12.07.2015 Views

Effect of time delay and storage temperature on blood gas and acid ...

Effect of time delay and storage temperature on blood gas and acid ...

Effect of time delay and storage temperature on blood gas and acid ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Research in Veterinary Science 76 (2004) 121–127www.elsevier.com/locate/rvsc<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>delay</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> <strong>blood</strong> <strong>gas</strong><str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>acid</strong>–base values <str<strong>on</strong>g>of</str<strong>on</strong>g> bovine venous <strong>blood</strong>Gurbuz Gokce a, *, Mehmet Citil a , Vehbi Gunes a , Gultekin Atalan ba Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Internal Medicine, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Medicine, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Kafkas, Kars 36100, Turkeyb Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Surgery, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Medicine, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Kafkas, Kars 36100, TurkeyAccepted 12 August 2003AbstractThe aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was to investigate possible changes in the <strong>gas</strong> compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>acid</strong>–base values <str<strong>on</strong>g>of</str<strong>on</strong>g> bovine venous <strong>blood</strong>samples stored at different <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s (+4, 22 <str<strong>on</strong>g>and</str<strong>on</strong>g> 37 °C) for up to 48 h. Five healthy cattle were used in the study. A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 15<strong>blood</strong> samples collected from the animals were allocated into three groups, which were, respectively, then stored in a refrigeratoradjusted to +4 °C (Group I, n ¼ 5), at a room <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> about 22 °C (Group II, n ¼ 5) <str<strong>on</strong>g>and</str<strong>on</strong>g> in an incubator adjusted to 37 °C(Group III; n ¼ 5) for up to 48 h. Blood <strong>gas</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>acid</strong>–base values were analysed at 0 (baseline), 1, 2, 3, 4, 5, 6, 12, 24, 36 <str<strong>on</strong>g>and</str<strong>on</strong>g> 48 h <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>storage</str<strong>on</strong>g>. A significant decrease (p < 0:001) was found, in the pH <str<strong>on</strong>g>of</str<strong>on</strong>g> the refrigerated <strong>blood</strong> after 5 h <str<strong>on</strong>g>and</str<strong>on</strong>g> its maximum decrease wasrecorded at 48 h as 0.04 unit. There were also significant alterati<strong>on</strong>s (p < 0:001) in the <strong>blood</strong> pH <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples stored at room<str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> in the incubator after 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 3 h, respectively. The maximum mean alterati<strong>on</strong> in pCO 2 value for Group I was )0.72kPa during the assessment, while for groups II <str<strong>on</strong>g>and</str<strong>on</strong>g> III, maximum alterati<strong>on</strong>s in pCO 2 were detected as +2.68 <str<strong>on</strong>g>and</str<strong>on</strong>g> +4.16 kPa, respectively.Mean pO 2 values increased significantly (p < 0:001) for Group I after 24 h <str<strong>on</strong>g>and</str<strong>on</strong>g> for Group II after 6 h, while a significantdecrease was recorded for Group III after 24 h (p < 0:001). Base excess (BE) <str<strong>on</strong>g>and</str<strong>on</strong>g> bicarb<strong>on</strong>ate (HCO 3 ) fracti<strong>on</strong>s decreased significantlyfor all the groups during the study, compared to their baseline values. In c<strong>on</strong>clusi<strong>on</strong>, <strong>acid</strong>–base values <str<strong>on</strong>g>of</str<strong>on</strong>g> the samplesstored at 22 <str<strong>on</strong>g>and</str<strong>on</strong>g> +4 °C were found to be within normal range <str<strong>on</strong>g>and</str<strong>on</strong>g> could be used for clinical purposes for up to 12 <str<strong>on</strong>g>and</str<strong>on</strong>g> 48 h,respectively, although there were small statistically significant alterati<strong>on</strong>s.Ó 2003 Elsevier Ltd. All rights reserved.Keywords: pO 2 ; pCO 2 ; Acid base parameters; Storage <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>; Bovine1. Introducti<strong>on</strong>Various metabolic <str<strong>on</strong>g>and</str<strong>on</strong>g> respiratory diseases effect venous<strong>blood</strong> <strong>gas</strong> compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>acid</strong>–base values <str<strong>on</strong>g>of</str<strong>on</strong>g>cattle (Radostits et al., 1994; Carls<strong>on</strong>, 1996). Therefore,accurate measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> these <strong>blood</strong> values is <str<strong>on</strong>g>of</str<strong>on</strong>g> greatimportance for veterinary clinicians <str<strong>on</strong>g>and</str<strong>on</strong>g> research workers.Human (Paerregaard et al., 1987; Muller-Plathe <str<strong>on</strong>g>and</str<strong>on</strong>g>Heyduck, 1992; Beaulieu et al., 1999) <str<strong>on</strong>g>and</str<strong>on</strong>g> cattle (Poulsen<str<strong>on</strong>g>and</str<strong>on</strong>g> Surynek, 1977; Szenci <str<strong>on</strong>g>and</str<strong>on</strong>g> Besser, 1990; Szenci et al.,1991) <strong>blood</strong> <strong>gas</strong> compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>acid</strong>–base values maychange depending <strong>on</strong> the type <str<strong>on</strong>g>of</str<strong>on</strong>g> syringe used for sampling,<str<strong>on</strong>g>delay</str<strong>on</strong>g>s in measurement <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> variati<strong>on</strong>s in* Corresp<strong>on</strong>ding author. Tel.: +90-474-242-6800; fax: +90-474-242-6853.E-mail address: gurbuzgokce90@hotmail.com (G. Gokce).