Estimation of Uncertainty in Geotechnical Properties - PEER ...

Estimation of Uncertainty in Geotechnical Properties - PEER ... Estimation of Uncertainty in Geotechnical Properties - PEER ...

peer.berkeley.edu
from peer.berkeley.edu More from this publisher
12.07.2015 Views

Pacific Earthquake EngineeringResearch CenterEstimation of Uncertainty in Geotechnical Propertiesfor Performance-Based Earthquake EngineeringAllen L. JonesSteven L. KramerandPedro ArduinoUniversity of WashingtonPEER 2002/16Dec. 2002

Pacific Earthquake Eng<strong>in</strong>eer<strong>in</strong>gResearch Center<strong>Estimation</strong> <strong>of</strong> <strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> <strong>Geotechnical</strong> <strong>Properties</strong>for Performance-Based Earthquake Eng<strong>in</strong>eer<strong>in</strong>gAllen L. JonesSteven L. KramerandPedro Ardu<strong>in</strong>oUniversity <strong>of</strong> Wash<strong>in</strong>gton<strong>PEER</strong> 2002/16Dec. 2002


<strong>Estimation</strong> <strong>of</strong> <strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> <strong>Geotechnical</strong> <strong>Properties</strong>for Performanced-Based Earthquake Eng<strong>in</strong>eer<strong>in</strong>gAllen L. JonesDepartment <strong>of</strong> Civil and Environmental Eng<strong>in</strong>eer<strong>in</strong>gUniversity <strong>of</strong> Wash<strong>in</strong>gtonSteven L. KramerDepartment <strong>of</strong> Civil and Environmental Eng<strong>in</strong>eer<strong>in</strong>gUniversity <strong>of</strong> Wash<strong>in</strong>gtonPedro Ardu<strong>in</strong>oDepartment <strong>of</strong> Civil and Environmental Eng<strong>in</strong>eer<strong>in</strong>gUniversity <strong>of</strong> Wash<strong>in</strong>gtonThis work was supported <strong>in</strong> part by the Pacific Earthquake Eng<strong>in</strong>eer<strong>in</strong>g Research Centerthrough the Earthquake Eng<strong>in</strong>eer<strong>in</strong>g Research Centers Program <strong>of</strong> the National ScienceFoundation under Award number EEC-9701568<strong>PEER</strong> Report 2002/16Pacific Earthquake Eng<strong>in</strong>eer<strong>in</strong>g Research CenterCollege <strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>gUniversity <strong>of</strong> California, BerkeleyDecember 2002


ABSTRACTPrediction <strong>of</strong> the performance <strong>of</strong> structures dur<strong>in</strong>g earthquakes requires accurate model<strong>in</strong>g <strong>of</strong> thegeotechnical components <strong>of</strong> soil-structure systems. <strong>Geotechnical</strong> performance is strongly dependenton the properties <strong>of</strong> the soil beneath and adjacent to the structure <strong>of</strong> <strong>in</strong>terest. These soilproperties can be described by us<strong>in</strong>g determ<strong>in</strong>istic and probabilistic models. Determ<strong>in</strong>istic modelstypically use a simple discrete descriptor for the parameter <strong>of</strong> <strong>in</strong>terest. Probabilistic modelsaccount for uncerta<strong>in</strong>ty <strong>in</strong> soil properties by describ<strong>in</strong>g those properties by us<strong>in</strong>g discrete statisticaldescriptors or probability distribution functions.This report describes sources and types <strong>of</strong> uncerta<strong>in</strong>ty <strong>in</strong> geotechnical eng<strong>in</strong>eer<strong>in</strong>g practice,and <strong>in</strong>troduces the basic concepts and term<strong>in</strong>ology <strong>of</strong> the theory <strong>of</strong> probability. Statisticalparameters and the probability distributions most commonly used to describe geotechnical parametersare reviewed. The report then presents tabulated statistical parameters for soil propertiesthat have been reported <strong>in</strong> the literature; both laboratory and field-measured parameters describ<strong>in</strong>gmoisture-density, plasticity, strength, and compressibility characteristics are presented.The theory <strong>of</strong> regionalized variables, <strong>in</strong>clud<strong>in</strong>g concepts <strong>of</strong> autocorrelation, variograms, and stationarityare presented, along with tabulated values <strong>of</strong> parameters describ<strong>in</strong>g spatial variabilitythat have been reported <strong>in</strong> the literature. F<strong>in</strong>ally, procedures and tools for estimation and simulation<strong>of</strong> spatially variable soil properties are presented.iii


ACKNOWLEDGMENTSThis work was supported <strong>in</strong> part by the Pacific Earthquake Eng<strong>in</strong>eer<strong>in</strong>g Research Center throughthe Earthquake Eng<strong>in</strong>eer<strong>in</strong>g Research Centers Program <strong>of</strong> the National Science Foundation underAward number EEC-9701568. Their f<strong>in</strong>ancial support is gratefully acknowledged.The <strong>in</strong>formation provided by Pr<strong>of</strong>. Kenneth H. Stokoe and Dr. M.B. Darendian, <strong>of</strong> theUniversity <strong>of</strong> Texas is also gratefully acknowledged.iv


CONTENTSAbstract.......................................................................................................................................... iiiAcknowledgments.......................................................................................................................... ivTable <strong>of</strong> Contents.............................................................................................................................vList <strong>of</strong> Figures................................................................................................................................ ixList <strong>of</strong> Tables ................................................................................................................................. xiNomenclature............................................................................................................................... xiii1 INTRODUCTION...................................................................................................................12 SOURCES AND TYPES OF UNCERTAINTY.....................................................................33 THE THEORY OF PROBABILITY.......................................................................................53.1 Probability Space ............................................................................................................53.2 Random Variables...........................................................................................................63.3 Probability Distributions .................................................................................................73.3.1 Probability Functions ..........................................................................................73.3.2 The Cumulative Distribution Function ...............................................................83.4 Mathematical Expectation...............................................................................................83.5 Variance and Moments ...................................................................................................83.5.1 Moments <strong>of</strong> Two Random Variables ................................................................113.5.2 Moment-Generat<strong>in</strong>g Functions .........................................................................143.6 Special Probability Distributions ..................................................................................143.6.1 Uniform Distribution.........................................................................................143.6.2 Normal Distribution ..........................................................................................153.6.3 Lognormal Distribution.....................................................................................183.6.4 Exponential Distribution ...................................................................................183.6.5 Gamma Distribution..........................................................................................193.6.6 Estimat<strong>in</strong>g Probability Distributions.................................................................203.7 Summary .......................................................................................................................214 UNCERTAINTY IN SOIL PROPERTIES...........................................................................234.1 Quantify<strong>in</strong>g <strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Soil <strong>Properties</strong>...................................................................234.2 Laboratory-Measured <strong>Properties</strong>...................................................................................264.2.1 Inherent Variability ...........................................................................................264.2.1.1 Moisture-Density Characteristics .......................................................264.2.1.2 Plasticity Characteristics.....................................................................274.2.1.3 Strength Characteristics......................................................................284.2.1.4 Consolidation and Permeability Characteristics.................................294.2.1.5 Stiffness and Damp<strong>in</strong>g Characteristics...............................................304.2.2 Measurement Variability...................................................................................324.3 Field-Measured <strong>Properties</strong> ............................................................................................334.3.1 Inherent Variability ...........................................................................................334.3.1.1 Standard Penetration Test (SPT) Resistance ......................................34v


4.3.1.2 Cone Penetration Test (CPT) and Electric Cone PenetrationTest (ECPT) Resistance......................................................................334.3.1.3 Vane Shear Test<strong>in</strong>g (VST) Undra<strong>in</strong>ed Shear Strength.......................344.3.1.4 Dilatometer Test (DMT) Parameter....................................................344.3.1.5 Pressuremeter Test (PMT) Parameters ...............................................354.3.2 Measurement Variability...................................................................................364.3.2.1 Standard Penetration Test (SPT) Resistance ......................................364.3.2.2 Cone Penetration Test (CPT) Resistance............................................364.3.2.3 Vane Shear Test<strong>in</strong>g (VST) Undra<strong>in</strong>ed Shear Strength.......................384.3.2.4 Dilatometer Test (DMT) Parameter....................................................384.3.2.5 Pressuremeter Test (PMT) Parameter.................................................394.4 Other Types <strong>of</strong> Test<strong>in</strong>g..................................................................................................405 SPATIAL VARIABILITY....................................................................................................415.1 Trend or Drift ................................................................................................................415.2 Scale <strong>of</strong> Fluctuation.......................................................................................................425.3 Correlation Functions and Variograms .........................................................................445.3.1 Autocorrelation Functions.................................................................................455.3.2 Variograms........................................................................................................495.3.3 Stationarity ........................................................................................................525.3.4 <strong>Properties</strong> <strong>of</strong> the Variogram Function...............................................................535.3.5 Standard Variogram Models .............................................................................545.3.5.1 Transition Models with a Sill .............................................................545.3.6 Nested Structures ..............................................................................................565.3.7 Spatial Anisotropy.............................................................................................576 SPATIAL VARIABILITY OF SOIL PROPERTIES ...........................................................596.1 Scale <strong>of</strong> Fluctuation.......................................................................................................596.2 Variogram Model, Nugget, and Sill..............................................................................616.3 Range/Autocovariance Distance ...................................................................................627 ESTIMATION AND SIMULATION ...................................................................................657.1 <strong>Estimation</strong> .....................................................................................................................657.2 Simulation .....................................................................................................................697.2.1 Random Fields ..................................................................................................697.2.1.1 Gaussian versus Non-Gaussian Fields................................................707.2.1.2 Methods <strong>of</strong> Random Field Generation ...............................................707.2.2 Monte Carlo Methods .......................................................................................717.2.2.1 Random Number Generation..............................................................727.2.2.2 <strong>Estimation</strong> <strong>of</strong> Input Parameters ..........................................................737.2.2.3 Adjustments for Correlation ...............................................................737.2.2.4 Statistical Analysis..............................................................................747.2.2.5 Number <strong>of</strong> Monte Carlo Trials ...........................................................747.2.2.6 Reduc<strong>in</strong>g the Number <strong>of</strong> Monte Carlo Trials.....................................757.2.3 Other Methods...................................................................................................777.3 Available Tools .............................................................................................................787.3.1 StatLib Website.................................................................................................787.3.2 GSLIB Website .................................................................................................787.3.3 AI-GEOSTATS Website...................................................................................787.3.4 Gstat S<strong>of</strong>tware...................................................................................................78vi


7.4 Examples.......................................................................................................................797.4.1 One-Dimensional Lateral Spread<strong>in</strong>g Analysis..................................................797.4.1.1 Soil Pr<strong>of</strong>ile..........................................................................................807.4.1.2 Method <strong>of</strong> Analysis.............................................................................807.4.1.3 Determ<strong>in</strong>istic Analysis........................................................................807.4.1.4 Simulation...........................................................................................817.4.1.5 Monte Carlo Analyses ........................................................................837.4.2 Two-Dimensional Analysis...............................................................................847.4.2.1 Soil Pr<strong>of</strong>ile..........................................................................................847.4.2.2 Method <strong>of</strong> Analysis.............................................................................857.4.2.3 Determ<strong>in</strong>istic Analysis........................................................................867.4.2.4 Simulation...........................................................................................877.4.2.5 Monte Carlo Analyses ........................................................................878 SUMMARY ..........................................................................................................................93REFERENCES ..............................................................................................................................95vii


LIST OF FIGURESFig. 2.1 Sources <strong>of</strong> uncerta<strong>in</strong>ty <strong>in</strong> geotechnical soil properties (adapted fromWhitman, 1996) ..............................................................................................................4Fig. 3.1 Schematic illustration <strong>of</strong> random variable — each element <strong>of</strong> the sample space, Ω,corresponds to a real value, x i , <strong>of</strong> the random variable ...................................................6Fig. 3.2 Measured water content data.........................................................................................13Fig. 3.3 Uniform distribution: (a) probability density function, (b) cumulative distributionfunction .........................................................................................................................15Fig. 3.4 Normal distribution: (a) probability density function, (b) cumulative distributionfunction .........................................................................................................................15Fig. 3.5 Lognormal distribution: (a) probability density function <strong>of</strong> ln X, (b) probabilitydensity function <strong>of</strong> X show<strong>in</strong>g no negative values and asymmetry ..............................18Fig. 3.6 Exponential distribution: (a) probability density function, (b) cumulativedistribution function......................................................................................................19Fig. 3.7 Gamma distribution: (a) probability density function, (b) cumulative distributionfunction .........................................................................................................................19Fig. 4.1 Inherent soil variability (after Phoon and Kulhawy, 1999) ..........................................25Fig. 4.2 Variation with shear stra<strong>in</strong> amplitude <strong>of</strong> mean and standard deviation <strong>of</strong> typicalmodulus reduction and damp<strong>in</strong>g curves (Darendian, 2001) .........................................32Fig. 5.1 CPT tip resistance log ...................................................................................................43Fig. 5.2 Plot <strong>of</strong> scale <strong>of</strong> fluctuation ............................................................................................43Fig. 5.3 (a) Spatial covariance represented by data po<strong>in</strong>ts, x, and separation distances <strong>of</strong> h;(b) hypothetical data show<strong>in</strong>g that autocorrelation should be higher for low h thanfor high h.......................................................................................................................45Fig.5.4 Idealized autocorrelogram show<strong>in</strong>g a constant property variable.................................46Fig. 5.5 A l<strong>in</strong>ear <strong>in</strong>creas<strong>in</strong>g time series with its autocorrelation function..................................46Fig. 5.6 An idealized time series and autocorrelogram consist<strong>in</strong>g <strong>of</strong> a s<strong>in</strong>e wave withwavelength <strong>of</strong> 20 units ..................................................................................................46Fig. 5.7 An idealized time series consist<strong>in</strong>g <strong>of</strong> a s<strong>in</strong>e wave plus random “noise” and itscorrespond<strong>in</strong>g autocorrelogram ....................................................................................47ix


Fig. 5.8 A l<strong>in</strong>ear <strong>in</strong>creas<strong>in</strong>g, s<strong>in</strong>usoidal time series with noise and its correspond<strong>in</strong>gautocorrelogram ............................................................................................................47Fig. 5.9 A random times series and correspond<strong>in</strong>g autocorrelogram.........................................48Fig. 5.10 Example autocorrelogram for CPT data shown <strong>in</strong> Figure 5.1 ......................................48Fig. 5.11 Relationship between variogram and autocovariance...................................................50Fig. 5.12 Illustrative SPT data set ................................................................................................50Fig. 5.13 Semivariogram for SPT data shown <strong>in</strong> Figure 5.12......................................................51Fig. 5.14 <strong>Properties</strong> <strong>of</strong> the variogram function.............................................................................53Fig. 5.15 Transition variogram models with sills.........................................................................56Fig. 5.16 Idealized nested structures ............................................................................................57Fig. 7.1 Hypothetical krig<strong>in</strong>g Cases (a) and (b) .........................................................................68Fig. 7.2 Number <strong>of</strong> required Monte Carlo trials.........................................................................75Fig. 7.3 Displacement pr<strong>of</strong>ile <strong>of</strong> example soil pr<strong>of</strong>ile................................................................81Fig. 7.4 Variation <strong>of</strong> (N 1 ) 60 with depth for 100 simulated soil pr<strong>of</strong>iles......................................82Fig. 7.5 (a) Histogram <strong>of</strong> all (N 1 ) 60 data and (b) variogram <strong>of</strong> <strong>in</strong>dividual (N 1 ) 60 pr<strong>of</strong>ile............82Fig. 7.6 Results <strong>of</strong> site response analysis: (a) pr<strong>of</strong>iles <strong>of</strong> permanent lateral displacementfor all analyses and (b) comparison <strong>of</strong> determ<strong>in</strong>istic pr<strong>of</strong>ile with µ andµ ± σ pr<strong>of</strong>iles.................................................................................................................83Fig. 7.7 CDF for lateral displacement at a depth <strong>of</strong> 3 m ............................................................84Fig. 7.8 Two-dimensional slope geometry.................................................................................85Fig. 7.9 Two-dimensional OpenSees f<strong>in</strong>ite element mesh and load<strong>in</strong>g condition .....................86Fig. 7.10 Displacement time history <strong>of</strong> top <strong>of</strong> the foot<strong>in</strong>g — homogeneous soil undra<strong>in</strong>edshear strength ................................................................................................................87Fig. 7.11 Displacement <strong>of</strong> top <strong>of</strong> the foot<strong>in</strong>g (a) displacement time histories correspond<strong>in</strong>gto all stochastic fields; (b) average time history <strong>of</strong> displacements................................88Fig. 7.12 (a) Histogram <strong>of</strong> maximum displacements for the foot<strong>in</strong>g at the top <strong>of</strong> the cut slope;(b) cumulative distribution function (CDF) <strong>of</strong> maximum displacements.....................89Fig. 7.13 (a) Spatial variation <strong>of</strong> undra<strong>in</strong>ed shear strength, s u ; (b) cumulative histogram <strong>of</strong>undra<strong>in</strong>ed shear strength ...............................................................................................90Fig. 7.14 (a) Spatial variation <strong>of</strong> undra<strong>in</strong>ed shear strength, s u ; (b) cumulative histogram <strong>of</strong>undra<strong>in</strong>ed shear strength ...............................................................................................91x


LIST OF TABLESTable 3.1 Number <strong>of</strong> standard deviations, n, <strong>in</strong> expected sample range as function <strong>of</strong>number <strong>of</strong> measurements, n (after Burl<strong>in</strong>gton and May, 1978) ................................11Table 3.2 Values <strong>of</strong> the CDF <strong>of</strong> the standard normal distribution, F Z (Z) = 1 – F Z (-Z).............17Table 3.3 <strong>Properties</strong> <strong>of</strong> special distribution functions ...............................................................20Table 4.1 COV <strong>of</strong> <strong>in</strong>herent soil variability for moisture content, unit weight and relativedensity........................................................................................................................27Table 4.2 COV <strong>of</strong> <strong>in</strong>herent soil variability for plasticity <strong>in</strong>dices ..............................................28Table 4.3 COV <strong>of</strong> <strong>in</strong>herent soil variability for strength parameters..........................................29Table 4.4 COV <strong>of</strong> <strong>in</strong>herent soil variability for consolidation and permeability parameters .....30Table 4.5 Summary <strong>of</strong> total measurement error for laboratory measured properties (afterPhoon and Kulhawy (1999).......................................................................................32Table 4.6 COV <strong>of</strong> <strong>in</strong>herent soil variability for SPT resistance..................................................33Table 4.7 COV <strong>of</strong> <strong>in</strong>herent soil variability for CPT measurements ..........................................34Table 4.8 COV <strong>of</strong> <strong>in</strong>herent soil variability <strong>of</strong> undra<strong>in</strong>ed shear strength us<strong>in</strong>g VSTmeasurement..............................................................................................................34Table 4.9 COV <strong>of</strong> <strong>in</strong>herent soil variability <strong>of</strong> DMT measurement parameters.........................35Table 4.10 COV <strong>of</strong> <strong>in</strong>herent soil variability for PMT parameters...............................................35Table 4.11 Sources <strong>of</strong> variability <strong>in</strong> SPT test results (Kulhawy and Trautmann, 1996).............36Table 4.12 Sources <strong>of</strong> variability <strong>in</strong> CPT test results (Kulhawy and Trautmann, 1996).............37Table 4.13 Sources <strong>of</strong> variability <strong>in</strong> VST test results (Kulhawy and Trautmann, 1996) ............38Table 4.14 Sources <strong>of</strong> variability <strong>in</strong> DMT test results (Kulhawy and Trautmann, 1996)...........39Table 4.15 Sources <strong>of</strong> Variability <strong>in</strong> PMT test results (Kulhawy and Trautmann, 1996)...........39Table 5.1 Autocorrelation functions and correspond<strong>in</strong>g scale <strong>of</strong> fluctuation (afterVanmarcke, 1977) .....................................................................................................49Table 6.1 Scale <strong>of</strong> fluctuation values for some laboratory tested properties (after Phoonand Kulhawy (1999)..................................................................................................60Table 6.2 Scale <strong>of</strong> Fluctuation values for <strong>in</strong>situ test<strong>in</strong>g ............................................................60Table 6.3 Tabulated values for variogram Model, Nugget, and Sill for various CPTparameters (after Hegazy, et al., 1996)......................................................................61xi


Table 6.4Table 6.5Tabulated values <strong>of</strong> range and autocovariance distance for SPT andCPT parameters .........................................................................................................63Tabulated values <strong>of</strong> autocovariance distance for additional soil parameters(after DeGroot, 1996) ................................................................................................64xii


NOMENCLATUREAbbreviations Used Frequently:CDF Cumulative distribution functionCOV Coefficient <strong>of</strong> variationcov(X,Y) Covariance between X and YMGF Moment-generat<strong>in</strong>g functionMCM Monte Carlo Methodspdf Probability density functionNon-Greek Notation Used Frequently:r hC(h)F X (x)X i , x iE(x)Z(X)hm(s)aP(x)f X (x)Autocorrelation functionAutocovariance functionCumulative density functionDiscrete data <strong>of</strong> a random or regionalized variableExpected Value or meanRandom or regionalized variable functionLag or separation distanceMoment-generat<strong>in</strong>g functionNugget parameterProbabilityProbability density functionX, x Random or regionalized variableh rV(x)Range <strong>of</strong> <strong>in</strong>fluenceVarianceGreek Notation Used Frequently:Ω Outcome setϑ EventsR The set <strong>of</strong> real numbersµ Expected value or meanxiii


σ Varianceµ k k th moment <strong>of</strong> Xc kργ(h)k th central moment <strong>of</strong> Xcorrelation coefficientVariogram functionxiv


1 IntroductionPrediction <strong>of</strong> the performance <strong>of</strong> structures dur<strong>in</strong>g earthquakes requires accurate model<strong>in</strong>g <strong>of</strong> thegeotechnical components <strong>of</strong> soil-structure systems. <strong>Geotechnical</strong> performance is strongly dependenton the properties <strong>of</strong> the soil beneath and adjacent to the structure <strong>of</strong> <strong>in</strong>terest. These soilproperties can be described us<strong>in</strong>g determ<strong>in</strong>istic and/or probabilistic models. Determ<strong>in</strong>istic modelstypically use a s<strong>in</strong>gle discrete descriptor for the parameter <strong>of</strong> <strong>in</strong>terest. Probabilistic modelsdescribe parameters by us<strong>in</strong>g discrete statistical descriptors or probability distribution (density)functions. The spatial variation <strong>of</strong> the properties can be described by us<strong>in</strong>g stochastic <strong>in</strong>terpolationmethods.This overview provides a basis for describ<strong>in</strong>g the spatial uncerta<strong>in</strong>ty <strong>of</strong> geotechnical soilproperties. Sources and types <strong>of</strong> uncerta<strong>in</strong>ty are first presented, followed by a discussion <strong>of</strong> theprobabilistic treatment <strong>of</strong> geotechnical data us<strong>in</strong>g geostatistics. F<strong>in</strong>ally, generation <strong>of</strong> realizations<strong>of</strong> random functions us<strong>in</strong>g simulation is discussed. The latter two topics are the primaryfocus <strong>of</strong> this overview.The spatial distribution <strong>of</strong> geotechnical properties <strong>in</strong> natural soil deposits is difficult topredict determ<strong>in</strong>istically. Limited sampl<strong>in</strong>g, especially <strong>in</strong> subsurface drill<strong>in</strong>g, further complicatesprediction <strong>of</strong> soil properties. Prediction <strong>of</strong> the spatial occurrence <strong>of</strong> soil properties <strong>in</strong> either anoptimal best estimate or with<strong>in</strong> a probabilistic framework is necessary for effective numericalmodel<strong>in</strong>g <strong>of</strong> soils with heterogeneous properties.Applied geostatistical estimation and simulation techniques can be used to model spatialvariability from limited sample sets (or from known distributions <strong>of</strong> data). While traditional statisticsgenerally assumes <strong>in</strong>dependence between samples, geostatistics takes advantage <strong>of</strong> the factthat samples located <strong>in</strong> proximity to one another are <strong>of</strong>ten more similar than those obta<strong>in</strong>ed atlarge separation distances. Geostatistics provides a means <strong>of</strong> quantify<strong>in</strong>g this spatial correlation<strong>in</strong> soil properties and then <strong>of</strong> us<strong>in</strong>g that <strong>in</strong>formation for both estimation and stochastic simulation.1


Geostatistical estimation refers to techniques that provide the best l<strong>in</strong>ear unbiased estimators<strong>of</strong> unknown properties. When the structural <strong>in</strong>formation <strong>of</strong> the data is known, then the estimatorcan be def<strong>in</strong>ed. This description requires more than the simple first-order moments <strong>of</strong> therandom variable <strong>of</strong> <strong>in</strong>terest. Geostatistical simulation is a spatial Monte Carlo process where arandom “draw” from a local cumulative distribution function simulates a value <strong>of</strong> a property at agiven location. The simulation process is run multiple times to produce a series <strong>of</strong> realizations all<strong>of</strong> which correspond to the observed data at the sample locations, the univariate distribution, andthe spatial correlation <strong>of</strong> the observed data. In essence, each realization is a probable representation<strong>of</strong> the underly<strong>in</strong>g reality given the available data. These multiple realizations can be used as<strong>in</strong>put to a transfer function (e.g., multiple realizations <strong>of</strong> shear strength as <strong>in</strong>put to slope stabilityanalyses), or processed to provide a map <strong>of</strong> the probability <strong>of</strong> a given situation be<strong>in</strong>g true (e.g., aplot <strong>of</strong> the probability that a given factor <strong>of</strong> safety will be exceeded). The results <strong>of</strong> the transferfunction can <strong>of</strong>ten be evaluated <strong>in</strong> terms <strong>of</strong> economic loss and/or risk.This report is organized <strong>in</strong>to several dist<strong>in</strong>ct sections. The next section discusses thesources and types <strong>of</strong> uncerta<strong>in</strong>ty. The follow<strong>in</strong>g section discusses the theory <strong>of</strong> probability and isfollowed by a qualitative summary <strong>of</strong> soil property variability. Soil property variability is followedby a discussion <strong>of</strong> the theory <strong>of</strong> regionalized variables and a quantitative presentation <strong>of</strong>values for soil property spatial dependence. The section follow<strong>in</strong>g discusses estimation andsimulation, and is followed by a summary <strong>of</strong> available tools and examples.2


2 Sources and Types <strong>of</strong> <strong>Uncerta<strong>in</strong>ty</strong>“Certa<strong>in</strong>ty” refers to situations <strong>in</strong> which the outcome <strong>of</strong> an event or the value <strong>of</strong> a parameter isknown with unit probability. Conversely, uncerta<strong>in</strong>ty occurs when a collection <strong>of</strong> values associatedwith respective uncerta<strong>in</strong> “states <strong>of</strong> nature” occur with strictly non-negative probabilities forat least two different possible values; the simplest examples are toss<strong>in</strong>g a co<strong>in</strong> or roll<strong>in</strong>g a die.<strong>Uncerta<strong>in</strong>ty</strong> analysis is an emerg<strong>in</strong>g approach that uses estimation and simulation techniques toconsider the variability <strong>of</strong> available data and to estimate the frequency with which values <strong>of</strong> <strong>in</strong>terestare likely to be exceeded. While it has not yet been widely applied <strong>in</strong> geotechnical eng<strong>in</strong>eer<strong>in</strong>gpractice, this approach <strong>of</strong>fers <strong>in</strong>sight <strong>in</strong>to exist<strong>in</strong>g data for heterogeneous geotechnicalsystems.<strong>Uncerta<strong>in</strong>ty</strong> pervades many aspects <strong>of</strong> geotechnical earthquake eng<strong>in</strong>eer<strong>in</strong>g, particularly<strong>in</strong> the characterization <strong>of</strong> soil properties. In general, some <strong>of</strong> this uncerta<strong>in</strong>ty may be due to thedifficulty <strong>in</strong> mak<strong>in</strong>g accurate measurements and some may be due to uncerta<strong>in</strong>ty <strong>in</strong> the models,equations, and understand<strong>in</strong>g <strong>of</strong> the systems <strong>in</strong>volved. Additional uncerta<strong>in</strong>ty can result from thespatial variability <strong>of</strong> the system.<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> geotechnical soil properties can be formally grouped <strong>in</strong>to aleatory andepistemic uncerta<strong>in</strong>ty (Lacasse et al., 1996). Aleatory uncerta<strong>in</strong>ty represents the natural randomness<strong>of</strong> a property and, as such, is a function <strong>of</strong> the spatial variability <strong>of</strong> the property. Recogniz<strong>in</strong>gspatial variability is important because it can help dist<strong>in</strong>guish the distances over which it occurscompared to the scale <strong>of</strong> the data <strong>of</strong> <strong>in</strong>terest (Whitman, 1996). Epistemic uncerta<strong>in</strong>ty resultsfrom a lack <strong>of</strong> <strong>in</strong>formation and shortcom<strong>in</strong>gs <strong>in</strong> measurement and/or calculation. Epistemic uncerta<strong>in</strong>ty<strong>in</strong>cludes the systematic error result<strong>in</strong>g from factors such as the method <strong>of</strong> propertymeasurement, the quantity <strong>of</strong> available data, and model<strong>in</strong>g errors. Figure 2.1 illustrates the types<strong>of</strong> uncerta<strong>in</strong>ty <strong>in</strong> geotechnical soil properties. Human error would be considered a third source<strong>of</strong> uncerta<strong>in</strong>ty, however it is not considered <strong>in</strong> this overview because it is difficult to isolate andits effects on probability are usually <strong>in</strong>cluded <strong>in</strong> compilations <strong>of</strong> statistics on aleatory uncerta<strong>in</strong>ty.


