30.11.2012 Views

Alex Popescu ESA/ESTEC Satellite Design and Status

Alex Popescu ESA/ESTEC Satellite Design and Status

Alex Popescu ESA/ESTEC Satellite Design and Status

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

GOCE<br />

Gravity field<br />

<strong>and</strong> steady-state<br />

Ocean Circulation Explorer<br />

<strong>Satellite</strong> <strong>Design</strong> <strong>and</strong> <strong>Status</strong><br />

<strong>Alex</strong> <strong>Popescu</strong> <strong>ESA</strong>/<strong>ESTEC</strong><br />

EOEP Science Review Meeting 14 <strong>and</strong> 15 June 2005<br />

www.esa.int/livingplanet/goce


GOCE Mission Objectives<br />

- Determine the Earth’s gravity field with an accuracy of 1 mgal<br />

(I.e. 1 millionth of the Earth Gravity) via the measurement of<br />

the diagonal components of the gravity gradient tensor<br />

- Determine the geoid (I.e. the equipotential surface for a<br />

hypothetical ocean at rest ) with a radial accuracy of 1 to2 cm<br />

- Achieve this at length scales down to 100 km


GOCE: Main Payload Characteristics<br />

- The Gradiometer (EGG): Measuring the diagonal components of<br />

the gravity gradient tensor with an accuracy of 6 mE/sqrt(Hz)<br />

within a b<strong>and</strong>width of 5 mHz to 100 mHz, i.e. consistent with<br />

degree <strong>and</strong> order 10 to 200<br />

- The High-to-Low <strong>Satellite</strong> to <strong>Satellite</strong> Tracking Receiver (SSTI):<br />

Orbit reconstitution with an accuracy of 1-2 cm


• Electrostatic Gravity<br />

Gradiometer<br />

• 6 tri-axial electrostatic<br />

accelerometers for the<br />

measurement of the<br />

gravity gradient tensor<br />

• <strong>Satellite</strong>-to-<strong>Satellite</strong>-<br />

Tracking Instrument<br />

(SSTI)<br />

• 3 Star trackers<br />

• GPS antenna & 12channel<br />

L1/L2 receiver<br />

for precise orbit<br />

determination<br />

• Laser Retroreflector<br />

GOCE payload <strong>and</strong> satellite


GOCE <strong>Satellite</strong>: Main Requirements<br />

Orbit: Circular <strong>and</strong> as low as possible but still compatible<br />

with capability to:<br />

• compensate the drag<br />

• not loose the satellite in case of an on-board anomaly<br />

Injection altitude = 275 km, geodetic measurement altitude =<br />

250/260 km<br />

Other orbit characteristics: * 96.5deg inclination for near global<br />

coverage<br />

* Dawn-dusk sun-synchronous orbit to allow for maximum solar<br />

power<br />

Total measurement time:<br />

2 times 6 months with additional 6 months possible extension<br />

<strong>Design</strong> requirement: No moving parts <strong>and</strong> ultra-high thermo-elastic