<str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g>. C<strong>on</strong>tinuous anaerobic <str<strong>on</strong>g>and</str<strong>on</strong>g> aerobicmetabolism between the drawing <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>blood</strong> sample <str<strong>on</strong>g>and</str<strong>on</strong>g>its analysis intervals may effect <strong>blood</strong> <strong>acid</strong>–base values inhumans (Boink et al., 1991; Liss <str<strong>on</strong>g>and</str<strong>on</strong>g> Payne, 1993), cattle(Jagos et al., 1977; Krokavec et al., 1987; Szenci <str<strong>on</strong>g>and</str<strong>on</strong>g>Besser, 1990) <str<strong>on</strong>g>and</str<strong>on</strong>g> dogs (Haskins, 1977). In vitro <strong>blood</strong>metabolism includes both aerobic metabolism with producti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> dioxide <str<strong>on</strong>g>and</str<strong>on</strong>g> anaerobic glycolysis withproducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-<strong>gas</strong>eous <strong>acid</strong>s such as lactic <strong>acid</strong>. Oxygenc<strong>on</strong>sumpti<strong>on</strong> depends <strong>on</strong> the enzymatic activity <str<strong>on</strong>g>of</str<strong>on</strong>g>the citric <strong>acid</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> cytocrome systems in leucocytes<str<strong>on</strong>g>and</str<strong>on</strong>g> reticulocytes <str<strong>on</strong>g>and</str<strong>on</strong>g> will vary with the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>these cell types. Glycolysis is the predominant metabolicprocess in mature red <strong>blood</strong> cells. These processes arelargely resp<strong>on</strong>sible for the rising <str<strong>on</strong>g>of</str<strong>on</strong>g> pCO 2 in the stored<strong>blood</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dogs (Haskins, 1977), <str<strong>on</strong>g>and</str<strong>on</strong>g> cattle (Poulsen <str<strong>on</strong>g>and</str<strong>on</strong>g>Surynek, 1977). These metabolic changes are <str<strong>on</strong>g>temperature</str<strong>on</strong>g>0034-5288/$ - see fr<strong>on</strong>t matter Ó 2003 Elsevier Ltd. All rights reserved.doi:10.1016/j.rvsc.2003.08.009


122 G. Gokce et al. / Research in Veterinary Science 76 (2004) 121–127dependent (Liss <str<strong>on</strong>g>and</str<strong>on</strong>g> Payne, 1993). Additi<strong>on</strong>ally, severeleucocytosis (Schimidt <str<strong>on</strong>g>and</str<strong>on</strong>g> Plathe, 1992; Liss <str<strong>on</strong>g>and</str<strong>on</strong>g> Payne,1993) <str<strong>on</strong>g>and</str<strong>on</strong>g> anaemia (Haskins, 1977) can lead to alterati<strong>on</strong>sin <strong>acid</strong>–base values.Since it is difficult to measure the <strong>acid</strong>–base <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>gas</strong>values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>blood</strong> under field c<strong>on</strong>diti<strong>on</strong>s in a short period<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> its necessary to store <strong>blood</strong> (Szenci <str<strong>on</strong>g>and</str<strong>on</strong>g> Besser,1990). Several authors have investigated the alterati<strong>on</strong>sin <strong>acid</strong>–base variables during the <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>blood</strong>samples from humans (Paerregaard et al., 1987; Schimidt<str<strong>on</strong>g>and</str<strong>on</strong>g> Plathe, 1992; Beaulieu et al., 1999), cattle(Jagos et al., 1977; Poulsen <str<strong>on</strong>g>and</str<strong>on</strong>g> Surynek, 1977; Krokavecet al., 1987; Szenci <str<strong>on</strong>g>and</str<strong>on</strong>g> Besser, 1990; Szenci et al.,1991, 1994) <str<strong>on</strong>g>and</str<strong>on</strong>g> dogs (Haskins, 1977). It would be usefulto determine the extent to which changes in <strong>blood</strong> <strong>acid</strong>–base values <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>gas</strong> compositi<strong>on</strong> depend <strong>on</strong> the durati<strong>on</strong><str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g>. To our knowledge, there isno precise informati<strong>on</strong> available as to whether or notclinically significant changes occur when bovine venous<strong>blood</strong> is stored at 22 or at 37 °C for l<strong>on</strong>g periods.Therefore, this study was carried out to detect thechanges in <strong>gas</strong> compositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>acid</strong>–base values inbovine venous <strong>blood</strong> samples stored at different <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s(+4, 22 <str<strong>on</strong>g>and</str<strong>on</strong>g> 37 °C) for up to 48 h.2. Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> methods2.1. Animals <str<strong>on</strong>g>and</str<strong>on</strong>g> samplingFive clinically healthy, 1–3 years old, crossbreedcattle were used in the study. Following rectal <str<strong>on</strong>g>temperature</str<strong>on</strong>g>measurement, three jugular venous <strong>blood</strong> sampleswere drawn from each animal into 10 ml plastic syringesthe dead space (0.08 ml) <str<strong>on</strong>g>of</str<strong>on</strong>g> which was filled with heparin(Liquemine Ò -Roche, Istanbul, Turkey). The needle tipswere closed with a rubber stopper after the removal <str<strong>on</strong>g>of</str<strong>on</strong>g>air bubbles from the samples. The samples were placedin a bed <str<strong>on</strong>g>of</str<strong>on</strong>g> crushed ice, taken immediately to the laboratory<str<strong>on</strong>g>and</str<strong>on</strong>g> analysed within 15 min. Following the first(0) hourÕs laboratory analysis, a total <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 <strong>blood</strong> sampleswere collected from the animals, allocated into threegroups <str<strong>on</strong>g>and</str<strong>on</strong>g> then stored, respectively, in a refrigerator setto +4 °C (Group I, n ¼ 5), at a room <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>about 22 °C (Group II, n ¼ 5) <str<strong>on</strong>g>and</str<strong>on</strong>g> in an incubator adjustedto 37 °C (Group III, n ¼ 5), for up to 48 h. Blood<strong>gas</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>acid</strong>–base values were analysed at 0, 1, 2, 3, 4, 5,6, 12, 24, 36 <str<strong>on</strong>g>and</str<strong>on</strong>g> 48 h <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> for all the groups.2.2. Acid–base <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>blood</strong> <strong>gas</strong> analysesThe measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> pH, pO 2 , pCO 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> the calculati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard Base excess (BEstd), actual base excess(BEact), st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard bicarb<strong>on</strong>ate (stHCO 3 ), actualbicarb<strong>on</strong>ate (actHCO 3 ) c<strong>on</strong>centrati<strong>on</strong>s, oxygen saturati<strong>on</strong>(O 2 SAT) <str<strong>on</strong>g>and</str<strong>on</strong>g> oxygen c<strong>on</strong>tent (O 2 CT) were automaticallyperformed <strong>on</strong> a <strong>blood</strong> <strong>gas</strong> analyser (Chir<strong>on</strong>diagnostics, Rapidlab 248, UK) prior to the study.Blood samples from the five cattle were analysed for<strong>blood</strong> <strong>gas</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>acid</strong> base values four <str<strong>on</strong>g>time</str<strong>on</strong>g>s each within 15min to determine the imprecisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters, whichemerged as follows: pH 0.01%; pCO 2 1.9%; pO 2 3.52%;ActHCO 3 1.74%; StdHCO 3 1.34%, BEact 1.98%, BEstd1.02%, O 2 SAT 0.39% <str<strong>on</strong>g>and</str<strong>on</strong>g> O 2 CT 1.8% <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g>variati<strong>on</strong> co efficiency. C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> accuracy was carriedout using a commercial accuracy c<strong>on</strong>trol soluti<strong>on</strong>(Complete, Bayer, East Walpole, USA). C<strong>on</strong>trol valueswere within the normal range as described by the manufacturer.Calculated variables were automatically performedby <strong>blood</strong> <strong>gas</strong> analyser according to equati<strong>on</strong>s 1programed to device by manufacterer (Chir<strong>on</strong> diagnostics,Rapidlab 248, UK) The values <str<strong>on</strong>g>of</str<strong>on</strong>g> pH, pCO 2 <str<strong>on</strong>g>and</str<strong>on</strong>g>pO 2 were automatically adjusted to the animalÕs rectal<str<strong>on</strong>g>temperature</str<strong>on</strong>g>s.2.3. Haematological analysesFor the initial haematological examinati<strong>on</strong>s, peripheral<strong>blood</strong> samples were collected from jugular vein intoethylenediaminetetraacetic<strong>acid</strong> (EDTA) treated tubes.These <strong>blood</strong> samples were used to manually establishtotal white <strong>blood</strong> cells (WBCs), total red <strong>blood</strong> cells(RBCs) <str<strong>on</strong>g>and</str<strong>on</strong>g> haemoglobin c<strong>on</strong>centrati<strong>on</strong> (Hb), as describedby Coles (1980).2.4. Statistical analysesThe effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> <strong>blood</strong> <strong>gas</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>acid</strong> basevalues was tested by analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> variance using SPSS forWindows 6.0. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <strong>on</strong> the repeated measurementswithin each group were also examined usingtwo-way variance analysis (Kirkwood, 1988). The datais presented as mean SE.3. ResultsThe mean initial haematological values <str<strong>on</strong>g>of</str<strong>on</strong>g> the animalsused in the study were detected as 115 0.6 g/l for Hb,5.9 0.5 10 12 cell/l for RBC <str<strong>on</strong>g>and</str<strong>on</strong>g> 6.5 1.9 10 9 cell/lfor WBC. The mean rectal <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the animalswas 38.5 0.2 °C.1 ActHCO 3 ¼ pH þ logðpCO 2 0:0307Þ 6:105; StdHCO 3 ¼ 24:5þ0:9A þðA 2:9Þ 2 ð2:65 þ 0:31ctHbÞ=1000. A ¼ BEstd 0:2½ctHbŠ½100 O 2 SATŠ=100; BEact ¼ cHCO 3 24:8 þ 1:62ðpH 7:40Þ.BEstd ¼ð1 0:014 ctHbÞ½ðcHCO 3 24:8Þ þð1:43 ctHb þ 7:7ÞðpH 7:40Þ.N 4 15N 3 þ 2045N 2 þ 2000NO 2 SAT ¼N 4 15N 3 þ 2400N 2 31100N þ 2:4 10 100:6N ¼ pO 2 þ 10 ½0:48ðpH 7:4Þ 0:0013BEstdŠ <str<strong>on</strong>g>and</str<strong>on</strong>g> BEstd is calculated assuming100% O 2 SAT; O 2 CT ¼ O 2 SAT 1:39 ctHb þ 0:00314 pO 2 .


Table 1<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <strong>on</strong> pCO 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> pO 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> bovine venous <strong>blood</strong> samples stored at +4 °C (Group I), 22 °C (Group II) <str<strong>on</strong>g>and</str<strong>on</strong>g> 37 °C (Group III) (n ¼ 5) (mean SE)Parameter Group Time (h)pCO 2(kPa)I 6.59 0.11abII 6.59 0.11fIII 6.59 0.11e0 1 2 3 4 5 6 12 24 36 48 P15.95 0.09e6.34 0.14f6.20 0.15e5.94 0.10B,e6.60 0.16A,f6.41 0.15A,e5.87 0.12B,e6.59 0.12A,f6.61 0.12A,e6.04 0.10B,de6.81 0.14A,e7.01 0.16A,d6.01 0.11C,e6.88 0.10B,e7.37 0.18A,c6.17 0.10C,cde7.34 0.12B,c9.01 0.26A,b5.86 0.11C,e7.07 0.13B,d8.88 0.29A,b6.34 0.12C,bcd8.06 0.16B,b10.75 -0.32 A,a6.40 0.12B,bc8.82 0.19A,a9.29 0.19A,b6.90 0.10B,a9.27 0.47A,a9.05 0.34A,bp < 0:001p < 0:001p < 0:001P2 p < 0:05 p < 0:01 p < 0:001 p < 0:001 p < 0:001 p < 0:001 p < 0:001 p < 0:001 p < 0:001pO 2 (kPa) I 4.26 0.10dII 4.26 0.10dIII 4.26 0.10a4.27 0.16d4.25 0.10d4.32 0.09a4.47 0.15d4.41 0.15d4.33 0.10a4.55 0.15cd4.64 0.11c4.38 0.12a4.54 0.16d4.57 0.10d4.32 0.11a4.67 0.17bcd4.56 0.11d4.31 0.12a4.77 0.16bcd4.70 0.11c4.31 0.15a4.77 0.18A,bcd4.91 0.11A,b4.08 0.15B,a5.24 0.24A,ab5.00 0.10A,a0.86 0.13B,c5.12 0.24A,abc4.98 0.12A,a1.43 0.41B,b5.42 0.24A,a5.06 0.07A,a0.69 0.04B,cP2 p < 0:01 p < 0:001 p < 0:001 p < 0:001P1, significant differences within group compared