12.07.2015 Views

Agricultural drainage water management in arid and semi ... - FAO.org

Agricultural drainage water management in arid and semi ... - FAO.org

Agricultural drainage water management in arid and semi ... - FAO.org

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

61 <strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas<strong>FAO</strong><strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong><strong>management</strong> <strong>in</strong> <strong>arid</strong><strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas61<strong>FAO</strong>IRRIGATIONAND DRAINAGEPAPERISSN 0254-5284


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong><strong>management</strong> <strong>in</strong> <strong>arid</strong><strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas<strong>FAO</strong>IRRIGATIONAND DRAINAGEPAPER61byKenneth K. TanjiHydrology ProgramDepartment of L<strong>and</strong>, Air <strong>and</strong> Water ResourcesUniversity of CaliforniaDavis, United States of AmericaNeeltje C. KielenWater Resources, Development <strong>and</strong> Management Service<strong>FAO</strong> L<strong>and</strong> <strong>and</strong> Water Development DivisionFOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONSRome, 2002


The designations employed <strong>and</strong> the presentation of the material <strong>in</strong>this <strong>in</strong>formation product do not imply the expression of any op<strong>in</strong>ionwhatsoever on the part of the Food <strong>and</strong> Agriculture Organizationof the United Nations concern<strong>in</strong>g the legal status of any country,territory, city or area or of its authorities, or concern<strong>in</strong>g thedelimitation of its frontiers or boundaries.ISBN 92-5-104839-8All rights reserved. Reproduction <strong>and</strong> dissem<strong>in</strong>ation of material <strong>in</strong> this<strong>in</strong>formation product for educational or other non-commercial purposes areauthorized without any prior written permission from the copyright holdersprovided the source is fully acknowledged. Reproduction of material <strong>in</strong> this<strong>in</strong>formation product for resale or other commercial purposes is prohibited withoutwritten permission of the copyright holders. Applications for such permissionshould be addressed to the Chief, Publish<strong>in</strong>g Management Service, InformationDivision, <strong>FAO</strong>, Viale delle Terme di Caracalla, 00100 Rome, Italy or by e-mailto copyright@fao.<strong>org</strong>© <strong>FAO</strong> 2002


iiiForewordIrrigated agriculture has made a significant contribution towards world food security. However,<strong>water</strong> resources for agriculture are often overused <strong>and</strong> misused. The result has been large-scale<strong>water</strong>logg<strong>in</strong>g <strong>and</strong> sal<strong>in</strong>ity. In addition, downstream users have found themselves deprived ofsufficient <strong>water</strong>, <strong>and</strong> there has been much pollution of fresh<strong>water</strong> resources with contam<strong>in</strong>atedirrigation return flows <strong>and</strong> deep percolation losses. Irrigated agriculture needs to exp<strong>and</strong> <strong>in</strong>order to produce sufficient food for the world’s grow<strong>in</strong>g population. The productivity of <strong>water</strong>use <strong>in</strong> agriculture needs to <strong>in</strong>crease <strong>in</strong> order both to avoid exacerbat<strong>in</strong>g the <strong>water</strong> crisis <strong>and</strong> toprevent considerable food shortages. As irrigated agriculture requires <strong>dra<strong>in</strong>age</strong>, a major challengeis to manage agricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>in</strong> a susta<strong>in</strong>able manner.Up until about 20 years ago, there were few or <strong>in</strong>deed no constra<strong>in</strong>ts on the disposal of <strong>dra<strong>in</strong>age</strong><strong>water</strong> from irrigated l<strong>and</strong>s. One of the pr<strong>in</strong>ciple reasons for <strong>in</strong>creased constra<strong>in</strong>ts on <strong>dra<strong>in</strong>age</strong>disposal is to protect the quality of receiv<strong>in</strong>g <strong>water</strong>s for downstream uses <strong>and</strong> to protect theregional environment <strong>and</strong> ecology. Many developed <strong>and</strong> develop<strong>in</strong>g countries practise <strong>dra<strong>in</strong>age</strong><strong>water</strong> <strong>management</strong>. This study has brought together case studies on agricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong><strong>management</strong> from the United States of America, Central Asia, Egypt, India <strong>and</strong> Pakistan <strong>in</strong>order to learn from their experiences <strong>and</strong> to enable the formulation of guidel<strong>in</strong>es on <strong>dra<strong>in</strong>age</strong><strong>water</strong> <strong>management</strong>. From the case studies, it was possible to dist<strong>in</strong>guish four broad groups of<strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> options: <strong>water</strong> conservation, <strong>dra<strong>in</strong>age</strong> <strong>water</strong> reuse, <strong>dra<strong>in</strong>age</strong> <strong>water</strong>disposal <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> treatment. Each of these options has certa<strong>in</strong> potential impacts onthe hydrology <strong>and</strong> <strong>water</strong> quality <strong>in</strong> an area. Interactions <strong>and</strong> trade-offs occur when more thanone option is applied.Planners, decision-makers <strong>and</strong> eng<strong>in</strong>eers need a framework <strong>in</strong> order to help them to select fromamong the various options <strong>and</strong> to evaluate their impact <strong>and</strong> contribution towards developmentgoals. Moreover, technical expertise <strong>and</strong> guidel<strong>in</strong>es on each of the options are required toenable improved assessment of the impact of the different options <strong>and</strong> to facilitate the preparationof <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> plans <strong>and</strong> designs. The <strong>in</strong>tention of this publication is to provideguidel<strong>in</strong>es to susta<strong>in</strong> irrigated agriculture <strong>and</strong> at the same time to protect <strong>water</strong> resources fromthe negative impacts of agricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong> disposal.This publication consists of two parts. Part I deals with the underly<strong>in</strong>g concepts relat<strong>in</strong>g to<strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong>. It discusses the adequate identification <strong>and</strong> def<strong>in</strong>ition of the problemfor the selection <strong>and</strong> application of a comb<strong>in</strong>ation of <strong>management</strong> options. It then presentstechnical considerations <strong>and</strong> details on the four groups of <strong>dra<strong>in</strong>age</strong> <strong>management</strong> options. Part IIconta<strong>in</strong>s the summaries of the case studies from the United States of America, Central Asia,Egypt, India <strong>and</strong> Pakistan. These case studies represent a cross-section of approaches toagricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong>. The factors affect<strong>in</strong>g <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong><strong>in</strong>clude geomorphology, hydrology, climate conditions <strong>and</strong> the socio-economic <strong>and</strong> <strong>in</strong>stitutionalenvironment. The full texts of the case studies can be found on the attached CD-ROM.


ivAcknowledgementsThe authors are obliged to C.A. Madramootoo (Professor <strong>and</strong> Director, Brace Centre for WaterResources Management, McGill University, Canada), Dr J.W. van Hoorn (retired fromWagen<strong>in</strong>gen <strong>Agricultural</strong> University, The Netherl<strong>and</strong>s), Dr J. Williamson (Act<strong>in</strong>g Chief, CSIROL<strong>and</strong> <strong>and</strong> Water, Australia) <strong>and</strong> Dr E. Christen (Irrigation <strong>and</strong> Dra<strong>in</strong>age Research Eng<strong>in</strong>eer,CSIRO L<strong>and</strong> <strong>and</strong> Water, Australia) for their critical <strong>and</strong> constructive comments. Theircontributions have improved the quality of this publication substantially.The authors would also like to express their gratitude for the support <strong>and</strong> cont<strong>in</strong>uous feedbackprovided by Dr J. Martínez Beltrán, Technical Officer, Water Resources, Development <strong>and</strong>Management Service, <strong>FAO</strong>, dur<strong>in</strong>g the preparation of this Irrigation <strong>and</strong> Dra<strong>in</strong>age Paper.Dr Martínez Beltrán conceived this publication <strong>and</strong> made a major contribution towards theoutl<strong>in</strong>e.S<strong>in</strong>cere thanks are offered to the follow<strong>in</strong>g authors <strong>and</strong> <strong>in</strong>stitutions for direct reproduction ofmaterials <strong>in</strong> the annexes: Dr E. Maas <strong>and</strong> Dr S. Grattan for the crop salt tolerance data; theSusta<strong>in</strong>able Rural Development Program of the Department of Agriculture (former AgricultureWestern Australia) for the sal<strong>in</strong>ity rat<strong>in</strong>g <strong>and</strong> species of salt tolerant trees <strong>and</strong> shrubs; the TaskForce on Water Quality Guidel<strong>in</strong>es <strong>and</strong> P.Q. Guyer for the <strong>water</strong> quality guidel<strong>in</strong>es for livestock<strong>and</strong> poultry; Alterra for the data set for soil hydraulic properties; <strong>and</strong> the WHO for the dr<strong>in</strong>k<strong>in</strong>g<strong>water</strong>quality guidel<strong>in</strong>es.In addition, the generous contributions from our colleagues, U. Barg, Fishery Resources Officer(Aquaculture), Fisheries Department, <strong>FAO</strong>, <strong>and</strong> S. Smits, M.Sc. student at Wagen<strong>in</strong>genUniversity, The Netherl<strong>and</strong>s, <strong>and</strong> volunteer <strong>in</strong> the Water Resources, Development <strong>and</strong>Management Service, <strong>FAO</strong>, are acknowledged.For the case study on California, the author acknowledges his colleagues Dr M. Alemi <strong>and</strong>Professor J. Letey <strong>and</strong> Professor W. Wallender. For the case study on Egypt, the author isgrateful for the <strong>in</strong>formation <strong>and</strong> materials provided by Dr S.A. Gawad <strong>and</strong> her staff of theDra<strong>in</strong>age Research Institute, Egypt.Thanks are also expressed to J. Plummer for edit<strong>in</strong>g the document, W. Prante for prepar<strong>in</strong>g theCD-ROM <strong>and</strong> L. Chalk for formatt<strong>in</strong>g text, figures <strong>and</strong> tables <strong>in</strong>to the f<strong>in</strong>al camera-ready form.


vContentsPageFOREWORDiiiACKNOWLEDGEMENTSivLIST OF BOXESixLIST OF FIGURESixLIST OF TABLESxiLIST OF ACRONYMS AND SYMBOLSxiiPART I. FRAMEWORK AND TECHNICAL GUIDELINES 11. INTRODUCTION 3Need for <strong>dra<strong>in</strong>age</strong> of irrigated l<strong>and</strong>s 3Need for <strong>water</strong> conservation <strong>and</strong> reuse 5Towards <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> 5Scope of this publication 62. DEFINING THE PROBLEM AND SEEKING SOLUTIONS 9System approach <strong>in</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> 9Def<strong>in</strong><strong>in</strong>g the problem 11Seek<strong>in</strong>g solutions 13Spatial issues 13The use of models <strong>in</strong> recommend<strong>in</strong>g solutions <strong>and</strong> anticipated results 15Model characteristics 15Regional models 16Rootzone hydrosal<strong>in</strong>ity models 16Pr<strong>in</strong>ciples of rootzone hydrosal<strong>in</strong>ity models 16Salt balance <strong>in</strong> the rootzone 183. FRAMEWORK TO SELECTING, EVALUATING AND ASSESSING THE IMPACT OF DRAINAGE WATERMANAGEMENT MEASURES 21Def<strong>in</strong>ition of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>and</strong> tasks <strong>in</strong>volved 21Driv<strong>in</strong>g forces beh<strong>in</strong>d <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> 21Physical <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> options 22Conservation measures 22Reuse measures 23Treatment measures 24Disposal measures 25Non-physical <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> options 27Emission levels 27Ambient levels 28Sal<strong>in</strong>ity permits 28Charges on <strong>in</strong>puts 28Subsidies on practices 29Charg<strong>in</strong>g/subsidiz<strong>in</strong>g outputs 29Comb<strong>in</strong>ed measures 30


viPageSelection <strong>and</strong> evaluation of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> options 30Benchmark<strong>in</strong>g 314. WATER QUALITY CONCERNS IN DRAINAGE WATER MANAGEMENT 33Introduction 33Dra<strong>in</strong>age <strong>water</strong> quality 33Factors affect<strong>in</strong>g <strong>dra<strong>in</strong>age</strong> <strong>water</strong> quality 34Geology <strong>and</strong> hydrology 34Soils 35Climate 37Cropp<strong>in</strong>g patterns 37Use of agricultural <strong>in</strong>puts 37Irrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>management</strong> 38Dra<strong>in</strong>age techniques <strong>and</strong> design 38Characteristics of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> quality 39Salts <strong>and</strong> major ions 39Toxic trace elements 40Agropollutants 40Sediments 41Water quality concerns for <strong>water</strong> uses 41Crop production 41Liv<strong>in</strong>g aquatic resources, fisheries <strong>and</strong> aquaculture 42Livestock production 43Concerns for human health 445. WATER CONSERVATION 45Need for <strong>water</strong> conservation measures 45Hydrologic balance 46Irrigation performance <strong>in</strong>dicators 47Source reduction through sound irrigation <strong>management</strong> 50Reasonable losses 50Management options for on-farm source reduction 54Options for source reduction at scheme level 55Impact of source reduction on long-term rootzone sal<strong>in</strong>ity 56Ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a favourable salt balance under source reduction 57Calculation example impact of source reduction on sal<strong>in</strong>ity of rootzone 58Impact of source reduction on salt storage with<strong>in</strong> the cropp<strong>in</strong>g season 60Calculation example of impact of source reduction on salt balance ofthe rootzone 61Impact of source reduction on sal<strong>in</strong>ity of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> 62Calculation example of source reduction <strong>and</strong> the impact on <strong>dra<strong>in</strong>age</strong><strong>water</strong> generation <strong>and</strong> sal<strong>in</strong>ity 63Shallow <strong>water</strong> table <strong>management</strong> 63Controlled subsurface <strong>dra<strong>in</strong>age</strong> 64Considerations <strong>in</strong> shallow <strong>water</strong> table <strong>management</strong> 65Capillary rise 65Ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a favourable salt balance under shallow <strong>water</strong> table<strong>management</strong> 66


viiPageCalculation example of the impact of shallow <strong>water</strong> table <strong>management</strong>on sal<strong>in</strong>ity buildup <strong>and</strong> leach<strong>in</strong>g requirement 67L<strong>and</strong> retirement 69Hydrologic, soil <strong>and</strong> biologic considerations 69Selection of l<strong>and</strong>s to retire 70Management of retired l<strong>and</strong>s 716. DRAINAGE WATER REUSE 73Introduction 73Relevant factors 73Considerations on the extent of reuse 74Ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g favourable salt <strong>and</strong> ion balances <strong>and</strong> soil conditions 74Ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a favourable salt balance 74Ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g favourable soil structure 75Ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g favourable levels of ions <strong>and</strong> trace elements 79Reuse <strong>in</strong> conventional crop production 81Direct use 81Conjunctive use – blend<strong>in</strong>g 82Conjunctive use – cyclic use 83Crop substitution <strong>and</strong> reuse for irrigation of salt tolerant crops 85Crop substitution 85Reuse for irrigation of salt tolerant plants <strong>and</strong> halophytes 85Reuse <strong>in</strong> IFDM systems 87Reclamation of salt-affected l<strong>and</strong> 897. DRAINAGE WATER DISPOSAL 91Requirements for safe disposal 91Disposal conditions 92Disposal <strong>in</strong> fresh<strong>water</strong> bodies 93Disposal <strong>in</strong>to evaporation ponds 95Evaporation ponds <strong>in</strong> Pakistan 96Evaporation ponds <strong>in</strong> California, the United States of America 96Evaporation ponds <strong>in</strong> Australia 97Design considerations for evaporation ponds 98Injection <strong>in</strong>to deep aquifers 998. TREATMENT OF DRAINAGE EFFLUENT 101Need for <strong>dra<strong>in</strong>age</strong> <strong>water</strong> treatment 101Treatment options 101Desal<strong>in</strong>ization 102Trace element treatment 103Flow-through artificial wetl<strong>and</strong>s 104Evaluation <strong>and</strong> selection of treatment options 107PART II – SUMMARIES OF CASE STUDIES FROM CENTRAL ASIA, EGYPT, INDIA, PAKISTANAND THE UNITED STATES OF AMERICA 109Summaries of case studies 111REFERENCES 121


viiiPageANNEXES 1331. CROP SALT TOLERANCE DATA 1352. WATER QUALITY GUIDELINES FOR LIVESTOCK AND POULTRY PRODUCTION FORPARAMETERS OF CONCERN IN AGRICULTURAL DRAINAGE WATER 1613. DRINKING-WATER QUALITY GUIDELINES FOR PARAMETERS OF CONCERN INAGRICULTURAL DRAINAGE WATER 1634. IMPACT OF IRRIGATION AND DRAINAGE MANAGEMENT ON WATER AND SALTBALANCE IN THE ABSENCE OF CAPILLARY RISE 1675. CAPILLARY RISE AND DATA SET FOR SOIL HYDRAULIC FUNCTIONS 1756. TREES AND SHRUBS FOR SALTLAND, SALINITY RATINGS AND SPECIES LISTS 183CASE STUDIES AVAILABLE ON CD-ROMDRAINAGE WATER MANAGEMENT IN THE ARAL SEA BASINDRAINAGE WATER REUSE AND DISPOSAL: A CASE STUDY FROM THE NILE DELTA, EGYPTDRAINAGE WATER REUSE AND DISPOSAL IN NORTHWEST INDIADRAINAGE WATER REUSE AND DISPOSAL: A CASE STUDY ON PAKISTANDRAINAGE WATER REUSE AND DISPOSAL: A CASE STUDY ON THE WESTERN SIDE OF THE SAN JOAQUÍNVALLEY, CALIFORNIA, THE UNITED STATES OF AMERICASystem requirements to use the CD-ROM:• PC with Intel Pentium ® processor <strong>and</strong> Microsoft ® W<strong>in</strong>dows 95 / 98 / 2000 / Me / NT / XPor• Apple Mac<strong>in</strong>tosh with PowerPC ® processor <strong>and</strong> Mac OS ® 8.6 / 9.0.4 / 9.1 / X• 64 MB of RAM• 24 MB of available hard-disk space• Internet browser such as Netscape ® Navigator or Microsoft ® Internet Explorer• Adobe Acrobat ® Reader (<strong>in</strong>cluded on CD-ROM)


ixList of boxesPage1. Need for conservation of <strong>water</strong> quality – Example from the Aral Sea Bas<strong>in</strong> 52. Need to <strong>in</strong>crease <strong>water</strong> use efficiency as result of <strong>water</strong> scarcity – An examplefrom Egypt 463. Non-beneficial unreasonable uses 504. Contribution of capillary rise <strong>in</strong> India 655. Capillary flux <strong>in</strong> the Dra<strong>in</strong>age Pilot Study Area 666. Adjusted sodium adsorption ratio 767. Conversion from meq/litre calcium to pure gypsum 788. The use of Sesbania as a green manure to improve soil chemical <strong>and</strong> physicalproperties 799. Direct reuse <strong>in</strong> Egypt <strong>and</strong> Pakistan 8210. Maximum reuse <strong>and</strong> m<strong>in</strong>imum disposal of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>in</strong> the Nile Delta,Egypt, based on ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g favourable salt balance 9111. M<strong>in</strong>imum <strong>dra<strong>in</strong>age</strong> discharge requirements for ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the fresh<strong>water</strong>functions of the Northern Lakes, Egypt 9212. Basics of an algal-bacterial system for the removal of selenium 10413. M<strong>in</strong>i-plot plant for the removal of heavy metals 104List of figuresPage1. Rise of the ground<strong>water</strong> table <strong>in</strong> Punjab, Pakistan 32. Example of a <strong>water</strong> <strong>management</strong> system with<strong>in</strong> an irrigation district 103. Example of a simplified holistic picture of the on-farm <strong>water</strong> <strong>management</strong>sub-system 104. The seven stages <strong>in</strong> the soft system methodology 115. Topography <strong>and</strong> boundaries of the Panoche Water District 146. Annual recharge to ground<strong>water</strong> <strong>in</strong> Panoche Water District 147. Annual amount of Se removed by the dra<strong>in</strong>s 158. Major chemical reactions <strong>in</strong> salt-affected soils 189. Physical <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> options <strong>and</strong> how they relate to one another 2210. Options for disposal to surface <strong>water</strong> bodies 2611. Flowchart of process for select<strong>in</strong>g an optimal set of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong>options 30


xPage12. Cross-section of the San Joaqu<strong>in</strong> Valley 3413. Freebody diagram of <strong>water</strong> flows <strong>in</strong> the San Joaqu<strong>in</strong> Valley 3514. Water flow over <strong>and</strong> through the soil 3615. Hydrologic balance <strong>in</strong> the vadose <strong>and</strong> saturated zones, <strong>and</strong> <strong>in</strong> a comb<strong>in</strong>ation ofvadose <strong>and</strong> saturated zones 4616. Consumptive versus non-consumptive <strong>and</strong> beneficial versus non-beneficial uses 4817. Beneficial <strong>and</strong> non-beneficial <strong>and</strong> reasonable <strong>and</strong> unreasonable uses 4818. Losses captured by subsurface field dra<strong>in</strong>s 5019. Deep percolation losses 5120. Management losses <strong>in</strong> relation to the size of the irrigation scheme 5321. Distribution losses <strong>in</strong> relation to farm size <strong>and</strong> soil type 5322. Infiltration losses <strong>in</strong> furrow irrigation 5523. Assessment of leach<strong>in</strong>g fraction <strong>in</strong> relation to the sal<strong>in</strong>ity of the <strong>in</strong>filtrated <strong>water</strong> 5724. Calculation of average rootzone sal<strong>in</strong>ity for the <strong>dra<strong>in</strong>age</strong> pilot study area 5925. Calculation average rootzone sal<strong>in</strong>ity under source reduction <strong>in</strong> the <strong>dra<strong>in</strong>age</strong>pilot study area 6026. Change <strong>in</strong> the average rootzone sal<strong>in</strong>ity over the year under source reduction 6227. Depth of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> generated 6328. Sal<strong>in</strong>ity of the generated <strong>dra<strong>in</strong>age</strong> <strong>water</strong> 6329. Salt load <strong>in</strong> the generated <strong>dra<strong>in</strong>age</strong> <strong>water</strong> 6430. Controlled <strong>dra<strong>in</strong>age</strong> 6431. Pressure head profiles for a silty soil for stationary capillary rise fluxes 6632. Change <strong>in</strong> <strong>water</strong> table dur<strong>in</strong>g the w<strong>in</strong>ter season <strong>in</strong> the <strong>dra<strong>in</strong>age</strong> pilot study area 6833. Recharge <strong>and</strong> discharge areas 7034. Average concentration of soil sal<strong>in</strong>ity <strong>and</strong> boron <strong>in</strong> seven soil profiles <strong>in</strong>Broadview Water District <strong>in</strong> 1976 7635. Relative rate of <strong>water</strong> <strong>in</strong>filtration as affected by sal<strong>in</strong>ity <strong>and</strong> SAR 7736. Relationship between leach<strong>in</strong>g fraction of the soil solution, selenium concentrationof the irrigation <strong>water</strong> <strong>and</strong> the selenium concentration <strong>in</strong> the soil solution 8037. Relationship between mean B ss<strong>in</strong> the rootzone <strong>and</strong> between B Ifor severalleach<strong>in</strong>g fractions 8138. Use of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> for crop production 8139. Relative growth response to sal<strong>in</strong>ity of conventional versus halophytes 8640. Pr<strong>in</strong>ciples of an IFDM system 8741. Layout of sequential reuse of subsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong>s <strong>and</strong> salt harvest atRed Rock Ranch 8742. Map of the Grassl<strong>and</strong>s subarea <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> discharge 9443. The significance of irrigation return flows from Salt Slough <strong>and</strong> Mud Sloughon the quality of the San Joaqu<strong>in</strong> River system 9544. Reverse osmosis system with lime-soda pretreatment 10245. Layout of pilot-scale constructed wetl<strong>and</strong> experimental plots at the TulareLake Dra<strong>in</strong>age District 10546. Initial estimate on mass balance of selenium <strong>in</strong> ten flow-through wetl<strong>and</strong>cells, 1997-2000 106


xiList of tablesPage1. Sal<strong>in</strong>ized <strong>and</strong> dra<strong>in</strong>ed areas compared with total irrigated area, Central Asia <strong>and</strong>the Near East 42. Conservation measures, practices <strong>and</strong> po<strong>in</strong>ts for consideration 233. Reuse measures, practices <strong>and</strong> po<strong>in</strong>ts for consideration 244. Array of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> treatment options 255. Disposal measures, practices <strong>and</strong> po<strong>in</strong>ts for consideration 266. Economic policy <strong>in</strong>struments 277. Expected quality characteristics of irrigation return flow as related to appliedirrigation <strong>water</strong>s 338. Salt applied <strong>in</strong> irrigation <strong>water</strong> <strong>and</strong> removed by dra<strong>in</strong>s 399. Estimated reasonable deep percolation losses as related to irrigation methods 5110. Seepage losses <strong>in</strong> percentage of the canal flow 5211. Agroclimatic data for the <strong>dra<strong>in</strong>age</strong> pilot study area 5812. Salt balance <strong>in</strong> the rootzone for the <strong>dra<strong>in</strong>age</strong> pilot study area dur<strong>in</strong>g wheatseason 6113. Quality <strong>in</strong>dicators for some ma<strong>in</strong> dra<strong>in</strong>s 7414. Flow-weighted concentration of sal<strong>in</strong>ity <strong>and</strong> boron concentrations <strong>and</strong> masstransfer of salts <strong>in</strong> Broadview Water District, 1976 7515. Dra<strong>in</strong>age <strong>water</strong> quality criteria for irrigation purposes <strong>in</strong> the Nile Delta, Egypt 8316. Effect of diluted <strong>dra<strong>in</strong>age</strong> <strong>water</strong> on wheat yield 8317. Effect of cyclic irrigation with canal <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong>s on yield of wheat <strong>and</strong>succeed<strong>in</strong>g summer crops (t/ha) 8418. Crop response to sal<strong>in</strong>ity for three crops at various growth stages 8519. Promis<strong>in</strong>g cultivars for sal<strong>in</strong>e <strong>and</strong> alkal<strong>in</strong>e environments <strong>in</strong> India <strong>and</strong> Pakistan 8620. Changes <strong>in</strong> sal<strong>in</strong>ity <strong>and</strong> boron by depth at locations <strong>in</strong> the tile dra<strong>in</strong>ed Red RockRanch 8821. Water quality of supply <strong>and</strong> reused <strong>dra<strong>in</strong>age</strong> <strong>water</strong>s on Red Rock Ranch 8922. Allowable subsurface <strong>dra<strong>in</strong>age</strong> discharge <strong>and</strong> dra<strong>in</strong>able area <strong>in</strong>to the RiverYamuna 9323. Average composition of agricultural tile <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>in</strong> the San Luis Dra<strong>in</strong> 10124. Results of a trial-run for a three-stage reverse osmosis system, lime-sodapretreatment 10325. Performance of the wetl<strong>and</strong> cells <strong>in</strong> remov<strong>in</strong>g selenium from <strong>dra<strong>in</strong>age</strong> <strong>water</strong>with 18.2-ppb selenium 105


xiiList of acronyms <strong>and</strong> symbolsAcronym/ Description Dimensionsymbolρ bulk density (kg m -3 , g cm -3 ) M L -3µ dra<strong>in</strong>able pore space (m 3 m -3 ) -α empirical shape parameter (cm -1 ) L -1λ empirical shape parameter depend<strong>in</strong>g on dK/dh -θ volumetric <strong>water</strong> content (m 3 m -3 ) -θ fc volumetric <strong>water</strong> content at field capacity (m 3 m -3 ) -∆h drop <strong>in</strong> ground<strong>water</strong> table (m) L∆M ss changes <strong>in</strong> storage of soluble soil salts (kg, t) M∆M xc changes <strong>in</strong> storage of exchangeable cations (kg, t) M∆S change <strong>in</strong> salt storage <strong>in</strong> the rootzone (ECmm) T 3 I 2 M -1 L -2∆W change <strong>in</strong> moisture content <strong>in</strong> the rootzone (mm) L∆W rz change <strong>in</strong> <strong>water</strong> storage <strong>in</strong> the rootzone (mm) L∆W sz change <strong>in</strong> <strong>water</strong> storage <strong>in</strong> the saturated zone (mm) L∆W vsz change <strong>in</strong> <strong>water</strong> storage <strong>in</strong> the vadose <strong>and</strong> saturated zone (mm) L∆W vz change <strong>in</strong> <strong>water</strong> storage <strong>in</strong> the vadose zone (mm) LA sal<strong>in</strong>ity threshold (bars) ML -1 T -2a sal<strong>in</strong>ity threshold (dS/m) T 3 I 2 M -1 L -3AW applied <strong>water</strong> (mm) LB slope expressed <strong>in</strong> percent per bar -b slope expressed <strong>in</strong> percent per dS/m T 3 I 2 M -1 L -3B I boron concentration <strong>in</strong> irrigation <strong>water</strong> (mg litre -1 ) M L -3BOD biochemical oxygen dem<strong>and</strong> (mg litre -1 ) M L -3B ss boron concentration <strong>in</strong> the soil solution (mg litre -1 ) M L -3B ss0 <strong>in</strong>itial boron concentration <strong>in</strong> the soil solution (mg litre -1 ) M L -3B sst desired boron concentration <strong>in</strong> the soil solution (mg litre -1 ) M L -3C dw salt concentration of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> (kg m -3 or mg litre -1 , g litre -1 ) M L -3CEC cation exchange capacity (meq 100g -1 or mMol (c) 100g -1 ) N M -1C gw salt concentration of ground<strong>water</strong> (mg litre -1 or kg m -3 ) M L -3C I salt concentration of irrigation <strong>water</strong> (kg m -3 or mg litre -1 , g litre -1 ) M L -3CIMIS California Irrigation Management Information System -C IW salt concentration of the <strong>in</strong>filtrated <strong>water</strong> (mg/litre) M L -3C k solute species (mMol litre -1 ) N L -3COD chemical oxygen dem<strong>and</strong> (mg litre -1 ) M L -3C R* salt concentration of the net percolation <strong>water</strong> (mg/litre) M L -3CVRWQCB Central Valley Regional Water Quality Control Board -C exchangeable form of solute species(mMol (c) 100g -1 ) N M -1kC ) m<strong>in</strong>eral form of solute species (mMol (c) 100g -1 ) N M -1kD dispersion coefficient (m 2 d -1 ) L 2 T -1D rz depth of the rootzone (m) LD L depth of leach<strong>in</strong>g <strong>water</strong> (mm) LD r <strong>dra<strong>in</strong>age</strong> <strong>water</strong> reuse (mm) LD ra artificial subsurface <strong>dra<strong>in</strong>age</strong> (mm) LD rn natural <strong>dra<strong>in</strong>age</strong> (mm) LD s depth of soil to be reclaimed (mm) LE evaporation (mm) Le a irrigation application efficiency -EC electrical conductivity (dS m -1 , mS cm -1 ) T 3 I 2 M -1 L -3e c <strong>water</strong> conveyance efficiency -EC 0 EC e at which the crop yield is reduced to zero (dS m -1 ) T 3 I 2 M -1 L -3EC 50 EC e at which the crop yield is reduced to 50 percent (dS m -1 ) T 3 I 2 M -1 L -3EC Dra EC of subsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong> (dS m -1 ) T 3 I 2 M -1 L -3


xivAcronym/ Description DimensionsymbolS e <strong>water</strong> extraction s<strong>in</strong>k (m 3 m -3 d -1 ) T -1Se hp maximum selenium concentration <strong>in</strong> harvested product (mg kg -1 ) -Se I selenium concentration <strong>in</strong> irrigation <strong>water</strong> (µg litre -1 ) M L -3S end salts <strong>in</strong> the rootzone at the end of the period (ECmm) T 3 I 2 M -1 L -2S p lateral seepage (mm) LSe ss selenium concentration <strong>in</strong> soil solution (µg litre -1 ) M L -3Se ssm maximum selenium concentration <strong>in</strong> soil solution (µg litre -1 ) M L -3S i seepage <strong>in</strong>flow (mm) LS IW salts <strong>in</strong> <strong>in</strong>filtrated <strong>water</strong> (ECmm) T 3 I 2 M -1 L -2S R salts <strong>in</strong> percolation <strong>water</strong> from the rootzone (ECmm) T 3 I 2 M -1 L -2S start salts <strong>in</strong> the rootzone at the start of the period (ECmm) T 3 I 2 M -1 L -2S v vertical seepage (mm) Lt time (d) TTDS total dissolved solids (mg litre -1 , g litre -1 ) M L -3TSS total suspended solids (mg litre -1 , g litre -1 ) M L -3V dw volume of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> (m 3 ) L 3V gw volume of ground<strong>water</strong> (m 3 ) L 3V i volume of irrigation <strong>water</strong> (m 3 ) L 3Y empirical correction factor -Y r relative yield -W fc moisture content at field capacity (mm) LWT <strong>water</strong> table depth (m) Lz vertical coord<strong>in</strong>ate (m) L


