ICOLLs Given our a priori interest in the relative contribution and importance of marine, terrestrial and freshwater sources of carbon to consumers in ICOLLs, we used end-members from each of these systems in our mixing model analyses. For example, riparian vegetation was used as the dominant terrestrial end-member. Withinsystem carbon sources, typically attached algae, were used as the freshwater carbon sources and marine algae represented the marine source of carbon available to consumers in these systems. In upstream sites in which marine sources of carbon were scarce or totally absent, our mixing model analyses used other sources of carbon to assess their importance to consumers. In most instances this was seston or some other recalcitrant carbon component of the system. We identified a pattern of increasing marine influence (evidenced by increased δ 15 N) towards ICOLL mouths – even when the systems are closed. This reflects the strong immediate and persistent importance of marine contributions of carbon and nitrogen in influencing ICOLL food web structure and function. 23

Hypseleotris<br />

spp.<br />

Pseudomugil<br />

signifer<br />

Philypnodon<br />

spp.<br />

ECOLOGY, THREATS AND MANAGEMENT OPTIONS FOR SMALL ESTUARIES AND ICOLLS<br />

WOO 1 WOO 2 WOO 3 JER 1 JER 2 AINS 1 TALL 1 TALL 2 TALL 3 BEL 1 BEL 2 BEL 3 TAY 1<br />

8.10 0.25 11.70 0.15 8.42 0.00<br />

Terapon jarbua 21.79 0.22<br />

Centropogon<br />

australis<br />

Anguilla<br />

anguilla<br />

Gobiomorphus<br />

spp.<br />

Ambassis<br />

marianus<br />

Arothron<br />

manilensis<br />

Gerres<br />

subfasciatus<br />

(large)<br />

Gerres<br />

subfasciatus<br />

(small)<br />

Acanthopagrus<br />

australis (large)<br />

Acanthopagrus<br />

australis (small)<br />

Rhabdosargus<br />

sarba<br />

Platycephalus<br />

fuscus (large)<br />

Platycephalus<br />

fuscus<br />

(medium)<br />

Platycephalus<br />

fuscus (small)<br />

Sillago ciliata<br />

(large)<br />

Sillago ciliata<br />

(medium)<br />

Sillago ciliata<br />

(small)<br />

Mugil cephalus<br />

(large)<br />

Mugil cephlaus<br />

(medium)<br />

Mugil cephalus<br />

(small)<br />

9.40 0.00 12.00 0.15<br />

17.19 0.13 7.88 0.03<br />

23.45 0.61 8.91 0.17 8.90 0.23<br />

17.86 0.00<br />

12.62 0.00 7.49 0.00<br />

8.80 0.35 7.90 0.00 20.36 0.54 24.64 0.00 7.46 0.58<br />

9.80 0.40 15.88 3.46 9.48 0.09 9.27 0.57<br />

9.51 0.00<br />

11.00 0.20 9.80 0.00 11.80 0.19 10.43 0.43 24.25 0.12 9.32 0.08<br />

11.72 0.00 11.77 0.00 10.10 0.35 27.03 2.03 28.25 0.00<br />

9.55 0.05 11.74 0.00<br />

10.60 0.00 20.58 0.00<br />

11.75 0.00 12.02 0.00 10.64 0.00 25.07 0.00<br />

10.92 0.00<br />

10.26 0.00 12.21 0.00<br />

17.01 0.00 9.64 0.39 9.76 0.00<br />

9.24 0.00 11.10 0.30 9.50 0.00 23.49 0.39 25.79 0.54 10.20 0.65<br />

9.94 0.00 9.41 0.00<br />

10.99 0.00 10.60 0.45 8.40 0.00 10.47 0.00 9.88 0.00<br />

9.32 0.00 11.30 0.10 20.94 0.83 22.26 1.45 7.87 0.24 8.62 0.00 7.90 0.74<br />

11.36 0.00 5.95 0.75 10.45 2.97 7.32 0.10 10.00 2.56<br />

Achylopa nigra 11.55 0.00 7.27 0.00 27.76 0.00<br />

Bufo marinus 5.93 0.55<br />

Larus<br />

novaehollandiae<br />

9.66 0.00 10.68 0.00<br />

Mixing model analyses of the importance of marine, terrestrial and freshwater carbon<br />

sources to consumers in ICOLLs<br />

Given our a priori interest in the relative contribution and importance of marine, terrestrial and freshwater<br />

sources of carbon to consumers in ICOLLs, we used end-members from each of these systems in our mixing<br />

model analyses. For example, riparian vegetation was used as the dominant terrestrial end-member. Withinsystem<br />

carbon sources, typically attached algae, were used as the freshwater carbon sources and marine algae<br />

represented the marine source of carbon available to consumers in these systems. In upstream sites in which<br />

marine sources of carbon were scarce or totally absent, our mixing model analyses used other sources of carbon<br />

to assess their importance to consumers. In most instances this was seston or some other recalcitrant carbon<br />

component of the system.<br />

We identified a pattern of increasing marine influence (evidenced by increased δ 15 N) towards ICOLL mouths<br />

– even when the systems are closed. This reflects the strong immediate and persistent importance of marine<br />

contributions of carbon and nitrogen in influencing ICOLL food web structure and function.<br />

23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!