to baseline value (a,b,c,d,e,f), (p < 0:001); P2, in each column different letters (A, B, C) indicated significant between groups (p < 0:01),(p < 0:001); pCO 2 , partial pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong>dioxide (kPa); pO 2 , partial pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen (kPa).Table 2<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <strong>on</strong> O 2 SAT <str<strong>on</strong>g>and</str<strong>on</strong>g> O 2 ct <str<strong>on</strong>g>of</str<strong>on</strong>g> bovine venous <strong>blood</strong> samples stored at +4 °C (Group I), 22 °C (Group II) <str<strong>on</strong>g>and</str<strong>on</strong>g> 37 °C (Group III) (n ¼ 5) (mean SE)Parameter Group Time (h)0 1 2 3 4 5 6 12 24 36 48 P1O 2 SAT I 62.32 1.20 62.80 2.46 63.28 2.16 64.36 2.04 63.78 2.24 65.46 2.19 66.62 2.09 66.56 2.27 71.52 2.72 69.82 2.89 72.78 2.00 p < 0:05dcdcdbcd cdA,bcd A,abcd A,abcd A,ab A,abc A,aII 62.32 1.20 61.82 1.02 61.33 1.69 64.42 0.34 62.44 1.01 62.06 1.21A62.76 1.18A65.60 1.32A63.88 1.34B60.70 1.88B61.75 0.35Bp > 0:333III 62.32 1.20a61.10 1.42b60.16 1.55b59.30 1.70b57.48 1.82b55.58 2.00B,c51.82 2.30B,c45.54 2.71B,d32.22 0.41C,e8.17 3.38C,f1.85 0.05C,fP2 p < 0:01 p < 0:001 p < 0:001 p < 0:001 p < 0:001 p < 0:001O 2 CT(mmol/l)I 10.16 0.30c10.50 0.44c10.30 0.36c10.46 0.35c10.38 0.38c10.66 0.34A,cII 10.16 0.30 10.08 0.32 10.15 0.42 10.50 0.39 10.18 0.33 10.12 0.35ABIII 10.16 0.30 9.92 0.24 9.80 0.38 9.66 0.33 9.38 0.42 9.08 0.39aaaabB,b10.84 0.36A,c10.22 0.35A8.44 0.46B,c10.86 0.37A,c10.70 0.39A7.44 0.50B,c11.66 0.51A,b10.44 0.39B0.48 0.11C,d11.16 0.40A,c9.92 0.49A1.40 0.60B,d12.00 0.30A,a10.45 0.05B0.3 0.00C,dP2 p < 0:05 p < 0:01 p < 0:001 p < 0:001 p < 0:001 p < 0:001P1, significant differences within group compared to baseline value (a,b,c,d,e,f), (p < 0:05, p < 0:001); P2, in each column different letters (A, B, C) indicated significant between groups (p < 0:05,p < 0:01, p < 0:001); O 2 SAT, oxyhaemoglobin saturati<strong>on</strong> (%); O 2 CT, oxygen c<strong>on</strong>tent (mmol/l).p < 0:001p < 0:001p < 0:001p < 0:001p < 0:05p > 0:954p < 0:001G. Gokce et al. / Research in Veterinary Science 76 (2004) 121–127 123


Table 3<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <strong>on</strong> ActHCO 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> StdHCO 3 <str<strong>on</strong>g>of</str<strong>on</strong>g> bovine venous <strong>blood</strong> samples stored at +4 °C (Group I), 22 °C (Group II) <str<strong>on</strong>g>and</str<strong>on</strong>g> 37 °C (Group III) (n ¼ 5) (mean SE)Parameter Group Time (h)0 1 2 3 4 5 6 12 24 36 48 P1ActHCO 3 I 31.38 0.35 29.04 0.27 28.00 0.30 27.62 0.40 28.12 0.34 27.88 0.33 28.42 0.43 26.90 0.31 28.74 0.31 28.56 0.54 30.20 0.29 p < 0:001(mmol/l)aB,c B,cde B,de B,cd C,cde B,cd eB,cd B,cd A,bII 31.38 0.35 30.32 0.37A30.38 0.30A29.94 0.49A30.00 0.35A30.00 0.20A30.88 0.63A29.44 0.40 31.20 0.52A30.24 0.29A30.55 0.35Bp > 0:056III 31.38 0.35a28.94 0.26B,c28.88 0.32B,c28.48 0.39B,d29.02 0.37AB,c29.00 0.35B,c31.44 0.48A,a28.08 0.39e29.80 0.36B,b27.57 0.15B,e26.85 0.85B,eP2 p < 0:05 p < 0:001 p < 0:01 p < 0:01 p < 0:01 p < 0:01 p < 0:001 p < 0:01 p < 0:01StdHCO 3(mmol/l)I 29.24 0.29aII 29.24 0.29aIII 29.24 0.29a26.42 0.97cd28.28 0.27b27.46 0.31b26.40 0.26B,cd28.15 0.15A,b26.68 0.28B,c26.32 0.27B,cd27.80 0.40A,c26.18 0.28B,c26.88 0.20A,bc27.54 0.26A,c26.08 0.31B,c26.40 0.22B,cd27.46 0.15A,c26.36 0.44B,c26.80 0.36bcd27.88 0.52c26.58 0.27c25.58 0.20A,d27.74 0.38A,c23.24 0.28B,d27.00 0.24A,bc27.36 0.51A,c22.60 0.20B,e27.30 0.20A,bc25.70 0.38B,d21.67 0.23C,f27.78 0.29A,b25.55 0.75A,d21.05 0.75B,fP2 p < 0:01 p < 0:01 p < 0:01 p < 0:05 p < 0:001 p < 0:001 p < 0:001 p < 0:001P1, significant differences within group compared to baseline value (a,b,c,d,e,f), (p < 0:05, p < 0:01, p < 0:001); P2, in each column different letters (A, B, C) indicated significant between groups(p < 0:05, p < 0:01, p < 0:001); ActHCO 3 , actual bicarb<strong>on</strong>ate c<strong>on</strong>centrati<strong>on</strong>s (mmol/l); StdHCO 3 , st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard bicarb<strong>on</strong>ate c<strong>on</strong>centrati<strong>on</strong>s (mmol/l).Table 4<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <strong>on</strong> BEact <str<strong>on</strong>g>and</str<strong>on</strong>g> BEstd <str<strong>on</strong>g>of</str<strong>on</strong>g> bovine venous <strong>blood</strong> samples stored at +4 °C (Group I), 22 °C (Group II) <str<strong>on</strong>g>and</str<strong>on</strong>g> 37 °C (Group III) (n ¼ 5) (mean SE)Parameter Group Time (h)0 1 2 3 4 5 6 12 24 36 48 P1BEact I 7.04 0.39 4.74 0.32 3.58 0.35 3.2 00.42 3.64 0.36 3.32 0.35 3.86 0.49 2.24 0.31 4.06 0.31 3.76 0.57 5.24 0.34 p < 0:001(mmol/l)aB,bc B,cd B,de B,cd B,de cd A,eA,cd A,cd A,bII 7.04 0.39a5.90 0.36A,b5.83 0.22A,b5.30 0.52A,c5.14 0.35A,c5.04 0.23A,c5.70 0.70b4.16 0.45A,d5.34 0.61A,c3.58 0.46A,d3.65 0.75A,dp < 0:001III 7.04 0.39a4.44 0.22B,c4.14 0.31B,c3.46 0.43B,c3.68 0.36B,c3.30 0.33B,c4.94 0.44b0.88 0.39B,e1.64 0.39B,d)0.13 0.32B,f)0.85 0.85B,fp < 0:001p < 0:001n.sp < 0:001p < 0:001124 G. Gokce et al. / Research in Veterinary Science 76 (2004) 121–127P2 p < 0:05 p < 0:01 p < 0:05 p < 0:05 p < 0:01 p < 0:001 p < 0:001 p < 0:01 p < 0:001BEstd(mmol/l)I 6.12 0.34aII 6.12 0.34aIII 6.12 0.34a4.16 0.26B,bc5.10 0.31A,b3.86 0.16B,b3.24 0.25B,bcd4.95 0.14A,b3.42 0.30B,c2.84 0.34B,de4.50 0.45A,c2.78 0.36B,d3.16 0.31B,cd4.44 0.38A,c2.78 0.33B,d2.90 0.32B,de4.18 0.18A,c2.40 0.27B,d3.32 0.43bcd4.58 0.59c3.42 0.34c1.98 0.29B,e3.28 0.4A,d)0.30 0.30C,e3.46 0.27A,bcd4.00 0.56A,c)0.02 0.30B,e3.14 0.50A,cd2.14 0.44A,d)1.58 0.35B,f4.28 0.32A,b2.05 0.85B,d)1.95 0.85C,fp < 0:001p < 0:001p < 0:001P2 p < 0:05 p < 0:01 p < 0:05 p < 0:05 p < 0:01 p < 0:001 p < 0:001 p < 0:001 p < 0:001P1, significant differences within group compared to baseline value (a,b,c,d,e,f), (p < 0:001); P2, in each column different letters (A, B, C) indicated significant between groups (p < 0:01, p < 0:05,p < 0:001); BEact, extracelluler base excess (mmol/l); BEstd, <strong>blood</strong> base excess (mmol/l).