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas1Part IFramework <strong>and</strong> technical guidel<strong>in</strong>es


2 Part I – Framework <strong>and</strong> technical guidel<strong>in</strong>es


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 3Chapter 1IntroductionNEED FOR DRAINAGE OF IRRIGATED LANDSLarge-scale development of irrigation has taken place <strong>in</strong> many <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas s<strong>in</strong>cethe late n<strong>in</strong>eteenth century. Although irrigation has greatly <strong>in</strong>creased the agricultural productionpotential, recharge brought about by seepage losses from the irrigation network <strong>and</strong> deeppercolation from farm irrigation has accumulated <strong>in</strong>to the underly<strong>in</strong>g ground<strong>water</strong>. A rise <strong>in</strong><strong>water</strong> table results when irrigation-<strong>in</strong>duced recharge is greater than the natural discharge. Inmany irrigated areas around the world, ris<strong>in</strong>g <strong>water</strong> tables have subsequently led to <strong>water</strong>logg<strong>in</strong>g<strong>and</strong> associated sal<strong>in</strong>ity problems. This has happened where <strong>dra<strong>in</strong>age</strong> development has not keptpace with irrigation development or where ma<strong>in</strong>tenance of <strong>dra<strong>in</strong>age</strong> facilities has largely beenneglected. As an example of the historical rise <strong>in</strong> the ground<strong>water</strong> table after the <strong>in</strong>troduction oflarge-scale irrigation, Figure 1 shows the elevations of the ground surface <strong>and</strong> the variations ofthe phreatic level <strong>in</strong> an irrigated area <strong>in</strong> Punjab, Pakistan.Sal<strong>in</strong>ization affects about 20–30 million ha of the world’s 260 million ha of irrigated l<strong>and</strong><strong>FAO</strong> (2000). To ma<strong>in</strong>ta<strong>in</strong> favourable moisture conditions for optimal crop growth <strong>and</strong> to controlsoil sal<strong>in</strong>ity, <strong>dra<strong>in</strong>age</strong> development is <strong>in</strong>dispensable especially <strong>in</strong> sal<strong>in</strong>e ground<strong>water</strong> zones.Smedema et al. (2000) estimate that current <strong>dra<strong>in</strong>age</strong> improvement programmes cover lessFIGURE 1Rise of the ground<strong>water</strong> table <strong>in</strong> Punjab, PakistanACHAJ DOABRECHNA DOABBARI DOABADepth <strong>in</strong> mabove m.s.l.190RaviSutlej180JhelumChenab17019601920160150pre irrigation0 20 40 60 80 100 kmIndusAJhelumCHAJ DOABRECHNA DOABRaviBARI DOABChenabSutlejDeghASource: Bhutta <strong>and</strong> Wolters, 2000.


4IntroductionTABLE 1Sal<strong>in</strong>ized <strong>and</strong> dra<strong>in</strong>ed areas compared with total irrigated area, Central Asia <strong>and</strong> the Near EastCountry Irrigated area Sal<strong>in</strong>ized area Total dra<strong>in</strong>ed area surface +subsurface dra<strong>in</strong>ed% of% ofhaha irrigated area ha irrigated areaCentral AsiaKazakhstanKyrgyzstanTajikistanTurkmenistanUzbekistanNear EastBahra<strong>in</strong>EgyptIranJordanKuwaitLebanonMauritaniaPakistanSaudi ArabiaSyriaTunisiaTurkeySource: <strong>FAO</strong>, 1997a, 1997b.3 556 4001 077 100719 2001 744 1004 280 6003 1653 246 0007 264 19464 3004 77087 50049 20015 729 4481 608 0001 013 273385 0004 185 910242 00060 000115 000652 2902 140 5501 0651 210 0002 100 0002 2774 08060 0006.85.616.037.450.033.637.328.93.585.55.9433 100149 000328 6001 022 1262 840 0001 3002 931 00040 0004 000210 80012 7845 100 16544 000273 030162 0003 143 00012.113.845.758.666.341.190.30.66.2012.326.032.42.726.942.175.1%subsurface<strong>dra<strong>in</strong>age</strong> ofirrigatedareathan 0.5 million ha per year, <strong>in</strong>sufficient <strong>in</strong> their view to balance the current growth of affected<strong>dra<strong>in</strong>age</strong> areas. They estimate that: 10–20 percent of the irrigated l<strong>and</strong> is already equipped with<strong>dra<strong>in</strong>age</strong>; 20-40 percent of the irrigated area is not <strong>in</strong> need of any artificial <strong>dra<strong>in</strong>age</strong>; while 40–60 percent is <strong>in</strong> need of <strong>dra<strong>in</strong>age</strong> but rema<strong>in</strong>s without <strong>dra<strong>in</strong>age</strong> facilities. Table 1 shows examplesfrom countries <strong>in</strong> Central Asia <strong>and</strong> the Near East to illustrate their observations.In Central Asia, the present <strong>dra<strong>in</strong>age</strong> <strong>in</strong>frastructure is <strong>in</strong>sufficient to control irrigation-<strong>in</strong>duced<strong>water</strong>logg<strong>in</strong>g <strong>and</strong> sal<strong>in</strong>ity with a comparatively small percentage of subsurface dra<strong>in</strong>ed l<strong>and</strong>. Inaddition, the poor state of <strong>dra<strong>in</strong>age</strong> networks (due to lack of ma<strong>in</strong>tenance) has exacerbated<strong>water</strong>logg<strong>in</strong>g <strong>and</strong> sal<strong>in</strong>ity (<strong>FAO</strong>, 1997a).In the Near East, which is a region subject to sal<strong>in</strong>ity problems due to the prevail<strong>in</strong>g climateconditions, an average of about 29 percent of the irrigated areas have sal<strong>in</strong>ity problems. Table 1shows that for 12 countries <strong>in</strong> the Near East on average about 34 percent of the irrigated areahas been provided with <strong>dra<strong>in</strong>age</strong> facilities. For most countries no figures are available on thearea under surface versus subsurface <strong>dra<strong>in</strong>age</strong> (<strong>FAO</strong>, 1997b).In Pakistan, 13 percent of the irrigated area is reportedly suffer<strong>in</strong>g from severe sal<strong>in</strong>ityproblems <strong>in</strong> spite of the efforts made to provide <strong>dra<strong>in</strong>age</strong> <strong>in</strong> irrigated areas. Sal<strong>in</strong>ity problemspersist because of deficiencies <strong>in</strong> <strong>water</strong> policies <strong>and</strong> the low priority attached to the allocation ofresources for the operation <strong>and</strong> ma<strong>in</strong>tenance (O&M) of <strong>dra<strong>in</strong>age</strong> facilities <strong>in</strong> favour of <strong>in</strong>itiat<strong>in</strong>gnew projects (Martínez Beltrán <strong>and</strong> Kielen, 2000).On the other h<strong>and</strong>, under the <strong>in</strong>fluence of the grow<strong>in</strong>g world population <strong>and</strong> the <strong>in</strong>creas<strong>in</strong>gdem<strong>and</strong> for food, there is a trend of irrigation <strong>in</strong>tensification. To supplement scarce surface<strong>water</strong> resources, ground<strong>water</strong> is exploited through tubewell development, ma<strong>in</strong>ly <strong>in</strong> freshground<strong>water</strong> zones, all over the world. In many of these areas, the <strong>water</strong> table is decl<strong>in</strong><strong>in</strong>g due0.46.119.118.516.338.50.60042.1


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 5to overexploitation of ground<strong>water</strong> resources. Therefore, problems of <strong>water</strong>logg<strong>in</strong>g <strong>and</strong> relatedsal<strong>in</strong>ization <strong>in</strong> irrigated agriculture are conf<strong>in</strong>ed pr<strong>in</strong>cipally to sal<strong>in</strong>e ground<strong>water</strong> zones. However,the sal<strong>in</strong>ization <strong>and</strong> sodification of agricultural l<strong>and</strong>s result<strong>in</strong>g from irrigation with marg<strong>in</strong>al <strong>and</strong>poor-quality <strong>water</strong> (ma<strong>in</strong>ly ground<strong>water</strong>) is <strong>in</strong>creas<strong>in</strong>g rapidly. Although firm figures are notcurrently available, many cases have been reported <strong>and</strong> documented for major irrigated areas <strong>in</strong>the world <strong>in</strong>clud<strong>in</strong>g South Asia, Southeast Asia, Central Asia, North Africa, the Near East,Australia, <strong>and</strong> the United States of America.NEED FOR WATER CONSERVATION AND REUSEIn response to the <strong>in</strong>creas<strong>in</strong>g world population <strong>and</strong> economic growth, <strong>water</strong> withdrawals forhuman consumption will <strong>in</strong>crease, so <strong>in</strong>creas<strong>in</strong>g the competition for <strong>water</strong> between municipal,<strong>in</strong>dustrial, agricultural, environmental <strong>and</strong> recreational needs. If present trends cont<strong>in</strong>ue with<strong>water</strong> withdrawal under present practices <strong>and</strong> policies, it is estimated that by 2025 <strong>water</strong> stresswill <strong>in</strong>crease <strong>in</strong> more than 60 percent of the world (Cosgrove <strong>and</strong> Rijsberman, 2000).In this respect, provid<strong>in</strong>g food for the grow<strong>in</strong>g population is a major challenge as agricultureis already by far the largest <strong>water</strong> consumer <strong>in</strong> most regions <strong>in</strong> the world, except North America<strong>and</strong> Europe. On a global basis, agriculture accounts for 69 percent of all <strong>water</strong> withdrawals(<strong>FAO</strong>, 2000). Although the <strong>water</strong> resources for agriculture are often overused <strong>and</strong> misused, thegeneral belief is that irrigated agriculture has to exp<strong>and</strong> by 20-30 percent <strong>in</strong> area by 2025 <strong>in</strong>order to produce sufficient food for the grow<strong>in</strong>g world population. In order to avoid exacerbat<strong>in</strong>gthe <strong>water</strong> crisis <strong>and</strong> to prevent considerable food shortages, the productivity of <strong>water</strong> use needsto <strong>in</strong>crease. In other words, the amount of food produced with the same amount of <strong>water</strong> needsto <strong>in</strong>crease. This is possible through the conservation <strong>and</strong> reuse of the available <strong>water</strong> resources<strong>in</strong> the agriculture sector, <strong>in</strong>clud<strong>in</strong>g usable <strong>dra<strong>in</strong>age</strong> <strong>water</strong>s.The overuse <strong>and</strong> misuse of <strong>water</strong> <strong>in</strong> irrigatedagriculture has not only resulted <strong>in</strong> large-scale<strong>water</strong>logg<strong>in</strong>g <strong>and</strong> sal<strong>in</strong>ity <strong>and</strong> overexploitation ofground<strong>water</strong> resources, but also <strong>in</strong> the depriv<strong>in</strong>g ofdownstream users of sufficient <strong>water</strong> <strong>and</strong> <strong>in</strong> thepollution of fresh <strong>water</strong> resources withcontam<strong>in</strong>ated irrigation return flow <strong>and</strong> deeppercolation losses. Water pollution adds to thecompetition for scarce <strong>water</strong> resources as it makesthem less suitable for other potential beneficialdownstream uses. Furthermore, it might causesevere environmental pollution <strong>and</strong> threaten publichealth (Box 1).TOWARDS DRAINAGE WATER MANAGEMENTUntil ten years ago <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong>received little attention. Dra<strong>in</strong>age research tendedto focus on design issues, while evaluation dealtBOX1: NEED FOR CONSERVATION OF WATERQUALITY – EXAMPLE FROM THE ARAL SEA BASINIn the Aral Sea Bas<strong>in</strong>, about 37 km 3 ofirrigation return <strong>water</strong> is generated eachyear. Most of it returns to the river system(16–18 km 3 ). In most regions, river <strong>water</strong>also serves domestic, <strong>in</strong>dustrial <strong>and</strong>environmental purposes. Due to the riverdisposal, the downstream quality of theriver <strong>water</strong> deteriorates. The salt contentof the river <strong>in</strong>creases from about 0.5 g/litre <strong>in</strong> the upstream regions to 1–1.5 g/litre <strong>in</strong> the delta areas, where sal<strong>in</strong>e <strong>and</strong>polluted dr<strong>in</strong>k<strong>in</strong>g-<strong>water</strong> poses severehealth problems to communities.Moreover, <strong>in</strong> downstream areas the highsalt content of the irrigation <strong>water</strong>, causedby upstream disposals, aggravates thesal<strong>in</strong>ity status of the irrigated l<strong>and</strong>s (casestudy on the Aral Sea Bas<strong>in</strong> <strong>in</strong> Part II).largely with the performance of the <strong>in</strong>stalled system <strong>in</strong> relation to the design criteria (Snellen,1997). After the 1992 Earth Summit, the <strong>in</strong>ternational irrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> community focused


6Introductionits full attention on <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong>. Agenda 21 not only stresses the need for<strong>dra<strong>in</strong>age</strong> as a necessary complement to irrigation development <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas, butat the same time it urges the conservation <strong>and</strong> recycl<strong>in</strong>g of fresh<strong>water</strong> resources <strong>in</strong> a context of<strong>in</strong>tegrated resource <strong>management</strong> (UNCED, 1992). In many countries these concerns <strong>and</strong>especially the concern for <strong>water</strong> quality degradation have resulted <strong>in</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> disposalregulations to ma<strong>in</strong>ta<strong>in</strong> the <strong>water</strong> quality st<strong>and</strong>ards of fresh<strong>water</strong> bodies for other uses, i.e.agricultural, municipal, <strong>in</strong>dustrial, environmental <strong>and</strong> recreational uses.SCOPE OF THIS PUBLICATIONThis publication focuses on the <strong>management</strong> of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> from exist<strong>in</strong>g <strong>dra<strong>in</strong>age</strong> systemslocated <strong>in</strong> irrigated areas <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> regions. It does not address design considerationsfor new <strong>dra<strong>in</strong>age</strong> systems <strong>in</strong> detail as these will be the subject of the forthcom<strong>in</strong>g <strong>FAO</strong> Irrigation<strong>and</strong> Dra<strong>in</strong>age Paper Plann<strong>in</strong>g <strong>and</strong> design of l<strong>and</strong> <strong>dra<strong>in</strong>age</strong> systems.For exist<strong>in</strong>g <strong>dra<strong>in</strong>age</strong> facilities, planners, decision-makers <strong>and</strong> eng<strong>in</strong>eers have a number of<strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> options available to atta<strong>in</strong> their development goals, e.g. reduc<strong>in</strong>gthe <strong>water</strong>logged <strong>and</strong> sal<strong>in</strong>ized area <strong>in</strong> a certa<strong>in</strong> <strong>dra<strong>in</strong>age</strong> bas<strong>in</strong> whilst ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>water</strong> qualityfor downstream users. The options can be divided <strong>in</strong>to four broad groups of measures: (i) <strong>water</strong>conservation, (ii) <strong>dra<strong>in</strong>age</strong> <strong>water</strong> reuse, (iii) <strong>dra<strong>in</strong>age</strong> <strong>water</strong> disposal, <strong>and</strong> (iv) <strong>dra<strong>in</strong>age</strong> <strong>water</strong>treatment. Each of these options has certa<strong>in</strong> potential impacts on the hydrology <strong>and</strong> <strong>water</strong>quality <strong>in</strong> an area, <strong>and</strong> where more than one option is applied at a site, <strong>in</strong>teractions <strong>and</strong> trade-offsoccur. Therefore, planners, decision-makers <strong>and</strong> eng<strong>in</strong>eers need to have a framework forselect<strong>in</strong>g from among the various possibilities <strong>and</strong> for evaluat<strong>in</strong>g the impact <strong>and</strong> the contributiontowards the development goals. Furthermore, technical expertise <strong>and</strong> guidel<strong>in</strong>es on each of theoptions are required to enable enhanced assessment of the impact of the differ<strong>in</strong>g options.The objective of this publication is twofold:1. To present a framework that will enable planners, decision-makers <strong>and</strong> eng<strong>in</strong>eers to selectfrom among the differ<strong>in</strong>g <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> options <strong>and</strong> to evaluate their impact<strong>and</strong> contribution towards the development goals; <strong>and</strong>2. To provide technical guidel<strong>in</strong>es for the plann<strong>in</strong>g <strong>and</strong> preparation of prelim<strong>in</strong>ary designs of<strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> options.This publication consists of two parts. Part I provides the framework <strong>and</strong> technical guidel<strong>in</strong>eson the <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> measures for decision-makers, planners <strong>and</strong> eng<strong>in</strong>eers.After the <strong>in</strong>troduction (Chapter 1), Chapter 2 presents guidel<strong>in</strong>es for def<strong>in</strong><strong>in</strong>g the problem <strong>and</strong>alternative approaches <strong>in</strong> seek<strong>in</strong>g solutions. Chapter 3 provides a framework for the selection<strong>and</strong> evaluation of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> options. Chapter 4 deals with factors affect<strong>in</strong>g<strong>dra<strong>in</strong>age</strong> <strong>water</strong> quality. Chapters 5 to 8, respectively, present the guidel<strong>in</strong>es <strong>and</strong> details on eachof the four options related to <strong>water</strong> conservation, <strong>dra<strong>in</strong>age</strong> <strong>water</strong> reuse, <strong>dra<strong>in</strong>age</strong> <strong>water</strong> disposal<strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> treatment. It is beyond the scope of this publication to provide technicaldetails <strong>and</strong> guidel<strong>in</strong>es to prepare detailed designs. Design eng<strong>in</strong>eers may refer to the numerousreferences provided later <strong>in</strong> the text.Part II presents summaries of five case studies from India, Pakistan, Egypt, the UnitedStates of America, <strong>and</strong> the Aral Sea Bas<strong>in</strong>. They illustrate how various countries or states dealwith the issue of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> the context of <strong>water</strong> scarcity, both <strong>in</strong> quantitative


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 7<strong>and</strong> qualitative terms, under differ<strong>in</strong>g degrees of adm<strong>in</strong>istrative <strong>and</strong> policy guidel<strong>in</strong>es <strong>and</strong> regulationsas well as differ<strong>in</strong>g degrees of technological advancements <strong>and</strong> possibilities. The attached CD-ROM conta<strong>in</strong>s the full text of these case studies.


8Introduction


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 9Chapter 2Def<strong>in</strong><strong>in</strong>g the problem <strong>and</strong> seek<strong>in</strong>gsolutionsSYSTEM APPROACH IN DRAINAGE WATER MANAGEMENTWhen planners, decision-makers or eng<strong>in</strong>eers face the need for a change <strong>in</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong><strong>management</strong>, the nature of the exact problem is often not clear <strong>and</strong> the perceived problemdepends considerably on the <strong>in</strong>dividual’s viewpo<strong>in</strong>t. For example, a farmer’s perception of aproblem related to <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> depends on the physical conditions with<strong>in</strong> thefarm boundaries <strong>and</strong> may differ substantially from those of an irrigation district, national <strong>water</strong>resource authority or environmental pressure group. In such situations, a soft system approachcan help def<strong>in</strong>e the problem <strong>and</strong> seek solutions. A key feature of the soft system approach isthat it attempts to avoid identify<strong>in</strong>g problems <strong>and</strong> seek<strong>in</strong>g solutions from only one perspective<strong>and</strong> exclud<strong>in</strong>g others.The characteristic of a system is that, although it can be divided <strong>in</strong>to subsystems, it functionsas a whole to achieve its objectives. The successful function<strong>in</strong>g of a system depends on howwell it satisfies chang<strong>in</strong>g external <strong>and</strong> <strong>in</strong>ternal dem<strong>and</strong>s. The system itself is part of a broaderuniverse. In all natural or agricultural systems, there exists a hierarchy of levels (Stephens <strong>and</strong>Hess, 1999). For irrigated crop production this hierarchy might be:• biochemical <strong>and</strong> physical systems;• plant <strong>and</strong> cropp<strong>in</strong>g system;• farm<strong>in</strong>g system;• irrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> systems;• regional, river- or <strong>dra<strong>in</strong>age</strong>-bas<strong>in</strong> system; <strong>and</strong>• supra-regional systems.Figure 2 provides a simplified example of a <strong>water</strong> <strong>management</strong> system with<strong>in</strong> an irrigationdistrict. It shows some ma<strong>in</strong> characteristics of a system as described by the Open University(1997).1. Def<strong>in</strong><strong>in</strong>g the boundaries of a system is not a simple task. For example, there could be questionsas to whether it would be better to <strong>in</strong>clude the regional <strong>dra<strong>in</strong>age</strong> system with<strong>in</strong> the systemboundaries <strong>and</strong> <strong>in</strong>clude pressure from environmental groups, other <strong>water</strong> users <strong>and</strong> <strong>water</strong>quality rules <strong>and</strong> regulations <strong>in</strong> the system’s environment. The boundaries chosen reflect theperception of the systems analysts <strong>and</strong> their underst<strong>and</strong><strong>in</strong>g of the system’s behaviour, whichmay not always co<strong>in</strong>cide with an <strong>org</strong>anizational or departmental unit. System boundaries <strong>in</strong><strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> might more often co<strong>in</strong>cide with hydrological units.2. The elements <strong>in</strong>cluded <strong>in</strong> the system’s environment are those which <strong>in</strong>fluence the system <strong>in</strong>an important way but over which the system itself has no control because they are driven byforces external to the system of <strong>in</strong>terest.


