12.07.2015 Views

Designing and Commissioning an Ultraviolet Light Disinfection ...

Designing and Commissioning an Ultraviolet Light Disinfection ...

Designing and Commissioning an Ultraviolet Light Disinfection ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

DESIGNING & COMMISSIONING AN ULTRAVIOLETLIGHT DISINFECTION SYSTEM TO MEET NWRIGUIDELINES AT WARDEN, WASHINGTON26 th Annual WateReuse SymposiumPhoenix, ArizonaSeptember 12, 2011Ken Alex<strong><strong>an</strong>d</strong>er, P.E.Gray <strong><strong>an</strong>d</strong> Osborne, Inc.V<strong>an</strong>couver, WA


AcknowledgmentsCOAUTHORS / TEST DESIGNERS• Bruno Ferr<strong>an</strong>, Degremont Technologies• Dave V<strong>an</strong>Cleve, P.E., Gray & Osborne• Jay Swift P.E., Gray & OsborneTEST TEAM• Sus<strong>an</strong> Well<strong><strong>an</strong>d</strong>, Gray & Osborne• Steve Maddox & Donnie Edson, City of Warden• Mark Siegenthaler, WSU Water Research Center• TEK Construction


Presentation Outline• Background• UV <strong>Disinfection</strong> Design St<strong><strong>an</strong>d</strong>ards for Reuse• Checkpoint Bioassay• Review <strong><strong>an</strong>d</strong> Accept<strong>an</strong>ce of Checkpoint Bioassay


• Project DriversBackground• No surface water discharge availablea ab • Discharge to USBR c<strong>an</strong>al not allowed• Year round agronomic m<strong>an</strong>agement infeasible• Regulatory Issues with Groundwater Discharge• Groundwater degradation with existing facilities• <strong>Disinfection</strong> byproducts to groundwater• Previous Design of UV <strong>Disinfection</strong> for Reusewith Groundwater Recharge• Ephrata, WA• Royal City, WA


Water Reclamation Facilities Warden, WAWaterReclamationFacilityGroundwaterRechargeBasin 4Short TermStorage BasinUSBR C<strong>an</strong>alFlows Apr - OctGroundwaterRechargeBasins 1 - 3


Water Reclamation Facilities Warden, WASecondaryClarifiersFilter / UV RoomAnoxicBasinOxidationDitch


Warden, WashingtonUV


Warden, WashingtonWarden UV <strong>Disinfection</strong> SystemMaximum Month Average Flow 0.474 mgdMaximum Day Flow0.60 mgdPeak Hour Flow1.2 mgdUV Design Flow0.60 mgdUV Tr<strong>an</strong>smitt<strong>an</strong>ce for Design Flow 55 %UV Lamp TypeLow PressureHigh IntensityLamp OrientationVerticalNumber of B<strong>an</strong>ks Total 6Number of Redund<strong>an</strong>t B<strong>an</strong>ks 1Lamps Per B<strong>an</strong>k 40Total Lamps 240Ch<strong>an</strong>nel Width (less baffle width) 4 ftCh<strong>an</strong>nel Depth6 ftCh<strong>an</strong>nel Length33.83 ftTotal Reactor Volume6,065 galReactor Water Depth5 ftEffective Reactor Volume5,054 galUV Model/M<strong>an</strong>ufacturerAquaRay 40 HO


Warden, WashingtonWarden UV <strong>Disinfection</strong> System• Beg<strong>an</strong> Operation June 2009• Typically 2 Modules On• Daily Total Coliform (TC) Testsmet st<strong><strong>an</strong>d</strong>ards continuously:< 2.2 TC/100 mL 7 day medi<strong>an</strong>< 23 TC/100 mL single sample• Continuous UVT Monitoring> 65 % UVT nearly continuously


UV <strong>Disinfection</strong> Design St<strong><strong>an</strong>d</strong>ardsDesign Requirement(Media Filtration)Ephrata <strong><strong>an</strong>d</strong> Royal City (1)(pre-2000)Warden (2)(after 2005)Microorg<strong>an</strong>ism Coliform Bacteria VirusMeasure of MicrobialInactivationTurbidity Entering UV Reactor< 2.2 total coliform/100 mL 7-daymedi<strong>an</strong>< 23 total coliform/100 mL singlesample< 2 NTU monthly average< 5 NTU at all times< 2.2 total coliform/100 mL 7-daymedi<strong>an</strong>5-log Virus Inactivation< 2 NTU 24-hour average< 5 NTU at all timesUV Dose at Maximum Day Flow 100 mJ/cm 2 100 mJ/cm 2UV Tr<strong>an</strong>smitt<strong>an</strong>ce (UVT) 65 percent 55 percentContinuous UVT Tr<strong>an</strong>smitt<strong>an</strong>ceMonitoringField Verification of DesignNoComply with Coliform Density Criteriafor Reclaimed WaterYesCheckpoint Bioassay (3)(1) Class “A” Reclaimed Water <strong>Disinfection</strong> St<strong><strong>an</strong>d</strong>ards for the State of Washington(2) May 2003 NWRI Guidelines for Drinking Water <strong><strong>an</strong>d</strong> Water Reuse(3) Although the 2003 NWRI Guidelines include velocity profiling instead of checkpoint bioassays for field verification, checkpointbioassays are the current de facto st<strong><strong>an</strong>d</strong>ard.


