12.07.2015 Views

Effect of time delay and storage temperature on blood gas and acid ...

Effect of time delay and storage temperature on blood gas and acid ...

Effect of time delay and storage temperature on blood gas and acid ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

126 G. Gokce et al. / Research in Veterinary Science 76 (2004) 121–127Particularly, rapid <str<strong>on</strong>g>and</str<strong>on</strong>g> significant decreases in <strong>blood</strong> pH(p < 0:001) were observed for those samples stored at37 °C, compared to the other groups (Groups I <str<strong>on</strong>g>and</str<strong>on</strong>g> II)(Fig. 1). Metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> in vitro <strong>blood</strong> samples c<strong>on</strong>tinuesduring <str<strong>on</strong>g>storage</str<strong>on</strong>g>. Oxygen c<strong>on</strong>sumpti<strong>on</strong> occurs due to anaerobicmetabolism <str<strong>on</strong>g>and</str<strong>on</strong>g> CO 2 generati<strong>on</strong> in the tricarboxylic<strong>acid</strong> cycles (TCA). Additi<strong>on</strong>ally, lactic <strong>acid</strong> isaccumulated via glycolysis depending <strong>on</strong> anaerobicmetabolism. These metabolic activities cause a decreasein <strong>blood</strong> pH (Andersen, 1961; Szenci <str<strong>on</strong>g>and</str<strong>on</strong>g> Besser, 1990;Boink et al., 1991; Liss <str<strong>on</strong>g>and</str<strong>on</strong>g> Payne, 1993). Since samplingerror was reduced to a minimal level in the present studythe decrease in <strong>blood</strong> pH <str<strong>on</strong>g>and</str<strong>on</strong>g> HCO 3 was attributed tothe formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lactic <strong>acid</strong> due to glycolysis <str<strong>on</strong>g>and</str<strong>on</strong>g> to anincrease in the level <str<strong>on</strong>g>of</str<strong>on</strong>g> pCO 2 . Moreover, the muchgreater decrease in the pH <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>blood</strong> samples stored at37 °C may be attributed to lactic <strong>acid</strong> generati<strong>on</strong> due torapid anaerobic metabolism as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the high<str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> (Liss <str<strong>on</strong>g>and</str<strong>on</strong>g> Payne, 1993).In the present study, increases in the pCO 2 values <str<strong>on</strong>g>of</str<strong>on</strong>g>the <strong>blood</strong> samples kept at 37 °C <str<strong>on</strong>g>and</str<strong>on</strong>g> at room <str<strong>on</strong>g>temperature</str<strong>on</strong>g><str<strong>on</strong>g>and</str<strong>on</strong>g> a decrease in those <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples stored at+4 °C were recorded as compared to their baselinevalues. Researchers have reported that in vitro <strong>blood</strong>pCO 2 value rises depending <strong>on</strong> aerobic <str<strong>on</strong>g>and</str<strong>on</strong>g> anaerobicmetabolism in <strong>blood</strong> cells (S<str<strong>on</strong>g>and</str<strong>on</strong>g>hagen et al., 1988;Szenci <str<strong>on</strong>g>and</str<strong>on</strong>g> Besser, 1990; Beaulieu et al., 1999). UnlikeO 2 ,CO 2 does not influx through plastic syringe walls(Mah<strong>on</strong>ey et al., 1991), <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore the significantrises <str<strong>on</strong>g>of</str<strong>on</strong>g> pCO 2 in groups II <str<strong>on</strong>g>and</str<strong>on</strong>g> III may be the result <str<strong>on</strong>g>of</str<strong>on</strong>g>high cell metabolic activities at +22 <str<strong>on</strong>g>and</str<strong>on</strong>g> 37 °C (Foster<str<strong>on</strong>g>and</str<strong>on</strong>g> Terry, 1967). Moreover the most prominent increasein pCO 2 was observed in the sample stored at37 °C. The significant decrease in the pCO 2 values <str<strong>on</strong>g>of</str<strong>on</strong>g>the samples