10Def<strong>in</strong><strong>in</strong>g the problem <strong>and</strong> seek<strong>in</strong>g solutionsFIGURE 2Example of a <strong>water</strong> <strong>management</strong> system with<strong>in</strong> an irrigation districtRegionalWater SupplyReceiv<strong>in</strong>g <strong>water</strong>Conveyance <strong>and</strong>distributionOn-farm <strong>water</strong><strong>management</strong>Collection <strong>and</strong>disposal of<strong>dra<strong>in</strong>age</strong> <strong>water</strong>RegionalDra<strong>in</strong>age System3. The elements with<strong>in</strong> the system are functional work<strong>in</strong>g parts of the system. The way that thesystem operates <strong>and</strong> behaves depends on the <strong>in</strong>teractions between the elements <strong>in</strong> the system.Elements could be decomposed <strong>in</strong>to smaller subsystems. The level of detail depends on thespecific objectives of the systems analysis. For example, <strong>in</strong> systems analysis for <strong>dra<strong>in</strong>age</strong><strong>water</strong> <strong>management</strong>, it would be important to show <strong>in</strong>dividual farms as subsystems becauseon-farm <strong>water</strong> <strong>management</strong> def<strong>in</strong>es to a great extent the total quantity <strong>and</strong> quality of thegenerated <strong>dra<strong>in</strong>age</strong> <strong>water</strong>.4. As the creator of the system image, a systems analyst def<strong>in</strong>es a particular perspective whileanother analyst of differ<strong>in</strong>g discipl<strong>in</strong>ary tra<strong>in</strong><strong>in</strong>g may produce a different image.When apply<strong>in</strong>g a systems approach, at first it is necessary to <strong>in</strong>clude all elements <strong>in</strong> thepicture whether they relate to physical, technical, economic, legal, political or adm<strong>in</strong>istrativeconsiderations as well as any subjective considerations based on the underst<strong>and</strong><strong>in</strong>g, norms,values <strong>and</strong> beliefs of the stakeholders <strong>in</strong>volved. A premature exclusion of important elementsmay result <strong>in</strong> a suboptimal course of action (Open University, 1997). Figure 3 shows an exampleof a simplified holistic picture of the on-farm <strong>water</strong> <strong>management</strong> subsystem. This subsystemconta<strong>in</strong>s a mixture of physical, economical, social, legal <strong>and</strong> subjective considerations that allhave some important <strong>in</strong>fluence on on-farm <strong>water</strong> <strong>management</strong>.Where changes <strong>in</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> are necessary, a simple method to producepredeterm<strong>in</strong>ed results might not work. Rather, a more open-ended <strong>in</strong>vestigative approach isFIGURE 3Example of a simplified holistic picture of the on-farm <strong>water</strong> <strong>management</strong> sub-systemPhysical,economic, social<strong>and</strong> legal externalconstra<strong>in</strong>tDisposalrestrictionsPhysical <strong>and</strong>economic <strong>in</strong>ternalconstra<strong>in</strong>tsFarm goals<strong>and</strong> strategiesWater supplyat farm gateOn-farm <strong>water</strong>allocationGenerated<strong>dra<strong>in</strong>age</strong> <strong>water</strong>On-farmreuseDisposalCollection of<strong>dra<strong>in</strong>age</strong> <strong>water</strong>Farmers'underst<strong>and</strong><strong>in</strong>g ofphysicalprocesses


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 11FIGURE 4The seven stages <strong>in</strong> the soft system methodologyMonitor<strong>in</strong>g & evaluationF<strong>in</strong>d<strong>in</strong>g out1. The problemsituation unstructured7. Action to solve theproblem or improvethe situationTak<strong>in</strong>g action2. The problemsituation expressed6. Def<strong>in</strong>ition offeasible desirablechangesFormulat<strong>in</strong>gdesired situation3. Root def<strong>in</strong>itions ofrelevant systems5. Comparison of 4with 2Decision-mak<strong>in</strong>gBuild<strong>in</strong>g models4. Conceptual models<strong>and</strong> scenariosEvaluat<strong>in</strong>g modelsSource: after Bustard et al., 2000.required <strong>in</strong> which important avenues are explored <strong>and</strong> considered <strong>and</strong> <strong>in</strong> which there is room foriterative processes. The outcome of such an <strong>in</strong>vestigative approach is not necessarily the optimalf<strong>in</strong>al solution but rather a solution that seems best for those <strong>in</strong>volved, for that particular time <strong>and</strong>under those particular circumstances. As the external environment <strong>and</strong> <strong>in</strong>ternal dem<strong>and</strong>s changeconstantly, the mix of solutions <strong>and</strong> needs for change are chang<strong>in</strong>g cont<strong>in</strong>uously. Moreover, theachieved changes themselves give new <strong>in</strong>sights <strong>in</strong>to processes <strong>and</strong> enable a cont<strong>in</strong>uous learn<strong>in</strong>gprocess.The soft system approach to identify<strong>in</strong>g causes <strong>and</strong> seek<strong>in</strong>g solutions takes the aforementionedconsiderations <strong>in</strong>to account. The soft system methodology is a seven-stage approach (Checkl<strong>and</strong>,1981) that has been adopted <strong>and</strong> adjusted for numerous purposes. Figure 4 presents the steps <strong>in</strong>the soft system method. The soft system methodology was developed for manag<strong>in</strong>g changes <strong>in</strong>the context of human activity systems, i.e. a set of activities undertaken by people l<strong>in</strong>ked together<strong>in</strong> a logical structure to constitute a purposeful whole (Checkl<strong>and</strong>, 1989). As <strong>dra<strong>in</strong>age</strong> <strong>water</strong><strong>management</strong> is a complex mix of human activity <strong>and</strong> natural <strong>and</strong> designed systems, the softsystem approach presented <strong>in</strong> this chapter is not a direct <strong>in</strong>terpretation of the soft systemsmethodology <strong>in</strong>troduced by Checkl<strong>and</strong>. Rather it is a free <strong>in</strong>terpretation to illustrate the stepsthat <strong>in</strong> general need to be taken to identify the actual problems <strong>and</strong> search for possible coursesof action. The follow<strong>in</strong>g sections expla<strong>in</strong> the different steps <strong>in</strong> the context of <strong>dra<strong>in</strong>age</strong> <strong>water</strong><strong>management</strong> <strong>in</strong> more detail.DEFINING THE PROBLEMDef<strong>in</strong><strong>in</strong>g the problem <strong>and</strong> diagnos<strong>in</strong>g the causes is the key to seek<strong>in</strong>g solutions. In the context of<strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> a problem might be def<strong>in</strong>ed as: a need, request or desire for achange <strong>in</strong> present situation subject to a number of conditions or criteria that must be satisfiedsimultaneously. This def<strong>in</strong>ition implies that a problem situation does not exist <strong>in</strong>dependent of thestakeholders who perceive the problem. The solutions to the problem are subject to criteria <strong>and</strong>


12Def<strong>in</strong><strong>in</strong>g the problem <strong>and</strong> seek<strong>in</strong>g solutionsconditions based on people’s perception of the ideal situation. The conditions <strong>and</strong> criteria aresubjective <strong>in</strong>sofar as they are based on personal or communal objectives <strong>in</strong>fluenced by local tonational economic, social, cultural, ecological <strong>and</strong> legal motives, norms <strong>and</strong> values.In the field of agricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong>, the root cause of the problem(s) nearlyalways stems from human <strong>in</strong>terference <strong>in</strong> the natural environment.Step 1. An analysis of the problem <strong>and</strong> the search for solutions starts <strong>in</strong> a situation wheresomeone or a group of people perceives that there is a problem. At this stage, it mightnot be possible to def<strong>in</strong>e the problem with precision, as different people <strong>in</strong>volved willhave differ<strong>in</strong>g perceptions of the problem.Step 2. The first step <strong>in</strong> formulat<strong>in</strong>g the problem more precisely is to identify all the stakeholders<strong>in</strong>volved <strong>and</strong> their relation to the problem. To form what is called the rich picture, all theelements must be <strong>in</strong>cluded whether they relate to physical, technical, economic, legal,political or adm<strong>in</strong>istrative considerations along with subjective considerations based onunderst<strong>and</strong><strong>in</strong>g, norms, values <strong>and</strong> beliefs of the stakeholders <strong>in</strong>volved. It is then necessaryto extract areas of conflict or disagreement as well as the key tasks that must beundertaken with<strong>in</strong> the problem situation.Step 3. Once the problem situation has been analysed <strong>and</strong> expressed from the key issues, therelevant systems <strong>and</strong> subsystems can be def<strong>in</strong>ed. These systems can be formal or<strong>in</strong>formal <strong>and</strong> are those that carry out purposeful activities that will lead to improvementor elim<strong>in</strong>ation of the problem situation. Examples of a relevant system with<strong>in</strong> the contextof <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> might be an on-farm <strong>water</strong> <strong>management</strong> system, asystem for development of <strong>water</strong> quality rules <strong>and</strong> regulation for <strong>dra<strong>in</strong>age</strong> <strong>water</strong> disposal,or a l<strong>and</strong>-use plann<strong>in</strong>g system. An analysis of the various elements <strong>in</strong>volved providesvaluable <strong>in</strong>sight <strong>in</strong>to different perspectives on <strong>and</strong> constra<strong>in</strong>ts surround<strong>in</strong>g the situation.For each relevant system, a root def<strong>in</strong>ition can be formulated. A root def<strong>in</strong>ition is aformulation of the relevant system <strong>and</strong> the purpose of the system to achieve a situation<strong>in</strong> which the problem is balanced out or elim<strong>in</strong>ated. Each root def<strong>in</strong>ition provides aparticular perspective of the system under <strong>in</strong>vestigation. In general, a root def<strong>in</strong>itionshould <strong>in</strong>clude the follow<strong>in</strong>g <strong>in</strong>formation: what the purposeful activity carried out by thesystem is; who the ‘owner’ of the system is; who the beneficiaries/victims of thepurposeful activity are; who will implement the activity; <strong>and</strong> what the constra<strong>in</strong>ts <strong>in</strong> itsenvironment are that surround the system (Checkl<strong>and</strong>, 1989). A root def<strong>in</strong>ition for onfarm<strong>water</strong> <strong>management</strong> might be:In an on-farm <strong>water</strong> <strong>management</strong> system the responsible farmer uses irrigation <strong>water</strong> <strong>in</strong>such a manner that the <strong>dra<strong>in</strong>age</strong> <strong>water</strong> generated is of such quantity <strong>and</strong> quality aspermitted by the <strong>dra<strong>in</strong>age</strong> disposal act whilst ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g long-term favourable soilconditions that guarantee the production of valuable crops to ensure the f<strong>in</strong>ancialsusta<strong>in</strong>ability of the farm<strong>in</strong>g enterprise.A root def<strong>in</strong>ition for the development of <strong>water</strong> quality rules <strong>and</strong> regulation could be:A governmental system <strong>in</strong> which <strong>water</strong> quality rules <strong>and</strong> regulations for the disposal ofagricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong> are promulgated such that they will guarantee <strong>water</strong> qualityfor beneficial downstream <strong>water</strong> uses, <strong>in</strong>clud<strong>in</strong>g the ma<strong>in</strong>tenance of valuableecosystems, while ensur<strong>in</strong>g the economic susta<strong>in</strong>ability of the agriculture sector.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 13SEEKING SOLUTIONSStep 4. On the basis of the root def<strong>in</strong>itions, conceptual models need to be constructed. Thesemodels <strong>in</strong>clude all the probable activities <strong>and</strong> measures that the system needs toimplement to achieve the root def<strong>in</strong>ition. In other words, alternative scenarios need tobe formulated. This <strong>in</strong>volves do<strong>in</strong>g sufficient work on the technical <strong>and</strong> other details,which need to be def<strong>in</strong>ed, <strong>in</strong> order to enable sound decision-mak<strong>in</strong>g. Moreover,measurable <strong>in</strong>dicators need to be established to compare the results of the conceptualmodels with the analysed situation or base case. As the formulation of scenarios isbased on a thorough analysis of the systems, it should take <strong>in</strong>to consideration systemobjectives, possibilities <strong>and</strong> constra<strong>in</strong>ts.Improvements needed to m<strong>in</strong>imize or correct a particular <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong>problem may consist of physical structures, non-physical improvements or both. Physicalimprovements could <strong>in</strong>volve us<strong>in</strong>g irrigation <strong>water</strong> conservatively by on-farm <strong>water</strong><strong>management</strong> practices along with regional <strong>dra<strong>in</strong>age</strong> practices such as recirculat<strong>in</strong>g usable<strong>dra<strong>in</strong>age</strong> <strong>water</strong> to meet waste discharge requirements. Non-physical improvements may<strong>in</strong>clude implement<strong>in</strong>g tiered <strong>water</strong> pric<strong>in</strong>g to encourage growers to use <strong>water</strong> wisely, i.e.charg<strong>in</strong>g a penalty for overuse.Step 5. The next step is to compare the scenarios or conceptual models with the situationanalysis. The idea is to test the scenarios <strong>and</strong> decide whether the implementation of ascenario would resolve the def<strong>in</strong>ed key issues.Step 6. If it would, it needs to be <strong>in</strong>vestigated <strong>and</strong> there needs to be debate as to whether thechanges proposed, result<strong>in</strong>g from implementation of the scenario, are both desirable<strong>and</strong> feasible. What is desirable <strong>and</strong> what is feasible might clash as a result of systemobjectives, possibilities <strong>and</strong> constra<strong>in</strong>ts.Step 7. The f<strong>in</strong>al step is to def<strong>in</strong>e the measures <strong>and</strong> changes to be implemented.SPATIAL ISSUESDra<strong>in</strong>age <strong>water</strong> problems vary <strong>in</strong> space <strong>and</strong> time due ma<strong>in</strong>ly to soil heterogeneity <strong>and</strong> <strong>water</strong><strong>management</strong> practices. The follow<strong>in</strong>g example illustrates how spatial variability needs to betaken <strong>in</strong>to account <strong>in</strong> the problem analysis, <strong>and</strong> also how it <strong>in</strong>fluences the options for <strong>dra<strong>in</strong>age</strong><strong>water</strong> <strong>management</strong>.Environmental problems related to agricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong> disposal on the western sideof the San Joaqu<strong>in</strong> Valley, California, the United States of America, have created a need forimproved irrigation <strong>water</strong> <strong>and</strong> salt <strong>management</strong> (SJVDP, 1990). The presence of harmful traceelements, ma<strong>in</strong>ly selenium, <strong>in</strong> the <strong>dra<strong>in</strong>age</strong> <strong>water</strong> is of major concern (Tanji et al., 1986) <strong>and</strong> hasled to limitations on <strong>dra<strong>in</strong>age</strong> <strong>water</strong> disposal to rivers <strong>and</strong> impoundments such as agriculturalevaporation bas<strong>in</strong>s. Where <strong>water</strong> districts <strong>in</strong> the problem area fail to meet selenium <strong>and</strong> salt loadtargets, they risk monetary penalties <strong>and</strong> loss of access to disposal sites. Young <strong>and</strong> Wallender(2000a) raised the question of whether the constra<strong>in</strong>ts raised by current or future regulationswill reduce <strong>dra<strong>in</strong>age</strong> to the po<strong>in</strong>t where salt accumulation would occur <strong>and</strong> <strong>in</strong> which areas thismight occur first. Second, they raised the question of the spatial distribution of <strong>dra<strong>in</strong>age</strong> <strong>water</strong>disposal cost<strong>in</strong>g strategies. To answer these questions, they developed a methodology for thePanoche Water District to calculate the spatial distribution of <strong>water</strong>-, salt- <strong>and</strong> selenium-balance


14Def<strong>in</strong><strong>in</strong>g the problem <strong>and</strong> seek<strong>in</strong>g solutionscomponents us<strong>in</strong>g data collected by the<strong>water</strong> district. Furthermore, theydeveloped <strong>and</strong> evaluated spatiallydistributed <strong>dra<strong>in</strong>age</strong> <strong>water</strong> disposalcost<strong>in</strong>g strategies. The follow<strong>in</strong>g is a briefoverview of their research f<strong>in</strong>d<strong>in</strong>gs.FIGURE 5Topography <strong>and</strong> boundaries of the Panoche WaterDistrictThe Panoche Water District, situated<strong>in</strong> the western side of the San Joaqu<strong>in</strong>Valley, is a typical example of a <strong>water</strong>district that needs to cope with disposallimitation <strong>in</strong> the form of selenium loadtargets. Figure 5 shows that the districtlies on two alluvial fans <strong>and</strong> is generallyflat with slopes of not more than 1 percenttrend<strong>in</strong>g <strong>in</strong> a northeasterly direction.The ground<strong>water</strong> <strong>in</strong> the LittlePanoche Creek alluvial fan conta<strong>in</strong>ssodium-chloride type <strong>water</strong>, relatively low<strong>in</strong> salt content, <strong>and</strong> with seleniumconcentrations rang<strong>in</strong>g from 1 to 27µg/litre (Young <strong>and</strong> Wallender, 2000b).In contrast, the ground<strong>water</strong> <strong>in</strong> thePanoche Creek alluvial fan conta<strong>in</strong>ssodium-sulphate type <strong>water</strong>, relativelyhigh <strong>in</strong> salt content, <strong>and</strong> with seleniumconcentrations rang<strong>in</strong>g from 20 to400 µg/litre. Due to overirrigation s<strong>in</strong>cethe <strong>in</strong>troduction of surface <strong>water</strong> deliverysystems <strong>in</strong> the 1950s, the <strong>water</strong> tablerose to with<strong>in</strong> 1–3 m of the groundsurface. Subsurface <strong>dra<strong>in</strong>age</strong> was<strong>in</strong>stalled which ma<strong>in</strong>ta<strong>in</strong>ed successfullythe <strong>water</strong> table at an acceptable level foragriculture. However, due to irrigation<strong>and</strong> <strong>dra<strong>in</strong>age</strong> practices the naturallyoccurr<strong>in</strong>g salts <strong>and</strong> selenium <strong>in</strong> theregion’s soils are mobilized <strong>and</strong> enter <strong>in</strong>tothe subsurface <strong>dra<strong>in</strong>age</strong> system as wellas <strong>in</strong>to the shallow ground<strong>water</strong>.Calculation of a spatially distributed<strong>water</strong> balance revealed that downslopeareas with shallow <strong>water</strong> tables receiveground<strong>water</strong> discharge. Dra<strong>in</strong>s <strong>in</strong> theseareas <strong>in</strong>tercept lateral <strong>and</strong> verticalupward flow<strong>in</strong>g ground<strong>water</strong>, while theupslope undra<strong>in</strong>ed areas recharge to theground<strong>water</strong> (Figure 6). The highest saltload <strong>in</strong> the collected <strong>dra<strong>in</strong>age</strong> <strong>water</strong>Source: Young <strong>and</strong> Wallender, 2000a.FIGURE 6Annual recharge to ground<strong>water</strong> <strong>in</strong> Panoche WaterDistrictNmmSource: Young <strong>and</strong> Wallender, 2000a.1 0 1 2 3 KilometresSource: Young <strong>and</strong> Wallender, 2000a.-1200 - -800-800 - -400-400 - 0mm0 - 400400 - 800800 - 12001200 - 1600


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 15occurred <strong>in</strong> the centre <strong>and</strong> northwesternpart of the district that corresponds withthe location of greatest <strong>dra<strong>in</strong>age</strong>. Saltsentered the <strong>dra<strong>in</strong>age</strong> <strong>water</strong> via theground<strong>water</strong> with the maximumoccurr<strong>in</strong>g at the alluvial fan boundaries.Accumulation of sal<strong>in</strong>ity occurred largely<strong>in</strong> the dra<strong>in</strong>ed regions with the maximumoccurr<strong>in</strong>g roughly <strong>in</strong> the regions ofmaximum ground<strong>water</strong> recharge. In theundra<strong>in</strong>ed regions, more salt wasremoved from storage as compared tothe dra<strong>in</strong>ed regions, caused by greaterdeep percolation <strong>in</strong> the undra<strong>in</strong>ed areascoupled with salt pickup.FIGURE 7Annual amount of Se removed by the dra<strong>in</strong>sLittle Panoche Creekalluvial fanInterfan depositskg/haNo <strong>dra<strong>in</strong>age</strong>0 - 0.20.2 - 0.40.4 - 0.80.8 - 1.6Figure 7 shows that the amount ofselenium removed by the dra<strong>in</strong>s wasgreatest on the Panoche Creek alluvialfan <strong>and</strong> the <strong>in</strong>terfan. The <strong>dra<strong>in</strong>age</strong> systemremoved selenium through ground<strong>water</strong>discharge. Selenium storage <strong>in</strong> theN1 0 1 2 3 KilometresSource: Young <strong>and</strong> Wallender, 2000b.Panoche Creekalluvial fanundra<strong>in</strong>ed areas decreased <strong>in</strong> proportion to the volume of deep percolation, while <strong>in</strong> dra<strong>in</strong>edareas selenium accumulated <strong>in</strong> areas similar to those where total salt storage <strong>in</strong>creased.Assum<strong>in</strong>g a charge on <strong>dra<strong>in</strong>age</strong> volume, spatial distribution of a <strong>dra<strong>in</strong>age</strong> penalty per hectarewould unfairly affect growers on the Little Panoche alluvial fan where relatively little seleniumorig<strong>in</strong>ates. In contrast, a charge levied per kilogram of selenium discharged from the <strong>dra<strong>in</strong>age</strong>systems would result <strong>in</strong> growers on the Panoche Creek alluvial fan <strong>and</strong> the <strong>in</strong>terfan pay<strong>in</strong>g morefor <strong>dra<strong>in</strong>age</strong> disposal <strong>in</strong> accordance with the higher selenium loads. Neither of the two methodsof assess<strong>in</strong>g <strong>dra<strong>in</strong>age</strong> penalties addresses the poor <strong>water</strong> <strong>management</strong> <strong>in</strong> the upslope undra<strong>in</strong>edareas that contribute to downslope <strong>dra<strong>in</strong>age</strong> problems. A more equitable charge on the amountof selenium discharged <strong>in</strong>to the environment from a control volume would account for excessivedeep percolation as well as reflect differences <strong>in</strong> selenium load<strong>in</strong>g caused by geological variations(Young <strong>and</strong> Wallender, 2000b).THE USE OF MODELS IN RECOMMENDING SOLUTIONS AND ANTICIPATED RESULTSSteps 4, 5 <strong>and</strong> 6 of the soft system methodology require models to predict changes as a result ofa suggested implementation of measures <strong>and</strong> to enable decision-mak<strong>in</strong>g.Model characteristicsA major dist<strong>in</strong>ction is often made between simple <strong>and</strong> complicated models <strong>in</strong> which the formeris frequently associated with eng<strong>in</strong>eer<strong>in</strong>g methods <strong>and</strong> the latter with scientific methods. Thedevelopment of these different types of models <strong>and</strong> the use of the terms stem from the needs ofvarious groups of professionals. Eng<strong>in</strong>eers, managers <strong>and</strong> decision-makers are <strong>in</strong> general look<strong>in</strong>gfor answers <strong>and</strong> criteria to base their <strong>management</strong>, decisions or designs on, while scientists aremore <strong>in</strong>terested <strong>in</strong> the underly<strong>in</strong>g processes (Van der Molen, 1996).


16Def<strong>in</strong><strong>in</strong>g the problem <strong>and</strong> seek<strong>in</strong>g solutionsThe terms simple <strong>and</strong> complicated <strong>in</strong> relation to eng<strong>in</strong>eer<strong>in</strong>g or functional <strong>and</strong> scientific modelsare rather subjective. The dist<strong>in</strong>ction between scientific <strong>and</strong> functional refers not only to thepurpose of modell<strong>in</strong>g <strong>and</strong> the <strong>in</strong>tended uses, but also implicitly to the approaches on which themodels are based.The three ma<strong>in</strong> groups of modell<strong>in</strong>g approaches are mechanistic, empirical <strong>and</strong> conceptualapproaches. Mechanistic, or as Woolhiser <strong>and</strong> Brakensiek (1982) def<strong>in</strong>e them, physically-basedmodels are based on known fundamental physical processes <strong>and</strong> elementary laws. In ground<strong>water</strong>modell<strong>in</strong>g, this approach is also known as the Darcian approach. As this approach is based onelementary laws it should be, theoretically, valid under any given condition <strong>and</strong> therefore itstransferability is extremely high. On the other h<strong>and</strong>, empirical approaches are based on relationsthat are established on an experimental basis <strong>and</strong> are normally only valid for the conditionsunder which they have been derived. F<strong>in</strong>ally, conceptual calculation approaches are based onthe modeller’s underst<strong>and</strong><strong>in</strong>g of fundamental physical processes <strong>and</strong> elementary laws, but theseare not used as such to solve a problem. Instead, a concept of the reality is used to tackle aproblem. The best-known example is the bucket-type approach to describe the flow of <strong>water</strong>through unsaturated soil.Scientific models make use of mechanistic calculation approaches whenever possible <strong>and</strong>avoid the use of empirical <strong>and</strong> conceptual approaches. In contrast, functional models might<strong>in</strong>clude any of the three calculation approaches. Here, mechanistic approaches might be <strong>in</strong>cludedas long as they do not conflict with other required model characteristics such as simplicity <strong>and</strong>short calculation time. Empirical <strong>and</strong> conceptual approaches are used <strong>in</strong> functional models asthe only concern is that the model serves its <strong>in</strong>tended purpose.Regional modelsThe employment of a range of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> options results <strong>in</strong> certa<strong>in</strong> benefits,<strong>in</strong>teractions <strong>and</strong> trade-offs not only <strong>in</strong> the place where the measure is implemented but also <strong>in</strong>adjacent <strong>and</strong> downstream areas. To enable decision-makers, managers <strong>and</strong> eng<strong>in</strong>eers to choosefrom different options <strong>and</strong> to study the effects of various alternatives, regional simulation modelswill need to be employed. Regional models normally <strong>in</strong>clude three ma<strong>in</strong> calculation modules, i.e.<strong>water</strong> flow <strong>and</strong> salt transport <strong>in</strong> the unsaturated or vadose zone, through the ground<strong>water</strong> zone<strong>and</strong> through the irrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> conduits. Regional models normally require large amountsof data, <strong>and</strong> model calibration <strong>and</strong> validation is a time-consum<strong>in</strong>g exercise. It is beyond thescope of this report to <strong>in</strong>troduce the various models that have been developed <strong>and</strong> the readermay refer to Skaggs <strong>and</strong> Van Schilfgaarde (1999) <strong>and</strong> Ghadiri <strong>and</strong> Rose (1992) for more detail.The follow<strong>in</strong>g sections <strong>in</strong>troduce only some basic calculation considerations of <strong>water</strong> flow <strong>and</strong>salt transport <strong>in</strong> the unsaturated or vadose zone as these form the basis of several of the calculationmethods presented <strong>in</strong> this publication. Where the <strong>water</strong> table <strong>in</strong> agricultural l<strong>and</strong>s is controlledby subsurface <strong>dra<strong>in</strong>age</strong> or where the <strong>water</strong> table is close to the rootzone, <strong>water</strong> <strong>and</strong> salt transportto <strong>and</strong> from the ground<strong>water</strong> is considered as well. However, this publication <strong>in</strong>troduces nospecific ground<strong>water</strong> models or calculation procedures for <strong>water</strong> <strong>and</strong> salt transport <strong>in</strong> the saturatedzone.ROOTZONE HYDROSALINITY MODELSPr<strong>in</strong>ciples of rootzone hydrosal<strong>in</strong>ity modelsRootzone hydrosal<strong>in</strong>ity models may range from simple conceptual to complex scientific models.In the more simple models, the spatial component <strong>in</strong> the control volume (i.e. the crop rootzone)


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 17is typically assumed to be homogenous <strong>and</strong> space averaged (lumped), but <strong>water</strong> flow pathwaysare treated as distributed fluxes, e.g. deep percolation <strong>and</strong> root<strong>water</strong> extraction. The time<strong>in</strong>crements taken may vary from irrigation <strong>in</strong>tervals to crop grow<strong>in</strong>g season. Sal<strong>in</strong>ity is oftentreated as a conservative (non-reactive) parameter <strong>in</strong> simple models. The advantages of simplerfunctional models <strong>in</strong>clude more limited requirements for <strong>in</strong>put data <strong>and</strong> model coefficients.In contrast, the more complex, process-based rootzone models simulate <strong>water</strong> flow based onRichards’ equation <strong>and</strong> treat sal<strong>in</strong>ity as a reactive state variable with simplified to comprehensivesoil chemistry submodels. Such models provide greater underst<strong>and</strong><strong>in</strong>g of the complexities <strong>in</strong><strong>in</strong>teractive physical <strong>and</strong> chemical processes. Complex scientific models require extensive <strong>in</strong>putdata <strong>and</strong> model coefficients, <strong>and</strong> carry out computations over small time <strong>and</strong> spatial scales.A word statement of Richards’ equation for the rootzone may be given by:[Rate of change <strong>in</strong> soil<strong>water</strong> with respect to time]=[Rate of change <strong>in</strong> fluxwith respect to depth][Root <strong>water</strong> extraction s<strong>in</strong>k withrespect to depth <strong>and</strong> time]In one dimension <strong>and</strong> tak<strong>in</strong>g small soil volume elements, Richards’ equation is:∂θ∂t∂ ∂H= [ K(θ ) ] − Se(z,t)∂z∂z(1)The terms <strong>in</strong> the parenthesis represent flux taken as the product of hydraulic conductivity(K) <strong>and</strong> hydraulic head gradient (∂H/∂z). Richards’ equation is difficult to solve because thereare two dependent variables volumetric <strong>water</strong> content (θ ) <strong>and</strong> H, the relationship is non-l<strong>in</strong>earas K is a function of (θ ), <strong>and</strong> the <strong>water</strong> extraction s<strong>in</strong>k (S e) requires simulation of root growthby soil depth (z) <strong>and</strong> time (t). Once the soil <strong>water</strong> flow is simulated, the output data ( θ, flux)serves as <strong>in</strong>put data for simulat<strong>in</strong>g soil chemistry.Figure 8 describes some of the major chemical reactions <strong>in</strong>volved <strong>in</strong> simulat<strong>in</strong>g changes <strong>in</strong>soil sal<strong>in</strong>ity.The reactivity <strong>and</strong> transport of chemical species is obta<strong>in</strong>ed from:)∂θCk ∂ Ck∂ Ck∂ ⎡ ∂Ck⎤+ ρ + ρ = D qCkk =1,2,...nt t t z ⎢θ −∂ ∂ ∂ ∂ ⎣ ∂z⎥⎦(2)The pr<strong>in</strong>cipal solute species (C k=1..n) modelled are sodium (Na), calcium (Ca), magnesium(Mg), potassium (K), chloride (Cl), sulphate (SO 4), bicarbonate (HCO 3), carbonate (CO 3) <strong>and</strong>nitrate (NO 3). ρ is bulk density, D is dispersion coefficient, q is soil <strong>water</strong> flux, C is thekexchangeable form <strong>and</strong> C ) kis the m<strong>in</strong>eral form of the solute species.An early hydrosal<strong>in</strong>ity simulation model (Robb<strong>in</strong>s et al., 1980) was later extended to thewidely used LEACHM (Wagenet <strong>and</strong> Huston, 1987). The US Sal<strong>in</strong>ity Laboratory has beenactive <strong>in</strong> modell<strong>in</strong>g efforts for salt transport <strong>and</strong> major cations <strong>and</strong> anions such as UNSATCHEM(Simunek <strong>and</strong> Suarez, 1993; Simunek et al., 1996) <strong>and</strong> HYDRUS (Simunek et al., 1998, 1999),both <strong>in</strong> one <strong>and</strong> two dimensions. Trace elements of concern such as boron <strong>and</strong> selenium haveyet to be <strong>in</strong>corporated <strong>in</strong>to these models. Simultaneous <strong>water</strong>, solute <strong>and</strong> heat transport modell<strong>in</strong>gof the soil-atmosphere-plant cont<strong>in</strong>uum has been developed at Wagen<strong>in</strong>gen <strong>Agricultural</strong> University,the Netherl<strong>and</strong>s, <strong>in</strong> collaboration with ALTERRA (formerly the DLO W<strong>in</strong><strong>and</strong> Star<strong>in</strong>g Centre).The present version, SWAP 2.0, <strong>in</strong>tegrates <strong>water</strong> flow, solute transport <strong>and</strong> crop growth accord<strong>in</strong>gto current modell<strong>in</strong>g concepts <strong>and</strong> simulation techniques (Van Dam et al., 1997).