<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Soil <strong>Properties</strong>AleatoryEpistemicSpatial VariabilityRandom Test<strong>in</strong>g ErrorsMeasurement ProceduresStatistical Error (Too Few Data)Fig. 2.1 Sources <strong>of</strong> uncerta<strong>in</strong>ty <strong>in</strong> geotechnical soil properties (adapted from Whitman,1996)As an example, consider SPT sampl<strong>in</strong>g <strong>in</strong> a deposit <strong>of</strong> loose sand. Sources <strong>of</strong> aleatoryuncerta<strong>in</strong>ty <strong>in</strong> the measured SPT resistance would <strong>in</strong>clude the natural variability <strong>of</strong> the soil depositand random test<strong>in</strong>g errors, such as that caused by a s<strong>in</strong>gle soil defect (e.g., an erratic boulder).Sources <strong>of</strong> epistemic uncerta<strong>in</strong>ty could <strong>in</strong>clude non-standard equipment (such as the samplersize, deformed samplers or rods, rod length, hammer drop system, hammer weight, etc., notconform<strong>in</strong>g to the SPT standard), and <strong>in</strong>sufficient data to form reasonable statistics, such as onebor<strong>in</strong>g over a large site. It is important to note that epistemic uncerta<strong>in</strong>ty can usually be reducedby acquisition <strong>of</strong> additional data or improvements <strong>in</strong> measurement procedures. Aleatory uncerta<strong>in</strong>ty,on the other hand, is <strong>in</strong>herent to the variable and cannot be reduced by additional <strong>in</strong>formation.4


3 The Theory <strong>of</strong> ProbabilityA basic understand<strong>in</strong>g <strong>of</strong> some fundamental aspects <strong>of</strong> probability is required to quantify the uncerta<strong>in</strong>ty<strong>in</strong> geotechnical soil properties. These concepts <strong>in</strong>clude probability space, distributions,and moments. A brief overview <strong>of</strong> the basic concepts and term<strong>in</strong>ology <strong>of</strong> probability are presented<strong>in</strong> the follow<strong>in</strong>g sections; more detailed descriptions <strong>of</strong> this <strong>in</strong>formation can be found <strong>in</strong>numerous <strong>in</strong>troductory textbooks on probability such as Benjam<strong>in</strong> and Cornell (1970), Ott(1984), Kelly (1994), and Mendenhall and Beaver (1991).3.1 PROBABILITY SPACEThe notion <strong>of</strong> probability space is fundamental to probability theory. Probability space consists<strong>of</strong>:(1) An outcome set, Ω, that conta<strong>in</strong>s all elements <strong>of</strong> all sets <strong>of</strong> data under consideration;(2) A collection <strong>of</strong> events, ϑ, which are subsets <strong>of</strong> Ω; and(3) A procedure for comput<strong>in</strong>g the probabilities <strong>of</strong> events called the probability massfunction, p(x), or the probability density function, f X (x). Mass functions and densityfunctions are discussed <strong>in</strong> Section 3.3.R is def<strong>in</strong>ed as the set <strong>of</strong> all real numbers. In R, {x: 3 ≤ x < 6} is the set <strong>of</strong> all real xgreater or equal to three and less than six. The terms sample space and the outcome set are synonymous.Note that for sets (events) to be useful, they must have an assignable probability.Two general types <strong>of</strong> probability space exist:(1) F<strong>in</strong>ite space (also known as discrete space) is comprised <strong>of</strong> a known, f<strong>in</strong>ite number<strong>of</strong> possible samples. An example might be the percentage <strong>of</strong> drill holes at a site thatpenetrate a peat layer. If N bor<strong>in</strong>gs are drilled, there are exactly N+1 possible values<strong>of</strong> the percentage <strong>of</strong> bor<strong>in</strong>gs that penetrate peat. In a f<strong>in</strong>ite space, the probability<strong>of</strong> an event, ϑ, occurr<strong>in</strong>g is equal to or greater than zero, and the sum <strong>of</strong> all probabilities<strong>of</strong> each event occurr<strong>in</strong>g is 1:


p ( ϑ)≥ 0 for all ϑ ∈Ωand ∑ p ( ϑ)= 1. (3.1)(2) Inf<strong>in</strong>ite space (also known as cont<strong>in</strong>uous space) consists <strong>of</strong> an <strong>in</strong>f<strong>in</strong>ite, unknownnumber <strong>of</strong> possible samples taken from a cont<strong>in</strong>uous <strong>in</strong>terval. An example <strong>in</strong> terms<strong>of</strong> geotechnical soil properties would be the distribution <strong>of</strong> shear strength <strong>in</strong> a soillayer across a site. In terms <strong>of</strong> probability, an absolutely cont<strong>in</strong>uous probabilityspace <strong>in</strong> R consists <strong>of</strong> the outcome set, Ω, which is an <strong>in</strong>terval, and a function f X (x)such that:fX ( x)≥ 0 for all x ∈Ωand ∫ f X( x)dx = 1. (3.2)In other words, cont<strong>in</strong>uous probability space conta<strong>in</strong>s an unknown number <strong>of</strong> possiblesamples and the samples are not countable, but are taken from a cont<strong>in</strong>uous <strong>in</strong>terval.Most geotechnical phenomena occur <strong>in</strong> cont<strong>in</strong>uous space.ϑ∈ΩΩ3.2 RANDOM VARIABLESA random variable is a variable that can take on multiple values. The doma<strong>in</strong> <strong>of</strong> a random variableis the outcome set and its range is the set <strong>of</strong> possible values. Mathematically, a randomvariable can be expressed as a real function, Z(x), that associates a real number, x i , with eachelement <strong>in</strong> the outcome set,xi∈Ω. The real number, x i , will correspond to every outcome <strong>of</strong> anexperiment, the function { Z( x)≤ x } is an event for any real number x i , and the probabilitiesiP { Z(x)= +∞}and P{Z(x)= −∞}will be zero for the random variable. The random variablecan be visualized as a function that maps a sample space onto a real l<strong>in</strong>e as shown on Figure 3.1.Z(x)ΩFig. 3.1 Schematic illustration <strong>of</strong> random variable — each element <strong>of</strong> the sample space, Ω,corresponds to a real value, x i , <strong>of</strong> the random variablex iRTwo types <strong>of</strong> random variables exist: discrete and cont<strong>in</strong>uous. Discrete random variablestake on values from discrete probability space, i.e., they represent quantities, such as SPT resis-6


tance or USCS soil type, that can assume only a f<strong>in</strong>ite number <strong>of</strong> different values. Cont<strong>in</strong>uousrandom variables take on values from cont<strong>in</strong>uous probability space; common examples <strong>in</strong>cludeundra<strong>in</strong>ed strength, friction angle, permeability, exit gradients at the toe <strong>of</strong> a levee, and time tooccurrence <strong>of</strong> any event.3.3 PROBABILITY DISTRIBUTIONSProbability distributions are recipes for comput<strong>in</strong>g the probabilities <strong>of</strong> all possible events for aparticular random variable. These recipes will specify the probabilities over the entire samplespace.3.3.1 Probability FunctionsThe probability mass function (pmf) and the probability density function (pdf) are functions thatassign a probability to every <strong>in</strong>terval <strong>of</strong> the outcome set for discrete and cont<strong>in</strong>uous random variables,respectively. The pmf and the pdf are denoted p X (x)and f X (x), respectively, where X is therandom variable itself and x is the value that the random variable can take on. Probability functionshave the follow<strong>in</strong>g properties:(1) p X( x)≥ 0 (discrete)f X( x)≥ 0 (cont<strong>in</strong>uous)∑X∈Ω(2) p ( x)= 1 (discrete)∞∫−∞f X( x)dx = 1 (cont<strong>in</strong>uous)(3) P [ I ] = ∑ p(x)(discrete)x∈IbP [ a ≤ x ≤ b]= ∫ fX( x)dx (cont<strong>in</strong>uous)aIt is important to note that any s<strong>in</strong>gle value <strong>in</strong> a cont<strong>in</strong>uous probability space has zeroprobability and that the probabilities <strong>of</strong> <strong>in</strong>tervals are the same whether they conta<strong>in</strong> their endpo<strong>in</strong>tsor not.7


3.3.2 The Cumulative Distribution FunctionThe cumulative distribution function (CDF) <strong>of</strong> a probability distribution is a function that def<strong>in</strong>esthe probability <strong>of</strong> the random variable tak<strong>in</strong>g on values less than x, or:F( x)= P(X ≤ x)(3.3)is commonly referred to as the distribution function, and is denoted F X (x). It is appropriate to <strong>in</strong>cludethe descriptor cumulative to rem<strong>in</strong>d us that F X (x) is the accumulated probability <strong>of</strong> allnumbers less than or equal to x. As x <strong>in</strong>creases, the probability cont<strong>in</strong>ues to correspond<strong>in</strong>gly <strong>in</strong>crease.The CDF applies to both discrete and cont<strong>in</strong>uous random variables; F X (x) is a nonnegative,monotonically <strong>in</strong>creas<strong>in</strong>g function such that 0 ≤ F X( x)≤ 1, F ( −∞)= 0 andF ( +∞)= 1. For real a and b, with a < b, P( a ≤ X ≤ b)= F ( b)− F ( a).XMany distributions can be systematically grouped <strong>in</strong>to customary distributions. Thesedistributions are covered later <strong>in</strong> this chapter.XXX3.4 MATHEMATICAL EXPECTATIONThe predicted value <strong>of</strong> random variables is generally described us<strong>in</strong>g mathematical expectation.The expected value <strong>of</strong> a random variable, X, is a number computed from the pdf <strong>of</strong> x that representsthe expected long-term average observed value <strong>of</strong> X. The expected value <strong>of</strong> a cont<strong>in</strong>uousrandom variable is given by:∞∫−∞E( X ) = x f ( x)dx . (3.4)XThe expected value is commonly referred to as the mean or average, and is given the symbol, µ.3.5 VARIANCE AND MOMENTSThe “dispersion” <strong>of</strong> the random variable about the mean is described by the variance, which isdef<strong>in</strong>ed as:∞∫ (−∞2V ( X ) = x − µ ) f ( x)dx . (3.5)X8


The variance can also be described as the expected square, m<strong>in</strong>us the squared expectedvalue (or as some remember it, mean square m<strong>in</strong>us squared mean), i.e.,V ( X )X22= E(X ) − [ E()] . (3.6)It is more common to express dispersion us<strong>in</strong>g the standard deviation, σ= V (X )that the units <strong>of</strong> the descriptor and the random variable are the same. Random variables are <strong>of</strong>tenacted upon by functions, and it is useful to be able to relate the expectation <strong>of</strong> the function to that<strong>of</strong> the random variable. For example, a l<strong>in</strong>ear function <strong>of</strong> the random variable X will describe atransformed function. The mean and variance <strong>of</strong> the function exhibit the follow<strong>in</strong>g importantproperties:, soE ( aX + b)= aE(X ) + b, and (3.7)2V ( aX + b)= a V ( X ) . (3.8)Many <strong>of</strong> the essential characteristics <strong>of</strong> a pdf can be described by a set <strong>of</strong> relatively simplescalar quantities. The expected value <strong>of</strong> the various powers <strong>of</strong> a random variable, X, E(X),E(X 2 ), E(X 3 ), etc.) are called the moments <strong>of</strong> X. Moments are important <strong>in</strong> describ<strong>in</strong>g regionalizedvariables discussed later <strong>in</strong> this text. For any non-negative <strong>in</strong>teger k, the k th moment <strong>of</strong> X isdef<strong>in</strong>ed by:kµ = E(X ) . (3.9)kThe moments <strong>of</strong> the random variable X – E(X) are also important. They are called thecentral moments <strong>of</strong> X, because E(X) is regarded as the “center” for the distribution X. The centralmoments are also referred to as the moments <strong>of</strong> X about E(X), and are denoted by c 0 , c 1 , c 2 ,and so forth, where:c k = E(X – µ k ) k , where µ k = E(X). (3.10 )Note that the zero-th and first central moments are 1 and 0, respectively. The second centralmoment is the variance, the third central moment measures skewness, and the fourth centralmoment measures the steepness <strong>of</strong> the peak <strong>of</strong> the pdf near its center (kurtosis). In terms <strong>of</strong>moments, the mean and variance can be expressed as E(X) = µ 1 and V(X) = E(X – µ 1 ) 2 .9


The coefficient <strong>of</strong> variation represents a relative (and dimensionless) measure <strong>of</strong> dispersionand is expressed as:σXCOV =µX×100% . (3.11 )The COV has been commonly used to describe the variation <strong>of</strong> many geotechnical soilproperties and <strong>in</strong>situ test parameters. Note that the mean, standard deviation, and COV are <strong>in</strong>terdependent— know<strong>in</strong>g any two will give the third.In practice, it becomes convenient to estimate moments <strong>of</strong> geotechnical soil parameterswhere little data are available (sparse data) by assum<strong>in</strong>g that the COV is similar to previouslymeasured values from other data sets <strong>of</strong> the same parameter. A summary <strong>of</strong> COV values reported<strong>in</strong> the literature is presented <strong>in</strong> the next chapter.The dispersion <strong>of</strong> sparse data can also be estimated by us<strong>in</strong>g other methods such as the“three-sigma rule.” This method for approximat<strong>in</strong>g the variance recognizes that 99.73% <strong>of</strong> allvalues <strong>of</strong> a normally distributed parameter are with<strong>in</strong> three standard deviations <strong>of</strong> the average.Accord<strong>in</strong>g to the three-sigma rule, the standard deviations can be approximated by divid<strong>in</strong>g therange (highest value m<strong>in</strong>us the lowest value) by 6. Duncan (2000) po<strong>in</strong>ts out that eng<strong>in</strong>eers havea tendency to underestimate the range between the lowest and highest conceivable values, therefore,a conscious effort should be made to make the range between the two as high as seem<strong>in</strong>glypossible. Christian et al. (2001) also caution that eng<strong>in</strong>eers with less experience <strong>in</strong> statistics willestimate the lowest and highest conceivable values with significant unconservative bias. Thefield <strong>of</strong> order statistics <strong>of</strong>fers an alternative to the three-sigma rule that accounts for the quantity<strong>of</strong> available data. Accord<strong>in</strong>g to Burl<strong>in</strong>gton and May (1978), the standard deviation <strong>of</strong> a normallydistributed random variable can be estimated by divid<strong>in</strong>g the range <strong>of</strong> measured values by thevalue N shown <strong>in</strong> Table 3.1..10


Table 3.1 Number <strong>of</strong> standard deviations, N, <strong>in</strong> expected sample range as function <strong>of</strong>number <strong>of</strong> measurements, n (after Burl<strong>in</strong>gton and May, 1978)n2345678910152030N1.1281.6932.0592.3262.5342.7042.8472.9703.0793.4723.7354.090In the above discussion, it is implicitly assumed that random variables are normally distributedas discussed <strong>in</strong> Section 3.6.2. If the variables are not normally distributed, Equation3.11 cannot be used. To solve this problem, the technique <strong>of</strong> normal tail approximation can beused to transform a non-normal distribution <strong>in</strong>to an equivalent normal distribution. This results<strong>in</strong> the concept <strong>of</strong> the equivalent COV. The reader is referred to Paleheimo and Hannus (1974)for this procedure.3.5.1 Moments <strong>of</strong> Two Random VariablesJo<strong>in</strong>t moments can be used to describe the relationship between two random variables. The firstjo<strong>in</strong>t moment about the mean is a measure <strong>of</strong> the <strong>in</strong>terdependence between two random variables,X and Y, and is called the covariance <strong>of</strong> X and Y. The covariance between two randomvariables is def<strong>in</strong>ed as:( X , Y ) = E[ ( X − µX)( Y − µY)] = E(XY ) − µXµYcov . (3.12)If X and Y are <strong>in</strong>dependent, cov(X,Y) = 0; however, the converse is not true. A positivecovariance means that one random variable <strong>in</strong>creases as the other <strong>in</strong>creases. A negative covariancemeans that one random variable <strong>in</strong>creases when the other decreases. Therefore, the covarianceis said to be a relative measure <strong>of</strong> the degree <strong>of</strong> positive or negative correlation between Xand Y.For n random variables, the set <strong>of</strong> covariances can be expressed <strong>in</strong> the form <strong>of</strong> a covariancematrix:11


C =⎡c⎢⎢c⎢c⎢⎢ M⎢⎣cn1121311cccc122232Mn2ccc132333KLOc1n⎤⎥c2n⎥⎥⎥⎥σ ⎥nn ⎦(3.13)where: c cov( x , x )ij= , andijc22211σ1, c22= σ2, , c nn= σn= K . To obta<strong>in</strong> a relative measure <strong>of</strong>correlation between X and Y, the covariance is divided by the square root <strong>of</strong> the product <strong>of</strong> thevariances to yield the correlation coefficient:cov( X , Y )ρ =. (3.14)V ( X ) V ( Y )The correlation coefficient will take on values between –1 and 1. In general, the correlation coefficientexpresses the relative strength <strong>of</strong> the association between two parameters. The distribution<strong>of</strong> one <strong>of</strong> a group <strong>of</strong> correlated parameters, given specific values <strong>of</strong> the other parameters,will be <strong>in</strong>fluenced by the degree <strong>of</strong> correlation. For example, Lumb et al. (Lumb, 1970; Grivas,1981 and Wolff, 1985) have shown that the shear strength parameters c and φ are <strong>of</strong>ten negativelycorrelated with correlation coefficient rang<strong>in</strong>g from -0.72 to 0.35. The distribution <strong>of</strong> c fora particular φ value and will be different than the distribution <strong>of</strong> all c values.Consider a bor<strong>in</strong>g <strong>in</strong> which samples have been obta<strong>in</strong>ed at eight different depths with<strong>in</strong>the same soil unit (Harr, 1987). Water contents are measured for each <strong>of</strong> the samples, with theresults plotted as shown <strong>in</strong> tabular form <strong>in</strong> Figure 3.2.12


0Water Content (%)0 10 20 30 4051015Depth (ft)202530354045Fig. 3.2 Measured water content dataWater content, w (%) Depth, d (ft) w d w 2 d 230.0 5 150 900.00 2528.9 10 289 835.21 10029.0 15 435 841.00 22526.0 20 520 676.00 40025.4 25 635 645.16 62525.0 30 750 625.00 90024.8 35 868 615.04 122524.6 40 984 605.16 1600Σw = 213.7 Σd = 180 Σw d = 4631 Σw 2 = 5742.57 Σd 2 = 5100ρ =cov( X , Y )V ( X ) V ( Y )=N∑wd − ∑ w∑d222[ N∑w − ( ∑ w)] N∑d− ( ∑d)[ ] =28(4631) − 213.7(180)22[ 8(5742.57) − (213.7) ][ 8(5100) − (180) ]= − 0.937 .The correlation coefficient shows strong negative correlation: the water content decreasesas the depth <strong>in</strong>creases.13


3.5.2 Moment-Generat<strong>in</strong>g FunctionsA moment-generat<strong>in</strong>g function (MGF) is used to f<strong>in</strong>d the moments <strong>of</strong> a particular distribution.Although MGFs apply to both discrete and cont<strong>in</strong>uous probability spaces, this summary focuseson cont<strong>in</strong>uous distributions because they are more applicable to geotechnical soil properties. TheMGF is def<strong>in</strong>ed by:sXm ( s)= E(e )(3.15)for only those numbers s for which this expected value exists. Moments can be generated by us<strong>in</strong>gthe n th derivative to f<strong>in</strong>d the n th moment, or expected values to the power n. In general,nd mnds2d m2dsnn sX d mn= E(X e ) , and = E(X ) evaluated at s = 0. Therefore, dm = E(X ) andndsds2= E(X ) evaluated at s = 0.3.6 SPECIAL PROBABILITY DISTRIBUTIONSMany special probability distributions exist, most notably the family <strong>of</strong> normal distributions.Other important distributions <strong>in</strong>clude the uniform, exponential, and gamma distributions. Ratherthan focus on the derivations, this section presents useful properties <strong>of</strong> these distributions. Becausefew, if any, geotechnical properties will behave as a discrete probability space, special discretedistributions are not presented here<strong>in</strong>. The reader is referred to Ott (1984) and Kelly (1994)for a discussion <strong>of</strong> discrete systems.3.6.1 Uniform DistributionSome random variables are equally likely to take on any value with<strong>in</strong> an <strong>in</strong>terval. The uniformdistribution models a number chosen at random from the <strong>in</strong>terval (a,b) such that no part <strong>of</strong> the <strong>in</strong>tervalis favored over any other part <strong>of</strong> the same size. Such a random variable, X, is said to beuniformly distributed with parameters a and b, and is denoted X ~ U(a,b). The probability densityfunction (pdf), cumulative distribution function (CDF), moment-generat<strong>in</strong>g function (MGF),E(X), and V(X) are shown <strong>in</strong> Table 3.3. The pdf and CDF for a uniform distribution are illustrated<strong>in</strong> Figure 3.3.14


F X (x)f X (x)1.01/(b-a )abxabx(a)Fig. 3.3 Uniform distribution: (a) probability density function, (b) cumulativedistribution function(b)3.6.2 Normal DistributionA family <strong>of</strong> random variables called “normal random variables” model randomly chosen members<strong>of</strong> some large population as outl<strong>in</strong>ed <strong>in</strong> the Central Limit Theorem (refer to Kelly, 1984 orOtt, 1984). The random variable X is said to be normally distributed with parameters µ (mean)and σ 2 (variance), and is denoted X ~ N(µ,σ 2 ). The pdf, CDF, MGF, E(X), and V(X) are shown<strong>in</strong> Table 3.3. The pdf and CDF for a normal distribution are illustrated <strong>in</strong> Figure 3.4. Normallydistributed random variables vary from – ∞ to + ∞.f X (x)F X (x)1.0µ − σ µ µ + σ xx(a)Fig. 3.4 Normal distribution: (a) probability density function, (b) cumulative distributionfunction(b)15


The moment-generat<strong>in</strong>g function can be used to f<strong>in</strong>d the mean and variance. For a normaldistribution, the MGF is2 2µ s+σs / 2m(s)= e . To f<strong>in</strong>d E(X), the first derivative is evaluated at s= 0. Therefore,m'( s)2 22 µ s+σ s / 2= ( µ + 2σs / 2) e evaluated at s = 0 is E (X ) = µ. By us<strong>in</strong>g thismethodology, the variance, σ 2 , can be obta<strong>in</strong>ed. The E(X 2 ) is first obta<strong>in</strong>ed by tak<strong>in</strong>g the second2 2derivative <strong>of</strong> m(s) and evaluat<strong>in</strong>g at s = 0. This results <strong>in</strong> σ + µ . By def<strong>in</strong>ition, the variance is22E(X ) − [ E(X ) ] ; therefore the variance is σ 2 .Any normally distributed random variable, X, can be transformed to a standard normalvariable, Z, by Z = (X- µ )/ σ. The standard normal variable has the properties µ = 0 and σ 2 = 1;its distribution is called the “standard normal distribution.” The CDF <strong>of</strong> the standard normal distributionis given <strong>in</strong> Table 3.2.16


Table 3.2 Values <strong>of</strong> the CDF <strong>of</strong> the standard normal distribution, F Z (Z) = 1 - F Z (-Z)Z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09-3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002-3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003-3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0005 .0005 .0005 .0005-3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007-3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010-2.9 .0019 .0018 .0017 .0017 .0016 .0016 .0015 .0015 .0014 .0014-2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019-2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026-2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036-2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048-2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064-2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084-2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110-2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143-2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183-1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233-1.8 .0359 .0352 .0344 .0336 .0329 .0322 .0314 .0304 .0301 .0294-1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367-1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455-1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559-1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0722 .0708 .0694 .0681-1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0859 .0853 .0838 .0823-1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985-1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170-1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379-0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611-0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867-0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148-0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451-0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776-0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121-0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483-0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859-0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4365 .4325 .4286 .4247-0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .464117


3.6.3 Lognormal DistributionA parameter is said to be lognormally distributed if its logarithm is normally distributed. The lognormal distribution is shown <strong>in</strong> Figure 3.5. Therefore, if X is lognormally distributed, then Y =lnX is normally distributed. In this case, the statistical parameter Z, is:ln X − µln xZ = . (3.16)σTherefore, the lower bound <strong>of</strong> the lognormal distribution is zero and the upper bound is<strong>in</strong>f<strong>in</strong>ite. The lognormal distribution provides a convenient model for random variables with relativelylarge coefficients <strong>of</strong> variation (> 30%) for which an assumption <strong>of</strong> normality would implya significant probability <strong>of</strong> negative values (USACE, 1999). Random variables <strong>of</strong>ten assumed tobe lognormally distributed <strong>in</strong>clude the coefficient <strong>of</strong> permeability, the undra<strong>in</strong>ed shear strength<strong>of</strong> clay, and factors <strong>of</strong> safety (USACE, 1999).ln xf X (x)f X (x)ln(x)xFig. 3.5 Lognormal distribution: (a) probability density function <strong>of</strong> ln X, (b) probabilitydensity function <strong>of</strong> X show<strong>in</strong>g no negative values and asymmetry3.6.4 Exponential DistributionThe exponential distribution can be used to model a number <strong>of</strong> physical phenomena, such as thetime, t, for a component to fail, or the distance, d, that an object travels before a collision. Exponentialrandom variables are most commonly used to model a time-dependent process (e.g., Poissonprocess) with an arrival rate <strong>of</strong> λ arrivals per unit time. The random variable X is said to beexponentially distributed with parameter λ, and is denoted X ~ exp(λ). The pdf, CDF, MGF,18


E(X), and V(X) are shown <strong>in</strong> Table 3.3. The pdf and CDF for an exponential distribution are illustrated<strong>in</strong> Figure 3.6.f X (x)F X (x)1.0xx(a)Fig. 3.6 Exponential distribution: (a) probability density function, (b) cumulativedistribution function(b)3.6.5 Gamma DistributionThe gamma distribution is the distribution <strong>of</strong> the sum <strong>of</strong> the squares <strong>of</strong> n <strong>in</strong>dependent, normallydistributed random variables. Gamma distributions with various comb<strong>in</strong>ations <strong>of</strong> parameters areuseful to model properties with positive values that tend to cluster near some value, but tend tohave some very large values that produce a long right tail. The random variable X is said to begamma distributed with parameters α and λ, and is denoted X ~ gam(α, λ). The pdf, CDF,MGF, E(X), and V(X) are shown <strong>in</strong> Table 3.3. The pdf and CDF will vary for vary<strong>in</strong>g α and λvalues as shown <strong>in</strong> Figure 3.7. Note that when α = 1, the gamma density becomes the exp(λ)density.f X (x ) α = 0.5λ = 0.5α = 5λ = 1α = 10λ = 2F X (x ) α = 0.5λ = 0.5 α = 5λ = 1α = 27λ = 3xα = 10λ = 2α = 27λ = 3x(a)Fig. 3.7 Gamma distribution: (a) probability density function, (b) cumulative distributionfunction19(b)


DistributionNameUniformTable 3.3 <strong>Properties</strong> <strong>of</strong> special distribution functionspdf, f X (x) CDF, F X (x) MGF, m(s) E(X) V(X)⎧ 1⎪ , if a < x < b⎨b− a⎪⎩0,otherwise⎧0,if x ≤ 0⎪x − a⎨ , if 0 < x < 1⎪b− a⎪⎩1, if x ≥ 1bs ase − es(b − a)for s ≠ 0,and m(0)=1b + a2( b − a)1221 σNormal−(x−µ)2 / 22eσ 2πfor all real xz∫−∞ϕ (z)dz ,where1ϕ(z)= e2π2−z/ 2sm(s)= eµ + efor all real s2 2σ s/ 2µ σ 2ExponentialGammaα⎧ λ⎪ x⎨Γ(α)⎪⎩0,−λ⎧ λex , if x > 0⎨⎩0,otherwiseα −1e−λx, if x,λ,β > 0otherwiseZ = (X- µ)/σ⎧0,if x ≤ 0⎨ −λx⎩1− e , if x < 0There is no convenientformula unless αis positive.λ1for s < λλ − s λ⎛ λ ⎞⎜ ⎟⎝ λ − s ⎠αfor s < λαλ12λα2λ∞α −1 −xn!( α)= x e dx =+ 1λ0Γ ∫ nfor any λ > 0 and n=0,1,2,…3.6.6 Estimat<strong>in</strong>g Probability DistributionsIt is sometimes adequate to know only estimates <strong>of</strong> the mean and standard deviation <strong>of</strong> the randomvariable, and knowledge <strong>of</strong> the form <strong>of</strong> the probability density function may not be necessary.However, <strong>in</strong> order to ensure that these estimates are reasonable and check assumptions regard<strong>in</strong>gthe shape <strong>of</strong> the distribution, it is recommended that the shape <strong>of</strong> the distribution beplotted as a check. A suggested method to assign or check assumed moments <strong>of</strong> random variables(USACE, 1995) is to:• Assume trial values for the expected value and standard deviation and take therandom variable to be normal or lognormal.• Plot the result<strong>in</strong>g density function, and tabulate and plot the result<strong>in</strong>g CDF.20