G. Gokce et al. / Research in Veterinary Science 76 (2004) 121–127 125Blood <strong>acid</strong>–base <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>blood</strong> <strong>gas</strong> values are summarisedin Tables 1–4 <str<strong>on</strong>g>and</str<strong>on</strong>g> Fig. 1. The pH values <str<strong>on</strong>g>of</str<strong>on</strong>g> the sampleskept at different <str<strong>on</strong>g>temperature</str<strong>on</strong>g>s tended to decrease significantlywith <str<strong>on</strong>g>time</str<strong>on</strong>g> in all groups (p < 0:001) (Fig. 1).Compared to initial values, pH values were found todecrease significantly after 5, 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2 h (p < 0:001) for thesamples stored at +4, 22 <str<strong>on</strong>g>and</str<strong>on</strong>g> 37 °C, respectively.Alterati<strong>on</strong>s in pCO 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> pO 2 values are summarisedin Table 1. The mean pCO 2 values <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples storedat +4 °C decreased significantly between 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 24 h, butlater increased again to their initial levels. Moreover, thepCO 2 values <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples kept at 22 <str<strong>on</strong>g>and</str<strong>on</strong>g> 37 °C increasedsignificantly (p < 0:001) after the fourth hour<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>tinued to increase until the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the study(Table 1). The maximum mean alterati<strong>on</strong> in pCO 2 valuefor Group I was )0.72 kPa during the assessment, whilefor groups II <str<strong>on</strong>g>and</str<strong>on</strong>g> III maximum alterati<strong>on</strong>s for pCO 2were detected as +2.68 <str<strong>on</strong>g>and</str<strong>on</strong>g> +4.16 kPa, respectively. ThepO 2 values <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples kept at +4 <str<strong>on</strong>g>and</str<strong>on</strong>g> 22 °C increasedwith <str<strong>on</strong>g>time</str<strong>on</strong>g> (p < 0:001). However, a significantdecrease was recorded after 24 h for the samples kept at37 °C(p < 0:001). Values <str<strong>on</strong>g>of</str<strong>on</strong>g> O 2 SAT in group I increased(p < 0:05) after 24 h <str<strong>on</strong>g>storage</str<strong>on</strong>g>, <strong>on</strong> the other h<str<strong>on</strong>g>and</str<strong>on</strong>g> it wassignificantly decreased in group III after 5 h (p < 0:001)<str<strong>on</strong>g>and</str<strong>on</strong>g> there were no changes in group II (p > 0:333) (Table2). The O 2 CT values were significantly increased(p < 0:05) after 24 h <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> at +4 °C, but significantlydecreased after 4 h <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> at 37 °C(p < 0:001)(Table 2). However, no significant alterati<strong>on</strong>s were observedin the O 2 CT values <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples stored at22 °C. BE <str<strong>on</strong>g>and</str<strong>on</strong>g> HCO 3 c<strong>on</strong>centrati<strong>on</strong>s decreased significantlyfor all three groups during the study compared totheir baseline values. The most prominent decrease inBE <str<strong>on</strong>g>and</str<strong>on</strong>g> HCO 3 c<strong>on</strong>centrati<strong>on</strong>s was recorded for thesamples kept at 37 °C (Tables 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4).4. Discussi<strong>on</strong>The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> <strong>blood</strong><strong>gas</strong>es <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>acid</strong>–base values in humans (Mah<strong>on</strong>ey et al.,1991; Liss <str<strong>on</strong>g>and</str<strong>on</strong>g> Payne, 1993; Beaulieu et al., 1999; Lenfant<str<strong>on</strong>g>and</str<strong>on</strong>g> Aucutt, 1965) <str<strong>on</strong>g>and</str<strong>on</strong>g> in cattle (Poulsen <str<strong>on</strong>g>and</str<strong>on</strong>g>Surynek, 1977; Szenci <str<strong>on</strong>g>and</str<strong>on</strong>g> Besser, 1990; Szenci et al.,1991) have been investigated intensively. Previousstudies have revealed that the <strong>blood</strong> <strong>gas</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>acid</strong>–basevalues <str<strong>on</strong>g>of</str<strong>on</strong>g> human <strong>blood</strong> samples usually stabilised between15 min <str<strong>on</strong>g>and</str<strong>on</strong>g> 2 h (Paerregaard et al., 1987; Mah<strong>on</strong>eyet al., 1991; Beaulieu et al., 1999). The effect <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <strong>on</strong> <strong>blood</strong> <strong>gas</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><strong>acid</strong>–base values in cattle are disputed (Poulsen <str<strong>on</strong>g>and</str<strong>on</strong>g>Surynek, 1977; Szenci <str<strong>on</strong>g>and</str<strong>on</strong>g> Besser, 1990; Szenci et al.,1991). Szenci <str<strong>on</strong>g>and</str<strong>on</strong>g> Besser (1990) reported that cattle venous<strong>blood</strong> <strong>acid</strong>–base values could be used for diagnosticpurposes up to 24 h. On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, the pHvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>blood</strong> samples taken from cattle <str<strong>on</strong>g>and</str<strong>on</strong>g> stored at+4 °C stabilised after for 5–6 h (Poulsen <str<strong>on</strong>g>and</str<strong>on</strong>g> Surynek,1977). In the present study, the pH values <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>blood</strong>samples stored at +4 °C were found to be suitable forclinical usage up to 48 h (Fig. 1). Furthermore, <str<strong>on</strong>g>storage</str<strong>on</strong>g><str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> were found to significantly alterthe <strong>blood</strong> pH <str<strong>on</strong>g>and</str<strong>on</strong>g> bicarb<strong>on</strong>ate values <str<strong>on</strong>g>of</str<strong>on</strong>g> all groups.7,45pH7,47,357,37,257,27,15aaaaababababcbcGroup IGroup IIGroup IIIA,abA,bcB,cd**A,abcB,cdC,de***A,bcB,cdeC,e***A,bcB,deC,f***A,bcdB,eC,g***A,bcdB,fC,hA.cdB,gC,hA,dB,gC,h*********7,1*********7,050 1 2 3 4 5 6 12 24 36 48Fig. 1. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <strong>on</strong> the pH <str<strong>on</strong>g>of</str<strong>on</strong>g> bovine venous <strong>blood</strong> samples stored at +4 °C (Group I), 22 °C (Group II) <str<strong>on</strong>g>and</str<strong>on</strong>g> 37 °C (group III) (n ¼ 5)(mean SE). a,b,c,d,e,f,g,h: significant differences within group compared to baseline (0 h), ***(p < 0:001). A,B,C: significant differences betweengroup **(p < 0:01), ***(p < 0:001).