stored at +4 °C may be due to the <strong>blood</strong>being transferred to a lower than body <str<strong>on</strong>g>temperature</str<strong>on</strong>g>medium (Mah<strong>on</strong>ey et al., 1991).In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>blood</strong> samples stored over <str<strong>on</strong>g>time</str<strong>on</strong>g>, thetype <str<strong>on</strong>g>of</str<strong>on</strong>g> syringe used for sampling (Mah<strong>on</strong>ey et al., 1991;Beaulieu et al., 1999) <str<strong>on</strong>g>and</str<strong>on</strong>g> the aerobic metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g>leucocytes (Poulsen <str<strong>on</strong>g>and</str<strong>on</strong>g> Surynek, 1977; Haskins, 1977)in the <strong>blood</strong> have been determined to influence alterati<strong>on</strong>sin the levels <str<strong>on</strong>g>of</str<strong>on</strong>g> pO 2 . It has been revealed that pO 2in plastic syringes increases by the diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygenthrough the plastic wall <str<strong>on</strong>g>of</str<strong>on</strong>g> the syringe (Paerregaard etal., 1987; Beaulieu et al., 1999). Leucocytes are resp<strong>on</strong>siblefor most <str<strong>on</strong>g>of</str<strong>on</strong>g> the aerobic metabolism in the <strong>blood</strong>(Liss <str<strong>on</strong>g>and</str<strong>on</strong>g> Payne, 1993) <str<strong>on</strong>g>and</str<strong>on</strong>g> cause O 2 c<strong>on</strong>sumpti<strong>on</strong> in<strong>blood</strong> samples stored under in vitro anaerobic c<strong>on</strong>diti<strong>on</strong>s(S<str<strong>on</strong>g>and</str<strong>on</strong>g>hagen et al., 1988; Szenci <str<strong>on</strong>g>and</str<strong>on</strong>g> Besser, 1990).A decrease in pO 2 values has been found in <strong>blood</strong>samples with high leucocyte counts (Schimidt <str<strong>on</strong>g>and</str<strong>on</strong>g>Plathe, 1992) <str<strong>on</strong>g>and</str<strong>on</strong>g> in samples with anaemia (Haskins,1977). Since the initial mean leucocyte <str<strong>on</strong>g>and</str<strong>on</strong>g> erythrocytenumbers <str<strong>on</strong>g>and</str<strong>on</strong>g> haemoglobin c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>blood</strong>samples were within normal range in the present study,the significant decrease (p < 0:001) in pO 2 level found inthe <strong>blood</strong> samples stored at 37 °C after 24 h may beattributed to an increase in aerobic metabolism <str<strong>on</strong>g>and</str<strong>on</strong>g> O 2c<strong>on</strong>sumpti<strong>on</strong> by leucocytes due to the high <str<strong>on</strong>g>storage</str<strong>on</strong>g><str<strong>on</strong>g>temperature</str<strong>on</strong>g> (Liss <str<strong>on</strong>g>and</str<strong>on</strong>g> Payne, 1993). A significant increasein the level <str<strong>on</strong>g>of</str<strong>on</strong>g> pO 2 was detected after 6 h in thesamples stored at room <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> in the refrigeratedsamples. This may have been due to the release <str<strong>on</strong>g>of</str<strong>on</strong>g>O 2 from haemoglobin as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the reducti<strong>on</strong> in<strong>blood</strong> pH (Szenci <str<strong>on</strong>g>and</str<strong>on</strong>g> Besser, 1990) <str<strong>on</strong>g>and</str<strong>on</strong>g> to the diffusi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> O 2 through the plastic syringe wall (Beaulieu et al.,1999; Mah<strong>on</strong>ey et al., 1991) although oxygen c<strong>on</strong>sumpti<strong>on</strong>occurs during aerobic cell metabolism.Moreover, this finding reflects the fact that aerobicmetabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> leucocyte was lower at room <str<strong>on</strong>g>temperature</str<strong>on</strong>g><str<strong>on</strong>g>and</str<strong>on</strong>g> under +4 °C in vitro