• Assess the reasonableness <strong>of</strong> the shape <strong>of</strong> the pdf and the values <strong>of</strong> the CDF.• Repeat the above steps with successively improved estimates <strong>of</strong> the expectedvalue and standard deviation until and appropriate pdf and CDF are obta<strong>in</strong>ed.3.7 SUMMARYA basic understand<strong>in</strong>g <strong>of</strong> the theory <strong>of</strong> probability can be used to compute basic statistical parameters<strong>of</strong> a soil property. Probability distributions, expectation, and moments are the basic statisticaldescriptors <strong>of</strong> a random variable. These descriptors can be used to estimate the variability<strong>of</strong> geotechnical soil properties.21


4 <strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> Soil <strong>Properties</strong>Most soils are naturally formed <strong>in</strong> many different depositional environments; therefore theirphysical properties will vary from po<strong>in</strong>t to po<strong>in</strong>t. This variation can exist even <strong>in</strong> an apparentlyhomogeneous soil unit. Variability <strong>of</strong> soil properties is a major contributor to the uncerta<strong>in</strong>ty <strong>in</strong>geotechnical eng<strong>in</strong>eer<strong>in</strong>g analyses. Laboratory test results on natural soils <strong>in</strong>dicate that most soilproperties can be considered as random variables conform<strong>in</strong>g to the normal distribution function(Lumb, 1966; Tan et al., 1993). This section summarizes model<strong>in</strong>g <strong>of</strong> uncerta<strong>in</strong>ty <strong>in</strong> soil propertiesand presents values <strong>of</strong> COV from various sources for <strong>in</strong>dex properties, laboratory-measuredproperties, and field-measured properties.4.1 QUANTIFYING UNCERTAINTY IN SOIL PROPERTIESInsitu soil properties may vary vertically and horizontally for a variety <strong>of</strong> reasons, <strong>in</strong>clud<strong>in</strong>g:• Depositional environment — <strong>in</strong> general, f<strong>in</strong>e-gra<strong>in</strong>ed soils are deposited <strong>in</strong> lowenergyenvironments and are therefore more uniform than course-gra<strong>in</strong>ed soils,which are usually deposited <strong>in</strong> high-energy environments.• Degree <strong>of</strong> weather<strong>in</strong>g — soil properties can be <strong>in</strong>fluenced by weather<strong>in</strong>g, a factorthat affects soil at the ground surface most strongly and that decreases with depthbelow the ground surface. However, factors such as erosion and locally variablerates <strong>of</strong> deposition can produce soil pr<strong>of</strong>iles with variable weather<strong>in</strong>g effects.• Physical environment — most soils exhibit properties, such as <strong>in</strong>herent and <strong>in</strong>ducedanisotropy, that are <strong>in</strong>fluenced by their physical environment. Becausestress changes can occur locally dur<strong>in</strong>g the lifetime <strong>of</strong> a soil deposit, their effectscan <strong>in</strong>troduce uncerta<strong>in</strong>ty <strong>in</strong>to measured soil properties.The spatial variation <strong>of</strong> soil properties consists <strong>of</strong> several components and can be represented bya simple model (Phoon and Kulhawy, 1999):ξ ( z ) = t(z)+ w(z)+ e(z)(4.1)


where ξ = <strong>in</strong>situ soil property, t = determ<strong>in</strong>istic trend component, w = random component, e =measurement error, and z = depth. The trend and random components are illustrated graphically<strong>in</strong> Figure 4.1.Basic pr<strong>in</strong>ciples <strong>of</strong> soil mechanics <strong>in</strong>dicate that many soil properties <strong>of</strong> <strong>in</strong>terest arestrongly <strong>in</strong>fluenced by effective conf<strong>in</strong><strong>in</strong>g pressure. Because effective conf<strong>in</strong><strong>in</strong>g pressures generally<strong>in</strong>crease with depth, these properties should be expected to exhibit some regular, predictabletrend with depth. The trend can be determ<strong>in</strong>ed by fitt<strong>in</strong>g (<strong>in</strong> a least squares sense) a smoothdeterm<strong>in</strong>istic function (e.g., a straight l<strong>in</strong>e, parabola, or exponential) to the data or by a mov<strong>in</strong>gaverage procedure.The random component <strong>of</strong> soil variability is also referred to as “<strong>in</strong>herent soil variability,”which is expressed relative to the determ<strong>in</strong>istic trend <strong>of</strong> the property as illustrated <strong>in</strong> Figure 4.1.Measurement error, whether it be from laboratory or field measurements, can <strong>in</strong>troduce additionalvariability <strong>in</strong>to soil properties. Measurement error can arise from equipment, operator,and random test<strong>in</strong>g effects (Phoon and Kulhawy, 1999).The scale <strong>of</strong> fluctuation is a term that describes the spatial fluctuation <strong>of</strong> the property <strong>of</strong><strong>in</strong>terest about the trend (Fig. 4.1). A parameter with a short scale <strong>of</strong> fluctuation changes rapidlywith position, one with a long scale <strong>of</strong> fluctuation changes over greater distances. A procedurefor calculation <strong>of</strong> the scale <strong>of</strong> fluctuation is described <strong>in</strong> Chapter 5, and typical values <strong>of</strong> the scale<strong>of</strong> fluctuation are presented <strong>in</strong> Chapter 6.24


Ground surfacezl 1Layer 1l iLayer iLayer jDeviation from trend, w(z)l jScale <strong>of</strong>Fluctuation, δ vTrend, t(z)Soil Property, ξ(z)Fig. 4.1 Inherent soil variability (after Phoon and Kulhawy, 1999)The follow<strong>in</strong>g sections present a summary <strong>of</strong> text and tables to assist <strong>PEER</strong> researchers <strong>in</strong>estimat<strong>in</strong>g variability <strong>in</strong> geotechnical soil properties. Soil properties are summarized <strong>in</strong> threema<strong>in</strong> categories: laboratory-measured properties, field-measured properties, and properties obta<strong>in</strong>edfrom other types <strong>of</strong> test<strong>in</strong>g. Each category presents various forms <strong>of</strong> variability consist<strong>in</strong>g<strong>of</strong> <strong>in</strong>herent variability, measurement variability, and an estimate <strong>of</strong> spatial correlation (as expressed<strong>in</strong> terms <strong>of</strong> scale <strong>of</strong> fluctuation). The primary purpose <strong>of</strong> these sections is to presentCOV data; parameter values are presented to simply allow <strong>PEER</strong> researchers to judge the conditionsfor which the COV values are applicable. Total variability can be computed us<strong>in</strong>g the follow<strong>in</strong>gequation:COV ( total)+ random22= COV ( measurement)COV ( ) . (4.2)25


4.2 LABORATORY-MEASURED PROPERTIESLaboratory measured soil properties are important for determ<strong>in</strong><strong>in</strong>g soil <strong>in</strong>dices, strength parameters,and consolidation characteristics.4.2.1 Inherent VariabilityThis section presents tabulated COV values <strong>of</strong> <strong>in</strong>herent variability <strong>of</strong> various laboratorymeasuredproperties.4.2.1.1 Moisture-Density CharacteristicsThe unit weight (or density) <strong>of</strong> a soil is important for determ<strong>in</strong><strong>in</strong>g states <strong>of</strong> stress beneath and adjacentto structures. Unit weights are typically determ<strong>in</strong>ed by measur<strong>in</strong>g the weight and volume<strong>of</strong> soil samples <strong>in</strong> the laboratory.Lacasse and Nadim (1996) suggest the pdf for unit weight is normally distributed for allsoil types. Table 4.1 presents tabulated COV data for natural water content, w n , total unit weight,γ, dry unit weight, γ d , buoyant (submerged) unit weight, γ b , relative density, D r , specific gravity,G s , and degree <strong>of</strong> saturation, S.26


Table 4.1 COV <strong>of</strong> <strong>in</strong>herent soil variability for moisture content, unit weight, andrelative densityProperty(units)Soil TypeNo. <strong>of</strong>DataGroupsNo. <strong>of</strong> Tests PerGroupProperty Value Property COV(%)Range Mean Range Mean Range Meanw n (%) F<strong>in</strong>e-gra<strong>in</strong>ed 40 17 – 439 252 13 – 105 29 7 – 46 18 1Silty clay * * * * * 20 * 3clay * * * * * 13 ** 18 * * * * * 17.7 4γ (kN/m 3 ) F<strong>in</strong>e-gra<strong>in</strong>ed 6 5 – 3200 564 14 – 20 17.5 3 – 20 9 1γ * * * * * * 3 * 3γ * 12 * * * * * 7.1 4γ d (kN/m 3 ) F<strong>in</strong>e-gra<strong>in</strong>ed 8 4 – 315 122 13 – 18 15.7 2 – 13 7 1γ b (kN/m 3 ) All soils * * * 5 – 11 * 0 – 10 * 2D (a) r (%) Sand 5 * * 30 – 70 50 11 – 36 19 1D (b) r (%) Sand 5 * * 30 – 70 50 49 – 74 61G s * * * * * * 2 * 3S * * * * * * 10 * 3*Not reported.(a) Total variability for direct method <strong>of</strong> determ<strong>in</strong>ation.(b) Total variability for <strong>in</strong>direct determ<strong>in</strong>ation us<strong>in</strong>g SPT values.Notes:(1) Phoon and Kulhawy (1999).(2) Lacasse and Nadim (1996). No comments made on whether measurement variability was <strong>in</strong>cluded.(3) Harr (1987). No comments made on whether measurement variability was <strong>in</strong>cluded.(4) Kulhawy (1992). No comments made on whether measurement variability was <strong>in</strong>cluded.Note4.2.1.2 Plasticity CharacteristicsPlasticity characteristics are important for classification <strong>of</strong> soil types and for determ<strong>in</strong><strong>in</strong>g eng<strong>in</strong>eer<strong>in</strong>gbehavior. Plasticity <strong>in</strong>dices are usually measured <strong>in</strong> terms <strong>of</strong> Atterberg limits <strong>in</strong> the laboratory.Lacasse and Nadim (1996) suggest that the plastic limit, PL, and the liquid limit, LL, arenormally distributed <strong>in</strong> clays. Table 4.2 presents tabulated COV data for liquid limit, plasticlimit, plasticity <strong>in</strong>dex, PI, and liquidity <strong>in</strong>dex, LI.27


Table 4.2 COV <strong>of</strong> <strong>in</strong>herent soil variability for plasticity <strong>in</strong>dicesProperty Soil Type No. <strong>of</strong> No. <strong>of</strong> Tests Per Property Value Property COV Note(%)Data Group(%)Groups Range Mean Range Mean Range MeanLL F<strong>in</strong>e-gra<strong>in</strong>ed 38 15 – 299 129 27 – 89 51 7 – 39 18 1Clay * * * 30 – 80 * 3 – 20 * 2* 28 * * * * * 11.3 4PL F<strong>in</strong>e-gra<strong>in</strong>ed 23 32 – 299 201 14 – 27 22 6 – 34 16 1Clay * * * 13 – 23 * 3 – 20 * 2* 27 * * * * * 11.3 4PI F<strong>in</strong>e-gra<strong>in</strong>ed 33 15 – 299 120 12 – 44 25 9 – 57 29 1LI Clay, silt 2 32 – 118 75 * 0.094 60 – 88 74 1* Not reported.Notes:(1) Phoon and Kulhawy (1999).(2) Lacasse and Nadim (1996). No comments made on whether measurement variability was <strong>in</strong>cluded.(3) Harr (1987). No comments made on whether measurement variability was <strong>in</strong>cluded.(4) Kulhawy (1992). No comments made on whether measurement variability was <strong>in</strong>cluded.4.2.1.3 Strength CharacteristicsStrength parameters <strong>of</strong> soils are probably the most important parameters used <strong>in</strong> geotechnicaleng<strong>in</strong>eer<strong>in</strong>g. Most design methodologies rely on the strength <strong>of</strong> soils as <strong>in</strong>put. Therefore, recognition<strong>of</strong> uncerta<strong>in</strong>ty <strong>in</strong> soil strength properties is very important. Various laboratory methodsexist for measur<strong>in</strong>g strength parameters, and the <strong>in</strong>herent variability <strong>in</strong> the strength parametersthey produce is summarized <strong>in</strong> this section.Lacasse and Nadim (1996) and Wolff et al. (1996) suggest that the pdf for friction angle,φ, is normally distributed <strong>in</strong> sands. They also suggest that a lognormal pdf be used for undra<strong>in</strong>edshear strength, s u , <strong>in</strong> clays, and that a normal pdf be used for s u <strong>in</strong> clayey silts. Lacasse andNadim (1996) suggest the pdf for undra<strong>in</strong>ed strength ratio, s u /σ’ v0 , is either normally or lognormallydistributed for clay soils. Table 4.3 presents tabulated COV data for dra<strong>in</strong>ed friction angle,φ , tangent dra<strong>in</strong>ed friction angle, tanφ , undra<strong>in</strong>ed shear strength, cohesion, c, and undra<strong>in</strong>edstrength ratio.28


Table 4.3 COV <strong>of</strong> <strong>in</strong>herent soil variability for strength parametersProperty Soil Type No. <strong>of</strong> No. <strong>of</strong> Tests Property Value Property COV Note(units)Data Per Group(%)Groups Range Mean Range Mean Range Meanφ (°) Sand 7 29 – 136 62 35 – 41 37.6 5 – 11 9 1Clay, silt 12 5 – 51 16 9 – 33 15.3 10 – 56 21Clay, silt 9 * * 17 – 41 33.3 4 – 12 9* 20 * * * * * 12.6 4tanφ Clay, silt 4 * * 0.24 – 0.69 0.509 6 – 46 20 1tanφ Clay, silt 3 * * * 0.615 6 – 46 23tanφ Sand 13 6 – 111 45 0.65 – 0.92 0.744 5 – 14 9 1* 7 * * * * * 11.3 4φ (°) Sand * * * * * 2 – 5 * 2φ (°) Gravel * * * * * 7 * 3Sand * * * * * 12 *(a)s u (kPa) F<strong>in</strong>e-gra<strong>in</strong>ed 38 2 – 538 101 6 – 412 100 6 – 56 33 1(b)s u (kPa) Clay, Silt 13 14 – 82 33 15 – 363 276 11 – 49 22(c)s u (kPa) Clay 10 12 – 86 47 130 – 713 405 18 – 42 32(d)s u (kPa) Clay 42 24 – 124 48 8 – 638 112 6 – 80 32* 38 * * * * * 33.8 3(e)s u (kPa) Clay * * * * * 5 – 20 * 2(f)s u (kPa) Clay * * * * * 10 – 35 *(d)s u (kPa) Clayey silt * * * * * 10 – 30 *c (g) * * * * * * 40 * 3s u /σ’ v0 Clay * * * * * 5 – 15 * 2* Not reported.(a) Unconf<strong>in</strong>ed compression test.(b) Unconsolidated-undra<strong>in</strong>ed triaxial compression test.(c) Consolidated isotropic undra<strong>in</strong>ed triaxial compression test.(d) Laboratory test not reported.(e) Triaxial test.(f) Index s u .(g) No specification on how the parameter was def<strong>in</strong>ed.Notes:(1) Phoon and Kulhawy (1999).(2) Lacasse and Nadim (1996). No comments made on whether measurement variability was <strong>in</strong>cluded.(3) Harr (1987). No comments made on whether measurement variability was <strong>in</strong>cluded.(4) Kulhawy (1992). No comments made on whether measurement variability was <strong>in</strong>cluded.4.2.1.4 Consolidation and Permeability CharacteristicsConsolidation and permeability characteristics are important to quantify stress/stra<strong>in</strong> relationsand the time-dependent behavior <strong>of</strong> soils. This section presents typical uncerta<strong>in</strong>ties <strong>in</strong> the variouslaboratory parameters that are used to characterize consolidation and permeability behavior.Lacasse and Nadim (1996) suggest that the pdf for the overconsolidation ratio is eithernormally or lognormally distributed for clay soils. They also suggest (1996) that the pdf for void29


atio, porosity, and <strong>in</strong>itial void ratio is normally distributed for all soil types. Table 4.4 presentstabulated COV data for compression <strong>in</strong>dex, C c , preconsolidation pressure, p c ′, overconsolidationratio, OCR, coefficient <strong>of</strong> permeability, k, coefficient <strong>of</strong> consolidation, c v , void ratio, e, and porosity,n.Table 4.4 COV <strong>of</strong> <strong>in</strong>herent soil variability for consolidation and permeability parametersProperty Soil Type No. <strong>of</strong> No. <strong>of</strong> Tests Per Property Value Property COV Note(units)Data Group(%)Groups Range Mean Range Mean Range MeanC c Sandy clay * * * * * 26 * 1Clay * * * * * 30 ** * * * * * 37 * 2p c ′ * * * * * * 19 * 1OCR * * * * * * 10 – 35 * 3k* * * * * * 240 (a) * 1* * * * * * 90 (b) *c v * * * * * * 33 – 68 * 4e, n, e o All soil types * * * * * 7 – 30 * 5n * * * * * * 10 * 1* Not reported.(a) 80% saturation.(b) 100% saturation.Notes:(1) Harr (1987).(2) Kulhawy (1992). No comments made on whether measurement variability was <strong>in</strong>cluded.(3) Lacasse and Nadim (1996). No comments made on whether measurement variability was <strong>in</strong>cluded.(4) Duncan (2000).(5) Lacasse and Nadim (1996).4.2.1.5 Stiffness and Damp<strong>in</strong>g CharacteristicsThe seismic response <strong>of</strong> soil deposits is strongly <strong>in</strong>fluenced by the stiffness and damp<strong>in</strong>g characteristics<strong>of</strong> the soil. These characteristics are typically described <strong>in</strong> an equivalent l<strong>in</strong>ear framework,i.e., by maximum shear modulus, modulus reduction curves, and damp<strong>in</strong>g curves. Whiledata and procedures for determ<strong>in</strong>istic prediction <strong>of</strong> these parameters have been reported, very littleexplicit <strong>in</strong>formation on their uncerta<strong>in</strong>ty is available.Seed and Idriss (1970) presented experimental data on the variation <strong>of</strong> shear modulusand damp<strong>in</strong>g ratio with cyclic stra<strong>in</strong> amplitude, and used the data to develop their widely usedmodulus reduction and damp<strong>in</strong>g curves for sands and clays. The data for sands came from manysources that used different types <strong>of</strong> test<strong>in</strong>g equipment and different (and, <strong>in</strong> many cases, large)ranges <strong>of</strong> effective conf<strong>in</strong><strong>in</strong>g pressure. For sands, shear modulus results were expressed <strong>in</strong> terms30


<strong>of</strong> the parameter K 2 = G/1000(σ’ m ) 1/2 where G and σ’ m are <strong>in</strong> psf. Shear moduli for clays werenormalized by undra<strong>in</strong>ed strength. Damp<strong>in</strong>g ratios for sands and clays were also presentedgraphically. The plots <strong>of</strong> experimental modulus reduction and damp<strong>in</strong>g data <strong>in</strong> Seed and Idriss(1970) suggest substantial uncerta<strong>in</strong>ty, but the ranges <strong>of</strong> effective conf<strong>in</strong><strong>in</strong>g pressures (for testson sands) and plasticity characteristics (for clay specimens) are now known to have a systematiceffect on modulus reduction and damp<strong>in</strong>g behavior. As a result, statistical parameters computeddirectly from this data would likely overpredict the <strong>in</strong>herent variability <strong>of</strong> these properties.About ten years ago, the Electric Power Research Institute (EPRI) undertook an <strong>in</strong>vestigation<strong>of</strong> appropriate methods for estimat<strong>in</strong>g earthquake ground motion <strong>in</strong> eastern North America.This work, which <strong>in</strong>volved numerous <strong>in</strong>vestigators, <strong>in</strong>cluded extensive, high-quality fieldand laboratory test<strong>in</strong>g <strong>of</strong> soils at more than 200 different sites. The measured shear wave velocitieswere shown to be lognormally distributed with σ lnV = 0.39 (velocity measured <strong>in</strong> m/sec).Laboratory modulus reduction and damp<strong>in</strong>g data were used to estimate and model variability <strong>in</strong>modulus reduction and damp<strong>in</strong>g curves. The modulus reduction ratio, G/G max , at a cyclic shearstra<strong>in</strong> <strong>of</strong> 0.03% was determ<strong>in</strong>ed to be lognormally distributed with σ ln G/Gmax = 0.35 (truncated at2σ). Monte Carlo analyses were performed with the median modulus reduction and damp<strong>in</strong>gcurves scaled by a constant value (thereby reta<strong>in</strong><strong>in</strong>g the shapes <strong>of</strong> the median curves) that producedthe target variability at γ = 0.03%. It should be noted that the characterization <strong>of</strong> constantstandard deviation implies that the COV <strong>of</strong> G/G max <strong>in</strong>creases relatively rapidly with <strong>in</strong>creas<strong>in</strong>gshear stra<strong>in</strong> amplitude.Very high-quality test<strong>in</strong>g (resonant column and torsional shear) has been performed underthe direction <strong>of</strong> Pr<strong>of</strong>. Kenneth H. Stokoe at the University <strong>of</strong> Texas for many research projects<strong>in</strong>clud<strong>in</strong>g the previously described EPRI project, a Savannah River Site <strong>in</strong>vestigation, andthe ROSRINE program (http://rccg03.usc.edu/Rosr<strong>in</strong>e/). Darendian (2001) used data from morethan 20 sites to develop a model for modulus reduction and damp<strong>in</strong>g behavior that <strong>in</strong>cluded estimates<strong>of</strong> uncerta<strong>in</strong>ty <strong>in</strong> G/G max and damp<strong>in</strong>g ratio. The model, which expresses G/G max as afunction <strong>of</strong> shear stra<strong>in</strong>, plasticity <strong>in</strong>dex, OCR, effective conf<strong>in</strong><strong>in</strong>g pressure, and soil type, wascalibrated us<strong>in</strong>g a first-order, second-moment Bayesian technique. The variance <strong>in</strong> G/G max anddamp<strong>in</strong>g ratio was observed to vary with stra<strong>in</strong> level and with soil type; examples are presented<strong>in</strong> Figure 4.2. Details <strong>of</strong> the Darendian-Stokoe model will be presented <strong>in</strong> technical papers thatare near<strong>in</strong>g completion at the time <strong>of</strong> this report.31


Fig. 4.2 Variation with shear stra<strong>in</strong> amplitude <strong>of</strong> mean and standard deviation <strong>of</strong> typicalmodulus reduction and damp<strong>in</strong>g curves (Darendian, 2001)4.2.2 Measurement VariabilityThe process <strong>of</strong> quantify<strong>in</strong>g uncerta<strong>in</strong>ty <strong>in</strong>cludes a component due to measurement variability,which can arise from errors <strong>in</strong> the laboratory equipment, errors by the person conduct<strong>in</strong>g thelaboratory test, and random test<strong>in</strong>g effects that cannot be separately measured. Table 4.5 presentstabulated COV data for measurement error for some laboratory-measured properties.Table 4.5 Summary <strong>of</strong> total measurement error for laboratory-measured properties(after Phoon and Kulhawy (1999)Property(units)Soil Type No. <strong>of</strong>DataNo. <strong>of</strong> Tests PerGroupProperty Value Property COV(%)Groups Range Mean Range Mean Range Means (a) u (kPa) Clay, silt 11 * 13 7 – 407 125 8 – 38 19s (b) u (kPa) Clay, silt 2 13 – 17 15 108 – 130 119 19 – 20 20s (c) u (kPa) Clay 15 * * 4 – 123 29 5 – 37 13φ (a) (°) Clay, silt 4 9 – 13 10 2 – 27 19.1 7 – 56 24φ (b) (°) Clay, silt 5 9 – 13 11 24 – 40 33.3 3 – 29 13φ (b) (°) Sand 2 26 26 30 – 35 32.7 13 – 14 14tanφ (a) (°) Clay, silt 6 * * * * 2 – 22 8tanφ (b) (°) Clay 2 * * * * 6 – 22 14w n (%) F<strong>in</strong>e-gra<strong>in</strong>ed 3 82 – 88 85 16 – 21 18 6 – 12 8LL, (%) F<strong>in</strong>e-gra<strong>in</strong>ed 26 41 – 89 64 17 – 113 36 3 – 11 7PL, (%) F<strong>in</strong>e-gra<strong>in</strong>ed 26 41 – 89 62 12 – 35 21 7 – 18 10PI, (%) F<strong>in</strong>e-gra<strong>in</strong>ed 10 41 – 89 61 4 – 44 23 5 – 51 24γ, (kN/m 2 ) F<strong>in</strong>e-gra<strong>in</strong>ed 3 82 – 88 85 16 – 17 17.0 1 – 2 1* Not reported.(a) Triaxial compression test.(b) Direct shear test.(c) Laboratory vane shear test.32


4.3 FIELD-MEASURED PROPERTIESIn many cases, soil properties are determ<strong>in</strong>ed or <strong>in</strong>ferred from the results <strong>of</strong> field tests. Insitufield tests can be quite useful, particularly <strong>in</strong> soils that are difficult to sample without disturbance.This section presents a discussion <strong>of</strong> uncerta<strong>in</strong>ty for <strong>in</strong>situ test<strong>in</strong>g and estimated valuesfor quantify<strong>in</strong>g uncerta<strong>in</strong>ty <strong>in</strong> the form <strong>of</strong> summarized COV values for various properties.4.3.1 Inherent VariabilityThis section presents tabulated COV values <strong>of</strong> <strong>in</strong>herent variability <strong>of</strong> various <strong>in</strong>situ measuredproperties.4.3.1.1 Standard Penetration Test (SPT) ResistanceSPT resistance is one <strong>of</strong> the most common forms <strong>of</strong> <strong>in</strong>situ test<strong>in</strong>g conducted for geotechnical eng<strong>in</strong>eer<strong>in</strong>g.Therefore, quantify<strong>in</strong>g uncerta<strong>in</strong>ty for SPT resistance is particularly useful. SPT resistanceis typically collected us<strong>in</strong>g standardized sampl<strong>in</strong>g equipment consist<strong>in</strong>g <strong>of</strong> a hammer,rods and split-spoon sampler. Table 4.6 presents tabulated data for SPT measured resistance, N.Table 4.6 COV <strong>of</strong> <strong>in</strong>herent soil variability for SPT resistanceProperty Soil Type No. <strong>of</strong> No. <strong>of</strong> Tests Per Property Value Property COV NoteData Group(%)Groups Range Mean Range Mean Range MeanN Clay & Sand * * * 10 – 70 * 25 – 50 * 1N Sand 22 2 – 300 123 7 – 74 35 19 – 62 54 2N Clay Loam 2 2 – 61 32 7 – 63 32 37 – 57 44N * * * * * * 26 * 3Notes:(1) Phoon and Kulhawy (1996).(2) Phoon and Kulhawy (1999).(3) Harr (1987). No comment made on whether measurement variability was <strong>in</strong>cluded.4.3.1.2 Cone Penetration Test (CPT) and Electric Cone Penetration Test (ECPT) ResistanceCPT resistance is probably the second most frequently used test for collect<strong>in</strong>g <strong>in</strong>situ soil measurements.CPT resistance is usually measured us<strong>in</strong>g mechanical means (MCPT) or electrically33


(ECPT). CPT test<strong>in</strong>g is usually conducted by push<strong>in</strong>g a standardized cone <strong>in</strong>to the soil subsurfaceto measure resistance <strong>of</strong> the tip and friction <strong>of</strong> the sleeve.Lacasse and Nadim (1996) suggest that a lognormal pdf be used for MCPT test<strong>in</strong>g <strong>in</strong>sands and a normal or lognormal pdf be used for MCPT test<strong>in</strong>g <strong>in</strong> clays. Table 4.7 presents tabulatedCOV data for CPT-corrected tip resistance, q T , and tip resistance, q c .Table 4.7 COV <strong>of</strong> <strong>in</strong>herent soil variability for CPT measurementsProperty Soil Type No. <strong>of</strong> No. <strong>of</strong> Tests Per Property Value Property COV Note(units)Data Group(%)Groups Range Mean Range Mean Range Meanq T (MPa) Clay * * * 0.5 – 2.5 * < 20 * 1Clay 9 * * 0.4 – 2.6 1.32 2 – 17 8 2q c (MPa) Clay * * * 0.5 – 2.0 * 20 – 40 * 1Sand * * * 0.5 – 30.0 * 20 – 60 * 1Sand 57 10 – 2039 115 0.4 – 29.2 4.10 10 – 81 38 2Silty Clay 12 30 – 53 43 0.5 – 2.1 1.59 5 – 40 27 2* * * * * * * 37 * 3* Not reportedNotes:(1) Phoon and Kulhawy (1996).(2) Phoon and Kulhawy (1999).(3) Harr (1987). No comment made on whether measurement variability was <strong>in</strong>cluded.4.3.1.3 Vane Shear Test<strong>in</strong>g (VST) Undra<strong>in</strong>ed Shear StrengthTable 4.8 presented tabulated COV data <strong>of</strong> <strong>in</strong>herent soil variability for undra<strong>in</strong>ed shear strengthas measured by VST measurement.Table 4.8 COV <strong>of</strong> <strong>in</strong>herent soil variability <strong>of</strong> undra<strong>in</strong>ed shear strength us<strong>in</strong>g VSTmeasurementProperty Soil Type No. <strong>of</strong> No. <strong>of</strong> Tests Per Property Value Property COV Note(units)Data Group(%)Groups Range Mean Range Mean Range Means u (kPa) Clay * * * 5 – 400 * 10 – 40 * 1s u (kPa) Clay 31 4 – 31 16 6 – 375 105 4 – 44 24 2* Not reportedNotes:(1) Phoon and Kulhawy (1996).(2) Phoon and Kulhawy (1999).4.3.1.4 Dilatometer Test (DMT) ParameterTable 4.9 presents tabulated COV data for DMT measurement parameters, A and B, material <strong>in</strong>dex,I D , horizontal stress <strong>in</strong>dex, K D , and modulus, E D .34