Checkpoint BioassayWarden WRF Checkpoint Bioassay – Target Test ConditionsFlow,No. Lamp LoadingRun Flow, % of UVT,Modules rate,ID mgd Design%On gpm/lampFlowA 0.07 5.8 % 55 2.0 0.61B 060 0.60 50.00 % 55 20 2.0 347 3.47C 0.86 71.2 % 55 3.0 3.73D 1.20 100 % 65 4.0 5.21Note: Low flow (0.07 mgd) set by influent pump station VFD


Checkpoint BioassayWRF Checkpoint Bioassay - Test Data SummaryMS-2 ModuleTest Power No.Avg. MS-2Test RunFlowRED Avg. MS-2UVT Draw ModulesREDDate ID(mgd)Stdev RED(%) (kW) ON(mJ/cm )(mJ/cm 2 ) (mJ/cm 2 )10-13-09 A 56.5 13.8 2.0 0.074 n/a n/a n/a10-13-09 B 56.6 20.8 3.0 0.60 134.3 2.13 44.810-12-09 C 56.1 27.9 4.0 0.87 122.3 3.24 30.610-12-09 D 65.5 23.7 3.4 1.19 103.1 1.60 30.3


Checkpoint Bioassay Test Flow Scheme


Checkpoint Bioassay Test SetupUV Reactor


Checkpoint Bioassay Test Setup


Checkpoint Bioassay Test ResultsRED = Reduction Equivalent Dose


Checkpoint Bioassay Test Results


Checkpoint Bioassay Test Results• Runs B, C & D Successful• Validated UV Perform<strong>an</strong>ce per Original Bioassay• Run A Inconclusive• Phage Concentration at Inlet ≈ Outlet• Low Phage Concentration at UV Reactor Inlet• Poor Dispersion Suspected ** In Spite of Dispersion Test Prior to Checkpoint Bioassay Test• Regulatory Agencies Request Hydraulic Analysis


Accept<strong>an</strong>ce of Checkpoint BioassayVelocity Measurements at Low Flow (Run A)• Hired WSU Water Research Center Researchers• Acoustic Doppler Velocimeter Measurements• Tests Designed per NWRI Guidelines• 0.3 m upstream of first b<strong>an</strong>k• 0.3 m downstream of last b<strong>an</strong>k• Cross-sections equally spaced• Not less th<strong>an</strong> 3 x 3 grid per cross-section• Measurements 6 – 12 cm apart


Accept<strong>an</strong>ce of Checkpoint BioassayVelocity Profile Measurement Selected Locations


Accept<strong>an</strong>ce of Checkpoint BioassayActual VelocityActual VelocityTest Results


Accept<strong>an</strong>ce of Checkpoint BioassayIssues• Non-ideal hydraulics evident from velocity testing• Successful checkpoint bioassays at 3 higher flows• Achievement of Class A Coliform Levels > 2 year• > 65% UVT typical for Warden WRF filtered effluentexceeds NWRI test conditions (55% UVT)• Reactor hydraulic residence time higher at low flows• Comparison to UV reactors at other Class A WRFs• ~10 x larger (8,423 gal/mgd vs 860-940 gal/mgd)• ~3 x power draw (33.0 kW/mgd vs 10-12 kW/mgd)


Accept<strong>an</strong>ce of Checkpoint BioassayExtrapolating from Successful Test (Run B)• Run B (0.6 mgd)• Average velocity = 26.7 mm/sec• Validated UV dose = 115 mJ/cm 2 @ 55% UVT• Three UV modules achieved validated dose• Run A (0.07 mgd)• Highest measured velocity = 19.2 mm/sec• Reactor residence time Run A > Run B


Accept<strong>an</strong>ce of Checkpoint BioassayConclusions• Run A UV dose > 115 mJ/cm 2 @ 55% UVT• Typical UVT in Warden UV Reactor > 65% UVT• Three modules delivers > 115 mJ/cm 2 @ 55% UVT• Three modules on at all times will deliver a validatedUV dose at flows up to 0.6 mgdWarden agreed to operate a minimum of three UVmodules at all times to ensure validated dose isdelivered at all times


Questions

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!