c<strong>on</strong>diti<strong>on</strong>s than at 37 °C.The SAT O 2 value also decreased together with pH inthe <strong>blood</strong> samples kept at 37 °C. This can be explainedby the shifting <str<strong>on</strong>g>of</str<strong>on</strong>g> the haemoglobin–O 2 dissociati<strong>on</strong>curve to the right (Bohr effect) due to decrease in <strong>blood</strong>pH (Szenci <str<strong>on</strong>g>and</str<strong>on</strong>g> Besser, 1990; Carls<strong>on</strong>, 1996). The O 2 CT<str<strong>on</strong>g>and</str<strong>on</strong>g> O 2 SAT value displayed the least alterati<strong>on</strong> withinthe parameters for the <strong>blood</strong> samples kept at room<str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> at +4 °C, which is c<strong>on</strong>sisted the findings<str<strong>on</strong>g>of</str<strong>on</strong>g> Beaulieu et al. (1999) in a study carried out <strong>on</strong>human <strong>blood</strong>. Therefore, we suggest that the O 2 CT <str<strong>on</strong>g>and</str<strong>on</strong>g>O 2 SAT value should be taken into c<strong>on</strong>siderati<strong>on</strong> for<strong>blood</strong> samples stored at room <str<strong>on</strong>g>temperature</str<strong>on</strong>g> when assessing<strong>blood</strong> O 2 .In c<strong>on</strong>clusi<strong>on</strong>, the <strong>acid</strong>–base values <str<strong>on</strong>g>of</str<strong>on</strong>g> the samplesstored at 22 <str<strong>on</strong>g>and</str<strong>on</strong>g> 37 °C changed significantly whencompared to the samples stored at +4 °C. However, the<strong>acid</strong>–base values <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples stored at 22 <str<strong>on</strong>g>and</str<strong>on</strong>g> +4 °Cwere within normal range <str<strong>on</strong>g>and</str<strong>on</strong>g> could be used for clinicalpurposes for up to 12 <str<strong>on</strong>g>and</str<strong>on</strong>g> 48 h, respectively.ReferencesAndersen, O.S., 1961. Sampling <str<strong>on</strong>g>and</str<strong>on</strong>g> storing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>blood</strong> for determinati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>acid</strong>–base status. Sc<str<strong>on</strong>g>and</str<strong>on</strong>g>inavian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Clinical LaboratoryInvestigati<strong>on</strong> 13, 196–204.Beaulieu, M., Lapointe, Y., Vinet, B., 1999. Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> pO 2 , pCO 2 <str<strong>on</strong>g>and</str<strong>on</strong>g>pH in fresh <strong>blood</strong> samples stored in a plastic syringe with lowheparin in relati<strong>on</strong> to various <strong>blood</strong>-<strong>gas</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> hematologicalparameters. Clinical Biochemistry 32, 101–107.Boink, A.B.T.J., Buckley, B.M., Christiansen, T.F., C<strong>on</strong>ingt<strong>on</strong>, A.K.,Maas, A.H.J., Muller-Plathe, O., Andersen, O.S., 1991. Recomendati<strong>on</strong><strong>on</strong> sampling, transport <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> for the determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>ized calcium in whole <strong>blood</strong>, plasma <str<strong>on</strong>g>and</str<strong>on</strong>g>serum. Annual Biological Clinics 49, 234–438.Carls<strong>on</strong>, G.P., 1996. Clinical chemistry tests (<strong>acid</strong>–base imbalance). In:Smith, B.P. (Ed.), Large Animal Internal Medicine. Mosby-YearBook, L<strong>on</strong>d<strong>on</strong>, pp. 456–460.Coles, E.H., 1980. Veterinary Clinical Pathology. third ed. L<strong>on</strong>d<strong>on</strong>,pp. 15–122.Foster, J.M., Terry, M.L., 1967. Studies <strong>on</strong> the energy metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g>human leucocytes. I. Oxidative phosphorylati<strong>on</strong> by human leucocytemitoch<strong>on</strong>dria. Blood 30, 168–175.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!