Property(units)A(kPa)B(kPa)Table 4.9 COV <strong>of</strong> <strong>in</strong>herent soil variability <strong>of</strong> DMT measurement parametersSoil Type No. <strong>of</strong>DataNo. <strong>of</strong> Tests PerGroupProperty Value Property COV(%)NoteGroups Range Mean Range Mean Range MeanClay * * * 100 – 450 * 10 – 35 * 1Sand * * * 60 – 1300 * 20 – 50 *Sand to 15 12 – 25 17 64 – 1335 512 20 – 53 33 2clayey sandClay 13 10 – 20 17 119 – 455 358 12 – 32 20Clay * * * 500 – 880 * 10 – 35 * 1Sand * * * 350 – 2400 * 20 – 50 *Sand to 15 12 – 25 17 346 – 2435 1337 13 – 59 37 2clayey sandClay 13 10 – 20 17 502 – 876 690 12 – 38 20Sand * * * 1 – 8 * 20 – 60 * 1Sand to 15 10 – 25 15 0.8 – 8.4 2.85 16 – 130 53 2clayey sandI DSand, silt 16 * * 2.1 – 5.4 3.89 8 – 48 30K D Sand * * * 2 – 30 * 20 – 60 * 1Sand to 15 10 – 25 15 1.9 – 28.3 15.1 20 – 99 44 2clayey sandSand, silt 16 * * 1.3 – 9.3 4.1 17 – 67 38E D Sand * * * 10 – 50 * 15 – 65 * 1(MPa) Sand to 15 10 – 25 15 9.4 – 46.1 25.4 9 – 92 50 2clayey sandSand, silt 16 * * 10.4 – 53.4 21.6 7 – 67 36* Not reportedNotes:(1) Phoon and Kulhawy (1996).(2) Phoon and Kulhawy (1999).4.3.1.5 Pressuremeter Test (PMT) ParametersTable 4.10 presents tabulated COV data for PMT limit stress, p L , and modulus, E PMT .Property(units)p L (kPa)E PMT (MPa)* Not reported.Notes:(1) Phoon and Kulhawy (1996).(2) Phoon and Kulhawy (1999).Table 4.10 COV <strong>of</strong> <strong>in</strong>herent soil variability <strong>of</strong> PMT parametersSoil Type No. <strong>of</strong>DataNo. <strong>of</strong> Tests PerGroupProperty Value Property COV(%)NoteGroups Range Mean Range Mean Range MeanClay * * * 400 – 2800 * 10 – 35 * 1Sand * * * 1600 – * 20 – 50 *3500Sand 4 * * 1617 – 2284 23 – 50 40 23566Cohesive 5 10 – 25 * 428 – 2779 1084 10 – 32 15Sand * * * 5 – 15 * 15 – 65 * 1Sand 4 * * 5.2 – 15.6 8.97 28 – 68 42 235


4.3.2 Measurement VariabilityMeasurement variability arises from errors <strong>in</strong> <strong>in</strong>situ test<strong>in</strong>g equipment, by the person operat<strong>in</strong>gthe equipment, and by random test<strong>in</strong>g effects that cannot be separately measured.4.3.2.1 Standard Penetration Test (SPT) ResistanceA number <strong>of</strong> factors can <strong>in</strong>fluence the measurement variability <strong>of</strong> SPT results; the most important<strong>of</strong> these are presented <strong>in</strong> Table 4.11. <strong>Uncerta<strong>in</strong>ty</strong> estimates <strong>of</strong> the COV (<strong>in</strong> percent) for thevarious factors <strong>in</strong>clude the follow<strong>in</strong>g (Kulhawy and Trautmann, 1996):(1) Equipment: 5 – 75 (best to worst case);(2) Procedure: 5 – 75 (best to worst case);(3) Random: 12 – 15;(4) Total: 14 – 100, where the total is computed by222[ COV ( equipment)+ COV ( procedure)COV ( ) ] 1/ 2COV ( total)= + random ; and(5) Range: 15 – 45 where the range represents probable magnitudes <strong>of</strong> field test measurementerror consider<strong>in</strong>g limited data and judgment <strong>in</strong>volved <strong>in</strong> estimat<strong>in</strong>g COV.Table 4.11 Sources <strong>of</strong> variability <strong>in</strong> SPT test results (Kulhawy and Trautmann, 1996)SPT VariableType Item Relative Effect on Test ResultsEquipmentNon-standard samplerModerateDeformed or damaged samplerModerateRod diameter/weightM<strong>in</strong>orRod lengthM<strong>in</strong>orDeformed drill rodsM<strong>in</strong>orHammer typeModerate to significantHammer drop systemSignificantHammer weightM<strong>in</strong>orAnvil sizeModerate to significantDrill rig typeM<strong>in</strong>orProcedural/Borehole sizeModerateOperator Method <strong>of</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g holeM<strong>in</strong>or to significantBorehole clean<strong>in</strong>gModerate to significantInsufficient hydrostatic headModerate to significantSeat<strong>in</strong>g <strong>of</strong> samplerModerate to significantHammer drop methodModerate to significantError <strong>in</strong> count<strong>in</strong>g blowsM<strong>in</strong>or4.3.2.2 Cone Penetration Test (CPT) ResistanceThe major factors <strong>in</strong>fluenc<strong>in</strong>g the variability <strong>of</strong> CPT results are presented <strong>in</strong> Table 4.12.36


Table 4.12 Sources <strong>of</strong> variability <strong>in</strong> CPT test results (Kulhawy and Trautmann, 1996)CPT VariableType Item Relative Effect on Test ResultsEquipment Cone type (MCPT or ECPT)Moderate to significantCone sizeM<strong>in</strong>orCone angleModerate to significantRod compression (MCPT)SignificantManufactur<strong>in</strong>g defectsM<strong>in</strong>or to moderateLeaky seals (ECPT)M<strong>in</strong>orExcessive cone wearM<strong>in</strong>or to moderateProcedural/ Telescop<strong>in</strong>g vs. cont<strong>in</strong>uous penetration Moderate to significantOperatorCalibration errorM<strong>in</strong>or to moderatePenetration rateM<strong>in</strong>orIncl<strong>in</strong>ed penetrationModerate to significantMCPT<strong>Uncerta<strong>in</strong>ty</strong> estimates <strong>of</strong> the COV (<strong>in</strong> percent) for the various factors <strong>in</strong>clude the follow<strong>in</strong>g (Kulhawyand Trautmann, 1996):(1) Equipment: 5;(2) Procedure: 10 – 15 (tip and side resistances, respectively);(3) Random: 10 – 15 (tip and side resistances, respectively);(4) Total: 15 – 22 (tip and side resistances, respectively), where the total is computed222by COV ( total)= [ COV ( equipment)+ COV ( procedure)+ COV ( random)] 1/ 2;and(5) Range: 15 – 25 where the range represents probable magnitudes <strong>of</strong> field test measurementerror consider<strong>in</strong>g limited data and judgment <strong>in</strong>volved <strong>in</strong> estimat<strong>in</strong>g COV.ECPT<strong>Uncerta<strong>in</strong>ty</strong> estimates <strong>of</strong> the COV (<strong>in</strong> percent) for the various factors <strong>in</strong>clude the follow<strong>in</strong>g (Kulhawyand Trautmann, 1996):(1) Equipment: 3;(2) Procedure: 5;(3) Random: 5 – 10 (tip and side resistances, respectively);(4) Total: 8 – 12 (tip and side resistances, respectively), where the total is computed by222[ COV ( equipment)+ COV ( procedure)COV ( ) ] 1/ 2COV ( total)= + random ; and(5) Range: 5 – 15 where the range represents probable magnitudes <strong>of</strong> field test measurementerror consider<strong>in</strong>g limited data and judgment <strong>in</strong>volved <strong>in</strong> estimat<strong>in</strong>g COV.37


4.3.2.3 Vane Shear Test<strong>in</strong>g (VST) Undra<strong>in</strong>ed Shear StrengthThe major factors <strong>in</strong>fluenc<strong>in</strong>g the variability <strong>of</strong> VST undra<strong>in</strong>ed shear strength are presented <strong>in</strong>Table 4.13. <strong>Uncerta<strong>in</strong>ty</strong> estimates <strong>of</strong> the COV (<strong>in</strong> percent) for the various factors consist <strong>of</strong> thefollow<strong>in</strong>g (Kulhawy and Trautmann, 1996):(1) Equipment: 5;(2) Procedure: 8;(3) Random: 10;(4) Total: 14, where the total is computed as above; and(5) Range: 10 – 20 where the range represents probable magnitudes <strong>of</strong> field test measurementerror consider<strong>in</strong>g limited data and judgment <strong>in</strong>volved <strong>in</strong> estimat<strong>in</strong>g COV.Table 4.13 Sources <strong>of</strong> variability <strong>in</strong> VST test results (Kulhawy and Trautmann, 1996)VST VariableType Item Relative Effect on Test ResultsEquipmentVane lengthM<strong>in</strong>orHeight/diameter ratioModerateBlade thicknessModerateTorque measur<strong>in</strong>g deviceModerate to significantDamaged vaneModerate to significantProcedural/Vane <strong>in</strong>sertion methodModerate to significantOperatorRod friction calibrationModerate to significantTime delay between <strong>in</strong>sertion and test<strong>in</strong>gM<strong>in</strong>or to moderate, to significant <strong>in</strong>s<strong>of</strong>t claysVane rotation rateModerate4.3.2.4 Dilatometer Test (DMT) ParameterThe major factors <strong>in</strong>fluenc<strong>in</strong>g the variability <strong>of</strong> DMT results are presented <strong>in</strong> Table 4.14. <strong>Uncerta<strong>in</strong>ty</strong>estimates <strong>of</strong> the COV (<strong>in</strong> percent) for the various factors consist <strong>of</strong> the follow<strong>in</strong>g (Kulhawyand Trautmann, 1996):(1) Equipment: 5;(2) Procedure: 5;(3) Random: 8;(4) Total: 11, where the total is computed as above; and(5) Range: 5 – 15 where the range represents probable magnitudes <strong>of</strong> field test measurementerror consider<strong>in</strong>g limited data and judgment <strong>in</strong>volved <strong>in</strong> estimat<strong>in</strong>g COV.38


Table 4.14 Sources <strong>of</strong> variability <strong>in</strong> DMT test results (Kulhawy and Trautmann, 1996)DMT VariableType Item Relative Effect on Test ResultsEquipmentLeak<strong>in</strong>g sealsM<strong>in</strong>orDeformed membraneModerateBent or deformed push rodsM<strong>in</strong>or to moderateDamaged bladeM<strong>in</strong>orProcedural/Push rod <strong>in</strong>cl<strong>in</strong>ationM<strong>in</strong>or to moderateOperatorTest<strong>in</strong>g rateModerate to significantDriv<strong>in</strong>g methodM<strong>in</strong>or to moderateRod frictionM<strong>in</strong>orCalibration errorM<strong>in</strong>or to moderate4.3.2.5 Pressuremeter Test (PMT) ParameterThe major factors <strong>in</strong>fluenc<strong>in</strong>g the variability <strong>of</strong> PMT results are presented <strong>in</strong> Table 4.15.Table 4.15 Sources <strong>of</strong> variability <strong>in</strong> PMT test results (Kulhawy and Trautmann, 1996)PMT VariableType Item Relative Effect on Test ResultsEquipmentGage errorM<strong>in</strong>orExpansion <strong>of</strong> tub<strong>in</strong>gM<strong>in</strong>or to moderateFriction loss <strong>in</strong> tub<strong>in</strong>gM<strong>in</strong>orProbe dimensionsM<strong>in</strong>or to moderateProbe design (PMT)M<strong>in</strong>orMembrane ag<strong>in</strong>gM<strong>in</strong>orCutt<strong>in</strong>g shoe size (SBPMT)M<strong>in</strong>or to moderateCutt<strong>in</strong>g position (SBPMT)M<strong>in</strong>orProbe shape (SBPMT)M<strong>in</strong>or to moderateDrill<strong>in</strong>g equipment (SBPMT)M<strong>in</strong>or to moderateElectrical sensor compliance (SBPMT)M<strong>in</strong>orProcedural/ Drill<strong>in</strong>g method and borehole preparationSignificantOperator(PMT)Probe <strong>in</strong>flation rateM<strong>in</strong>or to moderateRelaxation time (SBPMT)Moderate to significantProbe advance rate (SBPMT)Moderate to significantPMT<strong>Uncerta<strong>in</strong>ty</strong> estimates <strong>of</strong> the COV (<strong>in</strong> percent) for the various factors <strong>in</strong>clude the follow<strong>in</strong>g (Kulhawyand Trautmann, 1996):(1) Equipment: 5;(2) Procedure: 12;(3) Random: 10;(4) Total:16, where the total is computed by222[ COV ( equipment)+ COV ( procedure)COV ( ) ] 1/ 2COV ( total)= + random ; and39


(5) Range: 10 – 20 where the range represents probable magnitudes <strong>of</strong> field test measurementerror consider<strong>in</strong>g limited data and judgment <strong>in</strong>volved <strong>in</strong> estimat<strong>in</strong>g COV.Results may differ for p 0 , p f , and p l , but data are <strong>in</strong>sufficient to clarify.SBPMT<strong>Uncerta<strong>in</strong>ty</strong> estimates <strong>of</strong> the COV (<strong>in</strong> percent) for the various factors <strong>in</strong>clude the follow<strong>in</strong>g (Kulhawyand Trautmann, 1996):(1) Equipment: 8;(2) Procedure: 15;(3) Random: 8;(4) Total: 19, where the total is computed by222[ COV ( equipment)+ COV ( procedure)COV ( ) ] 1/ 2COV ( total)= + random ; and(5) Range: 15 – 25 where the range represents probable magnitudes <strong>of</strong> field testmeasurement error consider<strong>in</strong>g limited data and judgment <strong>in</strong>volved <strong>in</strong> estimat<strong>in</strong>gCOV. Results may differ for p 0 , p f , and p l , but data are <strong>in</strong>sufficient to clarify.4.4 OTHER TYPES OF TESTINGValues for fractal dimensional data are given by Vallejo (1996). Fractal dimension is a measure<strong>of</strong> the degree <strong>of</strong> the irregularity <strong>of</strong> plots represent<strong>in</strong>g the variability <strong>of</strong> eng<strong>in</strong>eer<strong>in</strong>g propertiesverses the depth <strong>of</strong> a soil pr<strong>of</strong>ile. Values for variability <strong>of</strong> ground-penetrat<strong>in</strong>g radar <strong>in</strong> sands aregiven by Young and Doucette (1996).40


5 Spatial VariabilityThe terms used to characterize uncerta<strong>in</strong>ty thus far have disregarded correlation <strong>in</strong> space. Soilproperties, however, can be expected to be spatially correlated. Characterization <strong>of</strong> the spatialdistribution <strong>of</strong> soil properties requires the use <strong>of</strong> regionalized variables, which have a particularstructure with properties between a truly random variable and one that is completely determ<strong>in</strong>istic.This means that the properties <strong>of</strong> a regionalized variable at locations X and X + ∆h, where∆h is a separation distance, are correlated. The correlation <strong>of</strong> a variable with itself is referred toas autocorrelation. The autocorrelation depends on the relative positions <strong>of</strong> X i and X i + ∆h, both<strong>in</strong> distance and direction, and on the particular property be<strong>in</strong>g considered. The size, shape, orientation,and spatial arrangement <strong>of</strong> the samples constitute supports <strong>of</strong> the regionalized variable,therefore; the regionalized variable will change if any <strong>of</strong> the supports change (Davis, 1986). The<strong>in</strong>dependence <strong>of</strong> the property at X i and X i + ∆h beyond a certa<strong>in</strong> distance is simply a particularcase <strong>of</strong> autocorrelation, <strong>in</strong> which the properties are purely random.This chapter <strong>in</strong>troduces some basic terms and procedures that can be used to describe thespatial variability <strong>of</strong> soil parameters. These <strong>in</strong>clude trends, scales <strong>of</strong> fluctuation, and correlationfunctions/variograms.5.1 TREND OR DRIFTThe trend or drift is the expected value <strong>of</strong> the random variable at a po<strong>in</strong>t,Xi, or computationally,the weighted average <strong>of</strong> all the po<strong>in</strong>ts with<strong>in</strong> the neighborhood around po<strong>in</strong>t i (Davis, 1986).If the drift is subtracted from the regionalized variable, X i , the residuals, X − X , will also be aregionalized variable with a local mean equal to zero. If the residuals are stationary, asemivariogram can be computed. Trends can be modeled as l<strong>in</strong>ear, quadratic, or higher-orderii


functions <strong>in</strong> one or more dimensions us<strong>in</strong>g least-squares techniques. Davis (1986) outl<strong>in</strong>es trendsurface models and statistical tests <strong>of</strong> those types <strong>of</strong> trends.5.2 SCALE OF FLUCTUATIONThe scale <strong>of</strong> fluctuation (Fig. 4.1) provides a measure <strong>of</strong> the estimated distance over which a soilproperty shows strong correlation. The scale <strong>of</strong> fluctuation uses the behavior <strong>of</strong> the normalizedvariance under successive local averag<strong>in</strong>g or smooth<strong>in</strong>g to describe the distance over which thesoil properties show strong correlation. A high value <strong>of</strong> the scale <strong>of</strong> fluctuation, δ, <strong>in</strong>dicates theslowly vary<strong>in</strong>g nature <strong>of</strong> the property about the trend (low spatial variability). The steps <strong>in</strong>volved<strong>in</strong> calculat<strong>in</strong>g the scale <strong>of</strong> fluctuation are as follows:(1) Calculate the variance for the series <strong>of</strong> data; this is the reference variance, σ r ;(2) Smooth the series <strong>of</strong> data by apply<strong>in</strong>g a mov<strong>in</strong>g average w<strong>in</strong>dow <strong>of</strong> length w andsubstitute the orig<strong>in</strong>al data value with the new smoothed value, x n * (e.g., for a w<strong>in</strong>dowsize, w = 3, x n * = (x n-1 + x n + x n+1 )/w);(3) Calculate the variance for the smoothed data: this is the w<strong>in</strong>dowed variance, σ w andwill be lower than σ r due to cancel<strong>in</strong>g out <strong>of</strong> fluctuations due to spatial averag<strong>in</strong>g(Wickremes<strong>in</strong>ghe, 1993);(4) Normalize the w<strong>in</strong>dowed variance by the reference variance and multiply by thew<strong>in</strong>dow length to obta<strong>in</strong>: SOF = (σ w /σ r ) * w;(5) Repeat Steps 2 – 4 <strong>in</strong>crement<strong>in</strong>g the width <strong>of</strong> the w<strong>in</strong>dow until the smooth<strong>in</strong>g w<strong>in</strong>dowis greater than about half the length <strong>of</strong> the data series;(6) Plot out the SOF as a function <strong>of</strong> w<strong>in</strong>dow length;(7) Observe the behavior <strong>of</strong> the curve and take the first peak value as an estimate <strong>of</strong> thecorrelation length or scale <strong>of</strong> fluctuation, δ.As an example, Figure 5.1 presents tip resistance <strong>of</strong> an electric cone penetration test (CPT) for asite on an alluvial pla<strong>in</strong> where soils consist <strong>of</strong> <strong>in</strong>terbedded loose sands and s<strong>of</strong>t silts. The data setconsists <strong>of</strong> 498 measurements <strong>of</strong> tip resistance, qc, digitized at a 0.02 m <strong>in</strong>terval. Note that thedata <strong>in</strong> Figure 5.1 exhibit significant variability, particularly <strong>in</strong> the top meter <strong>of</strong> the soil pr<strong>of</strong>ile.However, there are ranges <strong>of</strong> depth <strong>in</strong> which the tip resistance seems to be relatively uniform.To determ<strong>in</strong>e the average length <strong>of</strong> those depth ranges when observations are likely to be correlated,the procedure outl<strong>in</strong>ed above is used to calculate the scale <strong>of</strong> fluctuation. Figure 5.2 showshow the scale <strong>of</strong> fluctuation varies with the length <strong>of</strong> the mov<strong>in</strong>g average w<strong>in</strong>dow. The plotpeaks at 0.26 m; therefore the scale <strong>of</strong> fluctuation is taken to be 0.26 m. This estimate <strong>of</strong> correla-42


tion length <strong>in</strong> the tip resistance corresponds to the average thickness <strong>of</strong> <strong>in</strong>terbedded layers <strong>of</strong> thesand and silt.0q c (MPa)0 5 102Depth (m)4681012Fig. 5.1 CPT tip resistance log0.3Scale <strong>of</strong> Fluctuation (m)0.250.20.150.10.0500 1 2 3 4 5 6W<strong>in</strong>dow Length (m)Fig. 5.2 Plot <strong>of</strong> scale <strong>of</strong> fluctuationTabulated values <strong>of</strong> scale <strong>of</strong> fluctuation reported <strong>in</strong> the literature are presented <strong>in</strong>Chapter 6.43


5.3 CORRELATION FUNCTIONS AND VARIOGRAMSIn spatial analysis, it becomes convenient to use a notation that represents data separated by apredef<strong>in</strong>ed distance, called the “separation distance” (also referred to as the lag distance), denotedh. Furthermore, it is also convenient to use a notation where data po<strong>in</strong>ts X i and X i+h areseparated by h <strong>in</strong>tervals. In this notation, X i is a measurement <strong>of</strong> the random variable at locationi, and X i+h is another measurement taken at h <strong>in</strong>tervals. When h appears <strong>in</strong> an equation otherthan a subscript, it represents the numbers <strong>of</strong> data po<strong>in</strong>ts separated by the <strong>in</strong>terval. This shorthandnotation becomes convenient when present<strong>in</strong>g functions <strong>in</strong> future sections <strong>of</strong> this report.Correlation <strong>of</strong> spatial data uses a subset <strong>of</strong> the probability space called the sample population.Sampl<strong>in</strong>g distributions <strong>of</strong> the random variable X is also a random variable with a samplemean and variance calculated from a f<strong>in</strong>ite set <strong>of</strong> data. The sample mean, E (X ) , and variance,V (X ) are given by:1E( X ) = , and (5.1)nn∑ X ii=1nn1 ⎛ 2 1V ( X ) = ⎜∑Xi− ∑ X i(5.2)n −1⎝i= 1 n i=1where n is the number <strong>of</strong> samples <strong>in</strong> the f<strong>in</strong>ite probability space. The covariance between samples<strong>of</strong> population random variables, X and Y, would correspond<strong>in</strong>gly be:2 ⎞( ) ⎟⎠nn n1 ⎛ 1 ⎞cov( X , Y ) = ⎜∑XiYi− ∑ Xi∑Yi⎟ . (5.3)n −1⎝i= 1 n i=1 i=1 ⎠Therefore, the autocovariance <strong>of</strong> X as a function <strong>of</strong> the separation distance, ∆h, becomes:⎛ ⎞ 1 1⎜∑ XiXi+h⎟ − ∑ Xi ∑ Xi+h−cov( , ) =⎝ ⎠ n h nXiXi+h(5.4)n − h − 1and is illustrated <strong>in</strong> Figure 5.3. The autocovariance is calculated between a support or series anditself displaced by a lag <strong>of</strong> distance. The autocovariance at lag 0 is simply the variance <strong>of</strong> therandom variable. The autocovariance is typically calculated for lags from about 0 to n/4.44


x 1x 0h 1h 2Covarianceh 1h 2Cov(x 0, x 0+h1)hCov(x 0, x 0+h2)(a)Fig. 5.3 (a) Spatial covariance represented by data po<strong>in</strong>ts, x, and separation distances<strong>of</strong> h; (b) hypothetical data show<strong>in</strong>g that autocorrelation should be higher forlow h than for high h(b)The autocovariance can be symbolically represented by cov h , C(h), or σ 2 h. The autocorrelationfunction is obta<strong>in</strong>ed by normaliz<strong>in</strong>g the autocovariance by the variance <strong>of</strong> the variable itself:rhcov( Xi, Xi+h)= . (5.5)V ( X )It should be clear that for h = 0, the value <strong>of</strong> cov(X i , X i+h ) is equal to V(X) and the autocorrelationfunction has a value <strong>of</strong> 1.0. As the lag distance <strong>in</strong>creases, the autocorrelation functionshould be expected to decrease (unless the variable happens to have a constant value), atleast for small lag distances. Variables with periodic characteristics will have autocorrelationsfunctions that decrease and <strong>in</strong>crease periodically with lag distance.5.3.1 Autocorrelation FunctionsAutocorrelation functions can be plotted as a function <strong>of</strong> the lag distance to produce an autocorrelogram.Figures 5.4 through 5.9 show several idealized time series and their correspond<strong>in</strong>gautocorrelograms (adapted from Davis, 1986). Figures 5.4 and 5.5 show a constant and l<strong>in</strong>early<strong>in</strong>creas<strong>in</strong>g value property, respectively. For a constant function, the autocorrelation function isalways equal to 1 because a shift <strong>in</strong> the function <strong>of</strong> any lag distance does not change the value <strong>of</strong>the function. The l<strong>in</strong>early <strong>in</strong>creas<strong>in</strong>g time series shown <strong>in</strong> Figure 5.5 will have negative, or l<strong>in</strong>eardecreas<strong>in</strong>g, correlation with <strong>in</strong>creas<strong>in</strong>g separation distance. Zero correlation will occur at the45


po<strong>in</strong>t where the property is zero. Beyond a value <strong>of</strong> 50, the autocorrelation function would thenbecome negative.201f(x)0C(h)0-200 50 100x-10 5 10 15 20 25hFig. 5.4 Idealized autocorrelogram show<strong>in</strong>g a constant property variable201f (x )0C (h )0-200 50 100x-10 5 10 15 20 25hFig. 5.5 A l<strong>in</strong>ear <strong>in</strong>creas<strong>in</strong>g time series with its autocorrelation functionFigure 5.6 shows a s<strong>in</strong>usoidal time series with a wavelength <strong>of</strong> 20 units. Therefore, theautocorrelation function will exhibit s<strong>in</strong>usoidal correlation across the expected wavelength. Theautocorrelation function has a value <strong>of</strong> 1 at zero lag distance, a value <strong>of</strong> –1 at one-half wavelength(at which po<strong>in</strong>t the lagged function is equal to the negative <strong>of</strong> the orig<strong>in</strong>al function), and avalue <strong>of</strong> 1 aga<strong>in</strong> at a lag distance <strong>of</strong> one wavelength (at which po<strong>in</strong>t the lagged function is identicalto the orig<strong>in</strong>al function).201f (x )0C (h )0-200 50 100x46-10 5 10 15 20 25hFig. 5.6 An idealized time series and autocorrelogram consist<strong>in</strong>g <strong>of</strong> a s<strong>in</strong>e wave withwavelength <strong>of</strong> 20 unitsIn reality, perfectly s<strong>in</strong>usoidal data are rarely encountered. The addition <strong>of</strong> random noiseto a s<strong>in</strong>usoidal function keeps the function from be<strong>in</strong>g strictly periodic, and therefore preventsthe autocorrelation function from ever reach<strong>in</strong>g a value <strong>of</strong> 1 or –1 at non-zero lag distances. Fig-


ure 5.7 shows a s<strong>in</strong>usoidal function to which random noise has been added. The s<strong>in</strong>usoidal nature<strong>of</strong> the orig<strong>in</strong>al function can be seen, and its effect is still reflected <strong>in</strong> the autocorrelationfunction.201f (x )0C (h )0-200 50 100x-10 5 10 15 20 25hFig. 5.7 An idealized time series consist<strong>in</strong>g <strong>of</strong> a s<strong>in</strong>e wave plus random “noise” and itscorrespond<strong>in</strong>g autocorrelogramAnother function could <strong>in</strong>clude a l<strong>in</strong>ear trend <strong>in</strong> addition to s<strong>in</strong>usoidal and random components.Figure 5.8 shows a time series that has l<strong>in</strong>ear, s<strong>in</strong>usoidal, and random components, andits correspond<strong>in</strong>g autocorrelogram. The autocorrelogram shows more rapid decay <strong>in</strong> autocorrelationthan would have occurred without the l<strong>in</strong>ear trend.201f (x )0C (h )0-200 50 100x-10 5 10 15 20 25hFig. 5.8A l<strong>in</strong>ear <strong>in</strong>creas<strong>in</strong>g, s<strong>in</strong>usoidal time series with noise and its correspond<strong>in</strong>g autocorrelogramA completely random function would be expected to show no autocorrelation. Figure 5.9shows a sequence <strong>of</strong> random numbers <strong>in</strong> the form <strong>of</strong> a time series that exhibits no autocorrelation.The autocorrelogram can be seen to decay very quickly to near-zero autocorrelation values,even at short lag distances.47