18Def<strong>in</strong><strong>in</strong>g the problem <strong>and</strong> seek<strong>in</strong>g solutionsFIGURE 8Major chemical reactions <strong>in</strong> salt-affected soilsM<strong>in</strong>eral phaseCaCO 3 , CaSO 4 .2H 2 O, Na 2 SO 4,NaCl, MgCO , Na CO , MgSO3 2 3 4m<strong>in</strong>eral solubilitySoil solution phase: free ionsNa + , Ca 2+ , Mg 2+ , K +Cl - , SO 42- , HCO 3- , NO 3-CO 32- , H+ , OH-ion associationcationexchangeGas phaseCO 2 , O 2 , N 2partialpressureExchanger solid phaseNa +Ca 2Mg 2+K +H +Source: Tanji, 1990.Soil solution phase: ion pairsCaSOo 4 , MgSOo 4 , NaSO- 4 , KSO- 4CaHCO+ 3 , CaCOo 3 , MgHCO+ 3oMgCO 3 , NaCO- 3 , NaHCOo 3KCO-3, KHCOo3Salt balance <strong>in</strong> the rootzoneThe long-term susta<strong>in</strong>ability of irrigated agriculture is heavily dependent on ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g an adequatesalt balance <strong>in</strong> the crop rootzone. For regions with a high <strong>water</strong> table, the salt balance needs tobe exp<strong>and</strong>ed to <strong>in</strong>clude the shallow ground<strong>water</strong>, too.Kaddah <strong>and</strong> Rhoades (1976) exam<strong>in</strong>ed salt balance <strong>in</strong> the rootzone subject to high <strong>water</strong>table with:V * C + V * C + M + M = V * Ciigwgwdfdwdw+ Mp+ Mc+ ∆Mwhere:V i= volume of irrigation <strong>water</strong> (m 3 );V gw= volume of ground<strong>water</strong> (m 3 );V dw= volume of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> (m 3 );C i= salt concentration of irrigation <strong>water</strong> (kg m -3 );C gw= salt concentration of ground<strong>water</strong> (kg m -3 );C dw= salt concentration of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> (kg m -3 );M d= mass of salts dissolved from m<strong>in</strong>eral weather<strong>in</strong>g (kg);M f= mass of salts derived from fertilizers <strong>and</strong> amendments (kg);M p= mass of salts precipitated <strong>in</strong> soils (kg);= mass of salts removed by harvested crops (kg);M css+ ∆M∆M = mass of changes <strong>in</strong> storage of soluble soil salts (kg); <strong>and</strong>ss∆M xc= mass of changes <strong>in</strong> storage of exchangeable cations (kg).Cation exchange between calcium, magnesium <strong>and</strong> sodium may modify the balance of thesecations <strong>in</strong> the soil <strong>water</strong> <strong>and</strong> affect m<strong>in</strong>eral solubility. Sodium m<strong>in</strong>erals are more soluble thanxc(3)


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 19calcium m<strong>in</strong>erals while magnesium m<strong>in</strong>erals may range from highly soluble (sulphate type) tospar<strong>in</strong>gly soluble (carbonate type).Equation 3 conta<strong>in</strong>s some components that are not known or are small <strong>in</strong> relation to otherquantities such as M d, M f, M p<strong>and</strong> M c(Bower et al., 1969). Moreover, the sources M d<strong>and</strong> M ftend to cancel the s<strong>in</strong>ks M p<strong>and</strong> M c. If steady-state conditions are assumed for <strong>water</strong>loggedsoils, <strong>and</strong> may be assumed to be zero so that Equation 3 reduces to:∆M ss∆M xcV * C + V * C = V * CiigwVVdwLF = =igwIf the l<strong>and</strong> is not <strong>water</strong>logged, V gw* C gwdrops out so that salt balance can be viewed simply<strong>and</strong> leads to such relationships as:Equation 5 expresses the leach<strong>in</strong>g fraction (LF) <strong>and</strong> is the simplest form of the salt <strong>and</strong><strong>water</strong> balance for the rootzone where surface runoff is ignored. Where the l<strong>and</strong> is not <strong>water</strong>logged,V dwconsists of deep percolation from the rootzone.Where the <strong>water</strong> table <strong>in</strong> agricultural l<strong>and</strong>s is controlled by subsurface <strong>dra<strong>in</strong>age</strong>, then themass of salts <strong>in</strong> ground<strong>water</strong> must be considered <strong>in</strong> Equation 4. Due to the nature of flow l<strong>in</strong>esto subsurface <strong>dra<strong>in</strong>age</strong> collector l<strong>in</strong>es, the subsurface <strong>dra<strong>in</strong>age</strong> collected <strong>and</strong> discharged is a mixof deep percolation from the rootzone <strong>and</strong> <strong>in</strong>tercepted shallow ground<strong>water</strong>. For example, forthe Imperial Irrigation District, California, the United States of America, Kaddah <strong>and</strong> Rhoades(1976) estimated that deep percolation contributed 61 percent <strong>and</strong> shallow ground<strong>water</strong> 39 percentto the tile <strong>dra<strong>in</strong>age</strong> effluent based on chloride mass balance. They also estimated that tail<strong>water</strong>contributed 10 percent to the total surface <strong>and</strong> subsurface <strong>dra<strong>in</strong>age</strong> from the district. The ratioof tail<strong>water</strong> plus <strong>in</strong>tercepted deep percolation <strong>and</strong> shallow ground<strong>water</strong> to applied <strong>water</strong> for thedistrict was 0.36.In the presence of high <strong>water</strong> table, shallow ground<strong>water</strong> <strong>and</strong> its salts may move up <strong>in</strong>to therootzone (recharge) <strong>and</strong> down out of the rootzone (discharge) depend<strong>in</strong>g on the hydraulic head.Deficit irrigation under high <strong>water</strong> table may <strong>in</strong>duce root<strong>water</strong> extraction of the shallowground<strong>water</strong>. The sal<strong>in</strong>ity level of the shallow ground<strong>water</strong> is of some concern under suchconditions. However, there does not appear to be a simple conceptual model of capillary rise of<strong>water</strong> <strong>and</strong> solutes. Chapter 5 <strong>and</strong> Annex 5 conta<strong>in</strong> a method for comput<strong>in</strong>g capillary rise thatrequires extensive soil hydraulic parameters not normally available for field soils. Hence, theconceptual hydrosal<strong>in</strong>ity models used <strong>in</strong> this paper are for the more simplified downward steadystatetype.Various versions of the salt balance, Equation 3, have served as the basis for numerousmodels <strong>in</strong>clud<strong>in</strong>g SALTMOD (Oosterbaan, 2001), CIRF (Aragüés et al., 1990) <strong>and</strong>SAHYSMOD, which is under preparation by the International Institute for L<strong>and</strong> Reclamation<strong>and</strong> Improvement, Wagen<strong>in</strong>gen, the Netherl<strong>and</strong>s. Furthermore, the calculation methods as<strong>in</strong>troduced by Van Hoorn <strong>and</strong> Van Alphen (1994) are based on the same concepts.CiCdwdwdw(4)(5)


20Def<strong>in</strong><strong>in</strong>g the problem <strong>and</strong> seek<strong>in</strong>g solutions


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 21Chapter 3Framework for select<strong>in</strong>g, evaluat<strong>in</strong>g <strong>and</strong>assess<strong>in</strong>g the impact of <strong>dra<strong>in</strong>age</strong> <strong>water</strong><strong>management</strong> measuresDEFINITION OF DRAINAGE WATER MANAGEMENT AND TASKS INVOLVEDIn the context of this publication, <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> refers to the <strong>management</strong> <strong>and</strong>control over the quantity <strong>and</strong> quality of the <strong>dra<strong>in</strong>age</strong> <strong>water</strong> generated <strong>in</strong> an agricultural <strong>dra<strong>in</strong>age</strong>bas<strong>in</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas <strong>and</strong> its f<strong>in</strong>al safe disposal. This is achieved through irrigation<strong>water</strong> conservation measures <strong>and</strong> the reuse, disposal <strong>and</strong> treatment of <strong>dra<strong>in</strong>age</strong> <strong>water</strong>. Manag<strong>in</strong>g<strong>dra<strong>in</strong>age</strong> <strong>water</strong> at the field, irrigation-scheme <strong>and</strong> river-bas<strong>in</strong> levels entails a number of activities<strong>in</strong>clud<strong>in</strong>g:• regulat<strong>in</strong>g <strong>water</strong> table levels <strong>in</strong> the <strong>dra<strong>in</strong>age</strong> system to ensure the ma<strong>in</strong>tenance of favourablesoil moisture conditions for optimal crop growth <strong>and</strong> sal<strong>in</strong>ity control;• develop<strong>in</strong>g irrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> strategies to ensure that disposalregulations <strong>and</strong> <strong>water</strong> quality st<strong>and</strong>ards are met <strong>and</strong> deal<strong>in</strong>g with issues, problems <strong>and</strong> conflictsthat might occur;• sett<strong>in</strong>g distribution priorities <strong>and</strong> criteria for reuse <strong>in</strong> <strong>water</strong> scarce areas; <strong>and</strong>• establish<strong>in</strong>g cost shar<strong>in</strong>g imposed on stakeholders for the use of poor quality <strong>water</strong> <strong>and</strong>required treatment to meet the <strong>water</strong> quality st<strong>and</strong>ards for dra<strong>in</strong> discharge.DRIVING FORCES BEHIND DRAINAGE WATER MANAGEMENTThe ma<strong>in</strong> reasons for develop<strong>in</strong>g a <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> strategy are: (i) prevention ofeconomic <strong>and</strong> agricultural losses from <strong>water</strong>logg<strong>in</strong>g, sal<strong>in</strong>ization <strong>and</strong> <strong>water</strong> quality degradation;(ii) concern for quality degradation of shared <strong>water</strong> resources; <strong>and</strong> (iii) the need to conserve<strong>water</strong> for different <strong>water</strong> users under conditions of actual or projected <strong>water</strong> scarcity. In addition,the need to comply with <strong>dra<strong>in</strong>age</strong> <strong>water</strong> policies <strong>and</strong> regulations can provide a strong <strong>in</strong>centivefor improved <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong>.Many countries <strong>and</strong> states, e.g. Australia, India, Egypt <strong>and</strong> California, the United States ofAmerica, have a <strong>dra<strong>in</strong>age</strong> <strong>water</strong> disposal policy <strong>and</strong> <strong>dra<strong>in</strong>age</strong> effluent disposal regulations. InCalifornia, the United States of America, <strong>and</strong> <strong>in</strong> Australia, the <strong>dra<strong>in</strong>age</strong> policy guidel<strong>in</strong>es consistof difficult but achievable targets with an active enforcement of regulations. India <strong>and</strong> Egypthave policy guidel<strong>in</strong>es of a general nature but have not reached the maturity of Californian <strong>and</strong>Australian laws. Law enforcement often fails <strong>in</strong> these countries, ma<strong>in</strong>ly as a result of adm<strong>in</strong>istrativeshortcom<strong>in</strong>gs <strong>and</strong> unrealistic quality guidel<strong>in</strong>es for their conditions <strong>and</strong> resources. In thesecountries <strong>and</strong> <strong>in</strong> countries where clear laws <strong>and</strong> regulations are absent, the prevention of economic<strong>and</strong> agricultural losses <strong>and</strong> the conservation of <strong>water</strong> for other beneficial uses will normally bethe ma<strong>in</strong> driv<strong>in</strong>g factors beh<strong>in</strong>d the development of a <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> strategy.


22Framework for select<strong>in</strong>g, evaluat<strong>in</strong>g <strong>and</strong> assess<strong>in</strong>g the impact of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong>PHYSICAL DRAINAGE WATER MANAGEMENT OPTIONSFigure 9 identifies the physical <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> options that are available to planners,decision-makers <strong>and</strong> eng<strong>in</strong>eers <strong>and</strong> how they relate to one another. The measures have beengrouped <strong>in</strong>to four categories: <strong>water</strong> conservation, <strong>dra<strong>in</strong>age</strong> <strong>water</strong> reuse, <strong>dra<strong>in</strong>age</strong> <strong>water</strong> treatment<strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> disposal measures.Conservation measuresA major goal of conservation measures is to reduce the volume of <strong>dra<strong>in</strong>age</strong> effluent generated<strong>and</strong> the mass discharge of salts <strong>and</strong> other constituents of concern while at the same time sav<strong>in</strong>gFIGURE 9Physical <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> options <strong>and</strong> how they relate to one anotherDriv<strong>in</strong>g force· Prevent economic <strong>and</strong> agricultural losses as aresult of <strong>water</strong>logg<strong>in</strong>g,, sal<strong>in</strong>ization <strong>and</strong> <strong>water</strong>quality degradation.· Direct <strong>water</strong> conservation for other users of thesame <strong>water</strong> source <strong>in</strong> <strong>water</strong> scarce areas.· Comply with <strong>dra<strong>in</strong>age</strong> <strong>water</strong> quality regulationsthat aim to:1. Ma<strong>in</strong>ta<strong>in</strong> <strong>water</strong> quality st<strong>and</strong>ards of surface<strong>water</strong> bodies for other downstream users, i.e.agriculture, municipalities, <strong>in</strong>dustries, environment<strong>and</strong> recreation.2. Reduce the <strong>dra<strong>in</strong>age</strong> flow for areas with limiteddisposal options.ConservationSource reductionChange <strong>in</strong>cropp<strong>in</strong>g patternShallowground<strong>water</strong> tableGround<strong>water</strong><strong>management</strong>L<strong>and</strong> retirementChange <strong>in</strong>cropp<strong>in</strong>g patternReuse <strong>in</strong>conventionalagricultureIntegrated FarmDra<strong>in</strong>age ManagementSystemsRe-use forreclamation ofsalt-affected soilsReuse <strong>in</strong> wetl<strong>and</strong>habitatsReuseDirect useBlend<strong>in</strong>g“Conjunctive” useCyclicuseSalt harvest&utilizationIntraseasonInterseasonTreatmentPhysical treatment Chemical treatment Biological treatmentDisposalRiver discharge Evaporation Outfall dra<strong>in</strong>Salt harvest&utilizationInjection <strong>in</strong> deepaquifers


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 23TABLE 2Conservation measures, practices <strong>and</strong> po<strong>in</strong>ts for considerationOption Practices Po<strong>in</strong>ts for considerationSourcereductionShallowground<strong>water</strong>table<strong>management</strong>Ground<strong>water</strong><strong>management</strong>Reduce the volume of deeppercolation through: improv<strong>in</strong>girrigation performance by surfaceirrigation, chang<strong>in</strong>g from surface toprecision irrigation methods, modify<strong>in</strong>girrigation schedules, upgrad<strong>in</strong>girrigation <strong>in</strong>frastructure, etc.Encourage the use of shallowground<strong>water</strong> to meet crop evaporationthrough ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g sufficiently highground<strong>water</strong> tables <strong>and</strong> practis<strong>in</strong>gdeficit irrigation.Pump<strong>in</strong>g from vertical wells couldcontrol <strong>water</strong> tables. Pumped <strong>water</strong> ofadequate quality could serve as asubstitute for surface <strong>water</strong>.Farm- <strong>and</strong> system-level costs of systemimprovements have to be considered aga<strong>in</strong>st theregional benefits. Sal<strong>in</strong>ization <strong>and</strong> concentration oftoxic elements <strong>in</strong> the rootzone need to be preventedby guarantee<strong>in</strong>g m<strong>in</strong>imum leach<strong>in</strong>g.There is a danger of sal<strong>in</strong>ization <strong>and</strong> concentrationof toxic elements <strong>in</strong> the upper soil layers due to<strong>in</strong>duced capillary rise. Moreover, the risk of<strong>in</strong>sufficient aeration dur<strong>in</strong>g ra<strong>in</strong>fall <strong>in</strong> the rootzoneneeds to be addressed.Prevent overexploitation of ground<strong>water</strong> resources.There is a danger of <strong>in</strong>trusion <strong>and</strong> upwell<strong>in</strong>g ofsal<strong>in</strong>e ground<strong>water</strong>. As ground<strong>water</strong> often conta<strong>in</strong>selevated concentrations of salts <strong>and</strong> trace elements,their buildup to toxic levels <strong>and</strong> soil degradationneeds to be prevented.L<strong>and</strong> retirement Retire or fallow irrigated l<strong>and</strong>s that areheavily affected by <strong>water</strong>logg<strong>in</strong>g <strong>and</strong>sal<strong>in</strong>ity or those l<strong>and</strong>s that generate<strong>dra<strong>in</strong>age</strong> effluent with extremely highconcentrations of salts <strong>and</strong>/or othertrace elements.Source: SJVDIP, 1999a, 1999c, 1999e, 1999f.Retired l<strong>and</strong>s can become excessively sal<strong>in</strong>ized <strong>and</strong>high concentration of toxic elements can build up <strong>in</strong>the topsoil prevent<strong>in</strong>g natural vegetation fromestablish<strong>in</strong>g itself. Contam<strong>in</strong>ated bare l<strong>and</strong>s canaffect productivity <strong>and</strong> be a health risk to humans <strong>in</strong>the vic<strong>in</strong>ity due to w<strong>in</strong>d erosion.<strong>water</strong> for other beneficial uses. Conservation measures can directly affect the need for <strong>and</strong>extent of reuse as well as the quantity <strong>and</strong> quality of <strong>dra<strong>in</strong>age</strong> effluent requir<strong>in</strong>g disposal <strong>and</strong>/ortreatment. Where competition for <strong>water</strong> quantity <strong>and</strong> quality among different groups of users isa major issue <strong>and</strong> where <strong>dra<strong>in</strong>age</strong> effluent disposal is constra<strong>in</strong>ed (as <strong>in</strong> a closed <strong>dra<strong>in</strong>age</strong> bas<strong>in</strong>)or threatens ecologically sensitive areas, conservation measures are among the first to beconsidered. The various conservation measures <strong>in</strong>clude: source reduction (SJVDIP, 1999e);shallow ground<strong>water</strong> table <strong>management</strong> (SJVDIP, 1999a <strong>and</strong> 1999f); ground<strong>water</strong> <strong>management</strong>(SJVDIP, 1999f); <strong>and</strong> l<strong>and</strong> retirement (SJVDIP, 1999c). Table 2 provides a short description ofthe four conservation measures <strong>and</strong> some po<strong>in</strong>ts for consideration.The first l<strong>in</strong>e of action <strong>in</strong> on-farm <strong>water</strong> conservation is source reduction or reduc<strong>in</strong>g deeppercolation. Where the goal is not achievable by source reduction, it may be necessary toimplement other conservation measures <strong>in</strong> comb<strong>in</strong>ation with reuse measures. As different cropsrequire different amounts of <strong>water</strong> for optimal crop growth <strong>and</strong> as root<strong>in</strong>g patterns differ amongcrops, source reduction <strong>and</strong> <strong>water</strong> table <strong>management</strong> could be comb<strong>in</strong>ed with a change <strong>in</strong>cropp<strong>in</strong>g pattern to optimize the desired effect of the measures. Changes <strong>in</strong> cropp<strong>in</strong>g patternshould only be considered where compatible with the broader development objectives for thearea under consideration.Reuse measuresThe major aim of reuse measures is to reduce the amount of <strong>dra<strong>in</strong>age</strong> effluent while at the sametime mak<strong>in</strong>g additional <strong>water</strong> available for irrigation <strong>and</strong> other purposes. Reuse measures comprise:reuse <strong>in</strong> conventional agriculture; reuse <strong>in</strong> sal<strong>in</strong>e agriculture; Integrated Farm Dra<strong>in</strong>ageManagement (IFDM) systems; reuse <strong>in</strong> wildlife habitats, wetl<strong>and</strong>s <strong>and</strong> pastures; <strong>and</strong> reuse for


24Framework for select<strong>in</strong>g, evaluat<strong>in</strong>g <strong>and</strong> assess<strong>in</strong>g the impact of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong>TABLE 3Reuse measures, practices <strong>and</strong> po<strong>in</strong>ts for considerationOption Practices Po<strong>in</strong>ts for considerationReuse <strong>in</strong>conventionalagricultureReuse <strong>in</strong> sal<strong>in</strong>eagricultureIFDM SystemReuse <strong>in</strong>wildlife habitats<strong>and</strong> wetl<strong>and</strong>sReuse forreclamation ofsalt-affectedsoilsSource: SJVDIP, 1999a.<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> is collected <strong>and</strong>redistributed among farmers. Reuse canbe direct or <strong>in</strong> conjunction with othersources of irrigation <strong>water</strong>. Conjunctive usecan be through blend<strong>in</strong>g or by cyclic use of<strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>and</strong> other sources ofirrigation <strong>water</strong>.Moderately <strong>and</strong> highly sal<strong>in</strong>e <strong>dra<strong>in</strong>age</strong><strong>water</strong> is collected <strong>and</strong> used to cultivate salttolerant shrubs, trees <strong>and</strong> halophytes.On-farm sequential reuse of agricultural<strong>dra<strong>in</strong>age</strong> <strong>water</strong> on crops, trees <strong>and</strong>halophytes with <strong>in</strong>creas<strong>in</strong>g salt tolerance.In every reuse cycle the volume of<strong>dra<strong>in</strong>age</strong> <strong>water</strong> decreases while the saltconcentration <strong>in</strong>creases. The f<strong>in</strong>al br<strong>in</strong>e isdisposed <strong>in</strong> a solar evaporator. Saltutilization might be feasible.Where of suitable quality, <strong>dra<strong>in</strong>age</strong> <strong>water</strong>may be utilized to support wildlife, <strong>in</strong>clud<strong>in</strong>g<strong>water</strong>birds, fish, mammals <strong>and</strong> aquaticvegetation that serves as food <strong>and</strong> coverfor wildlife.Use of (moderately) sal<strong>in</strong>e <strong>dra<strong>in</strong>age</strong> <strong>water</strong>for <strong>in</strong>itial reclamation of sal<strong>in</strong>e, sal<strong>in</strong>e sodicor sodic soils. On sodic soils the sal<strong>in</strong>e<strong>water</strong> may help prevent soil dispersion <strong>and</strong>degradation of soil structure.The extent of reuse depends on the quality of the<strong>dra<strong>in</strong>age</strong> effluent, time of availability, croptolerance, etc. Soil quality degradation <strong>and</strong>production losses need to be prevented throughmitigation measures. Residuals of reused<strong>water</strong>s, which are often highly concentrated witha reduced volume, need to be managed.Susta<strong>in</strong>ability of the sal<strong>in</strong>e agricultural systemsneeds to be safeguarded while the highlyconcentrated <strong>dra<strong>in</strong>age</strong> effluent needs to bemanaged.To ma<strong>in</strong>ta<strong>in</strong> adequate control of soil sal<strong>in</strong>ity <strong>and</strong>sodicity <strong>and</strong> to prevent a buildup of toxicelements, the leach<strong>in</strong>g fraction must besufficient. The solar evaporator should bedesigned <strong>in</strong> such a manner that it will not susta<strong>in</strong>aquatic life <strong>and</strong> attract birds. The salts have tobe disposed of <strong>in</strong> a safe <strong>and</strong> susta<strong>in</strong>ablemanner.Of primary concern is the possible presence oftrace elements that may be toxic to wildlifethrough bioaccumulation <strong>in</strong> the food cha<strong>in</strong> e.g.selenium, molybdenum <strong>and</strong> mercury.Once <strong>in</strong>itial reclamation is obta<strong>in</strong>ed, <strong>water</strong> ofsufficient quality <strong>and</strong> quantity needs to beavailable for desired l<strong>and</strong> use. Initially, the<strong>dra<strong>in</strong>age</strong> effluent will be highly sal<strong>in</strong>e <strong>and</strong>/orsodic <strong>and</strong> needs to be disposed of <strong>in</strong> a safemanner.<strong>in</strong>itial reclamation of salt-affected l<strong>and</strong>s (SJVDIP, 1999a). Table 3 provides a brief descriptionof the alternative reuse measures.Reuse measures can be implemented <strong>in</strong> comb<strong>in</strong>ation with conservation measures. Wherethe <strong>dra<strong>in</strong>age</strong> <strong>water</strong> is of relatively good quality, its reuse potential <strong>in</strong> conventional agriculture ishigh. Where it is moderately to highly sal<strong>in</strong>e, its reuse may be limited to salt tolerant plants. InCalifornia, the United States of America, a new IFDM system reuses <strong>dra<strong>in</strong>age</strong> <strong>water</strong> sequentially<strong>in</strong> high <strong>water</strong> table l<strong>and</strong>s with no opportunities for disposal of subsurface <strong>dra<strong>in</strong>age</strong> (SJVDIP,1999a). Fresh<strong>water</strong> is used to grow salt sensitive crops, <strong>and</strong> subsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong> from itis reused to grow salt tolerant crops. Dra<strong>in</strong>age <strong>water</strong> from the salt tolerant cropl<strong>and</strong> is used toirrigate salt tolerant grasses <strong>and</strong> halophytes. When the <strong>dra<strong>in</strong>age</strong> <strong>water</strong> is no longer usable, it isdisposed <strong>in</strong>to solar evaporators for salt harvest. In this system <strong>and</strong> others, it is always necessaryto generate a m<strong>in</strong>imum volume of <strong>dra<strong>in</strong>age</strong> effluent to prevent the rootzone from becom<strong>in</strong>g toocontam<strong>in</strong>ated for any beneficial <strong>water</strong> use activity. Similar systems are be<strong>in</strong>g developed <strong>and</strong>tested <strong>in</strong> Australia.Treatment measuresDra<strong>in</strong>age <strong>water</strong> treatment <strong>in</strong> a <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> plan normally takes place onlyunder severe constra<strong>in</strong>ts, such as str<strong>in</strong>gent regulations on disposal of sal<strong>in</strong>e <strong>dra<strong>in</strong>age</strong> <strong>water</strong>s <strong>in</strong>tostreams, or severe <strong>water</strong> shortage. The <strong>dra<strong>in</strong>age</strong> <strong>water</strong> treatment options are based on physical,chemical <strong>and</strong>/or biological processes (SJVDIP, 1999b). Many of these processes are borrowed


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 25TABLE 4Array of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> treatment optionsDescription Processes Constituents removed or treatedPhysical /chemicalBiologicalSource: SJVDIP, 1999b.Sedimentation /coagulationAdsorptionIon exchangeReverse osmosisCoagulation /precipitationReduction / oxidationVolatilizationPlant / algal uptakeConstructed flowthroughwetl<strong>and</strong>sRemove sediments <strong>and</strong> associated nutrients, pesticides <strong>and</strong> traceelements <strong>in</strong> sedimentation ponds with or without coagulants.Remove soluble constituents onto surfaces of adsorbents.Exchange constituents with another us<strong>in</strong>g ion exchanger res<strong>in</strong>s orcolumns.Under pressure, separate out dissolved m<strong>in</strong>eral salts through <strong>semi</strong>permeablemembranes.Use chemicals such as alum to coagulate or precipitate constituents ofconcern.Reduce oxidized mobile forms such as selenate to reduced immobileforms such as elemental selenium through microbially mediatedprocesses.Some plants <strong>and</strong> microbes are capable of tak<strong>in</strong>g up constituents suchas selenium <strong>and</strong> volatiliz<strong>in</strong>g the methylated forms <strong>in</strong>to the atmosphere.Certa<strong>in</strong> terrestrial plants <strong>and</strong> algae are capable of extract<strong>in</strong>g largeamounts of constituents such as selenium, nitrate <strong>and</strong> molybdenum.Constituents such as selenium <strong>and</strong> heavy metals are removed from<strong>dra<strong>in</strong>age</strong> <strong>water</strong>. For selenium, the pr<strong>in</strong>cipal removal mechanism isreduction to elemental selenium <strong>and</strong> <strong>org</strong>anic forms <strong>in</strong> the detritalmatter. For heavy metals, the pr<strong>in</strong>cipal s<strong>in</strong>k mechanism is sorption orfixation on the sediments.from <strong>water</strong> treatment processes for dr<strong>in</strong>k<strong>in</strong>g-<strong>water</strong>, sewage <strong>and</strong> <strong>in</strong>dustrial waste<strong>water</strong>. A feware new processes to remove selenium. The <strong>water</strong> quality requirements of the treated <strong>water</strong>need to be well understood prior to the selection of any treatment measure. Table 4 provides thearray of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> treatment options.The high costs of many of the treatment processes make them unsuitable for agriculturalreuse. Treatment measures such as reverse osmosis are normally only considered for highvaluepurposes such as dr<strong>in</strong>k<strong>in</strong>g-<strong>water</strong> supply. One option is to partially treat sal<strong>in</strong>e <strong>water</strong>s to alevel that could be used for agriculture (e.g. desalt to about 1 dS/m <strong>in</strong>stead of less than 0.1 dS/m). However, the cost of br<strong>in</strong>e <strong>management</strong> <strong>and</strong> disposal rema<strong>in</strong>s a major problem.An exception to the typical high cost is the treatment of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> through constructedwetl<strong>and</strong>s. Investigations are underway <strong>in</strong> California, the United States of America, <strong>in</strong> whichwetl<strong>and</strong> cells are planted with cattails, saltmarsh bulrush, tule, baltic rush, saltgrass, smooth cordgrass <strong>and</strong> rabbitsfoot grass. The cells remove about 60–80 percent of the mass of selenium withhydraulic residence times rang<strong>in</strong>g from 7 to 21 days. This treated <strong>water</strong> is then disposed <strong>in</strong>toagricultural evaporation ponds with reduced toxic selenium effects on <strong>water</strong>birds. Constructedwetl<strong>and</strong>s appear to have some potential to protect aquatic ecosystems <strong>and</strong> fisheries eitherdownstream or <strong>in</strong> closed bas<strong>in</strong>s.Disposal measuresEven after the successful implementation of conservation <strong>and</strong> reuse measures, there will alwaysbe a residual volume of <strong>dra<strong>in</strong>age</strong> effluent requir<strong>in</strong>g disposal. Disposal options depend ma<strong>in</strong>ly onthe situation of the <strong>dra<strong>in</strong>age</strong> outlet <strong>in</strong> relation to natural disposal sites such as rivers, streams,lakes <strong>and</strong> oceans. Disposal options to surface <strong>water</strong> bodies comprise discharge <strong>in</strong>to rivers <strong>and</strong>