126 G. Gokce et al. / Research in Veterinary Science 76 (2004) 121–127Particularly, rapid <str<strong>on</strong>g>and</str<strong>on</strong>g> significant decreases in <strong>blood</strong> pH(p < 0:001) were observed for those samples stored at37 °C, compared to the other groups (Groups I <str<strong>on</strong>g>and</str<strong>on</strong>g> II)(Fig. 1). Metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> in vitro <strong>blood</strong> samples c<strong>on</strong>tinuesduring <str<strong>on</strong>g>storage</str<strong>on</strong>g>. Oxygen c<strong>on</strong>sumpti<strong>on</strong> occurs due to anaerobicmetabolism <str<strong>on</strong>g>and</str<strong>on</strong>g> CO 2 generati<strong>on</strong> in the tricarboxylic<strong>acid</strong> cycles (TCA). Additi<strong>on</strong>ally, lactic <strong>acid</strong> isaccumulated via glycolysis depending <strong>on</strong> anaerobicmetabolism. These metabolic activities cause a decreasein <strong>blood</strong> pH (Andersen, 1961; Szenci <str<strong>on</strong>g>and</str<strong>on</strong>g> Besser, 1990;Boink et al., 1991; Liss <str<strong>on</strong>g>and</str<strong>on</strong>g> Payne, 1993). Since samplingerror was reduced to a minimal level in the present studythe decrease in <strong>blood</strong> pH <str<strong>on</strong>g>and</str<strong>on</strong>g> HCO 3 was attributed tothe formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lactic <strong>acid</strong> due to glycolysis <str<strong>on</strong>g>and</str<strong>on</strong>g> to anincrease in the level <str<strong>on</strong>g>of</str<strong>on</strong>g> pCO 2 . Moreover, the muchgreater decrease in the pH <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>blood</strong> samples stored at37 °C may be attributed to lactic <strong>acid</strong> generati<strong>on</strong> due torapid anaerobic metabolism as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the high<str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> (Liss <str<strong>on</strong>g>and</str<strong>on</strong>g> Payne, 1993).In the present study, increases in the pCO 2 values <str<strong>on</strong>g>of</str<strong>on</strong>g>the <strong>blood</strong> samples kept at 37 °C <str<strong>on</strong>g>and</str<strong>on</strong>g> at room <str<strong>on</strong>g>temperature</str<strong>on</strong>g><str<strong>on</strong>g>and</str<strong>on</strong>g> a decrease in those <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples stored at+4 °C were recorded as compared to their baselinevalues. Researchers have reported that in vitro <strong>blood</strong>pCO 2 value rises depending <strong>on</strong> aerobic <str<strong>on</strong>g>and</str<strong>on</strong>g> anaerobicmetabolism in <strong>blood</strong> cells (S<str<strong>on</strong>g>and</str<strong>on</strong>g>hagen et al., 1988;Szenci <str<strong>on</strong>g>and</str<strong>on</strong>g> Besser, 1990; Beaulieu et al., 1999). UnlikeO 2 ,CO 2 does not influx through plastic syringe walls(Mah<strong>on</strong>ey et al., 1991), <str<strong>on</strong>g>and</str<strong>on</strong>g> therefore the significantrises <str<strong>on</strong>g>of</str<strong>on</strong>g> pCO 2 in groups II <str<strong>on</strong>g>and</str<strong>on</strong>g> III may be the result <str<strong>on</strong>g>of</str<strong>on</strong>g>high cell metabolic activities at +22 <str<strong>on</strong>g>and</str<strong>on</strong>g> 37 °C (Foster<str<strong>on</strong>g>and</str<strong>on</strong>g> Terry, 1967). Moreover the most prominent increasein pCO 2 was observed in the sample stored at37 °C. The significant decrease in the pCO 2 values <str<strong>on</strong>g>of</str<strong>on</strong>g>the samples stored at +4 °C may be due to the <strong>blood</strong>being transferred to a lower than body <str<strong>on</strong>g>temperature</str<strong>on</strong>g>medium (Mah<strong>on</strong>ey et al., 1991).In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>blood</strong> samples stored over <str<strong>on</strong>g>time</str<strong>on</strong>g>, thetype <str<strong>on</strong>g>of</str<strong>on</strong>g> syringe used for sampling (Mah<strong>on</strong>ey et al., 1991;Beaulieu et al., 1999) <str<strong>on</strong>g>and</str<strong>on</strong>g> the aerobic metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g>leucocytes (Poulsen <str<strong>on</strong>g>and</str<strong>on</strong>g> Surynek, 1977; Haskins, 1977)in the <strong>blood</strong> have been determined to influence alterati<strong>on</strong>sin the levels <str<strong>on</strong>g>of</str<strong>on</strong>g> pO 2 . It has been revealed that pO 2in plastic syringes increases by the diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygenthrough the plastic wall <str<strong>on</strong>g>of</str<strong>on</strong>g> the syringe (Paerregaard etal., 1987; Beaulieu et al., 1999). Leucocytes are resp<strong>on</strong>siblefor most <str<strong>on</strong>g>of</str<strong>on</strong>g> the aerobic metabolism in the <strong>blood</strong>(Liss <str<strong>on</strong>g>and</str<strong>on</strong>g> Payne, 1993) <str<strong>on</strong>g>and</str<strong>on</strong>g> cause O 2 c<strong>on</strong>sumpti<strong>on</strong> in<strong>blood</strong> samples stored under in vitro anaerobic c<strong>on</strong>diti<strong>on</strong>s(S<str<strong>on</strong>g>and</str<strong>on</strong>g>hagen et al., 1988; Szenci <str<strong>on</strong>g>and</str<strong>on</strong>g> Besser, 1990).A