201f (x )0C (h )0-200 50 100x-10 5 10 15 20 25hFig. 5.9 A random times series and correspond<strong>in</strong>g autocorrelogramUs<strong>in</strong>g the example CPT data shown <strong>in</strong> Figure 5.1, Figure 5.10 presents an autocorrelogram <strong>of</strong> thetip resistance. The plot beg<strong>in</strong>s at a maximum value at zero lag, drops and then rises at a lag <strong>of</strong>about 3 m. This corresponds to a positive correlation at that distance and is likely the verticaldistance between <strong>in</strong>terbedded sand and silt layers <strong>in</strong> the CPT pr<strong>of</strong>ile.10.5Correlation0-0.5-10 1 2 3 4 5 6Lag (m)Fig. 5.10 Example autocorrelogram for CPT data shown <strong>in</strong> Figure 5.1Many specific standardized expressions are proposed for the autocorrelation function.Four are given <strong>in</strong> Table 5.1 where each is characterized by a parameter (a through d, respectively).The relationship between the scale <strong>of</strong> fluctuation and the autocorrelation function parametersis also given <strong>in</strong> Table 5.1.48


Table 5.1 Autocorrelation functions and correspond<strong>in</strong>g scale <strong>of</strong> fluctuation (afterVanmarcke, 1977)Correlation FunctionScale <strong>of</strong> Fluctuation−|h|/ae2ae( h / b)e −−|h|/ce2cos( h / C)⎡ | h⎢1 +⎣ d−|h |/ d |⎤⎥⎦π bC4d5.3.2 VariogramsThe variogram function is a more appropriate way to describe spatial relations, as it is not relatedto the sample mean or variance, and allows the use <strong>of</strong> standardized spatial models. Thevariogram function is a measure <strong>of</strong> the degree <strong>of</strong> spatial dependence between samples along aspecific support. The variogram function is def<strong>in</strong>ed as the variance between data at a particularlag distance, Z(X 1 ) – Z(X 2 ):2{[ X X ] }2γ ( Xi, Xi+ h) = 2γ( h)= Ei−i+h(5.6)with the function γ(h) called the semivariogram function (due to the 2). The reader should beaware that conflict exists between variogram term<strong>in</strong>ologies found <strong>in</strong> the literature. While γ(h) isdef<strong>in</strong>ed as the semivariogram function, many authors also refer to it as the “variogram function.”This summary will use the term “semivariogram function” to describe γ(h). Computationally,the semivariogram is given by:N ( h)12γ ( h)= ∑[Xi − Xi+h)](5.7)2N(h)i=1where N(h) is the number <strong>of</strong> data pairs separated by h. The contrast<strong>in</strong>g autocovariance functionis:{[ X i− µ ][ X − ]}C h)EX i i h X i + h( =+µ . (5.8)Therefore, the relationship between the variogram function and the autocovariance is:20hγ ( h)= σ − C()(5.9)49


2where σ0is the variance at h = 0, or V(X) as discussed above. The relationship between γ(h),2C(h) and σ0is shown graphically <strong>in</strong> Figure 5.11.Fig. 5.11 Relationship between variogram and autocovarianceConsider an illustrative simple data set (e.g., SPT values) conta<strong>in</strong><strong>in</strong>g (N 1 ) 60 resistancevalues equally spaced at depth <strong>in</strong>tervals <strong>of</strong> one meter. To compute the semivariogram, the trendmust first be removed and the semivariogram calculated su<strong>in</strong>g the residuals. The orig<strong>in</strong>al dataand trend are shown <strong>in</strong> Figure 5.12.0(N 1 ) 600 2 4 6 8 10 12 14 1624(N 1 ) 60TrendDepth (m)68101214Fig. 5.12 Illustrative SPT data set50


There are 12 data po<strong>in</strong>ts, which produce 11 pairs <strong>of</strong> po<strong>in</strong>ts, hence N(h) = 11.2222[( X − X ) + ( X − X ) + K + ( X − X ) + ( X − ) ] 01γ (0) =12 26 612X2(11)1 12=The correspond<strong>in</strong>g variogram calculation for a lag <strong>of</strong> 1 m (h = 1) is as follows:2222[( X − X ) + ( X − X ) + K + ( X − X ) + ( X − ) ] 0. 4961γ (1) =1 22 310 11 11X12= .2( N )Similarly, for a lag <strong>of</strong> h = 2, N(2) = 10, and the calculation becomes:2222[( X − X ) + ( X − X ) + K + ( X − X ) + ( X − ) ] 0. 6801γ (2) =32 49 11 10X2( N )1 12=where X i are the residuals after removal <strong>of</strong> the trend. The plotted semivariogram values are presented<strong>in</strong> Figure 5.13.Fig. 5.13 Semivariogram for SPT data shown <strong>in</strong> Fig. 5.12Most geotechnical sample data are not uniformly spaced; therefore a method to computevariogram and autocorrelation functions for irregularly spaced data is needed. The most commonmethod is to calculate separation distances (lags) and the value difference [X i – X i+h ] for thecalculated lags. The lags and differences are then sorted <strong>in</strong>to ranges. The sample pairs correspond<strong>in</strong>gto a given range are then used to compute the variogram function for that range, us<strong>in</strong>gthe center <strong>of</strong> the range for h. For example, if a particular range were considered between lag distances<strong>of</strong> 3 m and 5 m, then the computed variogram function value would be plotted at 4 m.Ranges <strong>of</strong> lags are usually referred to as “classes.” Other methods use weight<strong>in</strong>g functions (e.g.,Journel and Huijbregts, 1978).51


5.3.3 StationarityGiven that regionalized variables are spatially cont<strong>in</strong>uous, it is not possible to know their valueseverywhere. Instead, the values are known through samples at specific locations; therefore, thecovariance and variogram functions depend simultaneously on two supports, for example, X 1 andX 2 . Furthermore, these functions depend only on the distance between the two supports. Thismeans that for a pair <strong>of</strong> random variables, the correlation that exists between the data values doesnot depend on their positions <strong>in</strong> the support, but on the distance that separates them (Journel andHuijbregts, 1978). To that end, it is important to def<strong>in</strong>e the four basic conditions regard<strong>in</strong>g spatialstationarity:1. Strict Stationarity — A random variable has strict stationarity when the CDF (<strong>of</strong> thestochastic process) is <strong>in</strong>variant over all shifts or changes <strong>in</strong> location. This means thatthe two random variables (x i and x i+h ) have the same distribution regardless <strong>of</strong> the distancebetween them.2. Second-Order Stationarity — The mean <strong>of</strong> the process is constant and does not dependon the location, and the covariance exists and depends only on the separationdistance, h, for each pair <strong>of</strong> random variables [Z(x), Z(x+h)]. Other than assum<strong>in</strong>g theexistence <strong>of</strong> the covariance, an a priori variance is also assumed to exist [V(x) =C(0)]:E { Z(x)} = µ , and (5.10)C ( h)= E{[Z(x)− µ ][ Z(x + h)− µ ]}. (5.11)3. Intr<strong>in</strong>sic Hypothesis — The mean <strong>of</strong> the process is constant and does not depend onlocation and the <strong>in</strong>crement <strong>of</strong> V(x) – V(x+h) has f<strong>in</strong>ite variance that does not dependon x. Thus:2V[Z(x)− Z(x + h)]= E{[Z(x)− Z(x + h)]} = 2γ( h). (5.12)Therefore, second-order stationarity satisfies the <strong>in</strong>tr<strong>in</strong>sic hypothesis, but the converseis not true.4. Quasi-stationarity — Quasi- stationarity assumes second-order stationarity <strong>of</strong> the <strong>in</strong>tr<strong>in</strong>sichypothesis to be applied to a local region only, i.e., h ≤ b , where b is a limit<strong>in</strong>gdistance that represents the neighborhood <strong>of</strong> estimation or simulation.52


5.3.4 <strong>Properties</strong> <strong>of</strong> the Variogram FunctionGiven the basic def<strong>in</strong>itions and assumptions regard<strong>in</strong>g spatial analysis, it is appropriate to summarizethe properties <strong>of</strong> the variogram function. The variogram (as well as the spatial variance)is actually two-sided, with a negative part that is a mirror image <strong>of</strong> the positive part (result<strong>in</strong>gfrom reversal <strong>of</strong> the lag sequence). In practice, the negative part is not considered <strong>in</strong> spatialanalysis <strong>of</strong> geotechnical soil properties; however it must be considered when apply<strong>in</strong>g these conceptsto Fourier transforms <strong>of</strong> time series.In general, γ(h) <strong>in</strong>creases from its <strong>in</strong>itial value at γ(0) as h <strong>in</strong>creases. For cont<strong>in</strong>uous randomvariables, the variogram function levels <strong>of</strong>f and becomes stable about a limit<strong>in</strong>g value calledthe sill, which is generally at, or near, the variance <strong>of</strong> the stochastic process. The separation distancewhere the variogram function approaches the sill is called the range <strong>of</strong> <strong>in</strong>fluence, designateda or h r . Where the variogram approaches zero autocorrelation ( γ ( ∞) = C(0)) at lagsgreater than the range <strong>of</strong> <strong>in</strong>fluence is called a “transition phenomenon.” The autocovariance distance,r 0 , is the distance at which the spatial variance has decayed by 1/e (37%). In practice, the<strong>in</strong>itial value <strong>of</strong> the sill is taken as the sample variance, but as stated earlier, can be greater for actualdata. Variograms that have a sill and a range <strong>of</strong> <strong>in</strong>fluence are called “transition variograms”and represent stochastic processes that are not only <strong>in</strong>tr<strong>in</strong>sic but second-order stationary. This isshown <strong>in</strong> Figure 5.14 <strong>in</strong> that the covariance depends only on the separation distance, and that theprocess has a f<strong>in</strong>ite variance that does not depend on the <strong>in</strong>crement between lags.Fig. 5.14 <strong>Properties</strong> <strong>of</strong> the variogram function53


In some cases, the behavior <strong>of</strong> the variogram near the orig<strong>in</strong> (h = 0) can have a discont<strong>in</strong>uity.The discont<strong>in</strong>uity near the orig<strong>in</strong> is called the nugget effect, and can result from (a) thevariability between two values taken at two very close po<strong>in</strong>ts, (b) differences <strong>in</strong> sample valuesthat are not measurable at the scale <strong>of</strong> data collection, i.e., small-scale effects or (c) be partiallyattributed to measurement errors. The nugget effect produces an apparent <strong>in</strong>tercept at zero separationdistance, i.e., γ(0) = a 2 .5.3.5 Standard Variogram ModelsIt is common to use standard variogram models to characterize spatial variability <strong>of</strong> geotechnicalsoil properties. Variogram models typically use functions that are positive def<strong>in</strong>ite. Commonlyused models are categorized <strong>in</strong>to transition models with and without sills. A special class usesmodels that do not monotonically <strong>in</strong>crease.5.3.5.1 Transition Models with a SillOne class <strong>of</strong> transition models uses relatively simple functions to describe a smooth variation <strong>of</strong>the variogram function between zero (or a 2 if the nugget effect is present) and the sill. Typicaltransition models with a sill <strong>in</strong>clude simple l<strong>in</strong>ear, spherical, exponential, and Gaussian models.A simple l<strong>in</strong>ear model <strong>in</strong>creases l<strong>in</strong>early from zero lag to the sill. Its semivariogramfunction is given by:⎧ 2 2 2 h⎪a+ ( σ − a ) , for 0 ≤ h ≤ hrγ ( h)= ⎨hr(5.13)⎪ 2⎩σ, h ≥ hrwhere a 2 is the nugget, h r is the range, and σ 2 is the sill.A modified l<strong>in</strong>ear model <strong>in</strong>cludes a normal transition at the orig<strong>in</strong> and <strong>in</strong>creases l<strong>in</strong>earlyfrom zero lag to the sill but. Its semivariogram function is given by:2⎧ ⎛h− ⎞2⎪ ⎜ h ⎟hm<strong>in</strong>2 2a 1 − e + ( σ − a ) , for 0 ≤ h ≤ hrγ ( h)= ⎨⎜ ⎟hr⎝ ⎠(5.14)⎪2⎪⎩σ , h ≥ hrwhere h m<strong>in</strong> is the lag at which the transition takes place.54


A spherical model <strong>in</strong>creases l<strong>in</strong>early from the orig<strong>in</strong> (zero lag) and <strong>in</strong>cludes a normaltransition at the range <strong>of</strong> <strong>in</strong>fluence. Its semivariogram function is given by:⎧⎡3h 1 h3⎤⎪a2+ ( σ 2 − a2) ⎢ − ⎥,for 0 ≤ h ≤ h( ) = ⎨⎢⎣2 2 3rγ hhrhr⎥⎦(5.15)⎪2⎩σ, h ≥ hr.3The correspond<strong>in</strong>g scale <strong>of</strong> fluctuation is hr.4A modified spherical model <strong>in</strong>cludes a normal transition at the orig<strong>in</strong> and a normal transitionat the range <strong>of</strong> <strong>in</strong>fluence. Its semivariogram function is given by:⎧ ⎛ h 2⎞⎪ ⎜ − ⎟⎡3h 1 h3⎤a2 + − ⎢ − ⎥ ≤ ≤⎨⎜1−e hm<strong>in</strong>=⎟( σ 2 a2), for 0 h hrγ ( h)⎢⎣2 hr2 3h ⎥⎦⎪⎝ ⎠r. (5.16)⎪ 2⎩σ, h ≥ hr.An exponential model approaches the sill asymptotically. Its semivariogram function isgiven by:h⎪⎧⎡ − ⎤=2⎨ +2 −2⎢ −cγ ( h)a ( σ a ) 1 e ⎥,for h ≥ 0(5.17)⎪⎩⎣ ⎦where c is a constant related to an “effective,” range as this model never theoretically reaches thesill. For geotechnical purposes, the effective range, h r ′ is the lag at which the exponentialvariogram function reaches 95% <strong>of</strong> the sill, or where h = 3c = h r ′(given that 1-e -3 = 0.95). Therefore,c = h r ′/3. The correspond<strong>in</strong>g scale <strong>of</strong> fluctuation is 2h rA Gaussian model is parabolic at the orig<strong>in</strong>. Its semivariogram function is given by:2⎪⎧⎡h− ⎤=2⎨ +2 −22⎢ −cγ ( h)a ( σ a ) 1 e ⎥,for h ≥ 0(5.18)⎪⎩⎢⎣⎥⎦where the effective range is ath = c = , therefore c = h r ’/ 3 . The correspond<strong>in</strong>g scale <strong>of</strong>'3 hrfluctuation isπ hr. These models are shown <strong>in</strong> graphical form <strong>in</strong> Figure 5.15.55


Fig. 5.15 Transition variogram models with sills5.3.6 Nested StructuresWhen applied to soil properties, the variability between X i and X i+h (characterized by thevariogram) is due to different causes at different scales:• at the level <strong>of</strong> support (e.g., at a separation distance <strong>of</strong> almost zero), variability isprimarily due to measurement (sampl<strong>in</strong>g and measurement errors);• at the small visible level or observable level (e.g., h < 1 cm), variability can resultfrom transition from one particle to the next, or from one pore to the next, etc.;• at the local level (e.g., h


Fig. 5.16 Idealized nested structures5.3.7 Spatial AnisotropyA spatial phenomenon is said to be anisotropic if its variability is not the same <strong>in</strong> every direction.For example, a preferred direction to hydraulic conductivity is commonly observed <strong>in</strong> soil depositedby sedimentation. Differences <strong>in</strong> gra<strong>in</strong> size distribution and other properties such as permeabilitywould be more pronounced perpendicular to the bedd<strong>in</strong>g planes. Anisotropies can behandled by reduc<strong>in</strong>g the isotropy by a l<strong>in</strong>ear transformation <strong>of</strong> the rectangular coord<strong>in</strong>ates <strong>in</strong> thecase <strong>of</strong> geometric anisotropy. Geometric anisotropy is present if n-directional variograms can berepresented by n-transition-type models <strong>of</strong> the same type with the same sill, with vary<strong>in</strong>g ranges.This is similar to the way permeabilities are considered <strong>in</strong> two dimensions.A more commonly used method for anisotropic conditions is to treat the anisotropy as aseries <strong>of</strong> zones, called zonal anisotropy. In this method, the variable will exhibit different sills <strong>in</strong>different directions while the range rema<strong>in</strong>s constant; therefore a nested structure is used <strong>in</strong>which each component will have its own anisotropy. A model <strong>of</strong> zonal anisotropy built fromnested structures hav<strong>in</strong>g their own anisotropies is flexible enough to be used for most types <strong>of</strong>experimental anisotropy.Anisotropies can be accounted for by us<strong>in</strong>g anisotropic variograms. To detect anisotropies,variograms are typically calculated <strong>in</strong> different directions and a rose diagram (a diagram<strong>of</strong> ranges <strong>in</strong> the different directions) is plotted. The anisotropy ratio is the ratio between thesmallest and largest range (these directions are assumed to be approximately perpendicular to57


each other and are termed the major and m<strong>in</strong>or axes). An anisotropy ratio <strong>of</strong> one would denotean isotropic variogram (same variogram for both the major and m<strong>in</strong>or axes).58


6 Spatial Variability <strong>of</strong> Soil <strong>Properties</strong>The spatial variability <strong>of</strong> soil properties is highly dependent on soil type or the method <strong>of</strong> soildeposition or formation. As a result, good geologic characterization is an important part <strong>of</strong> anyeffort toward model<strong>in</strong>g spatial variability. Measured soil properties can also be <strong>in</strong>fluenced bymethod <strong>of</strong> measurement, measurement errors, etc. It is important to realize that the values <strong>of</strong> theparameters used to model spatial variability <strong>of</strong> geotechnical soil properties will be highly sitespecific.Spatial variability <strong>in</strong> the values <strong>of</strong> soil properties is a major contributor to spatial analysis<strong>in</strong> geotechnical eng<strong>in</strong>eer<strong>in</strong>g. Nevertheless, relatively little quantitative data on the spatial variability<strong>of</strong> soil properties have been reported. This chapter summarizes values <strong>of</strong> scale <strong>of</strong> fluctuation,and the parameters used to def<strong>in</strong>e variogram models for various soil properties from sourcesthat have been reported <strong>in</strong> the literature.6.1 SCALE OF FLUCTUATIONThe scale <strong>of</strong> fluctuation provides a measure <strong>of</strong> how rapidly a parameter varies with positionabout a trend. Several studies have reported scale <strong>of</strong> fluctuation values for laboratory- and fieldmeasuredproperties. Table 6.1 presents a tabulated scale <strong>of</strong> fluctuation data for some laboratory-measuredproperties.


Table 6.1 Scale <strong>of</strong> fluctuation values for some laboratory-tested properties (after Phoonand Kulhawy (1999)FluctuationDirectionVerticalProperty Soil Type No. <strong>of</strong>StudiesScale <strong>of</strong> Fluctuation(m)Range Means u (kN/m 2 ) Clay 5 0.8 – 6.1 2.5w n (%) Clay, loam 3 1.6 – 12.7 5.7LL (%) Clay, loam 2 1.6 – 8.7 5.2γ (kN/m 3 ) Clay 1 * 1.6γ (kN/m 3 ) Clay, loam 2 2.4 – 7.9 5.2Horizontal w n (%) Clay 1 * 170.0* Not reported.Scales <strong>of</strong> fluctuation have also been computed for <strong>in</strong>situ test data. Phoon and Kulhawy(1996) suggest the values <strong>of</strong> scale <strong>of</strong> fluctuation for SPT, CPT, and VST parameters presented <strong>in</strong>Table 6.2.Table 6.2 Scale <strong>of</strong> fluctuation values for <strong>in</strong>situ test<strong>in</strong>gTestTypeFluctuationDirectionProperty Soil Type No. <strong>of</strong>StudiesScale <strong>of</strong> Fluctuation(m)Range MeanSPT Vertical N * 1 2.4 *CPT Verticalq c Sand, Clay 7 0.1 – 2.2 0.9q T Clay 10 0.2 – 0.5 0.3Horizontalq c Sand, Clay 11 3.0 – 80.0 47.9q T Clay 2 23.0 – 66.0 44.5VST Vertical s u Clay 6 2.0 – 6.2 3.8Horizontal s u Clay 3 46.0 – 60.0 50.7The amount <strong>of</strong> <strong>in</strong>formation on the scale <strong>of</strong> fluctuation is limited <strong>in</strong> comparison to theCOV <strong>of</strong> <strong>in</strong>herent variability. Therefore, the actual values <strong>of</strong> scale <strong>of</strong> fluctuation used <strong>in</strong> geotechnicaleng<strong>in</strong>eer<strong>in</strong>g analyses should be carefully chosen. Note that for both laboratory- and fieldmeasureddata, the scale <strong>of</strong> fluctuation <strong>in</strong> the horizontal direction is much higher than <strong>in</strong> the verticaldirection. Also note that the scale <strong>of</strong> fluctuation for the CPT is much lower than the scale <strong>of</strong>fluctuation for SPT, very likely because the sampl<strong>in</strong>g <strong>in</strong>terval <strong>of</strong> the CPT is less than that <strong>of</strong> theSPT.60


6.2 VARIOGRAM MODEL, NUGGET, AND SILLA number <strong>of</strong> researchers have <strong>in</strong>vestigated the spatial variability <strong>of</strong> soil properties, and <strong>in</strong>terpretedthose data <strong>in</strong> terms <strong>of</strong> standard variogram models and identified representative values <strong>of</strong>the variogram model parameters. Such studies, however, require detailed subsurface <strong>in</strong>vestigationswith closely spaced data (<strong>in</strong> at least one direction) <strong>in</strong> order to accurately resolve the spatialvariability. Data <strong>of</strong> this type are most conveniently (and economically) acquired us<strong>in</strong>g CPT;hence the majority <strong>of</strong> the available data is based on CPT parameters. Table 6.3 provides typicalvalues for the variogram model, nugget, and sill for CPT parameters <strong>in</strong> different soil conditions.Table 6.3 Tabulated Values for variogram model, nugget, and sill for various CPTparameters (after Hegazy et al., 1996)Soil PropertyCPT Tip ResistanceCPT SleeveFrictionCPT PorePressureSoil Type Direction VariogramModelSandy fillVerticalSandy clayVerticalClayey sand to Verticalsilty sandClaysVerticalSandy fillSandy clayClayey sand tosilty sandClaysSandy fillSandy clayClayey sand tosilty sandClaysSandy fillSandy clayClayey sand tosilty sandClaysSandy fillSandy clayClayey sand tosilty sandSandy fillSandy clayClayey sand tosilty sandNon-directionalNon-directionalNon-directionalNon-directionalVerticalVerticalVerticalVerticalNon-directionalNon-directionalNon-directionalNon-directionalVerticalVerticalVerticalNon-directionalNon-directionalNon-directional61SphericalSphericalExponential/SphericalExponential/SphericalExponentialSphericalSphericalExponentialExponential/SphericalExponential/SphericalSphericalExponential/SphericalExponentialSphericalExponentialExponentialExponential/SphericalSpherical/GaussianExponential/SphericalExponentialSphericalExponentialNugget(atm 2 )0 – 7000 – 40.000.000.004.500.00 – 0.0300.00 – 0.0500.000.000.000.000000.000.000.00Sill(atm 2 )2.8 – 12714 – 20001940 – 33120.6 – 21.67042001700270.03 – 0.130.03 – 0.800.13 – 0.830.00 – 0.260.120.850.470.250.00 – 0.120.02 – 0.370.03 – 7.170.051.160.10


6.3 RANGE/AUTOCOVARIANCE DISTANCEData on the distances over which various soil properties rema<strong>in</strong> correlated have also been reported<strong>in</strong> the literature. By fitt<strong>in</strong>g such data to standard variogram models, values <strong>of</strong> the modelparameters that describe the variation <strong>of</strong> autocorrelation with distance can be determ<strong>in</strong>ed. Tables6.4 and 6.5 present typical values <strong>of</strong> the range and autocovariance distance.62


Table 6.4 Tabulated values <strong>of</strong> range and autocovariance distance for SPT andCPT parametersSoil Property Soil Type Direction Range (a) or AutocovarianceDistance (r 0 ) (m)*SPT N Value Dune sandHorizontalr 0 = 20Alluvial sandHorizontalr 0 = 17CPT Resistance Offshore soilsHorizontalr 0 = 30Offshore soilsHorizontalr 0 = 14-38Silty clayHorizontalr 0 = 5-12Clean sandVerticalr 0 = 3Mexico clayVerticalr 0 = 1ClayVerticalr 0 = 1Sensitive ClayVerticalr 0 = 2Silty ClayVerticalr 0 = 1CPT Tip ResistanceCPT Sleeve FrictionCPT Pore PressureNorth Sea clayCopper tail<strong>in</strong>gsClean sandNorth SeaSensitive ClaySandy fillSandy clayClayey sand to silty sandClaysSandy fillSandy clayClayey sand to silty sandClaysSandy fillSandy clayClayey sand to silty sandClaysSandy fillSandy clayClayey sand to silty sandClaysHorizontalVerticalVerticalHorizontalVerticalVerticalVerticalVerticalVerticalNon-directionalNon-directionalNon-directionalNon-directionalVerticalVerticalVerticalVerticalNon-directionalNon-directionalNon-directionalNon-directionalr 0 = 30r 0 = 0.5r 0 = 1.6r 0 = 14 – 38a = 2Sensitive Clay Vertical a = 2Sandy fillSandy clayClayey sand to silty sandSandy fillSandy clayClayey sand to silty sandVerticalVerticalVerticalNon-directionalNon-directionalNon-directionalNotea = 0.27 – 0.943a = 0.30 – 1.22a = 1.83 – 2.90a = 0.70 – 2.65a 1 = 1.07, a 3 = 0.57 (a)a 1 = 0.98, a 3 = 0.69 (b)a 1 = 3.05, a 3 = 2.32 (c)a 1 = 3.05, a 3 = 1.32 (d)a = 0.61 – 0.823a = 0.34 – 1.77a = 1.37 – 3.05a = 0.46 – 4.42a 1 = 1.83, a 3 = 0.74 (a)a 1 = 1.22, a 3 = 1.20 (b)a 1 = 3.66, a 3 = 2.36 (c)a 1 = 4.57, a 3 = 2.39 (d)a = 0.46 – 1.68a = 0.37 – 1.37a = 2.59 – 3.66a 1 = 1.52, a 3 = 1.04a 1 = 1.22, a 3 = 0.81a 1 = 3.96, a 3 = 2.16Sensitive Clay Vertical a = 2 1* a 1 = major range, a 3 = m<strong>in</strong>or range.(a) 312 po<strong>in</strong>ts.(b) 126 po<strong>in</strong>ts.(c) 450 po<strong>in</strong>ts.(d) 636 po<strong>in</strong>ts.Notes:(1) DeGroot (1996)(2) Lacasse and Nadim (1996)(3) Hegazy, et al. (1996)121363


Table 6.5 Tabulated values <strong>of</strong> autocovariance distance for additional soil parameters(after DeGroot, 1996)Soil Property Soil Type Direction Autocovariance Distance (r 0 )(m)DMT P 0 Varved clay Vertical r 0 = 1.0FVT Undra<strong>in</strong>edShear StrengthLaboratoryUndra<strong>in</strong>ed ShearStrengthHydraulicConductivityClaySensitive claySensitive claySensitive clayChicago clayOffshore sitesSalt domeCompacted claySand aquiferVerticalVerticalHorizontalVerticalVerticalVerticalHorizontalHorizontalHorizontalr 0 = 1 – 3r 0 = 1r 0 = 23a = 2r 0 ~ 0.5(Unconf<strong>in</strong>ed Compression)r 0 = 0.3 – 3.6(Triaxial and DDS)r 0 = 1.5 kmr 0 = 0.5 – 2r 0 = 1 – 2.564