26Framework for select<strong>in</strong>g, evaluat<strong>in</strong>g <strong>and</strong> assess<strong>in</strong>g the impact of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong>streams, river mouths <strong>and</strong>constructed outfall dra<strong>in</strong>s for directdisposal to oceans or sal<strong>in</strong>e lakes,<strong>and</strong> evaporation ponds (Figure 10).FIGURE 10Options for disposal to surface <strong>water</strong> bodiesAnother potential disposaloption is deep-well <strong>in</strong>jection.However, <strong>in</strong> California, thisapproach failed due to the slowpermeability of the geologic stratafrom the plugg<strong>in</strong>g of conduct<strong>in</strong>gpores (Johnston et al., 1997).Besides the natural <strong>dra<strong>in</strong>age</strong>conditions, the suitability of each ofthese measures depends on: thequality <strong>and</strong> quantity of <strong>dra<strong>in</strong>age</strong><strong>water</strong> requir<strong>in</strong>g disposal;environmental <strong>and</strong> health risks;available technology <strong>and</strong> resources;<strong>and</strong> economic considerations.Table 5 provides a short descriptionof the disposal measures.Dra<strong>in</strong>ageareaRiver bas<strong>in</strong>River or otherfresh<strong>water</strong> bodyCoast of ocean orsal<strong>in</strong>e lakeConstructed outfallEvaporationpondDisposaldirectionDra<strong>in</strong>age <strong>water</strong> disposal <strong>in</strong>to natural surface <strong>water</strong> bodies should entail m<strong>in</strong>imal deleteriousimpacts on other downstream <strong>water</strong> uses (agricultural, <strong>in</strong>dustrial <strong>and</strong> municipal) <strong>and</strong> wildlife.Disposal on l<strong>and</strong> <strong>in</strong> closed bas<strong>in</strong>s <strong>and</strong> agricultural evaporation bas<strong>in</strong>s should avoid undue harm tothe ecology, particularly aquatic biota <strong>in</strong>clud<strong>in</strong>g fish <strong>and</strong> <strong>water</strong>birds.TABLE 5Disposal measures, practices <strong>and</strong> po<strong>in</strong>ts for considerationOption Practices Po<strong>in</strong>ts for considerationRiverdischargeEvaporationpondsOutfall tosal<strong>in</strong>e lakes oroceansDeep-well<strong>in</strong>jectionSource: SJVDIP, 1999d, 1999g.The <strong>dra<strong>in</strong>age</strong> effluent is released<strong>in</strong>to rivers, streams, etc. from whereit f<strong>in</strong>ds its way to an ultimate salts<strong>in</strong>k, i.e. oceans <strong>and</strong> salt lakes. Thisoption is especially appropriatedur<strong>in</strong>g high discharge periods.Disposal of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>in</strong>natural depressions or speciallydesigned unl<strong>in</strong>ed bas<strong>in</strong>s. Theimpounded <strong>water</strong> dissipatesthrough evaporation <strong>and</strong><strong>in</strong>advertent seepage losses, <strong>and</strong>deposits salts <strong>and</strong> trace elements.Constructed ma<strong>in</strong> dra<strong>in</strong> or disposal<strong>in</strong>to river mouths to dischargeeffluents <strong>in</strong>to the ocean or sal<strong>in</strong>elakes.Treated <strong>dra<strong>in</strong>age</strong> <strong>water</strong> is often<strong>in</strong>jected <strong>in</strong>to deep underly<strong>in</strong>gpermeable substratum <strong>in</strong> conf<strong>in</strong>edaquifers.Disposal <strong>in</strong> rivers <strong>and</strong> lakes should not unduly impairother downstream uses <strong>in</strong>clud<strong>in</strong>g <strong>water</strong> required forsusta<strong>in</strong><strong>in</strong>g fragile aquatic ecosystems. River disposal isoften limited by disposal regulations.Concentration of trace elements could adversely affectbirds <strong>and</strong> wildlife through bioconcentration <strong>in</strong> theaquatic food cha<strong>in</strong> to toxic levels. Adverse toxicimpacts should be mitigated through special measures.Excessive seepage losses may pose a seriouscontam<strong>in</strong>ation risk to ground<strong>water</strong> resources.Construction of outfall dra<strong>in</strong>s over long distances isnormally an expensive undertak<strong>in</strong>g <strong>and</strong> should only beconsidered where other alternatives are not feasible orthe stream <strong>water</strong> quality is fragile. Disposal <strong>in</strong>tooceans, bays <strong>and</strong> estuaries may be restricted if toxictrace elements are present. Disposal <strong>in</strong>to tidal riversneeds tidal gates to prevent salt<strong>water</strong> <strong>in</strong>trusion dur<strong>in</strong>ghigh tide.Formation of microbial slimes <strong>and</strong> colloidal particlesmay affect permeability <strong>in</strong> the stratum. There is a risk ofseepage of poor quality <strong>water</strong> <strong>in</strong>to fresh ground<strong>water</strong>bodies.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 27NON-PHYSICAL DRAINAGE WATER MANAGEMENT OPTIONSIn order to be fully effective, non-physical <strong>management</strong> measures, i.e. policy <strong>and</strong> legislation,should accompany physical <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> options. Different countries haveimplemented several policies, <strong>and</strong> these are often part of a general pollution policy.One of the most frequently mentioned pr<strong>in</strong>ciples with respect to pollution is that of the polluterpays. This means that economic policy <strong>in</strong>struments are applied to change the behaviour offarmers <strong>in</strong> such a way that pollution is m<strong>in</strong>imized or that at least the polluter pays for its effects.Weers<strong>in</strong>k <strong>and</strong> Livernois (1996) provide an overview of such economic policy <strong>in</strong>struments forresolv<strong>in</strong>g <strong>water</strong> quality problems from agriculture. This overview was compiled for pollution bynutrients <strong>in</strong> humid temperate areas, such as Canada. However, some of these policies haverelevance to pollution from the <strong>dra<strong>in</strong>age</strong> of irrigated l<strong>and</strong>s. The ma<strong>in</strong> problem of policy <strong>in</strong>struments<strong>in</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> is that <strong>water</strong> quality degradation from agriculture is non-po<strong>in</strong>tsource pollution. Direct l<strong>in</strong>ks between agricultural practices <strong>and</strong> <strong>water</strong> quality degradation areoften difficult to determ<strong>in</strong>e <strong>and</strong> quantify.Weers<strong>in</strong>k <strong>and</strong> Livernois divided the policy<strong>in</strong>struments <strong>in</strong>to two groups: (i) those basedon the performance of an agricultural system,i.e. on the actual amount of pollution thatcaused; <strong>and</strong> (ii) those based on agriculturalpractices such as fertilizer <strong>and</strong> agrochemicaluses (Table 6). In the latter case, theunderly<strong>in</strong>g assumption is that certa<strong>in</strong>agricultural practices will lead to more or lesspollution. These policy <strong>in</strong>struments try to<strong>in</strong>fluence the practices <strong>and</strong>, <strong>in</strong>directly, thepollution result<strong>in</strong>g from these practices.TABLE 6Economic policy <strong>in</strong>strumentsBase Target FormPerformance of Emission Chargesagricultural systems Ambient ChargesSal<strong>in</strong>ity permits<strong>Agricultural</strong> practices Inputs ChargesSubsidiesOutputs ChargesSubsidiesSource: based on Weers<strong>in</strong>k <strong>and</strong> Livernois (1996).Emission levelsFees are levied on the discharge of the polluter <strong>in</strong>to the <strong>water</strong>. The aim is to stimulate thepolluter to adopt practices that m<strong>in</strong>imize pollution or to make the polluter pay for some of thedamage caused. This requires measurement of <strong>in</strong>dividual discharges, which is often costly <strong>and</strong>not always practical to implement. Measurements at the <strong>in</strong>dividual farm level are probably onlyfeasible with modern <strong>and</strong> large farms, such as <strong>in</strong> the United States of America <strong>and</strong> Spa<strong>in</strong>.However, the case of the Panoche Fan (Chapter 2) shows that it rema<strong>in</strong>s difficult to establishequitable f<strong>in</strong>es. Discharges from upstream farms with natural <strong>in</strong>ternal <strong>dra<strong>in</strong>age</strong> cannot bemeasured while they may contribute significantly to the pollution <strong>in</strong> downstream regions. Analternative to measur<strong>in</strong>g <strong>and</strong> levy<strong>in</strong>g fees on <strong>in</strong>dividual farms is to implement it at district level orat that of a <strong>water</strong> users association. This has the disadvantage that farmers apply<strong>in</strong>g conservationmeasures may still pay for the pollution caused by badly managed farms <strong>in</strong> the same district.When bas<strong>in</strong>g f<strong>in</strong>es on emission levels, there should be a decision as to whether to base themon concentrations of pollut<strong>in</strong>g elements or on the total load (i.e. concentration multiplied byflow). Concentration is the <strong>water</strong> quality parameter used <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g-<strong>water</strong> st<strong>and</strong>ards or for thehealth of aquatic animals <strong>and</strong> plants. Plac<strong>in</strong>g only concentration limits on discharge mightencourage dilution or <strong>in</strong>efficient <strong>water</strong> use. Where both concentration <strong>and</strong> load limits are enforced,they tend to promote efficient <strong>water</strong> use.


28Framework for select<strong>in</strong>g, evaluat<strong>in</strong>g <strong>and</strong> assess<strong>in</strong>g the impact of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong>Ambient levelsBas<strong>in</strong>g charges on the pollution <strong>in</strong> the downstream receiv<strong>in</strong>g <strong>water</strong> body can sometimes be afeasible alternative to bas<strong>in</strong>g them on the emission level, i.e. where the source of pollution isextremely difficult to measure. For example, <strong>in</strong> the case of pollution of ground<strong>water</strong>, <strong>in</strong>dividualcontributions to the pollution are difficult to measure <strong>and</strong> thus difficult to quantify. A disadvantageof us<strong>in</strong>g ambient levels under these conditions is that all farmers, <strong>in</strong>clud<strong>in</strong>g those apply<strong>in</strong>g sound<strong>water</strong> <strong>management</strong> practices, are charged equally.Another case where this policy measure may be an attractive option is where the carry<strong>in</strong>gcapacity of the receiv<strong>in</strong>g <strong>water</strong> body changes cont<strong>in</strong>uously. For example, <strong>in</strong> India dur<strong>in</strong>g themonsoon, river discharge is high <strong>and</strong> effluent disposals dur<strong>in</strong>g this period <strong>in</strong>crease downstreamconcentrations only slightly. On the other h<strong>and</strong>, dur<strong>in</strong>g the dry season when river flow is low,emissions affect <strong>water</strong> quality substantially. In this case, us<strong>in</strong>g the ambient criterion reflects themajor concern: ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g river <strong>water</strong> quality for downstream users. This method stimulatescorrective measures dur<strong>in</strong>g critical periods.Sal<strong>in</strong>ity permitsAn <strong>in</strong>terest<strong>in</strong>g solution for sal<strong>in</strong>ity <strong>management</strong> on a regional level is that adopted <strong>in</strong> the Murray-Darl<strong>in</strong>g bas<strong>in</strong> <strong>in</strong> Australia. States with<strong>in</strong> the bas<strong>in</strong> have to meet electrical conductivity (EC)levels at the end of their river valleys, this <strong>in</strong> order to ma<strong>in</strong>ta<strong>in</strong> a favourable <strong>water</strong> quality <strong>in</strong> theentire downstream river. In order to reach this goal, a system of salt credits <strong>and</strong> debits is used.Credits are obta<strong>in</strong>ed for the implementation of any works that reduce the sal<strong>in</strong>ity <strong>in</strong> sharedrivers. Debits are <strong>in</strong>curred based on the estimated shortfall <strong>in</strong> protect<strong>in</strong>g shared rivers. Thebalance of credits <strong>and</strong> debits is registered for each state, <strong>and</strong> as a general pr<strong>in</strong>ciple each statemust be <strong>in</strong> credit. The credits <strong>and</strong> debits are converted to EC impact at a location <strong>in</strong> thedownstream area of the bas<strong>in</strong>. This method allows states <strong>and</strong> catchment <strong>management</strong> authoritiesto decide on the most cost-effective options for their area whilst contribut<strong>in</strong>g to the overallbas<strong>in</strong>-wide river sal<strong>in</strong>ity <strong>management</strong> plan (Murray-Darl<strong>in</strong>g Bas<strong>in</strong> M<strong>in</strong>isterial Council, 2001).Charges on <strong>in</strong>putsInstead of charg<strong>in</strong>g for pollution outflow from irrigation systems, economic <strong>in</strong>centives can bedirected at reduc<strong>in</strong>g the <strong>in</strong>flow, which will normally lead to a reduced pollution outflow. Thus, asa way of reduc<strong>in</strong>g pollution, <strong>in</strong>put charges seek to conserve <strong>water</strong> <strong>and</strong> m<strong>in</strong>imize the use ofagrochemicals <strong>and</strong> fertilizers. Volumetric <strong>water</strong> pric<strong>in</strong>g is the ma<strong>in</strong> way of provid<strong>in</strong>g an economic<strong>in</strong>centive to save <strong>water</strong>. However, research from Iran (Perry, 2001) has highlighted somelimitations of this approach. In the Iranian case, to serve as a proper economic <strong>in</strong>centive tochange to pressurized irrigation, the total costs of <strong>water</strong> would need to equate to 60 percent ofthe revenues of a wheat crop, while at the moment they st<strong>and</strong> at 5 percent. Such an <strong>in</strong>crease isprobably politically impossible <strong>and</strong> would reduce farm <strong>in</strong>comes drastically. Surface irrigationimprovement is less costly than chang<strong>in</strong>g to pressurized irrigation. Therefore, volumetric <strong>water</strong>pric<strong>in</strong>g may be an economic <strong>in</strong>centive to improve surface irrigation <strong>water</strong> <strong>management</strong>.Charges on <strong>in</strong>puts should also consider the way <strong>in</strong> which farmers can reduce <strong>water</strong>consumption. The ma<strong>in</strong> changes farmers can make are: grow less-<strong>water</strong>-dem<strong>and</strong><strong>in</strong>g crops;apply <strong>water</strong> sav<strong>in</strong>g technologies; <strong>and</strong> change over to ra<strong>in</strong>fed farm<strong>in</strong>g (generally not practised <strong>in</strong><strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas). All these responses lead to less <strong>water</strong> consumption, but sometimesalso to significant drops <strong>in</strong> farm <strong>in</strong>come level.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 29On the basis of computer simulations, Varela-Ortega et al. (1998) analysed the responses offarmers <strong>in</strong> Spa<strong>in</strong> to <strong>in</strong>creas<strong>in</strong>g <strong>water</strong> prices. Results showed that <strong>in</strong> modern irrigation districts,where irrigation efficiency is already quite high, no changes <strong>in</strong> <strong>water</strong> dem<strong>and</strong> would occurunless the prices became restrictively high <strong>and</strong> farmers needed to change to ra<strong>in</strong>fed farm<strong>in</strong>g. Incontrast, <strong>in</strong> areas with the older irrigation systems, farmers would have ample scope for improv<strong>in</strong>gtheir <strong>water</strong> use efficiency.An alternative to volumetric pric<strong>in</strong>g is tiered <strong>water</strong> pric<strong>in</strong>g. In this system, farmers pay alower volumetric price for a reasonably necessary amount of <strong>water</strong> to grow a certa<strong>in</strong> crop. Ahigher volumetric price is charged for additional amounts of <strong>water</strong>. Such a system is explicitlydesigned to reduce the amounts of <strong>water</strong> that generate most of the <strong>dra<strong>in</strong>age</strong> <strong>water</strong>. The reasonablynecessary amount should <strong>in</strong>clude the m<strong>in</strong>imal leach<strong>in</strong>g requirement <strong>in</strong> order to ma<strong>in</strong>ta<strong>in</strong> afavourable salt balance <strong>in</strong> the rootzone unless sufficient ra<strong>in</strong>fall occurs <strong>in</strong> the area. A ma<strong>in</strong>problem would be to def<strong>in</strong>e the ‘reasonable necessary amount of <strong>water</strong>’. In Broadview WaterDistrict, California, the United States of America, tier<strong>in</strong>g levels differ only between crops <strong>and</strong>not between soils, because farmers consider the latter approach to be <strong>in</strong>equitable. Tier<strong>in</strong>g levelswere established at 90 percent of the average depths applied <strong>in</strong> the years before the systemwas implemented. This system of tiered <strong>water</strong> pric<strong>in</strong>g led to a decrease <strong>in</strong> <strong>water</strong> applied to fiveof the seven ma<strong>in</strong> crops. More importantly, the dra<strong>in</strong>ed volume <strong>in</strong> 20 of the 25 subsurfacesystems <strong>in</strong> the <strong>water</strong> district decreased by 23 percent <strong>and</strong> the salt load decl<strong>in</strong>ed by 25 percent(Wichelns, 1991).Volumetric pric<strong>in</strong>g policies are typically only applicable <strong>in</strong> on-dem<strong>and</strong> systems. Other systemsdeliver fixed amounts of <strong>water</strong> to farms, <strong>and</strong> they fall outside the responsibility of the <strong>in</strong>dividualfarmers. In such systems, more ga<strong>in</strong>s could be obta<strong>in</strong>ed by match<strong>in</strong>g supply <strong>and</strong> dem<strong>and</strong> moreclosely to each other <strong>in</strong> a technical/operational way.Subsidies on practicesA changeover to <strong>water</strong> sav<strong>in</strong>g or pollution prevention measures might not always be the objectiveof <strong>in</strong>dividual farmers nor might it always be to their advantage. In the case of Iran, it wascalculated that the <strong>in</strong>vestments <strong>in</strong> spr<strong>in</strong>kler irrigation are of the same order of magnitude as thevalue of the <strong>water</strong> that can be saved, if this is used to irrigate a larger area or high-value crops(Perry, 2001). However, if the <strong>water</strong> saved is diverted to irrigate l<strong>and</strong> <strong>in</strong> other areas, upstreamfarmers will be <strong>in</strong>vest<strong>in</strong>g while benefits accrue to other areas. Another example is the case offarmers located <strong>in</strong> the higher areas with free <strong>dra<strong>in</strong>age</strong> <strong>in</strong> the Panoche Fan. Farmers <strong>in</strong> theseareas contribute much to the pollution, but there is no direct <strong>in</strong>centive for them to <strong>in</strong>vest <strong>in</strong> <strong>water</strong>sav<strong>in</strong>g or pollution prevention measures. In both cases, subsidies might stimulate farmers to<strong>in</strong>vest <strong>in</strong> <strong>water</strong> sav<strong>in</strong>g technologies or pollution prevention measures.Charg<strong>in</strong>g/subsidiz<strong>in</strong>g outputsA f<strong>in</strong>al <strong>in</strong>strument proposed by Weers<strong>in</strong>k <strong>and</strong> Livernois (1996) is a charge on the crops. In thecase of nitrogen leach<strong>in</strong>g, the charge focuses on crops that need large amounts of nitrogen, <strong>and</strong>thus have a higher risk of caus<strong>in</strong>g pollution. In irrigated agriculture, one could th<strong>in</strong>k of policiesthat discourage grow<strong>in</strong>g crops with large <strong>water</strong> requirements (such as alfalfa) by charg<strong>in</strong>g thecrops or by promot<strong>in</strong>g deep-root<strong>in</strong>g crops or less-<strong>water</strong>-dem<strong>and</strong><strong>in</strong>g crops through subsidies. Acommon example is where farmers pay a price per area depend<strong>in</strong>g on the crops grown.


30Framework for select<strong>in</strong>g, evaluat<strong>in</strong>g <strong>and</strong> assess<strong>in</strong>g the impact of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong>Comb<strong>in</strong>ed measuresA s<strong>in</strong>gle economic or policy <strong>in</strong>strument will probably not resolve <strong>water</strong> pollution problemsorig<strong>in</strong>at<strong>in</strong>g from irrigated agriculture. Comb<strong>in</strong>ations of policies can help to enforce their effect.Especially <strong>in</strong> situations where farmers are <strong>in</strong>equitably charged, a comb<strong>in</strong>ation of measures mighthelp to charge farmers more equitably. For example, emissions from an irrigation district couldbe measured <strong>and</strong> f<strong>in</strong>es applied where limits are surpassed. These f<strong>in</strong>es could then be distributedamongst the farmers, apply<strong>in</strong>g a rank<strong>in</strong>g based on how farmers have used their <strong>in</strong>puts or whatmeasures they implement. The most <strong>in</strong>efficient users should then pay comparatively more thanthe most efficient ones.SELECTION AND EVALUATION OF DRAINAGE WATER MANAGEMENT OPTIONSNormally, more than one <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> option will need to be considered <strong>and</strong>implemented to atta<strong>in</strong> the desired objectives. In this case, <strong>in</strong>teractions <strong>and</strong> trade-offs occur.Because of the complexity of the processes <strong>and</strong> <strong>in</strong>teractions, computer models are best suitedto select<strong>in</strong>g an optimal comb<strong>in</strong>ation of <strong>dra<strong>in</strong>age</strong> measures. As was expla<strong>in</strong>ed <strong>in</strong> Chapter 2, theselection of a set of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> measures requires more considerations thansolely technical feasibility. Figure 11 shows a flowchart for select<strong>in</strong>g a set of <strong>dra<strong>in</strong>age</strong> <strong>water</strong><strong>management</strong> measures (AHCC, 2000).Step 1 is to gather technical, environmental, social, economic <strong>and</strong> <strong>in</strong>stitutional <strong>in</strong>formationabout the site <strong>and</strong> the available <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> options. Step 2 is to evaluate thedesirability of the options from a technical <strong>and</strong> environmental perspective. Typically, this stepFIGURE 11Flowchart of process for select<strong>in</strong>g an optimal set of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> optionsStartStartStep 1: Gather technical,Step 1: Gather technical,environmental, social,environmental, social,economic <strong>and</strong> <strong>in</strong>stitutionaleconomic, <strong>and</strong> <strong>in</strong>stitutional<strong>in</strong>formation, <strong>and</strong> determ<strong>in</strong>e<strong>in</strong>formation <strong>and</strong> thethe <strong>dra<strong>in</strong>age</strong> <strong>water</strong><strong>dra<strong>in</strong>age</strong> <strong>water</strong><strong>management</strong> options.<strong>management</strong> options.Step 2: EvaluateStep 2: Evaluatedesirability of the optionsdesirability of the optionsfor the site from afor the site from atechnical <strong>and</strong>technical <strong>and</strong>environmental perspective.environmental perspective.Step 3: Rank the optionsStep 3: Rank the optionsfor the site based on theirfor the site based on theirtechnical <strong>and</strong>technical <strong>and</strong>environmental suitability.environmental suitability.Step 4: Evaluate theStep 4: Evaluate theeconomic feasibility <strong>and</strong>economic feasibility <strong>and</strong>efficiency of the site’sefficiency of the site’soptions <strong>and</strong> re-rank optionsoptions <strong>and</strong> re-rank optionsif required.if required.Step 5: Evaluate the social,Step 5: Evaluate the social,<strong>org</strong>anization <strong>and</strong><strong>org</strong>anisation <strong>and</strong><strong>in</strong>stitutional issues, if<strong>in</strong>stitutional issues, ifnecessary, re-rank aga<strong>in</strong>.necessary, re-rank oncemore.Step 6: Integrate theStep 6: Integrate thetechnical, environmental,technical, environmental,social, economic, <strong>and</strong>social, economic, <strong>and</strong><strong>in</strong>stitutional <strong>in</strong>formation,<strong>in</strong>stitutional <strong>in</strong>formation,culm<strong>in</strong>at<strong>in</strong>g <strong>in</strong> aculm<strong>in</strong>at<strong>in</strong>g <strong>in</strong> arecommended plan.recommended plan.Source: based on AHCC, 2000.Step 7: Write a reportStep 7: Write a reportdescrib<strong>in</strong>g recommendeddescrib<strong>in</strong>g recommendedoptions <strong>and</strong> the order <strong>in</strong>options <strong>and</strong> the order <strong>in</strong>which they should bewhich they should beimplemented.implemented.EndEnd


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 31requires the use of computer models. Figure 9 might also help <strong>in</strong> the evaluation process. Step 3<strong>in</strong>volves rank<strong>in</strong>g the site’s options, based on the technical <strong>and</strong> environmental desirability. Step 4<strong>in</strong>volves an analysis of the relative economic efficiency of the various options. Marg<strong>in</strong>al costcurves may be useful <strong>in</strong> determ<strong>in</strong><strong>in</strong>g which options are more efficient than others. When evaluat<strong>in</strong>gthe economic efficiency of a highly complex, multi-parameter system, it may be advantageousto turn to a computerized economic optimization model. The course of action ultimately decidedupon also depends on the social, <strong>org</strong>anizational <strong>and</strong> <strong>in</strong>stitutional suitability of the proposed options<strong>and</strong> may run counter to what is economically efficient. Step 5 evaluates the social <strong>and</strong> <strong>in</strong>stitutionalissues. Step 6 is perhaps the most difficult as it always <strong>in</strong>volves <strong>in</strong>tuitive judgement <strong>and</strong> a certa<strong>in</strong>measure of creativity. Collat<strong>in</strong>g all the <strong>in</strong>formation <strong>and</strong> develop<strong>in</strong>g a stepwise path forimplement<strong>in</strong>g the favoured options takes time <strong>and</strong> considerable thought. The prepar<strong>in</strong>g of areport describ<strong>in</strong>g the recommended options <strong>and</strong> their order of implementation (Step 7) followsdirectly from Step 6.BENCHMARKINGThe Australian National Committee on Irrigation <strong>and</strong> Dra<strong>in</strong>age is explor<strong>in</strong>g another approachcalled benchmark<strong>in</strong>g as part of its efforts to improve the performance of irrigated agriculture.The pr<strong>in</strong>cipal goal of benchmark<strong>in</strong>g is to “f<strong>in</strong>d <strong>and</strong> implement best practice for the <strong>org</strong>anization<strong>in</strong> question” by “learn<strong>in</strong>g about their own <strong>org</strong>anization through comparison with their historicalperformance <strong>and</strong> with practices <strong>and</strong> outcomes of others” (Alex<strong>and</strong>er, 2001). In 1998/1999, thiscommittee evaluated 47 parameters <strong>in</strong> 46 <strong>water</strong> providers to gauge system operation,environmental issues, bus<strong>in</strong>ess processes <strong>and</strong> f<strong>in</strong>ancial performance. New parameters to beconsidered with specific regard to on-farm <strong>water</strong> use <strong>in</strong>clude: security of <strong>water</strong> supply, <strong>water</strong>sav<strong>in</strong>gs from operational <strong>and</strong> seepage remediation, meter<strong>in</strong>g of supplies, <strong>water</strong> trad<strong>in</strong>g, saltbalance, <strong>water</strong> quality monitor<strong>in</strong>g, <strong>and</strong> operat<strong>in</strong>g costs per unit length of channel or pipel<strong>in</strong>e. Thebenchmark<strong>in</strong>g reports <strong>and</strong> compiled data have already led the <strong>water</strong> <strong>in</strong>dustry to consider <strong>and</strong>/oradopt improved technologies to enhance economic, environmental <strong>and</strong> social performance. Thisapproach has received positive responses from the <strong>water</strong> <strong>in</strong>dustry, <strong>and</strong> the plan is to now evaluateadditional comparative parameters, such as ground<strong>water</strong> quality, absolute changes <strong>in</strong> <strong>water</strong>table, extent of <strong>water</strong> reuse <strong>and</strong> recycl<strong>in</strong>g, average <strong>water</strong> use on major crops, <strong>and</strong> f<strong>in</strong>ancialreports on economic value added.