GOCE <strong>Satellite</strong>: Main <strong>Design</strong> Divers<br />

• Spacecraft Cross Section minimized in the flight direction<br />

• Accommodation of Gradiometer Instrument (close to C.o.M)<br />

• High thermo-elastic stability<br />

• Provisions to minimize Micro-disturbance Effects<br />

• High level of Autonomy (up to 72 hours)<br />

• Autonomous Survival Capability up to 8 days


0.2 gram<br />

… feeling for the numbers<br />

1 000 000 tonne<br />

Downforce<br />

~2E-03 N<br />

Super-tanker acceleration:<br />

! 3<br />

2" 10 N<br />

! 12<br />

# 2"<br />

10<br />

9<br />

1"<br />

10<br />

kg<br />

m<br />

2<br />

s


GOCE Spacecraft


X GR<br />

Z GR<br />

A 1<br />

Y GR<br />

A 3<br />

A 5<br />

A 2<br />

X O<br />

A 4<br />

A 6<br />

Z O<br />

Y O<br />

O O<br />

Gradiometer configuration <strong>and</strong> data processing<br />

u<br />

Z J2000<br />

X J2000<br />

Reconstruction of the Gravity Gradient<br />

Tensor components (Level 1b product):<br />

aˆ d<br />

,14, X 2 2,…….<br />

Û XX = " 2 " ! ˆ Y " ! ˆ Z<br />

Lˆ<br />

X<br />

!<br />

i<br />

Linear accelerations measured by the six<br />

accelerometers of the Electrostatic Gravity<br />

Gradiometer: a' 1,X , a' 1,Y , a' 1,Z , ……., a' 6,X , a' 6,Y , a' 6,Z<br />

Y J2000<br />

Application of Gradiometer Calibration<br />

Matrices: M 14 , M 25 , M 36 , containing the<br />

accelerometer scale factors, sensitive axes<br />

alignments (during on-orbit calibration only)<br />

Measured accelerations corrected by means of the<br />

Calibration Matrices ! actual accelerations experienced<br />

by the proof masses: a 1,X , a 1,Y , a 1,Z , ……., a 6,X , a 6,Y , a 6,Z<br />

Reconstruction of centrifugal accelerations measured by<br />

the Gradiometer & star tracker along 3 axes: " X 2 , "Y 2 , "<br />

Z 2


Electrostatic Gravity Gradiometer<br />

The 6 accelerometers are situated around the<br />

center of mass of the satellite


3 pairs of GOCE Accelerometers<br />

q Pt-Rh proof mass of 4x4x1 cm <strong>and</strong> 320 g<br />

mass<br />

q Accelerometer cage made of ULE ceramics<br />

with gold electrodes for 6 DOF control<br />

q Sole plate in INVAR<br />

q 8 electrode pairs per sensitive element (for<br />

redundancy reasons)<br />

q Proof mass grounded by a 25 mm long <strong>and</strong><br />

5 micron “thick” gold wire


Accelerometer Sensor Head: Assembled


ASH FM 1


Carbon-Carbon Arm Structure<br />

with Accelerometer Pair, including<br />

magnetic shielding <strong>and</strong> connectors<br />

One-Axis Gradiometer<br />

OAGY: Y-direction


Gradiometer Structural Model


Gradiometer Electrical Sub-System FM


SSTI configuration <strong>and</strong> data processing<br />

Science Data Processing<br />

L1, L2 carrier phases <strong>and</strong><br />

pseudo-range (code) measured<br />

by the GPS receiver for up to<br />

12 GPS satellites, <strong>and</strong> receiver<br />

temperatures<br />

Determination of the inter-<br />

frequency bias calibration<br />

parameter from the receiver<br />

temperatures<br />

L1, L2 carrier phase measurements corrected by means of the<br />

estimated inter-frequency bias, satellite positions <strong>and</strong> reconstructed<br />

orbit (Level 1b product)<br />

<strong>Satellite</strong> position determination<br />

from the pseudo-range<br />

measurements <strong>and</strong> orbit<br />

reconstruction<br />

GPS


Laser Retroreflector


Key Performance<br />

Requirements<br />

– Thrust Range 1.5 - 20 mN,<br />

comm<strong>and</strong>ed<br />

@ 10 Hz<br />

– Thrust Error: # ±8%<br />

– Thrust Vector Stability: < 0.2°<br />

half cone<br />

Ion Propulsion<br />

Implementation Features<br />

– ITA: Qinetiq´s T5 Mk-5<br />

• dished grid system<br />

• hollow cathodes<br />

• magnetic field system<br />

– IPCU:<br />

• 11 ITA power supplies (2<br />

regulated)<br />

• PXFA drive & read-out<br />

interfaces<br />

• processor controlled thrust<br />

regulation,<br />

incl. special FDIR<br />

– PXFA:<br />

• linearly controlled Xe main<br />

flow<br />

• branch isolation by latch<br />

valves


Ion Motor Testing

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!