7 <strong>Estimation</strong> and SimulationPrevious chapters presented techniques for characteriz<strong>in</strong>g the spatial correlation <strong>of</strong> regionalizedvariables such as soil properties. In cases where soil property data are available at specific locations,it is frequently desirable to want to know the value <strong>of</strong> that property at a different location.<strong>Estimation</strong> techniques can be used to determ<strong>in</strong>e the desired value. In other cases, discrete datamay not be available, but the CDF and autocorrelation function for the data are known or can beassumed. In such cases, simulation techniques can be used to generate spatial variable values <strong>of</strong>the property <strong>of</strong> <strong>in</strong>terest.7.1 ESTIMATIONIf measurements have been made at random locations and the form <strong>of</strong> the autocorrelation isknown, it is generally possible to estimate the value <strong>of</strong> the random variable at other locationsthrough a process called krig<strong>in</strong>g. Krig<strong>in</strong>g is a weighted, mov<strong>in</strong>g average <strong>in</strong>terpolation (or extrapolation)procedure that m<strong>in</strong>imizes the estimated variance <strong>of</strong> the <strong>in</strong>terpolated (extrapolated)value with the weighted average <strong>of</strong> its neighbors. The weight<strong>in</strong>g factors and the variance arecomputed us<strong>in</strong>g the variogram model. S<strong>in</strong>ce the autocorrelation is related to distance, theweights depend on the spatial arrangement <strong>of</strong> the locations <strong>of</strong> <strong>in</strong>terest. Significantly, krig<strong>in</strong>gprovides an unbiased estimator <strong>of</strong> the mean characteristic <strong>of</strong> the random field.Local estimation is used to f<strong>in</strong>d the best estimator over a limited doma<strong>in</strong> <strong>of</strong> the regionalizedvariable, i.e., at small lags compared to the dimensions at which the homogeneous propertyis measured. Global estimation considers lags larger than the limits <strong>of</strong> quasi-stationarity andtherefore reduces the estimation to computation <strong>of</strong> general statistics such as a mean and variance.The goal <strong>of</strong> krig<strong>in</strong>g is to predict the average value <strong>of</strong> X with<strong>in</strong> a block, B, over a volume,area, or po<strong>in</strong>t. Simple krig<strong>in</strong>g assumes that the covariance is second-order stationary, and that


the mean and variance <strong>of</strong> the data be<strong>in</strong>g considered are constant. The true average value <strong>of</strong> B is1µ = Z B = ∫ Z(x)dx , but an approximation <strong>of</strong> the true average can be estimated from:BBZ∧B=n∑i=1a Z( x )(7.1)iiwhere a i are weights applied to the respective data values, Z(x i ), such that ∑na ii=1= 1 .0 . The bestl<strong>in</strong>ear estimate will m<strong>in</strong>imize the expected squared error between the true and approximated averagevalue <strong>of</strong> the block. The expected squared error, Q, becomes:⎪⎧∧2⎡ ⎤ ⎪⎫Q = E⎨⎢Z B− Z B ⎥ ⎬(7.2)⎪⎩ ⎣ ⎦ ⎪⎭not<strong>in</strong>g that:For an unbiased estimator:⎛E⎜ Z⎝∧B⎞⎟ =⎠n∑i=1a Ei[ Z( x )]i. (7.3)na ii=1therefore ∑⎛ ∧ ⎞E ⎜ ZB ⎟ = E[ Z( x i)](7.4)⎝ ⎠= 1 .0 . Therefore, m<strong>in</strong>imiz<strong>in</strong>g the squared error can be accomplished by f<strong>in</strong>d<strong>in</strong>g a∂Qset <strong>of</strong> a i values for which = 0 . By us<strong>in</strong>g the method <strong>of</strong> Lagrangian multipliers, the solution∂a ito this partial differential equation can be obta<strong>in</strong>ed from the follow<strong>in</strong>g set <strong>of</strong> simultaneous equations:n∑j=1a Cjij+ λ = C , and (7.5)B<strong>in</strong>∑a ii=1= 1 .0(7.6)66


where C ij = C(h), the autocovariance between the data values, λ is a Lagrangian multiplier,C Bi = C(h) between the block B and all data values, and a i are the krig<strong>in</strong>g weights. In matrixform, the equations are:⎡C⎢C⎢⎢M⎢⎢C⎢⎣11121n1CCC1222n2CCC13LCLCLC1 1 L11 ⎤⎡a1⎤ ⎡C1⎥⎢a⎥ ⎢C⎥⎢2⎥ ⎢⎥⎢M⎥ = ⎢M⎥⎢⎥ ⎢1⎥⎢an⎥ ⎢C0 ⎥⎦⎢⎣λ⎥⎦⎢⎣1144424443{ 12 3Therefore, the solution, which yields the weight<strong>in</strong>g factors, a i , is given by:C23n31n2nnn−1C BiAC BiB1B2Bn⎤⎥⎥⎥⎥⎥⎥⎦(7.7)∧A = C . (7.8)The krig<strong>in</strong>g variance, an estimate <strong>of</strong> the estimation variance, can be obta<strong>in</strong>ed as:or <strong>in</strong> matrix form:2σKn2= σ − ∑aC − λBi=1∧iBi∧(7.9)67T⎡⎢ A ∧ ⎤⎥⎦2 2σK= σB− CBi. (7.10)⎣The <strong>in</strong>formation needed as <strong>in</strong>put to krig<strong>in</strong>g estimation <strong>in</strong>cludes the sample values and their spatialcoord<strong>in</strong>ates, locations <strong>of</strong> blocks or po<strong>in</strong>ts to be estimated, and an estimated variogram function.Computationally, the process consists <strong>of</strong> the follow<strong>in</strong>g steps:(1) Entry <strong>in</strong> the data file <strong>of</strong> data po<strong>in</strong>ts and selection <strong>of</strong> samples that <strong>in</strong>fluence the block<strong>of</strong> <strong>in</strong>terest,(2) Computation <strong>of</strong> covariances between the selected samples,(3) Computation <strong>of</strong> covariances between the selected samples and the estimation po<strong>in</strong>t,(4) Assembly <strong>of</strong> the krig<strong>in</strong>g equations,(5) Solution <strong>of</strong> the krig<strong>in</strong>g equations to obta<strong>in</strong> the weights,(6) Computation <strong>of</strong> estimated values us<strong>in</strong>g computed weights, and(7) Calculation <strong>of</strong> krig<strong>in</strong>g variance.Many forms <strong>of</strong> krig<strong>in</strong>g exist, and more deta<strong>in</strong>ed explanations may be found <strong>in</strong> Journeland Huijbregts (1978), Davis (1986), and Carr (1995). The simplest form has been presentedhere for illustration. Figure 7.1 shows an example <strong>of</strong> krig<strong>in</strong>g where the known data are at equal


distances from the location <strong>of</strong> where estimation is desired. In this example, all known po<strong>in</strong>ts areseparated from x i by 100 m. However, <strong>in</strong> Cases (a) and (b), po<strong>in</strong>ts 2 and 3 are separated by 20 mand 174 m, respectively. The use <strong>of</strong> krig<strong>in</strong>g discrim<strong>in</strong>ates the spatial structure <strong>of</strong> the known dataresult<strong>in</strong>g <strong>in</strong> an estimated value, x est , <strong>of</strong> 1.767 for Case (a) and a value <strong>of</strong> 2.000 for Case (b).Case (a)x 1 = 1100 m100 mx 2 = 220 mx est100 mx 3 = 3EqualanglesCase (b)x 2 = 2100 mx 1 = 1100 mx estAll anglesequal100 mx 3 = 3Fig. 7.1 Hypothetical krig<strong>in</strong>g Cases (a) and (b)68


7.2 SIMULATIONA regionalized variable, Z(X), can be <strong>in</strong>terpreted as one realization <strong>of</strong> a random function Z(x)that can be characterized by a distribution function and variogram model. The goal <strong>of</strong> simulationis to create other realizations <strong>of</strong> the random function and reta<strong>in</strong> only those realizations that meetthe requirements set forth, such as the experimental values <strong>in</strong> a known data set or a pdf. Twosimulation techniques are discussed <strong>in</strong> detail <strong>in</strong> this section: random fields and Monte Carlomethods.It is important to understand the difference between estimation and simulation. Unbiasedestimators and properly simulated data should have the same values at the experimental data locationsand/or should also have the same or specified dispersion (variability <strong>in</strong> a particular direction)characteristics. The goal <strong>of</strong> estimation is to provide an unbiased estimate <strong>of</strong> the actual datawith m<strong>in</strong>imal variance across the support. However, this does not mean that the estimators willreproduce the true variability <strong>of</strong> the property. This is why estimation typically has a smooth<strong>in</strong>geffect on the real data. Conversely, the goal <strong>of</strong> simulation is to produce a set <strong>of</strong> data with thesame two moments (mean and covariance) and spatial variation (variogram) as the known distribution.7.2.1 Random FieldsSimulation <strong>of</strong> random fields can be useful to quantify uncerta<strong>in</strong>ty <strong>in</strong> probabilistic terms. Thissimulation technique generates a number <strong>of</strong> realizations <strong>of</strong> random fields that describes the dataat hand. The data from each realization can be used to solve the determ<strong>in</strong>istic problem <strong>of</strong> <strong>in</strong>terest.From the set <strong>of</strong> solutions obta<strong>in</strong>ed, <strong>in</strong>ferences <strong>of</strong> the design problem can then be made <strong>in</strong> aprobabilistic manner (Has<strong>of</strong>er, 1993). The optimum design can then be made by ascerta<strong>in</strong><strong>in</strong>gprobabilities or by balanc<strong>in</strong>g safety or cost. Simulation <strong>of</strong> random fields is a broad subject <strong>in</strong> and<strong>of</strong> itself. The materials presented <strong>in</strong> this section are a brief summary <strong>of</strong> the work by Vanmarcke(1983), Yamazaki and Sh<strong>in</strong>ozuka (1988), and Has<strong>of</strong>er (1993).69


7.2.1.1 Gaussian versus Non-Gaussian FieldsThe assumption <strong>of</strong> Gaussian behavior greatly simplifies stochastic problems. Most simulationmethods produce fields which are either approximately or exactly Gaussian. However, the distributions<strong>of</strong> many geotechnical soil properties may be far from Gaussian. To determ<strong>in</strong>e whetheror not to use Gaussian or non-Gaussian random fields, one must look at the specified probabilisticstructure <strong>of</strong> the random field. A Gaussian field requires only that the mean and covariancefunction at each pair <strong>of</strong> po<strong>in</strong>ts be specified. Conversely, for a general, non-Gaussian field, a fullspecification requires that all n-dimensional jo<strong>in</strong>t distribution functions (a function that def<strong>in</strong>eshow all distributions are dependent on each other) at n arbitrary po<strong>in</strong>ts <strong>in</strong> the field be given. Thisis generally impractical so portions <strong>of</strong> the distributions <strong>of</strong> the field are adjusted to conform to therequired specification.7.2.1.2 Methods <strong>of</strong> Random Field GenerationThe two most common types <strong>of</strong> random field simulation are (a) discretization <strong>in</strong> the time doma<strong>in</strong>and (b) discretization <strong>in</strong> the spatial doma<strong>in</strong>. Because geotechnical soil properties are <strong>in</strong>herentlyspatial, the follow<strong>in</strong>g discussion will be limited to the spatial doma<strong>in</strong> and, further, to two spatialdimensions. Spatial models are extensions <strong>of</strong> one-dimensional, time series models and will yielddiscrete realizations.The simplest model is the mov<strong>in</strong>g average (MA) model given by the formula:n∑r=−n∑X = b U,(7.11)iji+r j+sthat the b rs values are negligible outside the summation range. Autoregressive (AR) models arealso used, as well as comb<strong>in</strong>ed autoregressive, mov<strong>in</strong>g average (ARMA) models.70mrss=−mwhere n and m are the field dimensions, r and s are dimensions <strong>of</strong> the mov<strong>in</strong>g average, and U i,jare <strong>in</strong>dependent standard normal variables. The optimum choice for the weight<strong>in</strong>g function, b rs ,is given by:+ π + π1brs = ∫ ∫ S exp{ i( rλ1+ sλ2)}dλ1dλ2 D2(7.12)4π−π−πwhere λ 1 and λ 2 are wavelengths, ( , λ ) = ∑ ∑ R { i( rλ+ sλ)}SD 1 2 r s rsexp1 2function <strong>of</strong> the discrete field X ij , and E[ X X ]λ is the spectral densityRrsi+r j+s=,. The numbers n and m are chosen soij


Generation <strong>of</strong> non-Gaussian, random fields is accomplished by generat<strong>in</strong>g a Gaussianfield and then transform<strong>in</strong>g it <strong>in</strong>to a non-Gaussian field by a mapp<strong>in</strong>g technique on the probabilitydistribution function. However, the spectral density <strong>of</strong> the mapped field does not match thetarget spectral density because the transformation is nonl<strong>in</strong>ear. Therefore, an iterative algorithmis required to match the target spectral density. Such an iterative method is outl<strong>in</strong>ed <strong>in</strong> Yamazakiand Sh<strong>in</strong>ozuka (1988).7.2.2 Monte Carlo MethodsSimulation by Monte Carlo methods (MCM) solves problems by generat<strong>in</strong>g suitable randomnumbers (or pseudo-random numbers) and observ<strong>in</strong>g that fraction <strong>of</strong> the numbers that obey someproperty or properties. The methods are useful for obta<strong>in</strong><strong>in</strong>g numerical solutions to problems thatare too complicated to solve analytically. Given a function Y = g (Z(x 1 , x 2 , ....... x n )), where x 1 , x 2 ,...x n are random variables with known statistics, the MCM can be used to f<strong>in</strong>d the statistics <strong>of</strong> Y.The MCM is a simple but versatile computational procedure that is well suited for numericalanalysis. In general, the implementation <strong>of</strong> the method (Yang, et al., 1993) <strong>in</strong>volves:• Selection <strong>of</strong> a model that will produce a determ<strong>in</strong>istic solution to a problem <strong>of</strong> <strong>in</strong>terest.• Decisions regard<strong>in</strong>g which <strong>in</strong>put parameters are to be modeled probabilisticallyand the representation <strong>of</strong> their variabilities <strong>in</strong> terms <strong>of</strong> probability distributions.• Repeated estimation <strong>of</strong> <strong>in</strong>put parameters that fit the appropriate probability distributionsand are consistent with the known or estimated correlation between <strong>in</strong>putparameters.• Repeated determ<strong>in</strong>ation <strong>of</strong> output us<strong>in</strong>g the determ<strong>in</strong>istic model.• Determ<strong>in</strong>ation <strong>of</strong> the pdf <strong>of</strong> the computed output, Y. The pdf may be approximatedby a histogram from which useful statistics <strong>of</strong> Y can be computed.For example, <strong>in</strong> probabilistic slope stability analyses, a critical slip surface can first bedeterm<strong>in</strong>ed based on the mean value <strong>of</strong> the <strong>in</strong>put parameters us<strong>in</strong>g appropriate determ<strong>in</strong>istic(limit equilibrium or f<strong>in</strong>ite element) analyses. Probabilistic analysis can then be performed, tak<strong>in</strong>g<strong>in</strong>to consideration the variability <strong>of</strong> the <strong>in</strong>put parameters on the critical slip surface. In mostcases, a distribution <strong>of</strong> the variability <strong>of</strong> the soil <strong>in</strong>put properties is assumed with user-specifiedparameters, such as mean values and standard deviations. Dur<strong>in</strong>g each Monte Carlo trial, the <strong>in</strong>putparameters are updated based on a normalized random number. The factors <strong>of</strong> safety are71


then recomputed based on the updated soil <strong>in</strong>put parameters. The result is a mean and standarddeviation <strong>of</strong> the factor <strong>of</strong> safety. The probability distribution function is then obta<strong>in</strong>ed from thenormal curve. The number <strong>of</strong> Monte Carlo trials <strong>in</strong> an analysis <strong>of</strong> this type will be dependent onthe number <strong>of</strong> variable <strong>in</strong>put parameters and the expected probability <strong>of</strong> failure. In general, thenumber <strong>of</strong> required trials <strong>in</strong>creases as the number <strong>of</strong> variable <strong>in</strong>put <strong>in</strong>creases or the expectedprobability <strong>of</strong> failure becomes smaller. It is not unusual to do thousands <strong>of</strong> trials <strong>in</strong> order toachieve an acceptable level <strong>of</strong> confidence <strong>in</strong> a Monte Carlo probabilistic slope stability analysis(Mostyn and Li, 1993).7.2.2.1 Random Number GenerationFundamental to the Monte Carlo method are the randomly generated <strong>in</strong>put parameters that areused <strong>in</strong> the determ<strong>in</strong>istic model. In general, this is accomplished us<strong>in</strong>g a random number generationfunction, with random numbers generated dur<strong>in</strong>g each analysis run. To ensure that new randomnumbers are generated for each run, the random number function is “seeded” with the currenttime <strong>of</strong> a computer clock.The random numbers generated from the function are uniformly distributed with valuesbetween 0.0 and 1.0. In order to use the generated random number <strong>in</strong> calculations <strong>of</strong> other distribution,the random number needs to be parameterized to the distribution <strong>of</strong> <strong>in</strong>terest. For example,to generate a normally distributed random number, the uniform random number is transformedto a normally distributed one. For the normal distribution, the normalization process isdone us<strong>in</strong>g the transformation equation suggested by Box and Muller, (1958):N= −2lnr 1) s<strong>in</strong>(2πr)(7.13)(2where N = normalized random number, r 1 = uniform random number 1, and r 2 = uniform randomnumber 2.The transformation equation requires the generation <strong>of</strong> two uniform random numbers togenerate a parameterized random number with a standard normal distribution (mean value <strong>of</strong> 0and standard derivation <strong>of</strong> 1 as discussed <strong>in</strong> Section 3.6.2).72


7.2.2.2 <strong>Estimation</strong> <strong>of</strong> Input ParametersAt the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> each Monte Carlo trial, all uncerta<strong>in</strong> <strong>in</strong>put parameters are re-evaluated basedon the specified distribution. For ease <strong>of</strong> computation, the mean value, µ, the standard deviation,σ , and the normalized random number, N, are used. The general equation for updat<strong>in</strong>g the parametersis simply:P = µ + Nσ(7.14)where P is the new trial value <strong>of</strong> any <strong>of</strong> the parameters specified with a standard deviation assum<strong>in</strong>ga normal distribution. For example, consider undra<strong>in</strong>ed shear strength, s u , with a specifiedmean value <strong>of</strong> 2200 psf and a standard deviation <strong>of</strong> 250 psf. In a particular Monte Carlotrial, if the normalized random number is –2.0, the trial s u will be 1700 psf.It is important to consider the parameter <strong>of</strong> <strong>in</strong>terest relative to common probability distributions.For example, Lumb (1966) has shown that the tangent <strong>of</strong> the friction angle (tanφ) conformsbetter than the friction angle itself to the normal probability distribution function. Therefore,it may be appropriate to use the tangent <strong>of</strong> the friction angles <strong>in</strong> the estimation <strong>of</strong> all trialfriction angles.7.2.2.3 Adjustments for CorrelationWhen soil properties are not <strong>in</strong>dependent, the normalized random number should be adjusted toconsider the effect <strong>of</strong> correlation. The follow<strong>in</strong>g equation is used <strong>in</strong> the adjustment for two correlatedproperties (Lumb, 1970):N a( − ρ )2= N 1ρ + 1 N(7.15)where N a = adjusted parameterized random number for the second property, ρ = correlation coefficientbetween the first and second properties, N 1 = normalized random number for the firstproperty (assum<strong>in</strong>g <strong>in</strong>dependence), and N 2 = normalized random number for the second property(assum<strong>in</strong>g <strong>in</strong>dependence). For the adjustment <strong>of</strong> the more than two correlated properties, the covariancesfrom the covariance matrix can be used for the adjustment.73


7.2.2.4 Statistical AnalysisAssum<strong>in</strong>g that the trial model is normally distributed, statistical analysis can be conducted to determ<strong>in</strong>ethe mean, standard deviation, probability density function, and the cumulative distributionfunction <strong>of</strong> the model output. The equations used <strong>in</strong> the statistical analysis are summarizedas follows (Lap<strong>in</strong>, 1983):Mean:1µ =(7.16)n∑Y <strong>in</strong> i=0Standard deviation: = ∑( Y i− µ )n12σ (7.17)ni=oProbability density function: f () F =( Y −µ)1 −22σe2πσ2− ∞


for two variables, and 304,007 for three variables. Theoretically, for a 100% level <strong>of</strong> confidence,an <strong>in</strong>f<strong>in</strong>ite number <strong>of</strong> trials would be required.N1E+101E+091E+081E+071E+061E+051E+041E+031E+021E+011E+0090%degree <strong>of</strong> confidence80%70%0 1 2 3 4 5 6Number <strong>of</strong> VariablesFig. 7.2 Number <strong>of</strong> required Monte Carlo trialsFor practical purposes, the number <strong>of</strong> Monte Carlo trials is usually <strong>in</strong> the order <strong>of</strong> thousands.This may not correspond to a high level <strong>of</strong> confidence when multiple variables are be<strong>in</strong>gconsidered; however, the statistics computed from the MCM are typically not very sensitive tothe number <strong>of</strong> trials after a few thousands trials.7.2.2.6 Reduc<strong>in</strong>g the Number <strong>of</strong> Monte Carlo TrialsFor geotechnical earthquake eng<strong>in</strong>eer<strong>in</strong>g <strong>in</strong> which a nonl<strong>in</strong>ear, dynamic f<strong>in</strong>ite element analysismay be required for each realization, m<strong>in</strong>imiz<strong>in</strong>g the number <strong>of</strong> Monte Carlo trials can be criticallyimportant. Techniques such as the Lat<strong>in</strong> hypercube and importance sampl<strong>in</strong>g can be used toreduce, <strong>in</strong> some cases substantially, the number <strong>of</strong> Monte Carlo trials.75


Lat<strong>in</strong> HypercubeSimulation can be used to study how the outcome <strong>of</strong> a model, g(Z), depends on the distribution<strong>of</strong> a random variable, Z, with known distribution, F Z . This can be done us<strong>in</strong>g simple randomsampl<strong>in</strong>g (Monte Carlo simulation) by randomly draw<strong>in</strong>g values from F Z . However, if the functiong(Z) is computationally expensive to evaluate, other sampl<strong>in</strong>g strategies may be more efficient.One method is the use <strong>of</strong> stratified sampl<strong>in</strong>g. This method can characterize the populationequally well as simple random sampl<strong>in</strong>g with a smaller sample size. Stratified sampl<strong>in</strong>g works asfollows:(1) The distribution <strong>of</strong> Z is divided <strong>in</strong>to m segments;(2) The distribution <strong>of</strong> n samples over these segments is proportional to the probabilities<strong>of</strong> Z fall<strong>in</strong>g <strong>in</strong> the segments; and(3) Each sample is drawn from with<strong>in</strong> its segment by simple random sampl<strong>in</strong>g.Maximum stratification takes place when the number <strong>of</strong> segments (strata), m, equals the number<strong>of</strong> data, n, and when Z has probability m -1 <strong>of</strong> fall<strong>in</strong>g <strong>in</strong> each segment, as this is the most efficient.When the model depends on two variables, h(Z 1 , Z 2 ), then values <strong>of</strong> both Z 1 and Z 2 can bedrawn by simple random sampl<strong>in</strong>g or by stratified random sampl<strong>in</strong>g. The most efficient sampleis maximally stratified for both Z 1 and Z 2 simultaneously. This means that a sample <strong>of</strong> size n <strong>of</strong>pairs (z 1 , z 2 ) is marg<strong>in</strong>ally stratified for both Z 1 and Z 2 . Such a sample is called a Lat<strong>in</strong> hypercubesample and is outl<strong>in</strong>ed <strong>in</strong> McKay et al. (1979). The model need not depend only two variablesonly.For the spatially distributed case, multiple Gaussian simulations can be created. Thesimulations are <strong>in</strong>dependent <strong>in</strong> the sense that they are a random sample from the ensemble <strong>of</strong> allrealizations that were possible under the specified model (Pebesma, 2001). At a specific location,x 0 , the subsequently realized values <strong>of</strong> the variable Z(x 0 ), (z 1 (x 0 ),…,z n (x 0 )), are a simple randomsample from the distribution <strong>of</strong> Z(x 0 ). When a stratified sample <strong>of</strong> Z(x 0 ) is desired, then thiscould be drawn when FZx )was known. However, this is less trivial when Z i (x 0 ) and Z i (x ’ ) have( oto obey the specified spatial correlation. A procedure for obta<strong>in</strong><strong>in</strong>g a Lat<strong>in</strong> hypercube sample <strong>in</strong>this context (multiple, spatially correlated variables) is presented by Ste<strong>in</strong> (1987).76


Importance Sampl<strong>in</strong>gMonte Carlo calculations can be carried out us<strong>in</strong>g sets <strong>of</strong> random po<strong>in</strong>ts sampled from anyarbitrary probability distribution. The choice <strong>of</strong> distribution obviously makes a difference to theefficiency <strong>of</strong> the method. In most cases, Monte Carlo calculations carried out us<strong>in</strong>g uniformprobability distributions give very poor estimates <strong>of</strong> high-dimensional <strong>in</strong>tegrals and are not auseful method <strong>of</strong> approximation. Metropolis et. al. (1953) <strong>in</strong>troduced a new algorithm forsampl<strong>in</strong>g po<strong>in</strong>ts from a given probability function. This algorithm enabled the <strong>in</strong>corporation <strong>of</strong>”importance sampl<strong>in</strong>g” <strong>in</strong>to Monte Carlo <strong>in</strong>tegration. Instead <strong>of</strong> choos<strong>in</strong>g po<strong>in</strong>ts from a uniformdistribution, they are now chosen from a distribution which concentrates the po<strong>in</strong>ts where thefunction be<strong>in</strong>g <strong>in</strong>tegrated is large. Sampl<strong>in</strong>g from a non-uniform distribution for this functionshould therefore be more efficient than do<strong>in</strong>g a crude Monte Carlo calculation withoutimportance sampl<strong>in</strong>g.7.2.3 Other MethodsThe turn<strong>in</strong>g bands method (TBM) is based on the theory <strong>of</strong> random fields. The basic concept <strong>of</strong>TBM is to transform a multidimensional simulation <strong>in</strong>to the sum <strong>of</strong> a series <strong>of</strong> equivalent unidimensionalsimulations. The purpose is to preserve the statistics <strong>of</strong> the true field, particularly thevariogram <strong>of</strong> the stationary random field. In the TBM, the simulated field is assumed to havesecond-order stationarity and to be isotropic. Techniques are available to transform the uniformor normal distribution at each po<strong>in</strong>t to other distributions. The basic TBM uses realizations <strong>of</strong>the random function generated on l<strong>in</strong>es rotat<strong>in</strong>g <strong>in</strong> space to produce a three-dimensional realization.A more advanced approach has been recently used, called the “Intr<strong>in</strong>sic Random Function<strong>of</strong> Order k” (IRF-k), to accommodate the vary<strong>in</strong>g nature <strong>of</strong> the trend <strong>in</strong> a regionalized soilvariable (McBratney et al., 1991). The term k represents the order <strong>of</strong> polynomial trends where k= 0 means constant drift, and the IRF-k is equivalent to the ord<strong>in</strong>ary krig<strong>in</strong>g system <strong>of</strong> equations.Therefore, if k = 1, l<strong>in</strong>ear drift exists; k = 2 yields quadratic drift. But when the determ<strong>in</strong>istic relationshipsare with some known or readily available and <strong>in</strong>expensive covariates or other easyto-measuresoil variables, co-krig<strong>in</strong>g has played a major role <strong>in</strong> efficiently predict<strong>in</strong>g the targetsoil variable (Odeh et al., 1995).77