32Framework for select<strong>in</strong>g, evaluat<strong>in</strong>g <strong>and</strong> assess<strong>in</strong>g the impact of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong>


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 33Chapter 4Water quality concerns <strong>in</strong> <strong>dra<strong>in</strong>age</strong><strong>water</strong> <strong>management</strong>INTRODUCTIONThere are several factors to consider when determ<strong>in</strong><strong>in</strong>g the opportunities for <strong>and</strong> constra<strong>in</strong>ts onthe safe use, treatment <strong>and</strong> disposal of agricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong>. Information <strong>and</strong> data desiredat the site of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> production <strong>in</strong>clude: rate of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> production per unit area,chemical concentration of constituents of concern, <strong>and</strong> the rates of mass emission. Dra<strong>in</strong>age<strong>water</strong> <strong>management</strong> requires additional <strong>in</strong>formation <strong>and</strong> data on <strong>dra<strong>in</strong>age</strong> <strong>water</strong> quality <strong>and</strong> itssuitability for the <strong>in</strong>tended <strong>water</strong> uses as well as an underst<strong>and</strong><strong>in</strong>g of environmental <strong>and</strong> healthconcerns. Upstream <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> affects the needs <strong>and</strong> <strong>water</strong> qualityrequirements of downstream <strong>water</strong> users. As reliable references are already available onestimat<strong>in</strong>g <strong>dra<strong>in</strong>age</strong> <strong>water</strong> production volumes (Smedema <strong>and</strong> Rycroft, 1988; Skaggs <strong>and</strong> VanSchilfgaarde, 1999), this chapter concentrates on the ma<strong>in</strong> factors affect<strong>in</strong>g <strong>dra<strong>in</strong>age</strong> <strong>water</strong>quality <strong>and</strong> <strong>water</strong> quality needs <strong>and</strong> concerns for other <strong>water</strong> users <strong>and</strong> <strong>in</strong>corporates previouswork done by <strong>FAO</strong> (1997c).DRAINAGE WATER QUALITYTable 7 provides a summary ofchanges <strong>in</strong> <strong>water</strong> quality expected<strong>in</strong> irrigation return flow relative toirrigation <strong>water</strong> applied (Tanji etal., 1977). The expecteddifferences <strong>in</strong> quality <strong>in</strong> the returnflow are described relative to thesupply <strong>water</strong> because actualconcentrations <strong>in</strong> supply <strong>water</strong>svary. The operational spill <strong>water</strong>s(bypass <strong>water</strong>) from distributionconveyances are not expected todiffer much from the quality of thesupply <strong>water</strong> except for somepickup or deposition of sediments.In contrast, surface runoff orirrigation tail<strong>water</strong> tends to pickup considerable amounts ofsediments <strong>and</strong> associatedTABLE 7Expected quality characteristics of irrigation return flow asrelated to applied irrigation <strong>water</strong>sQuality parametersOperationalspillsIrrigationtail<strong>water</strong>Subsurface<strong>dra<strong>in</strong>age</strong>General quality 0 + ++Sal<strong>in</strong>ity 0 0, + ++Nitrogen 0 0, +, ++ ++, +Oxygen dem<strong>and</strong><strong>in</strong>g<strong>org</strong>anics0 +, 0 0, -, --Sediments +, - ++ --Pesticide residues 0 ++ 0, -, +Phosphorus 0, + ++ 0, -, +0 not expected to be much different than the supply <strong>water</strong>.+, - slight <strong>in</strong>crease/pickup or decrease/deposition expected.++ expected to be significantly higher due to concentrat<strong>in</strong>g effects, application ofagricultural chemicals, erosional losses, pickup of natural geochemical sources,etc.-- expected to be significantly lower due to filtration, fixation, microbiologicaldegradation, etc.Source: Tanji et al., 1977.nutrients, phosphorus <strong>in</strong> particular, as well as <strong>water</strong>-applied agricultural chemicals such aspesticides <strong>and</strong> nitrogen fertilizers (especially anhydrous ammonia). Tail<strong>water</strong> is typically similarto the applied <strong>water</strong>s <strong>in</strong> sal<strong>in</strong>ity <strong>and</strong> oxygen dem<strong>and</strong><strong>in</strong>g <strong>org</strong>anics, termed biochemical oxygen


34Water quality concerns <strong>in</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong>dem<strong>and</strong> (BOD). Subsurface <strong>dra<strong>in</strong>age</strong> is enriched <strong>in</strong> soluble components such as dissolved m<strong>in</strong>eralsalts <strong>and</strong> nitrates, very low <strong>in</strong> sediments, whereas other quality parameters are similar to theirrigation <strong>water</strong>. These changes <strong>in</strong> <strong>water</strong> quality of irrigation return flow depend on a number offactors <strong>in</strong>clud<strong>in</strong>g irrigation application methods, soil properties <strong>and</strong> conditions, application ofagricultural chemicals, hydrogeology, <strong>dra<strong>in</strong>age</strong> system, climate, <strong>and</strong> farmers’ <strong>water</strong> <strong>management</strong>.In many regions of the world, municipalities <strong>and</strong> <strong>in</strong>dustries discharge waste<strong>water</strong> <strong>in</strong>to opendra<strong>in</strong>s <strong>in</strong>itially <strong>in</strong>tended for the conveyance of only agricultural <strong>dra<strong>in</strong>age</strong> <strong>and</strong> storm <strong>water</strong>. Indevelop<strong>in</strong>g countries especially, municipal <strong>and</strong> <strong>in</strong>dustrial waste<strong>water</strong> is often <strong>in</strong>sufficiently treatedbefore disposal <strong>in</strong>to such open dra<strong>in</strong>s. The result is a risk that agricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong> qualitymight be seriously contam<strong>in</strong>ated with microbes, pathogens, toxic <strong>org</strong>anics <strong>and</strong> trace elements<strong>in</strong>clud<strong>in</strong>g heavy metals.A knowledge of the composition of the <strong>dra<strong>in</strong>age</strong> effluent <strong>and</strong> the ability to predict changes <strong>in</strong>the composition as a result of changes <strong>in</strong> crop, irrigation or <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> practicesare important <strong>in</strong> the plann<strong>in</strong>g <strong>and</strong> <strong>management</strong> of <strong>dra<strong>in</strong>age</strong> <strong>water</strong>.FACTORS AFFECTING DRAINAGE WATER QUALITYGeology <strong>and</strong> hydrologyThe geology of the region plays an important role <strong>in</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> quality. Through weather<strong>in</strong>gprocesses, the types of rocks (both primary <strong>and</strong> sedimentary) <strong>in</strong> the upper <strong>and</strong> lower stratadef<strong>in</strong>e the types <strong>and</strong> quantities of soluble constituents found <strong>in</strong> the irrigated area. The oceanshave submerged many parts of the cont<strong>in</strong>ents dur<strong>in</strong>g a period <strong>in</strong> their geological history. Theuplift of these submerged geological formations <strong>and</strong> reced<strong>in</strong>g seas have left mar<strong>in</strong>e evaporites<strong>and</strong> sedimentary rocks beh<strong>in</strong>d, high <strong>in</strong> sea salts <strong>in</strong>clud<strong>in</strong>g sodium, chloride, magnesium, sulphate<strong>and</strong> boron. These geological formations exist <strong>in</strong> vary<strong>in</strong>g thicknesses, depths <strong>and</strong> extents on thecont<strong>in</strong>ents. Through hydrological processes, solutes can enter the upper stratum by irrigation orflood<strong>water</strong>, upward ground<strong>water</strong> flow <strong>in</strong> seepage zones, with ris<strong>in</strong>g ground<strong>water</strong> levels, or capillaryrise. Once the solutes are <strong>in</strong> the upper strata, they <strong>in</strong>fluence the quality of agricultural <strong>dra<strong>in</strong>age</strong><strong>water</strong> through farmers’ irrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong>. The follow<strong>in</strong>g example showshow the geology <strong>and</strong> hydrology of an area <strong>in</strong>fluence the quality of agricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong>. Italso illustrates the relationship between geomorphology, <strong>water</strong>logg<strong>in</strong>g <strong>and</strong> sal<strong>in</strong>ization.Figure 12 shows a schematic crosssectionof the San Joaqu<strong>in</strong> Valley withthe San Joaqu<strong>in</strong> River as the pr<strong>in</strong>cipal<strong>dra<strong>in</strong>age</strong> course for this river bas<strong>in</strong>. Theeastern side of the valley was formedfrom the alluvium of the Sierra Nevada,which consists ma<strong>in</strong>ly of granitic rocks.The soils derived from Sierran alluviumtend to be coarse textured <strong>and</strong> nonsal<strong>in</strong>e.The eastern ground<strong>water</strong>s arecharacterized as low-salt calciumbicarbonate-type<strong>water</strong> with totaldissolved solids (TDS) typically <strong>in</strong> the200-500 mg/litre range. In contrast, thesoils on the western side were formedFIGURE 12Cross-section of the San Joaqu<strong>in</strong> ValleyCoast RangeMar<strong>in</strong>esedimentary rocksCaliforniaAqueductvSalt-affectedSan Joaqu<strong>in</strong>RiverNon-sal<strong>in</strong>eUnconf<strong>in</strong>ed ground<strong>water</strong>Conf<strong>in</strong>ed ground<strong>water</strong>Sierra NevadaIgneousrocksCorcoran clayConsolidated rocks


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 35from alluvium of the Coast Range made up of uplifted mar<strong>in</strong>e sedimentary rocks. The soils onthe western side tend to be f<strong>in</strong>er textured <strong>and</strong> sal<strong>in</strong>e. The ground<strong>water</strong>s on the western side arecharacterized as moderately sal<strong>in</strong>e sodium-sulphate-type <strong>water</strong>s with TDS typically <strong>in</strong> the 1 000-10 000 mg/litre range. The unconf<strong>in</strong>ed aquifer <strong>in</strong> both sides of the valley is gradually be<strong>in</strong>g filledup with decades of irrigation deep percolation. The soils <strong>in</strong> the valley <strong>and</strong> lowest part of thealluvial fans <strong>in</strong> the western side are <strong>water</strong>logged <strong>and</strong> salt affected. A nearly <strong>water</strong>-impermeableclay layer known as the Corcoran clay, about 200 m deep, serves as the boundary between theunconf<strong>in</strong>ed <strong>and</strong> conf<strong>in</strong>ed aquifer. The ground<strong>water</strong>s <strong>in</strong> the conf<strong>in</strong>ed aquifer conta<strong>in</strong> from 500 to1 000 mg/litre TDS. Dur<strong>in</strong>g the geologic past, plate tectonics caused the horizontal-ly<strong>in</strong>g Corcoranclay <strong>in</strong> the shallow sea to tilt upwards form<strong>in</strong>g the Coast Range.Figure 13 is a freebody diagramof the <strong>water</strong>logged irrigated l<strong>and</strong>s onthe western side show<strong>in</strong>g the <strong>water</strong>flow pathways <strong>in</strong> the surface <strong>and</strong>subsurface. The applied irrigation<strong>water</strong> is about 450 mg/litre calciumbicarbonate-typeimported <strong>water</strong> fromthe Sacramento River bas<strong>in</strong> to thenorth. Much of the surface runoff iscaptured <strong>and</strong> reused on site. Much ofthe collected sal<strong>in</strong>e subsurface<strong>dra<strong>in</strong>age</strong> <strong>water</strong> (4 000-10 000 mg/litreTDS, sodium-sulphate type) isdischarged <strong>in</strong>to the San Joaqu<strong>in</strong> River.Especially high concentrations of traceelements such as boron <strong>and</strong> seleniumorig<strong>in</strong>at<strong>in</strong>g from the mar<strong>in</strong>eFIGURE 13Freebody diagram of <strong>water</strong> flows <strong>in</strong> the San Joaqu<strong>in</strong>ValleyVadose regionUnconf<strong>in</strong>edaquiferConf<strong>in</strong>ed aquiferET Precipitation IrrigationRechargeDeeppercolationRechargeRiverdischargesedimentary rocks, found <strong>in</strong> the subsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong>s, have given rise to environmental<strong>and</strong> health concerns. Discharges from these areas are now constra<strong>in</strong>ed by waste dischargerequirements.A second example comes from the Aral Sea Bas<strong>in</strong>, where <strong>in</strong> total 137 million tonnes of saltare annually discharged, of which 81 million tonnes (59 percent) orig<strong>in</strong>ate from the irrigation<strong>water</strong> <strong>and</strong> 56 million tonnes (41 percent) from the mobilization of salts from the subsoil (WorldBank, 1996). In the mid-stream areas, mobilization of subsoil salts is the most substantial. Theannual discharge from the Karshi oblast (Uzbekistan) is 10.8 million tonnes of salts, whichcorresponds to about 34 tonnes per hectare. About 4.3 million tonnes (about 40 percent) orig<strong>in</strong>atefrom irrigation <strong>water</strong> <strong>and</strong> the rema<strong>in</strong>der are mobilized salts from the subsoil through irrigation<strong>and</strong> <strong>dra<strong>in</strong>age</strong> (World Bank, 1998). Further, <strong>in</strong> Australia, large amounts of salts are added to thesoil profile by atmospheric deposition of salts from upw<strong>in</strong>d w<strong>in</strong>d erosion of salt pans.ReuseRunoffSubsurface <strong>dra<strong>in</strong>age</strong>Corcoran clayConsolidated bedrockSoilsFigure 14 depicts the <strong>water</strong> movement over the soil surface <strong>and</strong> through the soil profile. Soilsserve not only as a medium for plant growth but also store <strong>water</strong> <strong>and</strong> nutrients <strong>and</strong> serve as theporous transport media. The soil’s erod<strong>in</strong>g capacity <strong>and</strong> chemical weather<strong>in</strong>g leads to thegeneration of <strong>water</strong>-borne suspended particles <strong>and</strong> solutes, rang<strong>in</strong>g from nutrients to all k<strong>in</strong>ds ofcontam<strong>in</strong>ants (Van Dam et al., 1997). Therefore, to underst<strong>and</strong> the role of soils on <strong>dra<strong>in</strong>age</strong>


36Water quality concerns <strong>in</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong><strong>water</strong> quality, it is necessary tounderst<strong>and</strong> <strong>water</strong> movement over<strong>and</strong> through the soil <strong>and</strong> theassociated suspended <strong>and</strong> dissolvedsubstances it carries.FIGURE 14Water flow over <strong>and</strong> through the soilIrrigation/Ra<strong>in</strong>fallEvapotranspirationOf the <strong>water</strong> added to the soil,either <strong>in</strong> the form of ra<strong>in</strong>fall orirrigation, part is lost through runoff<strong>and</strong> direct evaporation at the soilsurface. Runoff <strong>water</strong> collects <strong>in</strong>natural <strong>and</strong> constructed surfacedra<strong>in</strong>s from where it f<strong>in</strong>ds its way tothe f<strong>in</strong>al disposal site (a river,evaporation pond or outfall dra<strong>in</strong> tothe ocean or sal<strong>in</strong>e lake). The otherpart <strong>in</strong>filtrates <strong>in</strong>to the soil. This<strong>water</strong> fills up the soil pores <strong>and</strong>RunoffCapillary risePercolationSubsurface<strong>dra<strong>in</strong>age</strong>Water tableRoot extractionSoil surfaceBottom rootzonerestores the soil moisture content up to field capacity under free <strong>dra<strong>in</strong>age</strong>. The stored <strong>water</strong> isnow available for plant root extraction to satisfy the <strong>water</strong> requirement of the crop. Any <strong>water</strong><strong>in</strong> excess of field capacity percolates below the rootzone to greater depth <strong>in</strong> the vadose zone.The deep percolation <strong>water</strong> may eventually serve as recharge to the ground<strong>water</strong> or saturatedzone. In irrigated areas with shallow ground<strong>water</strong> tables, the recharge is immediate <strong>and</strong> causesthe <strong>water</strong> table to rise. Where subsurface <strong>dra<strong>in</strong>age</strong> is <strong>in</strong>stalled <strong>in</strong> <strong>water</strong>logged soils, the <strong>dra<strong>in</strong>age</strong>system removes deep percolation <strong>and</strong> ground<strong>water</strong>. Where the soil moisture content <strong>in</strong> therootzone drops as a result of evapotranspiration <strong>and</strong> if there is no recharge from irrigation orra<strong>in</strong>fall, capillary rise <strong>in</strong>to the rootzone might occur, depend<strong>in</strong>g on the <strong>water</strong> table depth, soiltexture <strong>and</strong> structure, <strong>and</strong> seepage.Runoff <strong>in</strong> irrigated agriculture is ma<strong>in</strong>ly related to the <strong>in</strong>tensity of irrigation <strong>and</strong> ra<strong>in</strong>fall events<strong>in</strong> comparison to the <strong>in</strong>filtration capacity of the soil. Where the <strong>in</strong>filtration rate is smaller than theirrigation or ra<strong>in</strong>fall <strong>in</strong>tensity, <strong>water</strong> will accumulate on the soil surface <strong>and</strong> run off under am<strong>in</strong>imum surface slope. Soil degradation, <strong>in</strong> terms of compaction <strong>and</strong> crust formation as well ascultivation on steep slopes, promotes surface runoff. Through the physical forces of the runn<strong>in</strong>g<strong>water</strong>, soil particles become suspended <strong>in</strong> the <strong>water</strong> <strong>and</strong> are transported to open dra<strong>in</strong>s, ditches,streams, rivers <strong>and</strong> lakes. Deposition of suspended sediments may occur downstream whencurrent velocities decrease. Suspended soil particles are harmful to aquatic life as they dim<strong>in</strong>ishlight transmission, but also because chemical contam<strong>in</strong>ants may be associated with suspendedsediments (NRCS, 1997). Degradation of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> quality as affected by runoff fromagricultural l<strong>and</strong> is especially important <strong>in</strong> hilly areas <strong>and</strong> <strong>in</strong> areas with excess ra<strong>in</strong>fall.In the more <strong>arid</strong> areas <strong>and</strong> <strong>in</strong> flat pla<strong>in</strong>s, <strong>water</strong> flow<strong>in</strong>g through the soil profile <strong>and</strong> associatedsolute fluxes affected by m<strong>in</strong>eral solubility <strong>and</strong> adsorption processes are of more importance forthe f<strong>in</strong>al quality of the <strong>dra<strong>in</strong>age</strong> effluent than surface runoff. In some places, weather<strong>in</strong>g of soilparticles might play a major role <strong>in</strong> the quality of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> (such as dissolution of gypsum).However, <strong>in</strong> general the soil’s ability to adsorb <strong>and</strong> release through ion exchange <strong>and</strong> transformchemical elements through microbially-mediated redox reactions plays a more important role. Inthis context, soil characteristics such as <strong>water</strong> hold<strong>in</strong>g capacity, hydraulic conductivity, clay <strong>and</strong><strong>org</strong>anic matter content, soil m<strong>in</strong>erals <strong>and</strong> soil microbes are important characteristics. Soildegradation <strong>in</strong> the form of erosion, compaction <strong>and</strong> loss of biological activity reduces the <strong>water</strong><strong>and</strong> solute hold<strong>in</strong>g capacity of the soils. This <strong>in</strong>creases the mobility of solutes through the soil


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 37<strong>and</strong> <strong>in</strong>creases the risk that pollutants such as salts, nutrients <strong>and</strong> pesticides will be lost both toground<strong>water</strong> <strong>and</strong> through <strong>in</strong>terception by subsurface <strong>dra<strong>in</strong>age</strong> to surface <strong>water</strong> (NRCS, 1997).ClimateAs the major transport of solutes through the soil is by the movement of <strong>water</strong>, climate plays amajor role <strong>in</strong> determ<strong>in</strong><strong>in</strong>g <strong>dra<strong>in</strong>age</strong> <strong>water</strong> quality. In humid tropics <strong>and</strong> temperate regions, thedom<strong>in</strong>ant movement of <strong>water</strong> through the soil is vertically downwards. Solutes, which are broughtonto the soil by farmers or are naturally present <strong>in</strong> the upper soil layers, are leached <strong>in</strong>to deepersoil layers <strong>and</strong> ground<strong>water</strong>. Conversely, <strong>in</strong> <strong>arid</strong> climates where evaporation largely exceedsprecipitation the dom<strong>in</strong>ant <strong>water</strong> movement through the soil is vertically upwards except dur<strong>in</strong>gra<strong>in</strong>fall or irrigation events. Therefore, the chemical composition of deeper soil layers <strong>in</strong>fluencesthe quality of the shallow ground<strong>water</strong> <strong>and</strong> the composition of the soil moisture <strong>in</strong> the rootzone.Climate <strong>and</strong> temperature also play a role <strong>in</strong> the rate of weather<strong>in</strong>g <strong>and</strong> chemical processes.Cropp<strong>in</strong>g patternsCropp<strong>in</strong>g patterns play an important role <strong>in</strong> the quality of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>in</strong> a number of respects.First, crops extract <strong>water</strong> from the rootzone result<strong>in</strong>g <strong>in</strong> an evapoconcentration of salts <strong>and</strong>other solutes <strong>in</strong> the soil solution. Where the solubility product of m<strong>in</strong>erals is exceeded throughevapoconcentration, m<strong>in</strong>erals precipitate out. This changes the composition of the soil solution<strong>and</strong> thus <strong>in</strong>fluences the chemical quality of subsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong>s. Second, crop residuesadd <strong>org</strong>anic matter to the soil profile. Organic matter <strong>in</strong> the soil <strong>in</strong>creases the adsorptive capacityfor metals <strong>and</strong> other solutes. Furthermore, <strong>org</strong>anic matter enhances the soil structure, which<strong>in</strong>creases the <strong>water</strong> hold<strong>in</strong>g capacity of the soil. The <strong>org</strong>anic matter also serves as a carbonsource for soil microbes <strong>in</strong>volved <strong>in</strong> transformations such as denitrification, sulphate reduction<strong>and</strong> methane production <strong>in</strong> submerged soils. Third, plants extract nutrients through their root<strong>in</strong>gsystem <strong>and</strong> some plants have the capacity to accumulate large amounts of certa<strong>in</strong> salts <strong>and</strong>toxic elements. Fourth, as not all crops have the same salt tolerance the type of crop largelydeterm<strong>in</strong>es the maximum salt concentration <strong>in</strong> the rootzone <strong>and</strong> the amount of <strong>water</strong> needed toma<strong>in</strong>ta<strong>in</strong> a favourable salt balance <strong>in</strong> the rootzone. Last, <strong>in</strong>corporation of nitrogen fix<strong>in</strong>g cropssuch as legumes can help to reduce nitrogen leach<strong>in</strong>g. Legumes <strong>in</strong> symbiosis with nitrogenfix<strong>in</strong>g bacteria are both users <strong>and</strong> producers of nitrogen. They can substitute chemical nitrogenfertilizer <strong>in</strong> the crop rotation. Deep-rooted perennial crops such as alfalfa can also help toprevent nitrogen leach<strong>in</strong>g by absorb<strong>in</strong>g large amounts of nitrogen (Blumenthal, et al., 1999).Use of agricultural <strong>in</strong>putsApplication of fertilizers, pesticides, soil <strong>and</strong> <strong>water</strong> amendments, <strong>and</strong> animal manures may<strong>in</strong>fluence the quality of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> to a great extent. The amounts <strong>and</strong> tim<strong>in</strong>g of application<strong>in</strong> relation to the grow<strong>in</strong>g stage of the crops, tim<strong>in</strong>g of irrigation, <strong>dra<strong>in</strong>age</strong> practices <strong>and</strong> appliedsoil conservation measures largely def<strong>in</strong>e the <strong>in</strong>fluence of fertilizer, amendment <strong>and</strong> pesticideapplication on <strong>dra<strong>in</strong>age</strong> <strong>water</strong> quality. Furthermore, the characteristics of the fertilizers themselvesplay a major role, also on the possible contam<strong>in</strong>ation of <strong>dra<strong>in</strong>age</strong> <strong>water</strong>. Most nitrogen fertilizersare highly soluble <strong>and</strong> mobile <strong>in</strong> the soil, <strong>and</strong> nitrates readily enter <strong>dra<strong>in</strong>age</strong> <strong>water</strong> through leach<strong>in</strong>gprocesses. A portion of the nitrogen fertilizers made up of ammonium or anhydrous ammonia is<strong>in</strong>itially adsorbed to the soil exchange complex but ammonium ions oxidize readily to nitrate.This is also true of urea conta<strong>in</strong><strong>in</strong>g nitrogen fertilizers that eventually oxidize to nitrates.


38Water quality concerns <strong>in</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong>Conversely, phosphorus fertilizers are less mobile <strong>in</strong> the soil because they have very low solubility,<strong>and</strong> phosphates are adsorbed on positive sites <strong>in</strong> soil <strong>org</strong>anic matter <strong>and</strong> clay m<strong>in</strong>erals (Westcot,1997). The ma<strong>in</strong> route for phosphorous to <strong>dra<strong>in</strong>age</strong> <strong>water</strong> is through runoff as sediment-bound<strong>in</strong><strong>org</strong>anic <strong>and</strong> <strong>org</strong>anic phosphate. Runoff <strong>water</strong>s may conta<strong>in</strong> residues of anhydrous ammonia<strong>in</strong>jected <strong>in</strong>to irrigation <strong>water</strong>. Ammonia is highly toxic to fish. Runoff <strong>water</strong>s may also conta<strong>in</strong>sediment-bound <strong>org</strong>anic nitrogen. Excessive levels of nitrogen <strong>and</strong> phosphate <strong>in</strong> discharge <strong>water</strong>smay result <strong>in</strong> the eutrophication of <strong>water</strong> bodies.Water <strong>and</strong> soil amendments such as gypsum may contribute significantly to sal<strong>in</strong>ity. Althoughgypsum is spar<strong>in</strong>gly soluble, calcium contributed from gypsum may exchange with adsorbedsodium, <strong>and</strong> sodium sulphate is a highly soluble m<strong>in</strong>eral. Acidic amendments react with soilcalcium carbonates but do not contribute to sal<strong>in</strong>ity because the solubility of calcium carbonateis very low. Where animal manures are m<strong>in</strong>eralized, nitrates <strong>and</strong> salts are produced. Someanimal manure (e.g. poultry manure) conta<strong>in</strong>s appreciable amounts of salts.Irrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>management</strong>Irrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>management</strong> are the ma<strong>in</strong> factors <strong>in</strong>fluenc<strong>in</strong>g the flow of <strong>water</strong> over <strong>and</strong>through the soil <strong>in</strong> <strong>arid</strong> zone cropl<strong>and</strong>s. As solute transport takes place ma<strong>in</strong>ly through soil <strong>water</strong>fluxes, irrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>management</strong> determ<strong>in</strong>e to a great extent the solute fluxes throughthe soil. In irrigation <strong>management</strong>, tim<strong>in</strong>g <strong>in</strong> relation to crop <strong>water</strong> requirements <strong>and</strong> to fertilizer<strong>and</strong> pesticide application is key to controll<strong>in</strong>g the amount of soluble elements that will leachbelow the rootzone, from where they can be <strong>in</strong>tercepted by subsurface dra<strong>in</strong>s. The tim<strong>in</strong>g ofirrigation also affects capillary rise <strong>in</strong>to the rootzone, which might cause an accumulation ofsalts <strong>in</strong> the rootzone but at the same time reduces the need for irrigation <strong>water</strong>. Of equal importanceto the tim<strong>in</strong>g is the amount of irrigation <strong>water</strong> applied. Excess <strong>water</strong>, <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>filtrated ra<strong>in</strong>fall,leaches to deeper soil layers.Dra<strong>in</strong>age techniques <strong>and</strong> designThe choice of <strong>dra<strong>in</strong>age</strong> technology <strong>and</strong> certa<strong>in</strong> design choices <strong>in</strong>fluence the quality <strong>dra<strong>in</strong>age</strong>effluent considerably. Subsurface <strong>dra<strong>in</strong>age</strong> enhances the flow of <strong>water</strong> through the soil. Studiesfrom the United States of America have shown that, <strong>in</strong> comparison to soils dra<strong>in</strong>ed by means ofsurface dra<strong>in</strong>s, subsurface <strong>dra<strong>in</strong>age</strong> reduces the amount of runoff <strong>and</strong> subsequently reduces thephosphorous contam<strong>in</strong>ation of surface <strong>water</strong>. At the same time, subsurface <strong>dra<strong>in</strong>age</strong> enhancesnitrogen leach<strong>in</strong>g. Upon <strong>in</strong>terception of leach<strong>in</strong>g <strong>water</strong>, the nitrogen concentration of the f<strong>in</strong>al<strong>dra<strong>in</strong>age</strong> effluent <strong>in</strong>creases. In the same way, subsurface <strong>dra<strong>in</strong>age</strong> <strong>in</strong>tercepts other solubleelements present <strong>in</strong> the soil. This offers the possibility to control the concentration of harmfulsalts <strong>and</strong> toxic trace elements <strong>in</strong> the rootzone for optimal crop production but reduces the possibilityfor disposal <strong>and</strong> reuse of <strong>dra<strong>in</strong>age</strong> <strong>water</strong>.For <strong>water</strong> table <strong>and</strong> sal<strong>in</strong>ity control <strong>in</strong> irrigated l<strong>and</strong>s, two types of <strong>dra<strong>in</strong>age</strong> technologies aregenerally employed: subsurface tile <strong>dra<strong>in</strong>age</strong>, <strong>and</strong> tubewell <strong>dra<strong>in</strong>age</strong>. Subsurface tile dra<strong>in</strong>s aregenerally <strong>in</strong>stalled at a depth of less than 2 m below the soil surface. However, exceptionally,dra<strong>in</strong>s are <strong>in</strong>stalled at depths of up to 3 m. Tubewell dra<strong>in</strong>s vary between 6 <strong>and</strong> 10 m but mightreach a depth of 100 m, e.g. deep tubewell dra<strong>in</strong>s <strong>in</strong> Pakistan. These differences <strong>in</strong> dra<strong>in</strong> depth<strong>in</strong>fluence the quality of the effluent. The quality of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> from subsurface tile dra<strong>in</strong>s is<strong>in</strong>fluenced by the quality of irrigation <strong>water</strong>, the applied farm <strong>in</strong>puts <strong>and</strong> the quality of the shallowground<strong>water</strong>. In contrast, the quality of <strong>dra<strong>in</strong>age</strong> effluent from tubewell dra<strong>in</strong>s is related ma<strong>in</strong>ly