decrease in pO 2 values has been found in <strong>blood</strong>samples with high leucocyte counts (Schimidt <str<strong>on</strong>g>and</str<strong>on</strong>g>Plathe, 1992) <str<strong>on</strong>g>and</str<strong>on</strong>g> in samples with anaemia (Haskins,1977). Since the initial mean leucocyte <str<strong>on</strong>g>and</str<strong>on</strong>g> erythrocytenumbers <str<strong>on</strong>g>and</str<strong>on</strong>g> haemoglobin c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>blood</strong>samples were within normal range in the present study,the significant decrease (p < 0:001) in pO 2 level found inthe <strong>blood</strong> samples stored at 37 °C after 24 h may beattributed to an increase in aerobic metabolism <str<strong>on</strong>g>and</str<strong>on</strong>g> O 2c<strong>on</strong>sumpti<strong>on</strong> by leucocytes due to the high <str<strong>on</strong>g>storage</str<strong>on</strong>g><str<strong>on</strong>g>temperature</str<strong>on</strong>g> (Liss <str<strong>on</strong>g>and</str<strong>on</strong>g> Payne, 1993). A significant increasein the level <str<strong>on</strong>g>of</str<strong>on</strong>g> pO 2 was detected after 6 h in thesamples stored at room <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> in the refrigeratedsamples. This may have been due to the release <str<strong>on</strong>g>of</str<strong>on</strong>g>O 2 from haemoglobin as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the reducti<strong>on</strong> in<strong>blood</strong> pH (Szenci <str<strong>on</strong>g>and</str<strong>on</strong>g> Besser, 1990) <str<strong>on</strong>g>and</str<strong>on</strong>g> to the diffusi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> O 2 through the plastic syringe wall (Beaulieu et al.,1999; Mah<strong>on</strong>ey et al., 1991) although oxygen c<strong>on</strong>sumpti<strong>on</strong>occurs during aerobic cell metabolism.Moreover, this finding reflects the fact that aerobicmetabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> leucocyte was lower at room <str<strong>on</strong>g>temperature</str<strong>on</strong>g><str<strong>on</strong>g>and</str<strong>on</strong>g> under +4 °C in vitro c<strong>on</strong>diti<strong>on</strong>s than at 37 °C.The SAT O 2 value also decreased together with pH inthe <strong>blood</strong> samples kept at 37 °C. This can be explainedby the shifting <str<strong>on</strong>g>of</str<strong>on</strong>g> the haemoglobin–O 2 dissociati<strong>on</strong>curve to the right (Bohr effect) due to decrease in <strong>blood</strong>pH (Szenci <str<strong>on</strong>g>and</str<strong>on</strong>g> Besser, 1990; Carls<strong>on</strong>, 1996). The O 2 CT<str<strong>on</strong>g>and</str<strong>on</strong>g> O 2 SAT value displayed the least alterati<strong>on</strong> withinthe parameters for the <strong>blood</strong> samples kept at room<str<strong>on</strong>g>temperature</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> at +4 °C, which is c<strong>on</strong>sisted the findings<str<strong>on</strong>g>of</str<strong>on</strong>g> Beaulieu et al. (1999) in a study carried out <strong>on</strong>human <strong>blood</strong>. Therefore, we suggest that the O 2 CT <str<strong>on</strong>g>and</str<strong>on</strong>g>O 2 SAT value should be taken into c<strong>on</strong>siderati<strong>on</strong> for<strong>blood</strong> samples stored at room <str<strong>on</strong>g>temperature</str<strong>on</strong>g> when assessing<strong>blood</strong> O 2 .In c<strong>on</strong>clusi<strong>on</strong>, the <strong>acid</strong>–base values <str<strong>on</strong>g>of</str<strong>on</strong>g> the samplesstored at 22 <str<strong>on</strong>g>and</str<strong>on</strong>g> 37 °C changed significantly whencompared to the samples stored at +4 °C. However, the<strong>acid</strong>–base values <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples stored at 22 <str<strong>on</strong>g>and</str<strong>on</strong>g> +4 °Cwere within normal range <str<strong>on</strong>g>and</str<strong>on</strong>g> could be used for clinicalpurposes for up to 12 <str<strong>on</strong>g>and</str<strong>on</strong>g> 48 h, respectively.ReferencesAndersen, O.S., 1961. Sampling <str<strong>on</strong>g>and</str<strong>on</strong>g> storing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>blood</strong> for determinati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>acid</strong>–base status. Sc<str<strong>on</strong>g>and</str<strong>on</strong>g>inavian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Clinical LaboratoryInvestigati<strong>on</strong> 13, 196–204.Beaulieu, M., Lapointe, Y., Vinet, B., 1999. Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> pO 2 , pCO 2 <str<strong>on</strong>g>and</str<strong>on</strong>g>pH in fresh <strong>blood</strong> samples stored in a plastic syringe with lowheparin in relati<strong>on</strong> to various <strong>blood</strong>-<strong>gas</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> hematologicalparameters. Clinical Biochemistry 32, 101–107.Boink, A.B.T.J., Buckley, B.M., Christiansen, T.F., C<strong>on</strong>ingt<strong>on</strong>, A.K.,Maas, A.H.J., Muller-Plathe, O., Andersen, O.S., 1991. Recomendati<strong>on</strong><strong>on</strong> sampling, transport <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> for the determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>ized calcium in whole <strong>blood</strong>, plasma <str<strong>on</strong>g>and</str<strong>on</strong>g>serum. Annual Biological Clinics 49, 234–438.Carls<strong>on</strong>, G.P., 1996. Clinical chemistry tests (<strong>acid</strong>–base imbalance). In:Smith, B.P. (Ed.), Large Animal Internal Medicine. Mosby-YearBook, L<strong>on</strong>d<strong>on</strong>, pp. 456–460.Coles, E.H., 1980. Veterinary Clinical Pathology. third ed. L<strong>on</strong>d<strong>on</strong>,pp. 15–122.Foster, J.M., Terry, M.L., 1967. Studies <strong>on</strong> the energy metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g>human leucocytes. I. Oxidative phosphorylati<strong>on</strong> by human leucocytemitoch<strong>on</strong>dria. Blood 30, 168–175.