7.3 AVAILABLE TOOLSThere are many currently exist<strong>in</strong>g s<strong>of</strong>tware tools to complete many types <strong>of</strong> the statistical andspatial analyses presented <strong>in</strong> this report. This chapter provides several sources <strong>of</strong> open sources<strong>of</strong>tware that exist <strong>in</strong> the public doma<strong>in</strong>.7.3.1 StatLib Website http://lib.stat.cmu.eduStatLib is a WWW clear<strong>in</strong>ghouse for distribut<strong>in</strong>g statistical s<strong>of</strong>tware, datasets, and <strong>in</strong>formationby electronic mail, FTP, and WWW hosted by the statistics department at Carnegie Mellon University.S<strong>of</strong>tware can be downloaded <strong>in</strong> Fortran, C++, Matlab, etc. The site can also be used tosearch for statistical functions at other sites.7.3.2 GSLIB Website http://www.gslib.comGSLIB is an acronym for Geostatistical S<strong>of</strong>tware LIBrary. The GSLIB website serves to po<strong>in</strong>tresearchers and practitioners to the public doma<strong>in</strong> GSLIB programs for geostatistical problemsolv<strong>in</strong>g. It also <strong>in</strong>forms users <strong>of</strong> commercial supplements to GSLIB and announces tra<strong>in</strong><strong>in</strong>g andsupport.7.3.3 AI-GEOSTATS Website http://www.ai-geostats.orgAI-GEOSTATS is the central server for GIS and spatial statistics on the Internet adm<strong>in</strong>istered bythe University <strong>of</strong> Lausanne <strong>in</strong> Switzerland. The purpose <strong>of</strong> the site is to provide <strong>in</strong>formation onavailable open source and commercial s<strong>of</strong>tware commonly used <strong>in</strong> spatial data analysis and spatialstatistics. The site also adm<strong>in</strong>isters a discussion mail<strong>in</strong>g list.7.3.4 Gstat S<strong>of</strong>tware http://www.gstat.org/“Gstat” is a computer program for geostatistical model<strong>in</strong>g, prediction, and simulation. Gstatworks on many platforms and is open source s<strong>of</strong>tware (Pebesma and Wessel<strong>in</strong>g, 1998). The78


doma<strong>in</strong>, www.gstat.org, is hosted by the Department <strong>of</strong> Geography at Utrecht University, theNetherlands. The s<strong>of</strong>tware can be downloaded for free.7.4 EXAMPLES<strong>PEER</strong>’s PBEE framework accounts for uncerta<strong>in</strong>ties at all stages <strong>of</strong> the design/evaluation process.These uncerta<strong>in</strong>ties <strong>in</strong>clude those associated with earthquake ground motions, with the response<strong>of</strong> soils and foundations to ground motions, with the response <strong>of</strong> structures and their contentsto soil and foundation motions, and with the assignment <strong>of</strong> economic losses to variouslevels <strong>of</strong> structural and nonstructural performance.A number <strong>of</strong> sophisticated determ<strong>in</strong>istic procedures for analysis <strong>of</strong> soil and soil-structuresystems have been developed by <strong>PEER</strong> researchers. Implementation <strong>of</strong> these models with<strong>in</strong> the<strong>PEER</strong> framework requires an understand<strong>in</strong>g <strong>of</strong> their performance, and <strong>of</strong> the variability <strong>of</strong> the responsesthey predict when used with uncerta<strong>in</strong> soil parameters. The various procedures described<strong>in</strong> the earlier chapters <strong>of</strong> this report will allow <strong>PEER</strong> researchers to study the <strong>in</strong>fluence <strong>of</strong>uncerta<strong>in</strong> and spatially variable soil parameters on performance.These examples illustrate how determ<strong>in</strong>istic models can be used <strong>in</strong> conjunction withsimulation models to <strong>in</strong>vestigate the uncerta<strong>in</strong>ty <strong>in</strong> output associated with uncerta<strong>in</strong> and spatiallyvariable soil properties.7.4.1 One-Dimensional Lateral Spread<strong>in</strong>g AnalysisThe performance <strong>of</strong> structures dur<strong>in</strong>g earthquakes is strongly <strong>in</strong>fluenced by the seismic response<strong>of</strong> the underly<strong>in</strong>g soil. Performance evaluations, therefore, should account for the spatial variability<strong>of</strong> the soil. In many cases, site response can be reasonably modeled as a one-dimensionalproblem, i.e., as a series <strong>of</strong> horizontal soil layers subjected to vertically propagat<strong>in</strong>g shear waves.To model the important problem <strong>of</strong> lateral spread<strong>in</strong>g, <strong>in</strong>itial (static) shear stresses can be imposedon the soil pr<strong>of</strong>ile. Such shear stresses will, under reasonably symmetric ground motions,cause permanent deformations to develop <strong>in</strong> liquefied soils.79


7.4.1.1 Soil Pr<strong>of</strong>ileThis example is based on a site along the waterfront <strong>of</strong> Seattle, Wash<strong>in</strong>gton. Soils at the siteconsist <strong>of</strong> loose natural and hydraulically placed fill deposits to a depth <strong>of</strong> 9 m, with staticgroundwater at about 3 m <strong>in</strong> depth (Fig. 7.3). A slop<strong>in</strong>g ground surface <strong>of</strong> 3% was used to impose<strong>in</strong>itial shear stresses. Prior SPT explorations showed a mean (N 1 ) 60 <strong>of</strong> 10 and a COV <strong>of</strong>40%.7.4.1.2 Method <strong>of</strong> AnalysisOne-dimensional site response analyses were performed us<strong>in</strong>g the computer program WAVE, aone-dimensional, nonl<strong>in</strong>ear, effective stress-based site response analysis program. Orig<strong>in</strong>allydeveloped by Horne (1996), it has been extended with a new constitutive model, UWsand, whichcaptures important elements <strong>of</strong> liquefiable sand behavior <strong>in</strong> a manner that can easily be calibrated.7.4.1.3 Determ<strong>in</strong>istic AnalysisIn typical eng<strong>in</strong>eer<strong>in</strong>g practice, it is common to perform analyses determ<strong>in</strong>istically us<strong>in</strong>g averagesoil properties. For this example, a determ<strong>in</strong>istic site response analysis, performed us<strong>in</strong>g themean value <strong>of</strong> (N 1 ) 60 , produced the permanent displacement pr<strong>of</strong>ile shown <strong>in</strong> Figure 7.3. The determ<strong>in</strong>isticanalysis predicts that permanent displacements <strong>of</strong> slightly more than 30 cm woulddevelop <strong>in</strong> the loose, saturated sand above the till. Most <strong>of</strong> this displacement results from stra<strong>in</strong><strong>in</strong>g<strong>of</strong> the lower half <strong>of</strong> the loose, saturated sand.80


Fig. 7.3 Displacement pr<strong>of</strong>ile <strong>of</strong> example soil pr<strong>of</strong>ile7.4.1.4 SimulationBased on the statistics determ<strong>in</strong>ed from the available field data, 100 one-dimensional Gaussianrandom fields <strong>of</strong> SPT pr<strong>of</strong>iles were generated similarly to Section 7.2.1 and outl<strong>in</strong>ed <strong>in</strong> Yamazaki(1988). A mean <strong>of</strong> 10, COV <strong>of</strong> 40%, and a Gaussian spectral density function (standard deviation<strong>of</strong> 1 and a correlation decay coefficient equal to 1 for the spectral density function) wereused to generate the pr<strong>of</strong>iles. These pr<strong>of</strong>iles are shown <strong>in</strong> Figure 7.4. A histogram plot <strong>of</strong> thesimulated (N 1 ) 60 values shown <strong>in</strong> Figure 7.5 (a) confirms that the SPT resistances were normallydistributed. A plot <strong>of</strong> an <strong>in</strong>dividual variogram for a particular pr<strong>of</strong>ile <strong>in</strong> Figure 7.5(b) shows thespatial distribution <strong>of</strong> (N 1 ) 60 .81


Fig. 7.4 Variation <strong>of</strong> (N 1 ) 60 with depth for 100 simulated soil pr<strong>of</strong>iles(a)(b)Fig. 7.5 (a) Histogram <strong>of</strong> all (N 1 ) 60 data and (b) variogram <strong>of</strong> <strong>in</strong>dividual (N 1 ) 60 pr<strong>of</strong>ile82


7.4.1.5 Monte Carlo AnalysesThe 100 soil pr<strong>of</strong>iles were then analyzed us<strong>in</strong>g WAVE. These analyses produced 100 lateralground displacement pr<strong>of</strong>iles for end-<strong>of</strong>-shak<strong>in</strong>g conditions. Figure 7.6(a) shows the permanentdisplacements predicted by all <strong>of</strong> the site response analyses.(a)(b)Fig. 7.6 Results <strong>of</strong> site response analysis: (a) pr<strong>of</strong>iles <strong>of</strong> permanent lateral displacement forall analyses and (b) comparison <strong>of</strong> determ<strong>in</strong>istic pr<strong>of</strong>ile with µ and µ ± σ pr<strong>of</strong>ilesFigure 7.6(b) shows that the displacement <strong>of</strong> the determ<strong>in</strong>istic pr<strong>of</strong>ile (based on (N 1 ) 60 = 10 withdepth) is significantly greater than the average <strong>of</strong> the displacement pr<strong>of</strong>iles from the Monte Carloanalyses.The results <strong>of</strong> the Monte Carlo analyses, however, allow evaluation <strong>of</strong> conditions such asthe probability that lateral displacement will exceed 0.5 m at a depth <strong>of</strong> 3 m. This probabilitycan be determ<strong>in</strong>ed by construct<strong>in</strong>g a cumulative distribution function for lateral displacementfrom the histogram <strong>of</strong> lateral displacement at 3 m. The CDF for the example problem is shown<strong>in</strong> Figure 7.7. Based on the CDF, the probability that the permanent lateral displacement at 3 m83


depth will exceed 0.5 m is 41%. The probability that displacement is greater than the determ<strong>in</strong>isticvalue <strong>of</strong> lateral displacement at a depth <strong>of</strong> 3 m (0.607 m) is about 7%.Probability1.00.90.80.70.60.50.40.30.20.10.00.2 0.3 0.4 0.5 0.6 0.7 0.8Displacement (m)Fig. 7.7 CDF for lateral displacement at a depth <strong>of</strong> 3 m7.4.2 Two-Dimensional AnalysisIn many cases one-dimensional models are not sufficient for characterization <strong>of</strong> the response <strong>of</strong>soil-structure systems. Often, spatially vary<strong>in</strong>g boundary or load<strong>in</strong>g conditions dictate the needfor two- and three-dimensional numerical simulations.7.4.2.1 Soil Pr<strong>of</strong>ileThe example presented <strong>in</strong> this section represents a hypothetical foot<strong>in</strong>g subjected to oscillatoryload<strong>in</strong>g at the edge <strong>of</strong> a vertical cut <strong>in</strong> cohesive soil. The geometry and load<strong>in</strong>g conditions wereselected to clearly show the effect <strong>of</strong> spatial variability <strong>of</strong> soil properties on the response <strong>of</strong> thesystem. They do not represent any specific or real case. The geometry, shown <strong>in</strong> Figure 7.8, consists<strong>of</strong> a 10 ft vertical cut <strong>in</strong> a 20 ft thick soil deposit result<strong>in</strong>g <strong>in</strong> a 20 ft high, unsupported slope.Vertical boundaries are placed 20 ft from the cut. Soil conditions at the site consist <strong>of</strong> cohesivematerial with mean undra<strong>in</strong>ed shear strength, s u , <strong>of</strong> 2200 psf. A COV <strong>of</strong> 30% was selected basedon data collected from the literature (Table 4.3).84


10 ft10 ft20 ft 20 ftFig. 7.8 Two-dimensional slope geometry7.4.2.2 Method <strong>of</strong> AnalysisTwo-dimensional numerical analyses were performed us<strong>in</strong>g the f<strong>in</strong>ite element tool OpenSees.OpenSees (Open System for Earthquake Eng<strong>in</strong>eer<strong>in</strong>g Simulation) is a <strong>PEER</strong>-developed s<strong>of</strong>twareframework for simulat<strong>in</strong>g the seismic response <strong>of</strong> structural and geotechnical systems. OpenSeesis <strong>in</strong>tended to serve as the computational platform for research <strong>in</strong> performance-based earthquakeeng<strong>in</strong>eer<strong>in</strong>g at <strong>PEER</strong>. OpenSees is open source, i.e., the source code is freely available to anyonewho wishes to use it.L<strong>in</strong>ear equation solvers, time <strong>in</strong>tegration schemes, and solution algorithms are the core<strong>of</strong> the OpenSees computational framework. The components <strong>of</strong> a solution strategy are <strong>in</strong>terchangeable,allow<strong>in</strong>g analysts to f<strong>in</strong>d sets suited to their particular problem. Separate from thecomputational and problem solv<strong>in</strong>g classes, are classes for build<strong>in</strong>g models (termed Model-Builder classes). The latest release <strong>of</strong> OpenSees <strong>in</strong>cludes a general model-builder for creat<strong>in</strong>gtwo- and three-dimensional frame and cont<strong>in</strong>uum models us<strong>in</strong>g TCL. Several elements, materialconstitutive models, and load<strong>in</strong>g conditions are available. More <strong>in</strong>formation on OpenSees can befound at http://opensees.berkeley.edu.The example presented <strong>in</strong> this section uses 2-D quadrilateral elements for the geometry,and a J2 elasto-plastic model to characterize the material behavior. J2 plasticity characterizesfairly well the undra<strong>in</strong>ed shear strength <strong>of</strong> cohesive soils. The version used <strong>in</strong> this example doesnot consider k<strong>in</strong>ematic harden<strong>in</strong>g and therefore underestimates undra<strong>in</strong>ed strength dur<strong>in</strong>g dynamicload<strong>in</strong>g. However, its current implementation <strong>in</strong> OpenSees is very robust and produces re-85


sults that are sufficient for the purposes <strong>of</strong> this example. Figure 7.9 shows the mesh, boundaryconditions, and load<strong>in</strong>g for the hypothetical cut slope problem.F [Kip]614010 20 25 secFig. 7.9 Two-dimensional OpenSees f<strong>in</strong>ite element mesh and load<strong>in</strong>g conditionThe load<strong>in</strong>g condition consists <strong>of</strong> a vertical static load <strong>of</strong> 40 kips applied us<strong>in</strong>g a ramp function,and a superimposed harmonic load with an amplitude <strong>of</strong> 42 Kips and a frequency <strong>of</strong> 1.0 Hz.7.4.2.3 Determ<strong>in</strong>istic AnalysisFor this example, a determ<strong>in</strong>istic dynamic analysis, performed us<strong>in</strong>g the mean value <strong>of</strong> c u = 2200psf produced the permanent displacement time history shown <strong>in</strong> Figure 7.10. The determ<strong>in</strong>isticanalysis predicts a maximum displacement <strong>of</strong> slightly more than 0.2 ft would develop. Most <strong>of</strong>this displacement results from stra<strong>in</strong><strong>in</strong>g <strong>of</strong> the upper 10 ft <strong>of</strong> soil beneath the foot<strong>in</strong>g.86


Fig. 7.10Displacement time history <strong>of</strong> top <strong>of</strong> the foot<strong>in</strong>g — homogeneous soil undra<strong>in</strong>edshear strength7.4.2.4 SimulationBased on the statistics determ<strong>in</strong>ed from the available field data, 100 two-dimensional Gaussianrandom fields <strong>of</strong> undra<strong>in</strong>ed shear strength were generated <strong>in</strong> a manner similar to that <strong>in</strong> Section7.2.1 and outl<strong>in</strong>ed <strong>in</strong> Yamazaki (1988). A mean <strong>of</strong> 2200 psf, a COV <strong>of</strong> 30%, and a Gaussianspectral density function (standard deviation <strong>of</strong> 1.0 and a correlation decay coefficient equal to4.0 for the spectral density function) were used to generate the soil pr<strong>of</strong>iles. Six <strong>of</strong> these soil pr<strong>of</strong>ilesare shown <strong>in</strong> Figures 7.13(a) and 7.14. The histogram plots <strong>of</strong> the simulated undra<strong>in</strong>ed shearstrength, s u , shown <strong>in</strong> Figures 7.13(b) and 7.14, confirm that the undra<strong>in</strong>ed shear strength wasnormally distributed for each case. A m<strong>in</strong>imum value <strong>of</strong> s u = 1000 psf was used to avoid numerical<strong>in</strong>stabilities. This is clearly reflected <strong>in</strong> the histograms presented <strong>in</strong> Figures 7.13(b) and7.14.7.4.2.5 Monte Carlo AnalysesThe 100 soil pr<strong>of</strong>iles were analyzed us<strong>in</strong>g OpenSees. These analyses produced 100 vertical displacementtime histories for the foot<strong>in</strong>g at the top <strong>of</strong> the open cut. Figure 7.11(a) shows the displacementtime histories <strong>in</strong>duced by the oscillatory load<strong>in</strong>g component as predicted by all <strong>of</strong> thenumerical analyses. Figure 7.11(b) shows the time history <strong>of</strong> the mean displacement <strong>of</strong> the foot-87


<strong>in</strong>g at the top <strong>of</strong> the cut. Comparison <strong>of</strong> Figure 7.10 and 7.11(b) shows that the displacement timehistory <strong>of</strong> the determ<strong>in</strong>istic analysis (based on s u = 2200 psf) is significantly less that the average<strong>of</strong> the displacement time histories from the Monte Carlo analyses.Fig. 7.11(a)Displacement <strong>of</strong> top <strong>of</strong> the foot<strong>in</strong>g (a) displacement time histories correspond<strong>in</strong>gto all stochastic fields; (b) average time history <strong>of</strong> displacements(b)The results <strong>of</strong> the Monte Carlo analyses, however, allow estimation <strong>of</strong> the probability distribution<strong>of</strong> foot<strong>in</strong>g displacement. Therefore, quantities such as the probability that maximumvertical displacements <strong>of</strong> the top <strong>of</strong> the cut slope will exceed 6 <strong>in</strong>. (0.5ft) can be determ<strong>in</strong>ed. TheCDF <strong>of</strong> foot<strong>in</strong>g displacement for the example problem, which corresponds to the histogram <strong>of</strong>maximum displacements shown <strong>in</strong> Figures 7.12(a), is shown <strong>in</strong> Figure 7.12(b). Based on thisCDF, the probability that the maximum vertical displacement <strong>of</strong> the top <strong>of</strong> the cut slope will exceed6.0 <strong>in</strong>. is 32%. The probability that the maximum vertical displacement is greater than thedeterm<strong>in</strong>istic value <strong>of</strong> the maximum vertical displacement (0.2 ft) is about 53%.88


Fig. 7.12(a)(a) Histogram <strong>of</strong> maximum displacements for the foot<strong>in</strong>g at the top <strong>of</strong> the cutslope; (b) cumulative distribution function (CDF) <strong>of</strong> maximum displacements(b)89


Fig. 7.13(a)(a) Spatial variation <strong>of</strong> undra<strong>in</strong>ed shear strength, s u ; (b) cumulative histogram<strong>of</strong> undra<strong>in</strong>ed shear strength(b)90


(a)Fig. 7.14 (a) Spatial variation <strong>of</strong> undra<strong>in</strong>ed shear strength, s u ; (b) cumulative histogram <strong>of</strong>undra<strong>in</strong>ed shear strength(b)91


8 SummaryPrediction <strong>of</strong> the performance <strong>of</strong> structures dur<strong>in</strong>g earthquakes requires accurate model<strong>in</strong>g <strong>of</strong> thegeotechnical components <strong>of</strong> soil-structure systems. <strong>Geotechnical</strong> performance is strongly dependenton the properties <strong>of</strong> the soil beneath and adjacent to the structure <strong>of</strong> <strong>in</strong>terest. These soilproperties can be described us<strong>in</strong>g determ<strong>in</strong>istic and probabilistic models. Determ<strong>in</strong>istic modelstypically use a simple discrete descriptor for the parameter <strong>of</strong> <strong>in</strong>terest. Probabilistic models accountfor uncerta<strong>in</strong>ty <strong>in</strong> soil properties by describ<strong>in</strong>g those properties by us<strong>in</strong>g discrete statisticaldescriptors or probability distribution functions.This report is <strong>in</strong>tended to provide <strong>PEER</strong> researchers with background <strong>in</strong>formation andavailable data on the uncerta<strong>in</strong>ty and spatial variability <strong>of</strong> soil properties. Such data will be useful<strong>in</strong> the evaluation <strong>of</strong> the effects <strong>of</strong> geotechnical uncerta<strong>in</strong>ty and variability on the performance<strong>of</strong> structures dur<strong>in</strong>g earthquakes. It is anticipated that the <strong>in</strong>formation presented <strong>in</strong> this reportwill be used with determ<strong>in</strong>istic analyses be<strong>in</strong>g developed by <strong>PEER</strong> researchers, both with<strong>in</strong> andoutside the OpenSees framework, to <strong>in</strong>vestigate the sensitivity <strong>of</strong> performance to geotechnicaluncerta<strong>in</strong>ty.The report describes sources and types <strong>of</strong> uncerta<strong>in</strong>ty <strong>in</strong> geotechnical eng<strong>in</strong>eer<strong>in</strong>g practice,and <strong>in</strong>troduces the basic concepts and term<strong>in</strong>ology <strong>of</strong> the theory or probability. Statisticalparameters and the probability distributions most commonly used to describe geotechnical parametersare reviewed. The report then presents tabulated statistical parameters for soil propertiesthat have been reported <strong>in</strong> the literature; both laboratory- and field-measured parameters describ<strong>in</strong>gmoisture-density, plasticity, strength, and compressibility characteristics are presented.The theory <strong>of</strong> regionalized variables, <strong>in</strong>clud<strong>in</strong>g concepts <strong>of</strong> autocorrelation, variograms, and stationarityare presented, along with tabulated values <strong>of</strong> parameters describ<strong>in</strong>g spatial variabilitythat have been reported <strong>in</strong> the literature. F<strong>in</strong>ally, the procedures and tools for estimation andsimulation <strong>of</strong> spatially variable soil properties are presented.


ReferencesBenjam<strong>in</strong>, J.R., and Cornell, C.A. (1970). Probability, Statistics, and Decisions for Civil Eng<strong>in</strong>eers,McGraw-Hill, New York.Benson, C.H., Daniel, D.E., and Boutwell, G.P. (1999). “Field performance <strong>of</strong> compacted clayl<strong>in</strong>ers,” Journal <strong>of</strong> <strong>Geotechnical</strong> and Geoenvironmental Eng<strong>in</strong>eer<strong>in</strong>g., ASCE, 125(5), pp. 390-403.Boulanger, R., (1999). “Void Redistribution <strong>in</strong> sand follow<strong>in</strong>g earthquake load<strong>in</strong>g,” Physics andMechanics <strong>of</strong> Soil Liquefaction, Lade & Yamamuro (eds.), Rotterdam.Box, G.E.P., and Muller, M.E. (1958). “A note on the generation <strong>of</strong> random normal deviates,”The Annals <strong>of</strong> Mathematical Statistics, American Statistical Association, USA., Vol. 29, pp. 610-613.Bur<strong>in</strong>gton, R. S., and May, D. C., Jr. (1970). Handbook <strong>of</strong> Probability and Statistics, McGraw-Hill, New York.Chiasson, P., Lafleur, J., Soulie, M., and Lay, K. T. (1995). “Characteriz<strong>in</strong>g spatial variability <strong>of</strong>a clay by geostatistics,” Canadian <strong>Geotechnical</strong> Journal, Vol. 32, pp. 1-10.Christian, J.T., and Baecher, G.B. (2001). Discussion <strong>of</strong> “Factor <strong>of</strong> safety and reliability <strong>in</strong> geotechnicaleng<strong>in</strong>eer<strong>in</strong>g,” Journal <strong>of</strong> <strong>Geotechnical</strong> and Environmental Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 127, No.28, pp. 700-703.Christian, J.T., Ladd, C.C., and Baecher, G.B. (1994). “Reliability applied to slope stabilityanalysis,” Journal <strong>of</strong> <strong>Geotechnical</strong> Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 120, No. 12, pp. 2180-2207.Darendian, M.B. (2001). “Development <strong>of</strong> a new family <strong>of</strong> normalized modulus reduction anddamp<strong>in</strong>g curves,” Ph.D. Dissertation, The University <strong>of</strong> Texas at Aust<strong>in</strong>, 362 pp.Das, B. M., Puri, V. K., and Prakash, S. (1999). “Liquefaction <strong>of</strong> silty soils,” Earthquake <strong>Geotechnical</strong>Eng<strong>in</strong>eer<strong>in</strong>g, P<strong>in</strong>to (ed.), Rotterdam.Davis, J. C. (1986). Geostatistics and Data Analysis <strong>in</strong> Geology, John Wiley & Sons.


DeGroot, D. J. (1996). “Analyz<strong>in</strong>g spatial variability <strong>of</strong> <strong>in</strong>situ soil properties (<strong>in</strong>vited paper).”<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> the Geologic Environment, From Theory to Practice, Proceed<strong>in</strong>g <strong>of</strong> <strong>Uncerta<strong>in</strong>ty</strong>’96, <strong>Geotechnical</strong> Special Publication No. 58.DeGroot, D. J., and Baecher, G. B., (1993). “Estimat<strong>in</strong>g autocovariance <strong>of</strong> <strong>in</strong>situ soil properties,”Journal <strong>of</strong> <strong>Geotechnical</strong> Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 119, No. 1, pp. 147-166.Duncan, J. M. (2000). “Factors <strong>of</strong> safety and reliability <strong>in</strong> geotechnical eng<strong>in</strong>eer<strong>in</strong>g,” Journal <strong>of</strong><strong>Geotechnical</strong> and Geoenvironmental Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 126, No. 4, pp. 307-316.Elgamal, A. W., Parra, E., Yang, Z., Dobry, R., and Zeghal, M. (1999). “Liquefaction constitutivemodel,” Physics and Mechanics <strong>of</strong> Soil Liquefaction, Lade & Yamamuro (eds.), Rotterdam.Elgamal, A., Yang, Z., Parra, E., and Dobry, R. (1999). “Model<strong>in</strong>g <strong>of</strong> liquefaction-<strong>in</strong>duced sheardeformation,” Physics and Mechanics <strong>of</strong> Soil Liquefaction, Lade & Yamamuro (eds.), Rotterdam.Elgamel, A. W., Dobry, R., Parra, E., and Yang, Z. (1998). “Soil dilation and shear deformationsdur<strong>in</strong>g liquefaction,” Proceed<strong>in</strong>gs, 4th International Conference on Case Studies <strong>in</strong> <strong>Geotechnical</strong>Eng<strong>in</strong>eer<strong>in</strong>g, St. Louis, Missouri.Fardis, M. N., and Zeneziano, D. (1982). “Probabilistic analysis <strong>of</strong> deposit liquefaction,” Journal<strong>of</strong> <strong>Geotechnical</strong> Eng<strong>in</strong>eer<strong>in</strong>g Division, Vol. 108, No. GT3, pp. 395-417.Fenton, G. A., and Vanmarcke, E. H. (1998). “Spatial variation <strong>in</strong> liquefaction risk,” Geotechnique,Vol. 48, No. 6, pp. 819-831.Frost, J. D., Carroll, D. P., and Rockaway, T. D. (1998). “Spatial liquefaction analysis,” SpatialAnalysis <strong>in</strong> Soil Dynamics and Earthquake Eng<strong>in</strong>eer<strong>in</strong>g, <strong>Geotechnical</strong> Special Publication No.67, ASCE, pp. 70-86.Griffiths, D. V., and Fenton, G. A. (1997). “Three-dimensional seepage through spatially randomsoil,” Journal <strong>of</strong> <strong>Geotechnical</strong> Eng<strong>in</strong>eer<strong>in</strong>g and Geoenvironmental Eng<strong>in</strong>eer<strong>in</strong>g, Vol. 123, No. 2,pp. 153-160.Griffiths, D. V., and Fenton, G. A. (1993). “Seepage beneath water reta<strong>in</strong><strong>in</strong>g structures foundedon spatially random soil,” Geotechnique, Vol. 43, No. 4, pp. 577-587.Grivas, D.A. (1981). “How Reliable are the Present Slope Failure Prediction Methods?,” Proceed<strong>in</strong>gs<strong>of</strong> the Tenth International Conference <strong>of</strong> Soil Mechanics and Foundation Eng<strong>in</strong>eer<strong>in</strong>g,Stockholm, Sweden, Vol. 3, pp.427-430.Harr, M.E. (1987). Reliability-Based Design <strong>in</strong> Civil Eng<strong>in</strong>eer<strong>in</strong>g. McGraw-Hill Book Company.Harr, M.E. (1977) Mechanics <strong>of</strong> Particulate Media, McGraw-Hill.96


Has<strong>of</strong>er, A. M. (1993). “Simulation <strong>of</strong> random fields.” Probabilistic Methods <strong>in</strong> <strong>Geotechnical</strong>Eng<strong>in</strong>eer<strong>in</strong>g, Li & Lo (eds.), Balkema, Rotterdam.Hegazy, A.H., Mayne, P.M., and Rouhani, S. (1996). “Geostatistical assessment <strong>of</strong> spatial variability<strong>in</strong> piezocone tests,” <strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> the Geologic Environment, From Theory to Practice,Proceed<strong>in</strong>g <strong>of</strong> <strong>Uncerta<strong>in</strong>ty</strong> ’96, <strong>Geotechnical</strong> Special Publication No. 58.Horne, J.C., (1996) “Effects <strong>of</strong> liquefaction-<strong>in</strong>duced lateral spread<strong>in</strong>g on pile foundations,” Ph.D.Dissertation, University <strong>of</strong> Wash<strong>in</strong>gton.Issaks, E. H., and Srivastava, R. M. (1989). An Introduction to Applied Geostatistics, OxfordUniversity Press.Lacasse and Nadim (1996) “Uncerta<strong>in</strong>ties <strong>in</strong> characteriz<strong>in</strong>g soil properties,” <strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> theGeologic Environment, From Theory to Practice, Proceed<strong>in</strong>g <strong>of</strong> <strong>Uncerta<strong>in</strong>ty</strong> ’96, <strong>Geotechnical</strong>Special Publication No. 58.Journel, A. G., and Huijbregts, C. J. (1978). M<strong>in</strong><strong>in</strong>g Geostatistics, Academic Press.Kelly, D. G., (1994). Introduction to Probability, Macmillan Publish<strong>in</strong>g Company.Kulhawy, F.H. (1992). “On the evaluation <strong>of</strong> static soil properties,” ASCE <strong>Geotechnical</strong> SpecialPublication No. 31., pp. 95-115.Kulhawy, F.H., and Phoon, K. (1996). “Eng<strong>in</strong>eer<strong>in</strong>g judgment <strong>in</strong> the evolution from determ<strong>in</strong>isticto reliability-based foundation design (plenary),” <strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> the Geologic Environment,From Theory to Practice, Proceed<strong>in</strong>g <strong>of</strong> <strong>Uncerta<strong>in</strong>ty</strong> ’96, <strong>Geotechnical</strong> Special Publication No.58.Kulhawy, F., and Trautman, C.H. (1996), “<strong>Estimation</strong> <strong>of</strong> <strong>in</strong>situ test uncerta<strong>in</strong>ty,” <strong>in</strong> <strong>Uncerta<strong>in</strong>ty</strong><strong>in</strong> the Geologic Environment: From Theory to Practice, Proceed<strong>in</strong>g <strong>of</strong> <strong>Uncerta<strong>in</strong>ty</strong> ’96, ASCE<strong>Geotechnical</strong> Special Publication No. 58.Kutter, B. L., and Balakrishnam, A. (1999). “Visualization <strong>of</strong> soil behavior from dynamic centrifugemodel tests,” Earthquake <strong>Geotechnical</strong> Eng<strong>in</strong>eer<strong>in</strong>g, P<strong>in</strong>to (ed.), Rotterdam.Lacasse, S., and Nadim, F. (1996). “Uncerta<strong>in</strong>ties <strong>in</strong> characteriz<strong>in</strong>g soil properties (plenary),”<strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> the Geologic Environment, From Theory to Practice, Proceed<strong>in</strong>g <strong>of</strong> <strong>Uncerta<strong>in</strong>ty</strong>’96, <strong>Geotechnical</strong> Special Publication No. 58.Lap<strong>in</strong>, L.L. (1983). Probability and Statistics for Modern Eng<strong>in</strong>eer<strong>in</strong>g. PWS Publishers. pp.624.Lumb, P. (1966). The Variability <strong>of</strong> Natural Soils . Canadian <strong>Geotechnical</strong> Journal, Vol. 3, No. 2,pp. 74-97.Lumb, P. 1970. “Safety factors and the probability distribution <strong>of</strong> soil strength,” Canadian <strong>Geotechnical</strong>Journal, Vol. 7, No. 3, pp. 225-242.97