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 39to the quality of the ground<strong>water</strong> <strong>and</strong> to a lesser extent to the quality of irrigation <strong>water</strong>. Basedon computer simulations <strong>in</strong> Pakistan, a comparison of tubewell <strong>and</strong> tile <strong>dra<strong>in</strong>age</strong> showed that forKairpur the sal<strong>in</strong>ity of <strong>dra<strong>in</strong>age</strong> effluent was 11 750 <strong>and</strong> 2 100 ppm for tubewell <strong>and</strong> tile <strong>dra<strong>in</strong>age</strong>,respectively, whereas for Panjnad Abbiana it was 22 918 <strong>and</strong> 610 ppm, respectively (Ch<strong>and</strong>io<strong>and</strong> Ch<strong>and</strong>io, 1995).The depth of tile dra<strong>in</strong> <strong>in</strong>stallation also<strong>in</strong>fluences the amount <strong>and</strong> quality of thegenerated <strong>dra<strong>in</strong>age</strong> <strong>water</strong>. In the Aral SeaBas<strong>in</strong>, deep dra<strong>in</strong>s <strong>in</strong>crease the flow thathas to be evacuated <strong>and</strong> its salt contentthrough mobilization of fossil ground<strong>water</strong>through deep flow paths. For example,<strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>in</strong> the Karshi oblastcollector is extremely sal<strong>in</strong>e (up toTABLE 8Salt applied <strong>in</strong> irrigation <strong>water</strong> <strong>and</strong> removed by dra<strong>in</strong>sTreatmentDeep dra<strong>in</strong>sShallow dra<strong>in</strong>sSalt removed(kg/ha)Salt removed/Saltapplied*8 g/litre). Expected m<strong>in</strong>eralization levels of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> result<strong>in</strong>g from irrigation only aremuch less (case study Aral Sea Bas<strong>in</strong>, Part II). Experiments <strong>in</strong> Australia with shallow <strong>and</strong> deepdra<strong>in</strong>s <strong>in</strong> a v<strong>in</strong>eyard on a clay soil led to the same conclusion. Less <strong>dra<strong>in</strong>age</strong> effluent wasgenerated with shallow dra<strong>in</strong>s (0.7 m deep) than with deep dra<strong>in</strong>s (1.8 m deep). Moreover, theshallow <strong>dra<strong>in</strong>age</strong> <strong>water</strong> had a lower sal<strong>in</strong>ity than the deep <strong>dra<strong>in</strong>age</strong> <strong>water</strong>; together with reduced<strong>dra<strong>in</strong>age</strong> volumes this resulted <strong>in</strong> a reduced salt load. As the deep dra<strong>in</strong>s removed much moresalt than imported with the irrigation <strong>water</strong> (Table 8), this led to the conclusion that the sal<strong>in</strong>ity <strong>in</strong>the effluent of the deep dra<strong>in</strong>s was derived from deeper soil layers (Christen <strong>and</strong> Skehan, 2001).Model simulations by Fio <strong>and</strong> Deverel (1991) confirm these observations. They showed thatthe base flow towards tile dra<strong>in</strong>s <strong>in</strong>creased <strong>and</strong> the quality decreased with <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>stallationdepth under non-irrigated conditions. They also showed that this is a result of the path flowsbecom<strong>in</strong>g deeper <strong>and</strong> longer with <strong>in</strong>creased dra<strong>in</strong> depth <strong>and</strong> spac<strong>in</strong>g. On the other h<strong>and</strong>, dur<strong>in</strong>girrigation events the discharge of the shallow <strong>and</strong> deeper dra<strong>in</strong>s became similar as recharge dueto deep percolation <strong>in</strong>creased <strong>and</strong> the proportional contribution of deep ground<strong>water</strong> to dra<strong>in</strong>lateral flow decreased.60732* Mean salt applied = 50 kg/haSource: Christen <strong>and</strong> Skehan, 2001.110.7CHARACTERISTICS OF DRAINAGE WATER QUALITYSalts <strong>and</strong> major ionsThe major cations <strong>and</strong> anions mak<strong>in</strong>g up sal<strong>in</strong>ity are sodium, calcium, magnesium, potassium,bicarbonate, sulphate, chloride <strong>and</strong> nitrate. A lumped sal<strong>in</strong>ity parameter is frequently used suchas EC <strong>in</strong> decisiemens per metre (dS/m) or TDS <strong>in</strong> milligrams per litre. The <strong>water</strong> quality ofsurface runoff typically deviates little from the composition of the irrigation <strong>water</strong> even if itflows over soils with visible salt crusts (Reeve et al., 1955). On the other h<strong>and</strong>, deep percolationdisplaces salts accumulated <strong>in</strong> the soil profile from natural chemical weather<strong>in</strong>g, blown <strong>in</strong> by saltdust, as well as evapoconcentrated salts derived from the applied irrigation <strong>water</strong>. Thus, the saltcontent of the collected subsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong> ma<strong>in</strong>ly reflects the sal<strong>in</strong>ity characteristics ofthe soil solution, which <strong>in</strong> turn is <strong>in</strong>fluenced by soil parent material, sal<strong>in</strong>ity of the shallowground<strong>water</strong> <strong>and</strong> salts brought <strong>in</strong>to the soil with irrigation <strong>water</strong>. In many places, the <strong>dra<strong>in</strong>age</strong><strong>water</strong> composition is further <strong>in</strong>fluenced by the m<strong>in</strong>eral composition of deep ground<strong>water</strong> whichis <strong>in</strong>tercepted by the dra<strong>in</strong>s.


40Water quality concerns <strong>in</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong>Toxic trace elementsTrace elements are commonly present at low levels <strong>in</strong> nature. Many trace elements are essentialmicronutrients <strong>in</strong> very small quantities such as iron, manganese, molybdenum <strong>and</strong> z<strong>in</strong>c, but therange between deficiency <strong>and</strong> toxicity is narrow. Trace elements of concern <strong>in</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong>from irrigated l<strong>and</strong>s <strong>in</strong>clude: arsenic, boron, cadmium, chromium, copper, lead, mercury,molybdenum, nickel, selenium, strontium, uranium, vanadium <strong>and</strong> z<strong>in</strong>c. The heavy metal traceelements are fixed strongly by soil materials <strong>and</strong> tend to be mobile only <strong>in</strong> the topmost soil layers.However, some of them form mobile metal-<strong>org</strong>anic complexes <strong>in</strong> the presence of <strong>org</strong>anic matter.Some trace elements (arsenic, selenium, molybdenum <strong>and</strong> uranium) are relatively immobile <strong>in</strong>the reduced form (precipitated or elemental) or are adsorbed while the oxidized <strong>and</strong> oxyanionspecies are mobile. For example, selenium is soluble <strong>in</strong> alkal<strong>in</strong>e <strong>and</strong> well-oxidized soils.Similar to the dissolved m<strong>in</strong>eral salts, trace elements are evapoconcentrated <strong>in</strong> the presenceof a grow<strong>in</strong>g crop as more or less pure <strong>water</strong> is lost <strong>in</strong>to the atmosphere <strong>and</strong> the trace elementsrema<strong>in</strong> <strong>in</strong> the soil solution. Elevated concentrations of selenium, boron <strong>and</strong> molybdenum may befound <strong>in</strong> soils formed from Cretaceous shale <strong>and</strong> mar<strong>in</strong>e sedimentary rocks <strong>and</strong> their shallowground<strong>water</strong>s such as <strong>in</strong> the western side of the San Joaqu<strong>in</strong> Valley. Selenium typically exists <strong>in</strong>a reduced form <strong>in</strong> geologic formations as seleniferous pyrite or <strong>org</strong>anic forms of selenium.When the formations are exposed to the atmosphere, the reduced selenium oxidizes <strong>in</strong>to solubleforms <strong>and</strong> may be subject to transport from irrigation <strong>and</strong> precipitation.Naturally occurr<strong>in</strong>g arsenic is commonly found <strong>in</strong> volcanic glass <strong>in</strong> volcanic rocks of rhyoliticto <strong>in</strong>termediate composition (H<strong>in</strong>kle <strong>and</strong> Polette, 1999). It may be adsorbed to <strong>and</strong> coprecipitatedwith metal oxides, adsorbed to clay m<strong>in</strong>erals <strong>and</strong> associated with sulphide m<strong>in</strong>erals <strong>and</strong> <strong>org</strong>aniccarbon (Welch et al., 1988). In natural aquifers, arsenic is especially a problem <strong>in</strong> West Bengal,India, <strong>and</strong> Bangladesh but it reportedly also occurs <strong>in</strong> the United States of America, Hungary,Chile, Ch<strong>in</strong>a, Argent<strong>in</strong>a, Ghana, Mexico, the Philipp<strong>in</strong>es, New Zeal<strong>and</strong> <strong>and</strong> Mongolia.To evaluate whether trace elements might potentially cause a problem <strong>in</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong><strong>management</strong>, Westcot (1997) studied ranges <strong>and</strong> geometric mean values <strong>in</strong> soils for the prioritypollutant trace elements. Compar<strong>in</strong>g actual soil data with these levels would give an <strong>in</strong>itial ideaof the potential for trace element leach<strong>in</strong>g.AgropollutantsThe two ma<strong>in</strong> agropollutants <strong>in</strong> agricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong>s are nutrients <strong>and</strong> pesticides. Asnutrients were covered above, this sections focuses on pesticides. Once a pesticide enters thesoil, its fate is largely dependent on sorption <strong>and</strong> persistence (NRC, 1993). Sorption is ma<strong>in</strong>lyrelated to the <strong>org</strong>anic carbon content of soils while persistence is evaluated <strong>in</strong> terms of half-life(the time taken for 50 percent of the chemical to be degraded or transformed). Pesticides witha low sorption coefficient <strong>and</strong> high <strong>water</strong> solubility are likely to be leached while pesticides witha long half-life could be persistent.Pesticides vary widely <strong>in</strong> their behaviour. Pesticides that dissolve readily <strong>in</strong> <strong>water</strong> have atendency to be leached <strong>in</strong>to the ground<strong>water</strong> <strong>and</strong> to be lost as surface runoff from irrigation <strong>and</strong>ra<strong>in</strong>fall events. Pesticides with high vapour pressure are easily lost <strong>in</strong>to the atmosphere dur<strong>in</strong>gapplication. Pesticides that are strongly sorbed to soil particles are not readily leached but maybe bound to sediments discharged from cropl<strong>and</strong>s. Pesticides may be chemically degradedthrough such processes as hydrolysis <strong>and</strong> photochemical degradation. Pesticides may bebiologically degraded or transformed by soil microbes.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 41Therefore, many pesticides are ma<strong>in</strong>ly found <strong>in</strong> surface <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>and</strong> not <strong>in</strong> subsurface<strong>dra<strong>in</strong>age</strong> <strong>water</strong> as such, due to the filter<strong>in</strong>g action of the soils. However, some pesticides have atendency to be leached through soil profiles <strong>and</strong> accumulate <strong>in</strong> ground<strong>water</strong>, such as<strong>org</strong>anophosphates (e.g. DBCP <strong>and</strong> Atraz<strong>in</strong>e).SedimentsSediment contam<strong>in</strong>ation is a ma<strong>in</strong> concern for surface <strong>dra<strong>in</strong>age</strong> <strong>in</strong> hilly areas <strong>and</strong> <strong>in</strong> areas withhigh ra<strong>in</strong>fall. Sediment production <strong>in</strong> <strong>arid</strong> zones occurs <strong>in</strong> improperly designed <strong>and</strong> managedsurface irrigation systems, especially furrow irrigation. Sediments are a direct threat to liv<strong>in</strong>gaquatic resources <strong>and</strong> the aquatic environment <strong>in</strong> general. They also <strong>in</strong>crease the cost of dr<strong>in</strong>k<strong>in</strong>g<strong>water</strong> treatment <strong>and</strong> ma<strong>in</strong>tenance of open surface <strong>dra<strong>in</strong>age</strong> networks from sediment depositionlike <strong>in</strong> Pakistan <strong>and</strong> Ch<strong>in</strong>a. In addition, phosphate, <strong>org</strong>anic nitrogen <strong>and</strong> pesticides bound tosediment particles are a source of pollution. Sediment production can be reduced by m<strong>in</strong>imumtillage practices (NRC, 1993) <strong>and</strong> limit<strong>in</strong>g surface runoff through sound irrigation practices.Sediment settl<strong>in</strong>g ponds may be used to reduce the load of sediments <strong>in</strong> receiv<strong>in</strong>g <strong>water</strong>s.Polyacrylamides appear to serve as an excellent coagulant for sediments <strong>in</strong> farm <strong>dra<strong>in</strong>age</strong>.Sediments are not normally found <strong>in</strong> subsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong>. However, a <strong>dra<strong>in</strong>age</strong> pipe filledwith soil particles might cause sediment pollution <strong>in</strong> subsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong>.WATER QUALITY CONCERNS FOR WATER USESCrop productionThe total concentration of salts <strong>in</strong> <strong>dra<strong>in</strong>age</strong> effluent is of major concern for irrigated agriculture.Sal<strong>in</strong>ity <strong>in</strong> the rootzone <strong>in</strong>creases the osmotic pressure <strong>in</strong> the soil solution. This causes plants toexert more energy to take up soil <strong>water</strong> to meet their evapotranspiration requirement. At acerta<strong>in</strong> salt concentration, plant roots will not be able to generate enough forces to extract <strong>water</strong>from the soil profile. Water stress will occur, result<strong>in</strong>g <strong>in</strong> yield reduction. The extent to which theplants are able to tolerate sal<strong>in</strong>ity <strong>in</strong> the soil moisture differs between crop species <strong>and</strong> varieties.For the stability of the soil structure, the composition of the soil solution is an importantfactor. In the solid phase, soils have a net negative surface charge. The magnitude of the cationexchange capacity (CEC) depends on the amount <strong>and</strong> type of clay <strong>and</strong> the <strong>org</strong>anic mattercontent. Cations such as calcium, magnesium, sodium, potassium <strong>and</strong> hydrogen are adsorbed onthe exchanger sites. Normally, a large fraction of the adsorbed cations is divalent calcium<strong>and</strong> magnesium. Divalent cations adsorbed to clay m<strong>in</strong>erals provide structure <strong>and</strong> stability. Wheremonovalent cations dom<strong>in</strong>ate the exchangeable cations (sodium <strong>in</strong> particular), the soil structurelooses its stability <strong>and</strong> structural degradation occurs easily. As cations are mutually replaceable,the composition of the exchangeable cations is related to the proportion of cations present <strong>in</strong> thesoil solution (Jur<strong>in</strong>ak <strong>and</strong> Suarez, 1990). Therefore, where <strong>dra<strong>in</strong>age</strong> <strong>water</strong> reuse for irrigationpurposes is under consideration, not only the total salt concentration should be taken <strong>in</strong>to account,but also the sodium to calcium <strong>and</strong> magnesium ratio, commonly expressed as the sodium adsorptionratio (SAR). High bicarbonate <strong>water</strong>s tend to precipitate out calcium carbonate. This may <strong>in</strong>creasethe SAR <strong>in</strong> the soil solution <strong>and</strong> <strong>in</strong>crease the exchangeable sodium percentage (ESP) on theCEC.The composition of the salts is also important for crop growth. Dom<strong>in</strong>ance of certa<strong>in</strong> ionsmight cause an imbalance <strong>in</strong> ion uptake. This results <strong>in</strong> deficiencies of certa<strong>in</strong> elements <strong>and</strong>


42Water quality concerns <strong>in</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong>depressed yields. The presence of high concentrations of sodium <strong>in</strong>hibits the uptake of calcium,caus<strong>in</strong>g nutritional disorders. Other ions can be toxic, caus<strong>in</strong>g characteristic <strong>in</strong>jury symptoms asthe ions accumulate <strong>in</strong> the plant. Toxic elements of major concern are chloride, sodium <strong>and</strong>boron (<strong>FAO</strong>, 1985b).The extent to which crops suffer from sal<strong>in</strong>ity stress depends on several factors. Althoughyield reductions are def<strong>in</strong>ed as a function of the average salt concentration <strong>in</strong> the rootzone,<strong>in</strong>teractions between soil, <strong>water</strong> <strong>and</strong> climatic conditions <strong>in</strong>fluence the relationship. Exceed<strong>in</strong>glyhigh air temperatures may cause a reduced salt tolerance. Cultural practices also determ<strong>in</strong>e toa certa<strong>in</strong> extent yield reduction result<strong>in</strong>g from sal<strong>in</strong>ity stress. Other plant characteristics (whichdiffer between plant species, varieties of the same species <strong>and</strong> growth stages dur<strong>in</strong>g whichsal<strong>in</strong>ity stress occurs) determ<strong>in</strong>e their ability to cope with sal<strong>in</strong>ity stress.The variations between crops <strong>in</strong> salt tolerance are attributable to the fact that certa<strong>in</strong> cropscan make the necessary osmotic adjustment to enable them to extract more <strong>water</strong> from sal<strong>in</strong>esoils. This adjustment <strong>in</strong>volves two mechanisms: absorption of salts from the soil solution, <strong>and</strong>synthesis of <strong>org</strong>anic solutes. Halophytes tend to absorb salts <strong>and</strong> impound them <strong>in</strong> the vacuoles,while <strong>org</strong>anic solutes serve the function of osmotic adjustment <strong>in</strong> the cytoplasm. Normal plantstend to exclude sodium <strong>and</strong> chloride ions. For this reason, these plants need to rely more thanhalophytes on the synthesis of <strong>org</strong>anic osmolytes. As a result, they are more salt sensitive thanhalophytes. Annex 1 presents data on crop tolerance to sal<strong>in</strong>ity <strong>and</strong> major ions.Sensitivity to salts changes considerably dur<strong>in</strong>g plant development. Most crops are sensitiveto sal<strong>in</strong>ity dur<strong>in</strong>g emergence <strong>and</strong> early development. Once established, most plants become<strong>in</strong>creas<strong>in</strong>gly tolerant dur<strong>in</strong>g later stages of growth. There is general agreement that the earlierthe plants are stressed, the greater the reduction <strong>in</strong> vegetative growth (Maas <strong>and</strong> Grattan,1999).Not all trace elements are toxic <strong>and</strong> small quantities of many are essential for plant growth(e.g. iron, manganese, molybdenum <strong>and</strong> z<strong>in</strong>c). However, excessive quantities might accumulate<strong>in</strong> plant tissues <strong>and</strong> cause growth reductions. Crop tolerance to trace element concentrationsvaries widely. When accumulated <strong>in</strong> plant tissue, certa<strong>in</strong> trace elements are also toxic to animals<strong>and</strong> humans upon eat<strong>in</strong>g, e.g. selenium, arsenic <strong>and</strong> cadmium. As plants do not absorb most ofthe trace elements that are present <strong>in</strong> the soil, the trace elements accumulate <strong>in</strong> the soils.In 1985, <strong>FAO</strong> published general guidel<strong>in</strong>es for evaluat<strong>in</strong>g <strong>water</strong> quality for irrigated cropproduction (<strong>FAO</strong>, 1985b). These guidel<strong>in</strong>es are general <strong>in</strong> nature <strong>and</strong> are based on numerousassumptions. Where the actual conditions differ substantially from those assumed, it might benecessary to prepare a modified set of guidel<strong>in</strong>es. The case studies presented <strong>in</strong> Part II of thispublication present several examples of guidel<strong>in</strong>es developed for local conditions <strong>in</strong> the contextof <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong>. Pratt <strong>and</strong> Suarez (1990) provide a list of recommended maximumconcentrations of trace elements for long-term protection of plants <strong>and</strong> animals.Liv<strong>in</strong>g aquatic resources, fisheries <strong>and</strong> aquacultureAquatic <strong>org</strong>anisms have different requirements with respect to the chemical <strong>and</strong> physicalcharacteristics of a <strong>water</strong> body. Dissolved oxygen, adequate nutrient levels, <strong>and</strong> the absence oftoxic concentrations of hazardous elements are essential factors for susta<strong>in</strong><strong>in</strong>g aquatic life.Dra<strong>in</strong>age <strong>water</strong> disposal can disturb the chemical <strong>and</strong> physical characteristics of the aquatichabitat.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 43In natural <strong>water</strong>, the levels of trace elements are normally very low. Elevated concentrationlevels have a negative impact <strong>and</strong> harmful effects on aquatic life. Some trace elements such asmercury <strong>and</strong> selenium are of particular concern because of their bioaccumulative nature, evenat very low concentrations (Westcot, 1997). For example, <strong>in</strong> the United States of America theregulatory maximum contam<strong>in</strong>ant level for selenium for aquatic biota <strong>in</strong> fresh<strong>water</strong>s is 2 ppb<strong>and</strong> for dr<strong>in</strong>k<strong>in</strong>g-<strong>water</strong>s for humans, 50 ppb. The former is lower due to the bioaccumulation ofselenium through the aquatic food cha<strong>in</strong>.Pesticides may also cause toxicity problems <strong>in</strong> aquatic <strong>org</strong>anisms <strong>in</strong> surface <strong>water</strong>s. Whilepesticide use is currently highest <strong>in</strong> North America <strong>and</strong> Europe, it is expected to <strong>in</strong>crease at afaster rate <strong>in</strong> develop<strong>in</strong>g countries <strong>in</strong> the near future. Many of the synthetic <strong>org</strong>anic compoundsare persistent <strong>and</strong> bioaccumulate. They magnify up the food cha<strong>in</strong> <strong>and</strong> are often absorbed <strong>in</strong>body fat, where they can persist for a long time. In the case of fish tissues <strong>and</strong> fishery products,some of these compounds may also reach consumers. As fish are an important source of prote<strong>in</strong>,it is essential to prevent <strong>and</strong> avoid accumulation of contam<strong>in</strong>ants <strong>in</strong> fish or shellfish (Chapman,1992).All aquatic <strong>org</strong>anisms <strong>in</strong>clud<strong>in</strong>g fish or other aquatic resources liv<strong>in</strong>g <strong>in</strong> contam<strong>in</strong>ated <strong>water</strong>bodies are be<strong>in</strong>g exposed daily to a multitude of synthetic chemical compounds that disrupt thedevelopment of the reproductive, immune, nervous <strong>and</strong> endocr<strong>in</strong>e systems by mimick<strong>in</strong>g hormones,block<strong>in</strong>g the action of hormones, or by other unknown <strong>in</strong>terference with the endocr<strong>in</strong>e system(Rutherford, 1997). Fish have different life stages: egg, larvae, f<strong>in</strong>gerl<strong>in</strong>g <strong>and</strong> adult. Variouspollutants may have different effects on their life cycle <strong>and</strong> on their functions <strong>and</strong> abilities (e.g.capacity to reproduce, nurse, feed <strong>and</strong> migrate).The greatest threat to the susta<strong>in</strong>ability of <strong>in</strong>l<strong>and</strong> fishery resources is degradation of theenvironment. Accord<strong>in</strong>g to the GEO-I prepared by the UNEP, access to <strong>and</strong> pollution offresh<strong>water</strong> are among the four key priority areas (<strong>FAO</strong>, 1999a). Various guidel<strong>in</strong>es have beenproposed for <strong>water</strong> important for fisheries or protect<strong>in</strong>g aquatic environmental quality <strong>in</strong> general(EIFAC, 1964; British Colombia M<strong>in</strong>istry of Environment, L<strong>and</strong> <strong>and</strong> Parks, 1998; CCME, 1999a;<strong>and</strong> Chapman, 1992). Water quality guidel<strong>in</strong>es established for temperate regions should not beapplied without caution to other climate conditions as toxicity, persistence <strong>and</strong> accumulationrates might differ substantially (B<strong>in</strong>ey et al., 1994).Livestock productionWater for livestock <strong>water</strong><strong>in</strong>g should be of high quality to prevent livestock diseases, salt imbalance,or poison<strong>in</strong>g by toxic constituents. Many of the <strong>water</strong> quality variables for livestock are thesame as for human dr<strong>in</strong>k<strong>in</strong>g-<strong>water</strong> resources although the total permissible levels of totalsuspended solids <strong>and</strong> sal<strong>in</strong>ity may be higher (Chapman, 1992). Annex 2 presents <strong>water</strong> qualityguidel<strong>in</strong>es for livestock dr<strong>in</strong>k<strong>in</strong>g-<strong>water</strong> quality. The guidel<strong>in</strong>es consist of two parts. The first partconsists of guidel<strong>in</strong>es for the use of sal<strong>in</strong>e <strong>water</strong> for livestock <strong>and</strong> poultry. Unsafe levels ofsal<strong>in</strong>ity <strong>and</strong> ions depend on the amount of <strong>water</strong> consumed each day, <strong>and</strong> on the type, weight,age <strong>and</strong> physical state of the animal (Soltanpour <strong>and</strong> Raley, 2001). The second part conta<strong>in</strong>smaximum recommended limits of both chemical <strong>and</strong> microbiological variables. These limits arebased on animal health, quality of the products <strong>and</strong> taste.


44Water quality concerns <strong>in</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong>Concerns for human healthThe quality of <strong>water</strong> has a major <strong>in</strong>fluence on public health. Poor microbiological quality is likelyto lead to outbreaks of <strong>in</strong>fectious <strong>water</strong>-borne diseases <strong>and</strong> may cause serious epidemics.Chemical <strong>water</strong> quality is generally of lower importance. The impact of chemicals on humanhealth tends to be of a chronic long-term nature, <strong>and</strong> there is time available to take remedialaction. However, acute effects may be encountered where major pollution events occur orwhere levels of certa<strong>in</strong> chemicals (e.g. arsenic) are high from natural sources (WHO, 2000).Increases <strong>in</strong> sal<strong>in</strong>ity, related to <strong>dra<strong>in</strong>age</strong> <strong>water</strong> disposal on a shared <strong>water</strong> resource, maythreaten its use for domestic <strong>and</strong> dr<strong>in</strong>k<strong>in</strong>g-<strong>water</strong> supply. Although the WHO (1993) has notformulated any guidel<strong>in</strong>es based on TDS, high salt concentrations can cause taste problems.Concentrations of less than 1 000 mg/litre (1.56 dS/m) are normally acceptable to consumers.For the majority of the major ions, no health guidel<strong>in</strong>es have been derived. Present guidel<strong>in</strong>esare based on taste <strong>and</strong> other side-effects of <strong>in</strong>dividual ions, such as sta<strong>in</strong><strong>in</strong>g of laundry by iron,or the rotten egg smell of sulphidic <strong>water</strong>. Most of the toxic trace elements are <strong>in</strong>cluded <strong>in</strong> thehealth criteria for guidel<strong>in</strong>es for the quality of dr<strong>in</strong>k<strong>in</strong>g-<strong>water</strong> as some of them are carc<strong>in</strong>ogenic.For example, arsenic contam<strong>in</strong>ation of dr<strong>in</strong>k<strong>in</strong>g-<strong>water</strong> supplies is of major concern <strong>in</strong> Bangladesh.Expected concentrations <strong>in</strong> natural <strong>water</strong>s are generally well below 1 mg/litre. Whereconcentrations are exceeded, expensive treatment processes are required to make the <strong>water</strong>acceptable for human consumption. Some well-known chemical pollutants that affect health<strong>in</strong>clude nitrate, arsenic, mercury <strong>and</strong> fluoride. In addition, there is an <strong>in</strong>creas<strong>in</strong>g number ofsynthetic <strong>org</strong>anic compounds released <strong>in</strong>to the environment whose effect on human health ispoorly understood, but appears to be carc<strong>in</strong>ogenic (WHO, 2000). Annex 3 presents WHO<strong>water</strong> quality guidel<strong>in</strong>es.Humans also use <strong>water</strong> resources for bath<strong>in</strong>g <strong>and</strong> recreation. Such activities <strong>in</strong> contam<strong>in</strong>ated<strong>water</strong>s pose a health risk due to: the possibility of <strong>in</strong>gest<strong>in</strong>g small quantities; contact with theeye, nose <strong>and</strong> ear; <strong>and</strong> contact through open wounds. Health risks related to recreation arema<strong>in</strong>ly related to pathogenic contam<strong>in</strong>ation. The potential risks from chemical contam<strong>in</strong>ation ofrecreational <strong>water</strong>s are usually small. Even repeated exposure is unlikely to result <strong>in</strong> ill effects atthe concentrations of contam<strong>in</strong>ation found <strong>in</strong> <strong>water</strong>s <strong>and</strong> with the exposure patterns of recreationalusers. However, the aesthetic quality of recreational <strong>water</strong> is extremely important for thepsychological wellbe<strong>in</strong>g of users (WHO, 1998).