G. Gokce et al. / Research in Veterinary Science 76 (2004) 121–127 127Haskins, S.C., 1977. Sampling <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>blood</strong> for pH <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>blood</strong><strong>gas</strong> analysis. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> American Veterinary Medical Associati<strong>on</strong>170, 429–433.Jagos, P., Bouda, J., Priklylova, J., 1977. Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>acid</strong>–basechanges in the venous <strong>blood</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cattle in vitro with <str<strong>on</strong>g>time</str<strong>on</strong>g>. VeterinaryMedicine (Prague) 22, 257–262.Kirkwood, B.R., 1988. Essentials <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Statistics. BlackwellScientific Publicati<strong>on</strong>s, Oxford, USA.Krokavec, M., S_ımo, K., Mart_ınko, A., 1987. Changes in the <strong>acid</strong>–baseequlibrium in cattle in relati<strong>on</strong> to the <str<strong>on</strong>g>time</str<strong>on</strong>g> intervals betweensampling <str<strong>on</strong>g>and</str<strong>on</strong>g> study under field c<strong>on</strong>diti<strong>on</strong>s. Veterinary Medicine(Praha) 32 (3), 145–150.Lenfant, C., Aucutt, C., 1965. Oxygen uptake <str<strong>on</strong>g>and</str<strong>on</strong>g> change incarb<strong>on</strong>dioxide tensi<strong>on</strong> in human <strong>blood</strong> stored at 37 °C. JournalApplied Phsiology 20, 503–508.Liss, H., Payne, C.P., 1993. Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>blood</strong> <strong>gas</strong>es in ice <str<strong>on</strong>g>and</str<strong>on</strong>g> at room<str<strong>on</strong>g>temperature</str<strong>on</strong>g>. Chest 103, 1120–1122.Mah<strong>on</strong>ey, J.J., Harvey, J.A., W<strong>on</strong>g, R.J., Kessel, L.V., 1991. Changesin oxygen measurements when whole <strong>blood</strong> is stored in iced plasticor glass syringes. Clinical Chemistry 37, 1244–1248.Muller-Plathe, O., Heyduck, S., 1992. Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>blood</strong> <strong>gas</strong>es,electrolytes <str<strong>on</strong>g>and</str<strong>on</strong>g> haemoglobin in heparinized whole <strong>blood</strong> samples:Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the type <str<strong>on</strong>g>of</str<strong>on</strong>g> syringe. European Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> ClinicalChemistry <str<strong>on</strong>g>and</str<strong>on</strong>g> Clinical Biochemistry 30, 349–355.Paerregaard, A., Nickelsen, C.N.A., Br<str<strong>on</strong>g>and</str<strong>on</strong>g>i, L., Andersen, G.E., 1987.The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> sampling site <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> up<strong>on</strong> umbilical cord <strong>blood</strong><strong>acid</strong>–base status <str<strong>on</strong>g>and</str<strong>on</strong>g> pO 2 in the newborn infant. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>Perinatal Medicine 15, 559–563.Poulsen, J.S.D., Surynek, J., 1977. Acid–base status <str<strong>on</strong>g>of</str<strong>on</strong>g> cattle <strong>blood</strong>.Nordisk Veterinaer Medicin 29, 271–283.Radostits, O.M., Blood, D.C., Gay, C.G., 1994. Veterinary Medicine,eighth ed. Bailliere Tindall, L<strong>on</strong>d<strong>on</strong>. pp. 66–86.S<str<strong>on</strong>g>and</str<strong>on</strong>g>hagen, C.F.H., Verdier, C.H., Erikss<strong>on</strong>, L., 1988. Distrubuti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>blood</strong> <strong>gas</strong>es, glucose <str<strong>on</strong>g>and</str<strong>on</strong>g> lactate within stored <strong>blood</strong> units. VoxSanguinis 55, 139–142.Schimidt, C., Plathe, O.M., 1992. Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> pO 2 , pCO 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> pH inheparinized whole <strong>blood</strong> samples: Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g>with regard to leucocyte count <str<strong>on</strong>g>and</str<strong>on</strong>g> syringe material. EuropeanJournal <str<strong>on</strong>g>of</str<strong>on</strong>g> Clinical Chemistry <str<strong>on</strong>g>and</str<strong>on</strong>g> Clinical Biochemistry 30,767–773.Szenci, O., Besser, T., 1990. Changes in <strong>blood</strong> <strong>gas</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>acid</strong>–base values<str<strong>on</strong>g>of</str<strong>on</strong>g> bovine venous <strong>blood</strong> during <str<strong>on</strong>g>storage</str<strong>on</strong>g>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> AmericanVeterinary Medical Associati<strong>on</strong> 197, 471–474.Szenci, O., Brydl, E., Bajcsy, C.A., 1991. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>storage</str<strong>on</strong>g> <strong>on</strong>measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>ized calcium <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>acid</strong>–base variables in equine,bovine, ovine, <str<strong>on</strong>g>and</str<strong>on</strong>g> canine venous <strong>blood</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> AmericanVeterinary Medical Associati<strong>on</strong> 199, 1167–1169.Szenci, O., Nemeth, F., Stollar, Z., Brydl, E., 1994. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>storage</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>temperature</str<strong>on</strong>g> <strong>on</strong> i<strong>on</strong>ized calcium c<strong>on</strong>centrati<strong>on</strong>in bovine <str<strong>on</strong>g>and</str<strong>on</strong>g> ovine <strong>blood</strong>, plasma <str<strong>on</strong>g>and</str<strong>on</strong>g> serum. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>American Veterinary Medical Associati<strong>on</strong> 204 (8), 1242–1244.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!