Mantoglou, A., and Wilson, J. L. (1982). “The turn<strong>in</strong>g bands method for simulation <strong>of</strong> randomfields us<strong>in</strong>g l<strong>in</strong>e generation by a spectral method,” Water Resources Research, Vol. 18, No. 5,pp. 1379-1394.Mendenhall, W., and Beaver, R. (1991). Introduction to Probability and Statistics, PWS-KentPublish<strong>in</strong>g Company.Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E. (1953). Journalo f Chemical Physics, Volume 21, pp. 1087.McBratney A.B., Hart, A.B. and McGarry, D. (1991). “The use <strong>of</strong> region partition<strong>in</strong>g to improvethe representation <strong>of</strong> geostatistically mapped soil attributes,” Journal <strong>of</strong> Soil Science, Vol. 42, pp.513-532.McKay, M.D., Beckman, R.J., and Conover, W.J. (1979). “A comparison <strong>of</strong> three methods forselect<strong>in</strong>g values <strong>of</strong> <strong>in</strong>put variables <strong>in</strong> the analysis <strong>of</strong> output from a computer code.” Technometrics,21(2), pp.239-245.McKenna, S. A., Cromer, M. V., Rautman, C. A., and Zel<strong>in</strong>shi, W. P. (1996). “Address<strong>in</strong>g uncerta<strong>in</strong>ty<strong>in</strong> rock properties through geostatistics simulation,” <strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> the Geologic Environment,From Theory to Practice, Proceed<strong>in</strong>g <strong>of</strong> <strong>Uncerta<strong>in</strong>ty</strong> ’96, <strong>Geotechnical</strong> Special PublicationNo. 58.Mostyn, G.R., and Li, K.S. (1993). Probabilistic Slope Stability Analysis - State-<strong>of</strong>-Play, Proceed<strong>in</strong>gs<strong>of</strong> the Conference on Probabilistic Methods <strong>in</strong> <strong>Geotechnical</strong> Eng<strong>in</strong>eer<strong>in</strong>g, Canberra,Australia. pp. 281-290.Odeh, I. O. A., McBratney, A. B., and Chittleborough, D. J. (1995). “Further results on prediction<strong>of</strong> soil properties from terra<strong>in</strong> attributes: heterotopic cokrig<strong>in</strong>g and regression-krig<strong>in</strong>g,” GeodermaVol. 67, pp. 215-225.Ott, L., and Mednehall, W. (1994). Understand<strong>in</strong>g Statistics, Duxbury Press, Belmont, California.Paloheimo, E., and Hannus, M. (1974). “Structural design based on weighted fractals.” Journal<strong>of</strong> Structural Division, ASCE, Volume 100, No. 7, pp. 1367-1378.Pardo-Iquzquiza, E., and Dowd, P. A. (1998). “The second-order stationary universal krig<strong>in</strong>gmodel revisited,” Mathematical Geology, Vol. 30, No. 4, pp. 347379.Pebesma, E.J. (2001). GSTAT User’s Manual, Department <strong>of</strong> Physical Geography, The Netherlands.Pebesma, E.J., and Wessel<strong>in</strong>g, C.G. (1998). “Gstat: a program for geostatistical model<strong>in</strong>g, predictionand simulation,“ Computers & Geosciences Vol. 24, No. 1.98


Phoon, K., and Kulhawy, F.H. (1999). "Characterization <strong>of</strong> geotechnical variability," Canadian<strong>Geotechnical</strong> Journal, Vol. 36, pp. 625-639.Phoon, K., and Kulhawy, F.H. (1999). "Evaluation <strong>of</strong> geotechnical property variability," Canadian<strong>Geotechnical</strong> Journal, Vol. 36, pp. 612-624.Popescu, R., Deodatis, G., and Prevost, J. H. (1998). “Simulation <strong>of</strong> homogeneous non-Gaussianstochastic vector fields,” Probabilistic Eng<strong>in</strong>eer<strong>in</strong>g Mechanics Vol. 13, No. 1, pp. 1-13.Popescu, R., Prevost, J. H., and Deodatis, G. (1997). “Effects <strong>of</strong> spatial variability on soil liquefaction:some design recommendations,” Geotechnique Vol. 47, No. 5, pp. 1019-1036.Popescu, R., Prevost, J. H., and Deodatis, G. (1998). “Characteristic percentile <strong>of</strong> soil strengthfor dynamic analyses,” Proceed<strong>in</strong>gs, <strong>Geotechnical</strong> Earthquake Eng<strong>in</strong>eer<strong>in</strong>g and Soil DynamicsIII, Seattle, Wash<strong>in</strong>gton, pp. 1461-1471.Popescu, R., Prevost, J. H., and Deodatis, G. (1998). “Spatial variability <strong>of</strong> soil properties: twocase studies,” Proceed<strong>in</strong>gs, <strong>Geotechnical</strong> Earthquake Eng<strong>in</strong>eer<strong>in</strong>g and Soil Dynamics III, Seattle,Wash<strong>in</strong>gton, pp. 568-579.Prevost, J. H., Popescu, R. (1996). “Constitutive relations for soil materials,” Electronic Journal<strong>of</strong> <strong>Geotechnical</strong> Eng<strong>in</strong>eer<strong>in</strong>g.Shannon and Wilson, Inc., and Wolff, T.F. (1994) “Probability models for geotechnical aspects<strong>of</strong> navigation structures,” report to the St. Louis District, U.S. Corps <strong>of</strong> Eng<strong>in</strong>eers.S<strong>in</strong>owski, W., Sche<strong>in</strong>ost, A. C., and Auerswald, K. (1997). “Regionalization <strong>of</strong> soil water retentioncurves <strong>in</strong> a highly variable soilscape, II. Comparison <strong>of</strong> regionalization procedures us<strong>in</strong>g apedotransfer function,” Geoderma, 78, pp. 145-159.Ste<strong>in</strong>, M.L., (1987). “Large sample properties <strong>of</strong> simulations us<strong>in</strong>g Lat<strong>in</strong> hypercube sampl<strong>in</strong>g.”Technometrics, 29(2). pp. 143-151.Tan, C.P. Donald, I.B. and Melchers, R.E. (1993). Probabilistic Slope Stability Analysis - State<strong>of</strong>-Play,Proceed<strong>in</strong>gs <strong>of</strong> the Conference on Probabilistic Methods <strong>in</strong> <strong>Geotechnical</strong> Eng<strong>in</strong>eer<strong>in</strong>g,Canberra, Australia. pp. 89-110.United States Army Corps <strong>of</strong> Eng<strong>in</strong>eers (USACE) (1999). “Appendix A – An overview <strong>of</strong> probabilisticanalysis for geotechnical eng<strong>in</strong>eer<strong>in</strong>g problems,” Eng<strong>in</strong>eer<strong>in</strong>g Technical Letter (ETL)1110-2-556.United States Army Corps <strong>of</strong> Eng<strong>in</strong>eers (USACE) (1995). “Appendix B – Introduction to probabilityand reliability <strong>in</strong> geotechnical eng<strong>in</strong>eer<strong>in</strong>g,” Eng<strong>in</strong>eer<strong>in</strong>g Technical Letter (ETL) 1110-2-547.Vallejo, L.E. (1996). “Evaluat<strong>in</strong>g the variability <strong>of</strong> eng<strong>in</strong>eer<strong>in</strong>g properties <strong>of</strong> soil deposits us<strong>in</strong>gfractals,” <strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> the Geologic Environment, From Theory to Practice, Proceed<strong>in</strong>g <strong>of</strong> <strong>Uncerta<strong>in</strong>ty</strong>’96, <strong>Geotechnical</strong> Special Publication No. 58.99


Vanmarcke, E. (1983). Simulation <strong>of</strong> Random Fields, The MIT Press, Cambridge, Massachusetts.Vanmarcke, E. H. (1977). "Probabilistic model<strong>in</strong>g <strong>of</strong> soil pr<strong>of</strong>iles," Journal <strong>of</strong> the <strong>Geotechnical</strong>Eng<strong>in</strong>eer<strong>in</strong>g Division <strong>of</strong> the ASCE Vol. 103, GT11, pp. 1227-1246.Wickremes<strong>in</strong>ghe, D., and Campanella, R.G. (1993). “Scale <strong>of</strong> fluctuation as a descriptor <strong>of</strong> soilvariability,” Probabilistic Methods <strong>in</strong> <strong>Geotechnical</strong> Eng<strong>in</strong>eer<strong>in</strong>g, Li & Lo (eds.), Balkema, Rotterdam.Wolff, T.F., Hassen, A., Khan, R., Ur-Rasul, I., and Miller, M. (1995), “<strong>Geotechnical</strong> reliability<strong>of</strong> dam and levee embankments,” Report for the U.S. Army Corps <strong>of</strong> Eng<strong>in</strong>eers, Experiment Station,by Michigan State University, September 1995.Wolff, T.F., Demsky, E.C., Schauer, J., and Perry, E. (1996). “Reliability assessment <strong>of</strong> dike andlevee embankments,” <strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> the Geologic Environment, From Theory to Practice, Proceed<strong>in</strong>g<strong>of</strong> <strong>Uncerta<strong>in</strong>ty</strong> ’96, <strong>Geotechnical</strong> Special Publication No. 58.Yamazaki, F., Sh<strong>in</strong>ozuka, M. (1988). “Digital generation <strong>of</strong> non-Gaussian stochastic fields,”Journal <strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>g Mechanics, Vol. 114, No. 7, 1183-1197.Yang, Fredlund, D.J., and Stolte, (1993) – General Monte Carlo Procedure.Yoshida, N., Ito, K. (1999). “Liquefaction <strong>of</strong> improved ground at Part Island, Japan, dur<strong>in</strong>g the1995 Hyogoken-nanbu earthquake,” Earthquake <strong>Geotechnical</strong> Eng<strong>in</strong>eer<strong>in</strong>g, P<strong>in</strong>to (ed.), Rotterdam.Youd, T. L. (1999). “Physics and mechanics <strong>of</strong> liquefaction from field records and experience,”Physics and Mechanics <strong>of</strong> Soil Liquefaction, Lade & Yamamuro (eds.), Rotterdam.Young, C.T., and Doucette, J.P. (1996). “Sand variability from ground penetrat<strong>in</strong>g radar,” <strong>Uncerta<strong>in</strong>ty</strong><strong>in</strong> the Geologic Environment, From Theory to Practice, Proceed<strong>in</strong>g <strong>of</strong> <strong>Uncerta<strong>in</strong>ty</strong> ’96,<strong>Geotechnical</strong> Special Publication No. 58.100


<strong>PEER</strong> REPORTS<strong>PEER</strong> reports are available from the National Information Service for Earthquake Eng<strong>in</strong>eer<strong>in</strong>g (NISEE).To order <strong>PEER</strong> reports, please contact the Pacific Earthquake Eng<strong>in</strong>eer<strong>in</strong>g Research Center, 1301 South46 th Street, Richmond, California 94804-4698. Tel.: (510) 231-9468; Fax: (510) 231-9461.<strong>PEER</strong> 2002/16<strong>PEER</strong> 2002/14<strong>PEER</strong> 2002/13<strong>PEER</strong> 2002/12<strong>PEER</strong> 2002/11<strong>PEER</strong> 2002/10<strong>PEER</strong> 2002/09<strong>PEER</strong> 2002/08<strong>PEER</strong> 2002/07<strong>PEER</strong> 2002/06<strong>Estimation</strong> <strong>of</strong> <strong>Uncerta<strong>in</strong>ty</strong> <strong>in</strong> <strong>Geotechnical</strong> <strong>Properties</strong> for Performance-BasedEarthquake Eng<strong>in</strong>eer<strong>in</strong>g. Allen L. Jones, Steven L. Kramer, and Pedro Ardu<strong>in</strong>o.December 2002.Inelastic Seismic Response <strong>of</strong> Extended Pile Shaft Supported Bridge Structures. T.C.Hutch<strong>in</strong>son, R.W. Boulanger, Y.H. Chai, and I.M. Idriss. December 2002.Probabilistic Models and Fragility Estimates for Bridge Components and Systems.Paolo Gardoni, Armen Der Kiureghian, and Khalid M. Mosalam. June 2002.Effects <strong>of</strong> Fault Dip and Slip Rake on Near-Source Ground Motions: Why Chi-ChiWas a Relatively Mild M7.6 Earthquake. Brad T. Aagaard, John F. Hall, and ThomasH. Heaton. December 2002.Analytical and Experimental Study <strong>of</strong> Fiber-Re<strong>in</strong>forced Strip Isolators. James M. Kellyand Shakhzod M. Takhirov. September 2002.Centrifuge Model<strong>in</strong>g <strong>of</strong> Settlement and Lateral Spread<strong>in</strong>g with Comparisons toNumerical Analyses. Sivapalan Gajan and Bruce L. Kutter. January 2003.Documentation and Analysis <strong>of</strong> Field Case Histories <strong>of</strong> Seismic Compression dur<strong>in</strong>gthe 1994 Northridge, California, Earthquake. Jonathan P. Stewart, Patrick M. Smith,Daniel H. Whang, and Jonathan D. Bray. October 2002.Component Test<strong>in</strong>g, Stability Analysis and Characterization <strong>of</strong> Buckl<strong>in</strong>g-Restra<strong>in</strong>edUnbonded Braces TM . Cameron Black, Nicos Makris, and Ian Aiken. September 2002.Seismic Performance <strong>of</strong> Pile-Wharf Connections. Charles W. Roeder, Robert Graff,Jennifer Soderstrom, and Jun Han Yoo. December 2001.The Use <strong>of</strong> Benefit-Cost Analysis for Evaluation <strong>of</strong> Performance-Based EarthquakeEng<strong>in</strong>eer<strong>in</strong>g Decisions. Richard O. Zerbe and Anthony Falit-Baiamonte. September2001.<strong>PEER</strong> 2002/05 Guidel<strong>in</strong>es, Specifications, and Seismic Performance Characterization <strong>of</strong>Nonstructural Build<strong>in</strong>g Components and Equipment. André Filiatrault, Constant<strong>in</strong>Christopoulos, and Christopher Stearns. September 2001.<strong>PEER</strong> 2002/03<strong>PEER</strong> 2002/02<strong>PEER</strong> 2002/01Investigation <strong>of</strong> Sensitivity <strong>of</strong> Build<strong>in</strong>g Loss Estimates to Major Uncerta<strong>in</strong> Variablesfor the Van Nuys Testbed. Keith A. Porter, James L. Beck, and Rustem V.Shaikhutd<strong>in</strong>ov. August 2002.The Third U.S.-Japan Workshop on Performance-Based Earthquake Eng<strong>in</strong>eer<strong>in</strong>gMethodology for Re<strong>in</strong>forced Concrete Build<strong>in</strong>g Structures. July 2002.Nonstructural Loss <strong>Estimation</strong>: The UC Berkeley Case Study. Mary C. Comerio andJohn C. Stallmeyer. December 2001.


<strong>PEER</strong> 2001/16 Statistics <strong>of</strong> SDF-System Estimate <strong>of</strong> Ro<strong>of</strong> Displacement for Pushover Analysis <strong>of</strong>Build<strong>in</strong>gs. Anil K. Chopra, Rakesh K. Goel, and Chatpan Ch<strong>in</strong>tanapakdee. December2001.<strong>PEER</strong> 2001/15 Damage to Bridges dur<strong>in</strong>g the 2001 Nisqually Earthquake. R. Tyler Ranf, Marc O.Eberhard, and Michael P. Berry. November 2001.<strong>PEER</strong> 2001/14<strong>PEER</strong> 2001/13<strong>PEER</strong> 2001/12<strong>PEER</strong> 2001/11Rock<strong>in</strong>g Response <strong>of</strong> Equipment Anchored to a Base Foundation. Nicos Makris andCameron J. Black. September 2001.Model<strong>in</strong>g Soil Liquefaction Hazards for Performance-Based Earthquake Eng<strong>in</strong>eer<strong>in</strong>g.Steven L. Kramer and Ahmed-W. Elgamal. February 2001.Development <strong>of</strong> <strong>Geotechnical</strong> Capabilities <strong>in</strong> OpenSees. Boris Jeremic. September2001.Analytical and Experimental Study <strong>of</strong> Fiber-Re<strong>in</strong>forced Elastomeric Isolators. JamesM. Kelly and Shakhzod M. Takhirov. September 2001.<strong>PEER</strong> 2001/10 Amplification Factors for Spectral Acceleration <strong>in</strong> Active Regions. Jonathan P.Stewart, Andrew H. Liu, Yoojoong Choi, and Mehmet B. Baturay. December 2001.<strong>PEER</strong> 2001/09 Ground Motion Evaluation Procedures for Performance-Based Design. Jonathan P.Stewart, Shyh-Jeng Chiou, Jonathan D. Bray, Robert W. Graves, Paul G. Somerville,and Norman A. Abrahamson. September 2001.<strong>PEER</strong> 2001/08<strong>PEER</strong> 2001/07<strong>PEER</strong> 2001/06<strong>PEER</strong> 2001/05<strong>PEER</strong> 2001/04<strong>PEER</strong> 2001/03<strong>PEER</strong> 2001/02Experimental and Computational Evaluation <strong>of</strong> Re<strong>in</strong>forced Concrete Bridge Beam-Column Connections for Seismic Performance. Clay J. Naito, Jack P. Moehle, andKhalid M. Mosalam. November 2001.The Rock<strong>in</strong>g Spectrum and the Shortcom<strong>in</strong>gs <strong>of</strong> Design Guidel<strong>in</strong>es. Nicos Makrisand Dimitrios Konstant<strong>in</strong>idis. August 2001.Development <strong>of</strong> an Electrical Substation Equipment Performance Database forEvaluation <strong>of</strong> Equipment Fragilities. Thalia Agnanos. April 1999.Stiffness Analysis <strong>of</strong> Fiber-Re<strong>in</strong>forced Elastomeric Isolators. Hsiang-Chuan Tsai andJames M. Kelly. May 2001.Organizational and Societal Considerations for Performance-Based EarthquakeEng<strong>in</strong>eer<strong>in</strong>g. Peter J. May. April 2001.A Modal Pushover Analysis Procedure to Estimate Seismic Demands for Build<strong>in</strong>gs:Theory and Prelim<strong>in</strong>ary Evaluation. Anil K. Chopra and Rakesh K. Goel. January2001.Seismic Response Analysis <strong>of</strong> Highway Overcross<strong>in</strong>gs Includ<strong>in</strong>g Soil-StructureInteraction. Jian Zhang and Nicos Makris. March 2001.<strong>PEER</strong> 2001/01 Experimental Study <strong>of</strong> Large Seismic Steel Beam-to-Column Connections. Egor P.Popov and Shakhzod M. Takhirov. November 2000.<strong>PEER</strong> 2000/10The Second U.S.-Japan Workshop on Performance-Based Earthquake Eng<strong>in</strong>eer<strong>in</strong>gMethodology for Re<strong>in</strong>forced Concrete Build<strong>in</strong>g Structures. March 2000.


<strong>PEER</strong> 2000/09<strong>PEER</strong> 2000/08<strong>PEER</strong> 2000/07<strong>PEER</strong> 2000/06<strong>PEER</strong> 2000/05<strong>PEER</strong> 2000/04<strong>PEER</strong> 2000/03<strong>PEER</strong> 2000/02<strong>PEER</strong> 2000/01Structural Eng<strong>in</strong>eer<strong>in</strong>g Reconnaissance <strong>of</strong> the August 17, 1999 Earthquake: Kocaeli(Izmit), Turkey. Halil Sezen, Kenneth J. Elwood, Andrew S. Whittaker, KhalidMosalam, John J. Wallace, and John F. Stanton. December 2000.Behavior <strong>of</strong> Re<strong>in</strong>forced Concrete Bridge Columns Hav<strong>in</strong>g Vary<strong>in</strong>g Aspect Ratios andVary<strong>in</strong>g Lengths <strong>of</strong> Conf<strong>in</strong>ement. Anthony J. Calderone, Dawn E. Lehman, and JackP. Moehle. January 2001.Cover-Plate and Flange-Plate Re<strong>in</strong>forced Steel Moment-Resist<strong>in</strong>g Connections.Taej<strong>in</strong> Kim, Andrew S. Whittaker, Amir S. Gilani, Vitelmo V. Bertero, and ShakhzodM. Takhirov. September 2000.Seismic Evaluation and Analysis <strong>of</strong> 230-kV Disconnect Switches. Amir S. J. Gilani,Andrew S. Whittaker, Gregory L. Fenves, Chun-Hao Chen, Henry Ho, and EricFujisaki. July 2000.Performance-Based Evaluation <strong>of</strong> Exterior Re<strong>in</strong>forced Concrete Build<strong>in</strong>g Jo<strong>in</strong>ts forSeismic Excitation. Chandra Clyde, Chris P. Pantelides, and Lawrence D. Reaveley.July 2000.An Evaluation <strong>of</strong> Seismic Energy Demand: An Attenuation Approach. Chung-CheChou and Chia-M<strong>in</strong>g Uang. July 1999.Fram<strong>in</strong>g Earthquake Retr<strong>of</strong>itt<strong>in</strong>g Decisions: The Case <strong>of</strong> Hillside Homes <strong>in</strong> LosAngeles. Detl<strong>of</strong> von W<strong>in</strong>terfeldt, Nels Roselund, and Alicia Kitsuse. March 2000.U.S.-Japan Workshop on the Effects <strong>of</strong> Near-Field Earthquake Shak<strong>in</strong>g. AndrewWhittaker, ed. July 2000.Further Studies on Seismic Interaction <strong>in</strong> Interconnected Electrical SubstationEquipment. Armen Der Kiureghian, Kee-Jeung Hong, and Jerome L. Sackman.November 1999.<strong>PEER</strong> 1999/14 Seismic Evaluation and Retr<strong>of</strong>it <strong>of</strong> 230-kV Porcela<strong>in</strong> Transformer Bush<strong>in</strong>gs. Amir S.Gilani, Andrew S. Whittaker, Gregory L. Fenves, and Eric Fujisaki. December 1999.<strong>PEER</strong> 1999/13<strong>PEER</strong> 1999/12<strong>PEER</strong> 1999/11<strong>PEER</strong> 1999/10<strong>PEER</strong> 1999/09<strong>PEER</strong> 1999/08Build<strong>in</strong>g Vulnerability Studies: Model<strong>in</strong>g and Evaluation <strong>of</strong> Tilt-up and SteelRe<strong>in</strong>forced Concrete Build<strong>in</strong>gs. John W. Wallace, Jonathan P. Stewart, and AndrewS. Whittaker, editors. December 1999.Rehabilitation <strong>of</strong> Nonductile RC Frame Build<strong>in</strong>g Us<strong>in</strong>g Encasement Plates andEnergy-Dissipat<strong>in</strong>g Devices. Mehrdad Sasani, Vitelmo V. Bertero, James C.Anderson. December 1999.Performance Evaluation Database for Concrete Bridge Components and Systemsunder Simulated Seismic Loads. Yael D. Hose and Frieder Seible. November 1999.U.S.-Japan Workshop on Performance-Based Earthquake Eng<strong>in</strong>eer<strong>in</strong>g Methodologyfor Re<strong>in</strong>forced Concrete Build<strong>in</strong>g Structures. December 1999.Performance Improvement <strong>of</strong> Long Period Build<strong>in</strong>g Structures Subjected to SeverePulse-Type Ground Motions. James C. Anderson, Vitelmo V. Bertero, and RaulBertero. October 1999.Envelopes for Seismic Response Vectors. Charles Menun and Armen DerKiureghian. July 1999.


<strong>PEER</strong> 1999/07<strong>PEER</strong> 1999/06<strong>PEER</strong> 1999/05<strong>PEER</strong> 1999/04<strong>PEER</strong> 1999/03<strong>PEER</strong> 1999/02<strong>PEER</strong> 1999/01Documentation <strong>of</strong> Strengths and Weaknesses <strong>of</strong> Current Computer AnalysisMethods for Seismic Performance <strong>of</strong> Re<strong>in</strong>forced Concrete Members. William F.C<strong>of</strong>er. November 1999.Rock<strong>in</strong>g Response and Overturn<strong>in</strong>g <strong>of</strong> Anchored Equipment under SeismicExcitations. Nicos Makris and Jian Zhang. November 1999.Seismic Evaluation <strong>of</strong> 550 kV Porcela<strong>in</strong> Transformer Bush<strong>in</strong>gs. Amir S. Gilani,Andrew S. Whittaker, Gregory L. Fenves, and Eric Fujisaki. October 1999.Adoption and Enforcement <strong>of</strong> Earthquake Risk-Reduction Measures. Peter J. May,Raymond J. Burby, T. Jens Feeley, and Robert Wood.Task 3 Characterization <strong>of</strong> Site Response General Site Categories. AdrianRodriguez-Marek, Jonathan D. Bray, and Norman Abrahamson. February 1999.Capacity-Demand-Diagram Methods for Estimat<strong>in</strong>g Seismic Deformation <strong>of</strong> InelasticStructures: SDF Systems. Anil K. Chopra and Rakesh Goel. April 1999.Interaction <strong>in</strong> Interconnected Electrical Substation Equipment Subjected toEarthquake Ground Motions. Armen Der Kiureghian, Jerome L. Sackman, and Kee-Jeung Hong. February 1999.<strong>PEER</strong> 1998/08 Behavior and Failure Analysis <strong>of</strong> a Multiple-Frame Highway Bridge <strong>in</strong> the 1994Northridge Earthquake. Gregory L. Fenves and Michael Ellery. December 1998.<strong>PEER</strong> 1998/07 Empirical Evaluation <strong>of</strong> Inertial Soil-Structure Interaction Effects. Jonathan P.Stewart, Raymond B. Seed, and Gregory L. Fenves. November 1998.<strong>PEER</strong> 1998/06<strong>PEER</strong> 1998/05<strong>PEER</strong> 1998/04Effect <strong>of</strong> Damp<strong>in</strong>g Mechanisms on the Response <strong>of</strong> Seismic Isolated Structures.Nicos Makris and Shih-Po Chang. November 1998.Rock<strong>in</strong>g Response and Overturn<strong>in</strong>g <strong>of</strong> Equipment under Horizontal Pulse-TypeMotions. Nicos Makris and Yiannis Roussos. October 1998.Pacific Earthquake Eng<strong>in</strong>eer<strong>in</strong>g Research Invitational Workshop Proceed<strong>in</strong>gs, May14–15, 1998: Def<strong>in</strong><strong>in</strong>g the L<strong>in</strong>ks between Plann<strong>in</strong>g, Policy Analysis, Economics andEarthquake Eng<strong>in</strong>eer<strong>in</strong>g. Mary Comerio and Peter Gordon. September 1998.<strong>PEER</strong> 1998/03 Repair/Upgrade Procedures for Welded Beam to Column Connections. James C.Anderson and Xiaoj<strong>in</strong>g Duan. May 1998.<strong>PEER</strong> 1998/02<strong>PEER</strong> 1998/01Seismic Evaluation <strong>of</strong> 196 kV Porcela<strong>in</strong> Transformer Bush<strong>in</strong>gs. Amir S. Gilani, JuanW. Chavez, Gregory L. Fenves, and Andrew S. Whittaker. May 1998.Seismic Performance <strong>of</strong> Well-Conf<strong>in</strong>ed Concrete Bridge Columns. Dawn E. Lehmanand Jack P. Moehle. December 2000.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!