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 45Chapter 5Water conservationNEED FOR WATER CONSERVATION MEASURESWater conservation measures are the first-l<strong>in</strong>e option for the control <strong>and</strong> <strong>management</strong> ofsubsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong>. Conservation measures <strong>in</strong>volve reduc<strong>in</strong>g the amount of <strong>dra<strong>in</strong>age</strong><strong>water</strong> <strong>and</strong> they <strong>in</strong>clude: source reduction through sound irrigation <strong>water</strong> <strong>management</strong>; shallow<strong>water</strong> table <strong>management</strong>; ground<strong>water</strong> <strong>management</strong> 1 ; <strong>and</strong> l<strong>and</strong> retirement. These measuresaffect other options such as the reuse <strong>and</strong> disposal of <strong>dra<strong>in</strong>age</strong> <strong>water</strong>. In general, conservationmeasures consist of measures that aim to reduce the quantity of <strong>dra<strong>in</strong>age</strong> effluent <strong>and</strong> measuresthat aim to reduce the mass emission of constituents <strong>in</strong>to receiv<strong>in</strong>g <strong>water</strong>. Water quality impactsto <strong>water</strong> users (agriculture, fisheries, etc.) are reflected <strong>in</strong> terms of concentration but the controlof <strong>dra<strong>in</strong>age</strong> from irrigated l<strong>and</strong>s is <strong>in</strong> terms of <strong>water</strong> volume <strong>and</strong> mass discharge of constituents.The case studies from the United States of America, India, Pakistan <strong>and</strong> the Aral Sea Bas<strong>in</strong>presented <strong>in</strong> Part II illustrate the need for source reduction. In the northern third of the SanJoaqu<strong>in</strong> Valley, limited <strong>dra<strong>in</strong>age</strong> <strong>water</strong> disposal <strong>in</strong>to the San Joaqu<strong>in</strong> River is permitted <strong>in</strong> order toprotect <strong>water</strong> quality for downstream <strong>water</strong> users. However, <strong>in</strong> the southern two-thirds of thisvalley there are no opportunities for any <strong>dra<strong>in</strong>age</strong> <strong>in</strong>to the river <strong>and</strong> the vadose zone has filled upwith deep percolation. Subsurface <strong>dra<strong>in</strong>age</strong> is practised with disposal <strong>in</strong>to evaporation ponds.For the southern part of this valley, options such as deep-well <strong>in</strong>jection, desal<strong>in</strong>ation, <strong>and</strong> <strong>water</strong>treatment to remove selenium are either generally too expensive for the farmers to bear theentire cost or technically not feasible. Therefore, source reduction plays a major role <strong>in</strong> deal<strong>in</strong>gwith problems caused by the shallow, sal<strong>in</strong>e ground<strong>water</strong> <strong>in</strong> the San Joaqu<strong>in</strong> Valley. In countriessuch as India <strong>and</strong> Pakistan, conservation measures are required as large tracts of l<strong>and</strong> <strong>in</strong> needof <strong>dra<strong>in</strong>age</strong> occur <strong>in</strong> <strong>in</strong>l<strong>and</strong> bas<strong>in</strong>s without adequate disposal facilities. In Pakistan, under theumbrella of the Fourth Sal<strong>in</strong>ity Control <strong>and</strong> Reclamation Project, evaporation ponds have beenconstructed to relieve the disposal problem, though adverse impacts have been encountered <strong>in</strong>surround<strong>in</strong>g l<strong>and</strong>s. To prevent serious environmental degradation <strong>and</strong> to susta<strong>in</strong> irrigated agriculture,parallel conservation measures need to be implemented.When <strong>water</strong> is used conservatively, the concentration of salts <strong>and</strong> trace elements will rise <strong>in</strong><strong>dra<strong>in</strong>age</strong> <strong>water</strong>s but the mass emission rates will decrease because the volume of <strong>water</strong> dischargedis smaller. As <strong>water</strong> is used conservatively <strong>and</strong> the leach<strong>in</strong>g fraction is reduced, salts tend toaccumulate <strong>in</strong> the rootzone. Under such conditions, the major concern is for rootzone sal<strong>in</strong>ity notto exceed crop salt tolerance. In the Nile Delta, Egypt, a situation of <strong>in</strong>creas<strong>in</strong>g concentration <strong>in</strong>soil <strong>and</strong> <strong>water</strong> sal<strong>in</strong>ity is anticipated as <strong>water</strong> is used more conservatively (Box 2). In smallerirrigated areas with relatively good natural <strong>dra<strong>in</strong>age</strong>, <strong>water</strong> tables might drop sufficiently low, asa result of improved irrigation efficiency, to m<strong>in</strong>imize capillary rise <strong>in</strong>to the rootzone. Under1High <strong>water</strong> table results from an imbalance <strong>in</strong> the <strong>water</strong> balance – <strong>water</strong> is be<strong>in</strong>g applied to the surface at a rate thatexceeds the carry<strong>in</strong>g capacity of the ground<strong>water</strong> system, thereby rais<strong>in</strong>g ground<strong>water</strong> levels. In ground<strong>water</strong><strong>management</strong>, ground<strong>water</strong> pump<strong>in</strong>g is <strong>in</strong>creased <strong>in</strong> order to remove the excess ground<strong>water</strong> <strong>and</strong> lower the <strong>water</strong>table (SJVDIP, 1999f). Application of this option needs substantial knowledge of ground<strong>water</strong> systems <strong>and</strong>hydrology, which is beyond the scope of this publication.


46Water conservationthese conditions, downwardleach<strong>in</strong>g of salts will result <strong>in</strong>an overall improved saltsituation (Christen <strong>and</strong>Skehan, 2000).HYDROLOGIC BALANCEDra<strong>in</strong>age <strong>water</strong> <strong>management</strong><strong>in</strong> general <strong>and</strong> <strong>water</strong>conservation measures <strong>in</strong>particular require acomprehensive knowledge<strong>and</strong> database of thehydrologic balance <strong>in</strong> irrigatedagriculture. The controlvolume may be the vadosezone <strong>in</strong>clud<strong>in</strong>g the croprootzone, the saturated zonefor the ground<strong>water</strong> bas<strong>in</strong>, ora comb<strong>in</strong>ation of vadose <strong>and</strong>saturated zones. The vadose<strong>and</strong> saturated zones may beviewed as the subsystemcomponents <strong>and</strong> thecomb<strong>in</strong>ation of these two asthe overall system or globalperspective. Figure 15depicts the hydrologicbalance for these threecontrol volumes. Water <strong>in</strong>puts<strong>and</strong> outputs vary among thesubsystem components <strong>and</strong>the whole system. Forexample, pumpedground<strong>water</strong> <strong>and</strong> <strong>dra<strong>in</strong>age</strong><strong>water</strong> reuse are vadose zone<strong>in</strong>puts but not considered <strong>in</strong>the comb<strong>in</strong>ed vadose <strong>and</strong>ground<strong>water</strong> system becausethey are <strong>in</strong>ternal flows that donot cut across the boundariesof the control volume.BOX 2: NEED TO INCREASE WATER USE EFFICIENCY AS RESULT OF WATERSCARCITY – AN EXAMPLE FROM EGYPTEstimated <strong>water</strong> balance for EgyptWater use AnnualWater source Annualmillion m 3 million m 3availability <strong>in</strong>dem<strong>and</strong> (‘95) <strong>in</strong>Nile <strong>water</strong> quotaRenewable GWMaximum reusable55 5006 0007 000IrrigationMunicipalIndustrial51 5002 9005 900Total available 68 500 Total dem<strong>and</strong> 60 300The irrigation dem<strong>and</strong> is projected to <strong>in</strong>crease to 61 500 million m 3 <strong>in</strong>2025. Without tak<strong>in</strong>g <strong>in</strong>to account the <strong>in</strong>crease <strong>in</strong> municipal <strong>and</strong> <strong>in</strong>dustrialdem<strong>and</strong>, the total projected <strong>water</strong> dem<strong>and</strong> for 2025 is 70 300 million m 3per year. As the <strong>water</strong> resources are not projected to <strong>in</strong>crease, irrigationefficiency needs to <strong>in</strong>crease <strong>in</strong> order to susta<strong>in</strong> all valuable <strong>water</strong> uses.For this purpose, the Government of Egypt promotes the expansion ofirrigation improvement projects. Reduction of irrigation losses reducesthe <strong>dra<strong>in</strong>age</strong> effluent generated <strong>and</strong> is likely to <strong>in</strong>crease its sal<strong>in</strong>ity. Thishas considerable consequences for reuse <strong>and</strong> disposal (DRI, 1995; <strong>and</strong>EPIQ Water Policy Team, 1998).FIGURE 15Hydrologic balance <strong>in</strong> the vadose <strong>and</strong> saturated zones, <strong>and</strong> <strong>in</strong>a comb<strong>in</strong>ation of vadose <strong>and</strong> saturated zonesI sI gP ETR∆W vzGVadose ZoneD rROS iI s P ET D r = dra<strong>in</strong><strong>water</strong> reuseD ra = artificial subsurface <strong>dra<strong>in</strong>age</strong>D rn = natural <strong>dra<strong>in</strong>age</strong>ET = evapotranspirationG = capillary riseRO I g = ground<strong>water</strong> irrigationI s = surface irrigationD ra P = precipitationR = deep percolation∆WS vszD i rn RO = surface runoffS i = seepage <strong>in</strong>flow∆W vz = change <strong>in</strong> <strong>water</strong> storage <strong>in</strong> vadose zone∆W sz = change <strong>in</strong> <strong>water</strong> storage <strong>in</strong> saturated zone∆W vsz = change <strong>in</strong> <strong>water</strong> storage <strong>in</strong> vadose +saturated zoneVadose + Saturated ZoneI gR∆W szGSaturated ZoneD raD rnThe horizontal boundaries are normally easier to def<strong>in</strong>e because they often correspond to anirrigation district or a unit with<strong>in</strong> an irrigation district. However, these types of boundaries arenot always the most practical for def<strong>in</strong><strong>in</strong>g the hydrological <strong>water</strong> balance as ground<strong>water</strong> flow<strong>in</strong>to <strong>and</strong> out of the district boundaries may be very difficult to estimate <strong>and</strong> measure. Def<strong>in</strong><strong>in</strong>gthe vertical boundaries is normally more difficult. The vertical components of the control volume


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 47<strong>in</strong>clude the crop rootzone, the vadose zone (the crop rootzone is often taken as part of thevadose zone) through which deep percolation passes <strong>and</strong> recharges the saturated or ground<strong>water</strong>zone. Measurements of collected subsurface <strong>dra<strong>in</strong>age</strong> are possible but deep percolation belowthe rootzone is extremely difficult to estimate <strong>and</strong> typically obta<strong>in</strong>ed as a closure term <strong>in</strong> thehydrologic balance <strong>in</strong> the vadose zone. The presence of a high ground<strong>water</strong> table furthercomplicates the situation as upward fluxes, i.e. capillary rise <strong>and</strong> <strong>water</strong> uptake from the shallowground<strong>water</strong> by roots, may also occur.When view<strong>in</strong>g a series of <strong>in</strong>terconnected irrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> districts as <strong>in</strong> a river bas<strong>in</strong>,<strong>water</strong> use becomes quite complex. Although <strong>water</strong> may be used rather <strong>in</strong>efficiently upstream,the overall efficiency may be quite high for the entire river bas<strong>in</strong> because of extensive reuse of<strong>water</strong> not consumed upslope or upstream, i.e. the irrigation return flow (Solomon <strong>and</strong> Davidoff,1999). However, <strong>in</strong> terms of <strong>water</strong> quality, there is a progressive degradation because irrigationreturn flows pick up impurities (Chapter 4). Thus, it is necessary to be able to quantify theperformance of irrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> systems not only for the design of alternative measuresbut also for the <strong>management</strong> <strong>and</strong> operation of irrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> systems.IRRIGATION PERFORMANCE INDICATORSNumerous <strong>in</strong>dicators, usually called efficiencies, have been developed to assess irrigationperformance. The def<strong>in</strong>itions of efficiencies as formulated by the ICID/ILRI (Bos <strong>and</strong> Nugteren,1990) are widely used. Accord<strong>in</strong>g to the ICID/ILRI, the movement of <strong>water</strong> through an irrigationsystem <strong>in</strong>volves three separate operations: conveyance, distribution, <strong>and</strong> field application. Incongruence, the ma<strong>in</strong> efficiencies are def<strong>in</strong>ed for <strong>water</strong> use <strong>in</strong> each of these three operations.The conveyance efficiency (e c) is the efficiency of the canal or conduit networks from thesource to the offtakes of the distribution system. The e ccan be expressed as the volume of<strong>water</strong> delivered to the distribution system plus the non-irrigation deliveries from the conveyancesystem divided by the volume diverted or pumped from a source of <strong>water</strong> plus <strong>in</strong>flow of othersources. The distribution efficiency (e d) is the efficiency of the <strong>water</strong> distribution (tertiary <strong>and</strong>quaternary) canals <strong>and</strong> conduits supply<strong>in</strong>g <strong>water</strong> to <strong>in</strong>dividual fields. The e dcan be expressed asthe volume of <strong>water</strong> furnished to the fields plus non-irrigation deliveries divided by the volume of<strong>water</strong> delivered to the distribution system. F<strong>in</strong>ally, the <strong>water</strong> application efficiency (e a) is therelationship between the quantity of <strong>water</strong> applied at the field <strong>in</strong>let <strong>and</strong> the quantity of <strong>water</strong>needed for evapotranspiration by the crops to avoid undesirable <strong>water</strong> stress <strong>in</strong> the plants.Unlike the ASCE Task Committee on Describ<strong>in</strong>g Irrigation Efficiency <strong>and</strong> Uniformity, the ICID/ILRI do not make a further dist<strong>in</strong>ction between consumptive, beneficial <strong>and</strong> reasonable <strong>water</strong>use.Source reduction aims to reduce the volume of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> by improv<strong>in</strong>g the irrigationperformance. In addition to the efficiencies def<strong>in</strong>ed by the ICID/ILRI, this report uses a numberof performance <strong>in</strong>dicators def<strong>in</strong>ed by the ASCE Task Committee on Describ<strong>in</strong>g IrrigationEfficiency <strong>and</strong> Uniformity (Burt et al., 1997) to assess the appropriateness of <strong>water</strong> use <strong>in</strong> anirrigation system <strong>and</strong> its contribution to the production of <strong>dra<strong>in</strong>age</strong> <strong>water</strong>.The ASCE Task Committee performance <strong>in</strong>dicators are def<strong>in</strong>ed by the <strong>water</strong> enter<strong>in</strong>g <strong>and</strong>leav<strong>in</strong>g the boundaries of a system. To judge the performance of an irrigation system, the ASCETask Committee groups the fractions of <strong>water</strong> leav<strong>in</strong>g the system boundaries <strong>in</strong> a specified timeperiod <strong>in</strong>to categories of use: consumptive versus non-consumptive use; beneficial versus nonbeneficialuse; <strong>and</strong> reasonable versus unreasonable use. This analysis requires an accuratedescription of the components of the hydrologic balance with<strong>in</strong> def<strong>in</strong>ed boundaries of a control


48Water conservationvolume over a specific period of time.The time period taken is a cropp<strong>in</strong>gseason rather than a s<strong>in</strong>gle irrigationevent.Figure 16 shows that the divisionbetween consumptive use <strong>and</strong> nonconsumptiveuse lies <strong>in</strong> the del<strong>in</strong>eationbetween <strong>water</strong> that is consideredirrecoverable <strong>and</strong> <strong>water</strong> that can be reappliedelsewhere, though perhapsdegraded <strong>in</strong> quality. Consumptive uses<strong>in</strong>clude <strong>water</strong> that f<strong>in</strong>ds its way <strong>in</strong>to theatmosphere through evaporation <strong>and</strong>transpiration, <strong>and</strong> <strong>water</strong> that leaves theboundaries <strong>in</strong> harvested plant tissues.Non-consumptive use is <strong>water</strong> thatleaves the boundaries <strong>in</strong> the form ofFIGURE 16Consumptive versus non-consumptive <strong>and</strong>beneficial versus non-beneficial uses- Crop ETc- Evaporation forclimate control- etc.- Phreatophyte ET- Spr<strong>in</strong>kler evapo.- Reservoir evapo.- etc.ConsumptiveUse- Deeppercolation forsalt removal- etc.- Excess deeppercolation- Excess runoff- Spill, etc.NonconsumptiveUseSource: Clemmens <strong>and</strong> Burt, 1997.BeneficialUsesNon-beneficialUsesrunoff, deep percolation <strong>and</strong> canal spills. The partition<strong>in</strong>g of applied <strong>water</strong> <strong>in</strong>to beneficial <strong>and</strong>non-beneficial uses is a dist<strong>in</strong>ction between <strong>water</strong> consumed <strong>in</strong> order to achieve agronomicobjectives <strong>and</strong> <strong>water</strong> that does not contribute to this objective. Beneficial use of <strong>water</strong> supportsthe production of crops <strong>and</strong> <strong>in</strong>cludes evapotranspiration, <strong>water</strong> needed for improv<strong>in</strong>g or ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>gsoil productivity, seed bed preparation <strong>and</strong> seed germ<strong>in</strong>ation, frost prevention, etc. Non-beneficialuses <strong>in</strong>clude deep percolation <strong>in</strong> excess of the leach<strong>in</strong>g requirement, tail<strong>water</strong>, evapotranspirationby weeds, canal seepage, spills, etc.Not all non-beneficial uses can beavoided at all times. Due to physical,economic or managerial constra<strong>in</strong>ts <strong>and</strong>various environmental requirements,some degree of non-beneficial use isreasonable. For example, reasonable butnon-beneficial deep percolation canoccur because of uncerta<strong>in</strong>ties thatfarmers face when decid<strong>in</strong>g how muchto irrigate to replenish the available soilmoisture. Unreasonable uses <strong>in</strong>cludethose that do not have any economical,practical or environmental justification.Figure 17 shows the division betweenbeneficial <strong>and</strong> non-beneficial <strong>and</strong>reasonable <strong>and</strong> unreasonable uses.Once def<strong>in</strong>ed, the <strong>water</strong> balancecomponents can be used to make rationaldecisions about the appropriateness ofthe <strong>water</strong> use <strong>and</strong> whether they have apositive or negative impact on cropproduction, economy, regional hydrology,<strong>and</strong> on the amount of <strong>dra<strong>in</strong>age</strong> <strong>water</strong>.FIGURE 17Beneficial <strong>and</strong> non-beneficial <strong>and</strong> reasonable <strong>and</strong>unreasonable usesReasonable orBeneficialUsesBENEFICIAL USES- ETc- Water harvested with crop- Salt removal- Seed germ<strong>in</strong>ation- Climate control etc.NON-BENEFICIAL USESReasonable uses- Reservoir evaporation- Some wet soil evaporation- Spr<strong>in</strong>kler evaporation- Some filter flush <strong>water</strong>- Water needed for ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<strong>water</strong> quality st<strong>and</strong>ards <strong>in</strong> dra<strong>in</strong>sor wetl<strong>and</strong>s- Some deep percolation dueuncerta<strong>in</strong>ties- Losses which are uneconomicalto avoid etc.Unreasonable uses- Excessive deep percolation- Excessive tail-<strong>water</strong>s, etc.Source: Clemmens <strong>and</strong> Burt, 1997.NonbeneficialUses


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 49Three of the performance <strong>in</strong>dicators proposed by the ASCE Task Committee are important<strong>in</strong> relation to the plann<strong>in</strong>g <strong>and</strong> design of conservation measures. The first <strong>in</strong>dicator is the irrigationconsumptive use coefficient (ICUC) which is expressed as follows:ICUC =volume of irrigation <strong>water</strong> consumptively usedvolume of irrigation <strong>water</strong> applied*100%− ∆ storage of irrigation <strong>water</strong>(6)The ICUC deals with the fraction of <strong>water</strong> that is actually consumed <strong>in</strong> the system beneficially<strong>and</strong> non-beneficially. The denom<strong>in</strong>ator conta<strong>in</strong>s ‘change <strong>in</strong> storage of irrigation <strong>water</strong>’ or thatpart of the <strong>water</strong> applied that has not left the control volume <strong>and</strong> is thus usable dur<strong>in</strong>g succeed<strong>in</strong>gperiods. The quantity (100-ICUC) represents the percentage of non-consumptive use of theapplied <strong>water</strong>. Thus, the ICUC deals with the fraction of <strong>water</strong> that is irrecoverable <strong>and</strong> thereforecannot be re-applied elsewhere.The second <strong>in</strong>dicator, irrigation efficiency (IE) deals with <strong>water</strong> used beneficially for cropproduction. IE can be expressed as:volume of irrigation <strong>water</strong> beneficially usedIE =*100%volume of irrigation <strong>water</strong> applied − ∆ storage of irrigation <strong>water</strong>(7)The quantity (100-IE) represents the percentage of non-beneficial uses of applied <strong>water</strong>.The ASCE Task Committee suggests a third performance <strong>in</strong>dicator because not all <strong>water</strong>losses are avoidable. The irrigation sagacity (IS), first <strong>in</strong>troduced by Solomon (Burt et al., 1997),is now def<strong>in</strong>ed by the ASCE Task Committee as:IS =volume ofirrigation <strong>water</strong> beneficially <strong>and</strong> / or reasonably used*100%− ∆ storage of irrigation <strong>water</strong>volume of irrigation <strong>water</strong> applied(8)The ASCE Task Committee suggests the use of IS to complement IE.The numerical values of these three performance <strong>in</strong>dicators provide appraisals on the overalleffectiveness of the irrigation system <strong>and</strong> its <strong>management</strong> <strong>and</strong> the contribution towards <strong>dra<strong>in</strong>age</strong><strong>water</strong> production. However, the use of these performance <strong>in</strong>dicators relies on quantification ofthe various <strong>water</strong> uses <strong>and</strong> fate pathways of <strong>water</strong>. There are many methods for determ<strong>in</strong><strong>in</strong>gthe volume associated with each <strong>water</strong> use. Some are direct measurements (e.g. totaliz<strong>in</strong>g<strong>water</strong> meters), some are <strong>in</strong>direct measurements (e.g. ET estimated from weather data <strong>and</strong> cropcoefficients) <strong>and</strong> some are obta<strong>in</strong>ed as the closure term from mass balance (e.g. deep percolation).Each method has errors associated with it that affects the accuracy of the performance <strong>in</strong>dicator.Clemmens <strong>and</strong> Burt (1997) have shown that the confidence <strong>in</strong>terval for the ICUC is about7 percent. The accuracy of IE is <strong>in</strong> general less than the ICUC, as quantify<strong>in</strong>g the beneficial<strong>water</strong> use is normally quite difficult. Therefore, they concluded that report<strong>in</strong>g more than twosignificant numbers for performance <strong>in</strong>dicators is <strong>in</strong>appropriate. Furthermore, they <strong>in</strong>troducedan approach us<strong>in</strong>g component variances to determ<strong>in</strong>e the relative importance of the accuracy ofthe variables that contribute to the estimate of the performance <strong>in</strong>dicator. The component variancescan be used to determ<strong>in</strong>e which measured volumes need closer attention. Improv<strong>in</strong>g the accuracyof the components with the highest variances will have the greatest impact on improv<strong>in</strong>g theaccuracy of the performance measures.


50Water conservationSOURCE REDUCTION THROUGH SOUNDIRRIGATION MANAGEMENTSource reduction aims to reduce the<strong>dra<strong>in</strong>age</strong> effluent through improv<strong>in</strong>girrigation performance <strong>and</strong> thusimprov<strong>in</strong>g IE. As certa<strong>in</strong> losses areunavoidable, source reduction aimsmore precisely to <strong>in</strong>crease IS byreduc<strong>in</strong>g non-beneficial, unreasonableuses (Box 3).Reasonable lossesThis section explores the various lossescaptured by subsurface field dra<strong>in</strong>s <strong>and</strong>open collector <strong>and</strong> ma<strong>in</strong> dra<strong>in</strong>s, <strong>and</strong>establishes estimates for reasonablelosses.Losses captured by subsurface fielddra<strong>in</strong>sBOX 3: NON-BENEFICIAL UNREASONABLE USESNon-beneficial Uses• Any overirrigation due tonon-uniformity;• Any uncollected tail<strong>water</strong>;• Deep percolation <strong>in</strong> excessof that needed for saltremoval;• Evaporation from wet soiloutside the cropped area ofa field;• Spray drift beyond the fieldboundaries;• Evaporation associatedwith excessively frequentirrigations;• Weed or phreatophyteevapotranspiration;• System operational losses;• Leakage from canals;• Seepage <strong>and</strong> evaporationlosses from canals <strong>and</strong>storage reservoirs;• Regulatory spills to meetwaste<strong>water</strong> dischargerequirements that arebased on concentrations.Unreasonable uses• Non-beneficial uses thatare also without anyeconomic, practical orenvironmentaljustification.Unreasonable usescannot be def<strong>in</strong>edscientifically as they arejudgmental <strong>and</strong> may besite <strong>and</strong> time specific.However, they should notbe beyond eng<strong>in</strong>eer<strong>in</strong>gas eng<strong>in</strong>eer<strong>in</strong>g practicenormally considersconstra<strong>in</strong>ts, differentobjectives, economics,etc.Source: Burt et al., 1997The discharge of on-farm subsurface <strong>dra<strong>in</strong>age</strong> <strong>in</strong> irrigated agriculture may be determ<strong>in</strong>ed withthe follow<strong>in</strong>g <strong>water</strong> balance equation:where:qRS cS lS vD rntR + Sq =c+ Sl+ St− D= specific discharge (mm/d);= estimated deep percolation (mm);= seepage from canal (mm);= lateral seepage <strong>in</strong>flow to the area (mm);= vertical seepage <strong>in</strong>flow (mm);= natural ground<strong>water</strong> <strong>dra<strong>in</strong>age</strong> from the area (mm); <strong>and</strong>= time period of measurement or calculation (d).vrn(9)Figure 18 depicts theselosses. In certa<strong>in</strong> <strong>in</strong>stances, thesubsurface <strong>dra<strong>in</strong>age</strong> system<strong>in</strong>tercepts only a portion of thedeep percolation.Deep percolation lossesFigure 19 shows that R consistsof rootzone <strong>dra<strong>in</strong>age</strong> from nonuniform<strong>water</strong> application,overirrigation from excessiveFIGURE 18Losses captured by subsurface field dra<strong>in</strong>sS cR R R RSqlS Dv rnq


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 51duration of irrigation, <strong>water</strong>applied to leach salts, <strong>and</strong>ra<strong>in</strong>fall. Unreasonable deeppercolation losses are anypercolation losses <strong>in</strong> excess ofthe <strong>in</strong>herent non-uniformity ofthe irrigation application system<strong>and</strong> salt leach<strong>in</strong>g desired for thecrop <strong>in</strong> question.Table 9 shows that eachirrigation method has a range of<strong>in</strong>herent distribution uniformity,e a, <strong>and</strong> deep percolation. Thedata reported are based on welldesigned<strong>and</strong> well-managedsystems on appropriate soiltypes. In Table 9, e ais def<strong>in</strong>edas the ratio of the averageamount of <strong>water</strong> stored <strong>in</strong> therootzone to the average amountof <strong>water</strong> applied. Deep percolation,surface runoff, tail<strong>water</strong><strong>and</strong> evaporation losses make upthe total losses. The e areportedby Tanji <strong>and</strong> Hanson (1990) isbased on data estimated fromirrigated agriculture <strong>in</strong> California,the United States of America,where there is a state m<strong>and</strong>ateto conserve <strong>water</strong> <strong>and</strong> wheremost irrigators receive sometra<strong>in</strong><strong>in</strong>g.FIGURE 19Deep percolation lossesDepth of <strong>water</strong>Ground surfaceWater needed to replenish soil <strong>water</strong>depletion <strong>in</strong> the rootzoneLeach<strong>in</strong>g <strong>water</strong> for salt removalExcessive durationNon-uniformitySource: after Clemmens <strong>and</strong> Burt, 1997.RootzonecapacityTABLE 9Estimated reasonable deep percolation losses as relatedto irrigation methodsApplicationmethodSpr<strong>in</strong>kler-periodic move-cont<strong>in</strong>uous move-solid setDistributionuniformity(%) Tanji <strong>and</strong>Hanson,199070-8070-9090-95Water applicationefficiency (%)65-8075-8585-90SJVDIP,1999f70-8080-9070-80Estimateddeeppercolation(%)15-2510-155-10Drip/trickle 80-90 75-90 80-90 5-20Surface-furrow-border-bas<strong>in</strong>80-9070-8590-9560-9065-8075-90Source: Tanji <strong>and</strong> Hanson, 1990; <strong>and</strong> SJVDIP, 1999e.70-8570-855-2510-205-20More recently, the Technical Committee on Source Reduction for the San Joaqu<strong>in</strong> ValleyDra<strong>in</strong>age Implementation Program (SJVDIP, 1999e) reported e avalues that differ somewhatfrom the 1990 values. The 1999 values were based on an analysis of nearly 1 000 irrigationsystem evaluations <strong>and</strong> they represent updated practical potential maximum irrigation efficiencies.In contrast, previously published <strong>FAO</strong> application efficiencies for irrigation application methods(<strong>FAO</strong>, 1980) <strong>and</strong> e avalues reported by the ICID/ILRI are substantially lower, represent<strong>in</strong>g alower level of <strong>management</strong> <strong>and</strong> probably a less than optimal design. A properly designed systemthat is well managed can atta<strong>in</strong> quite high efficiencies. On heavy soils, surface <strong>and</strong> drip irrigationcan atta<strong>in</strong> similar levels of efficiency.Estimates for deep percolation have been made on the basis of the follow<strong>in</strong>g assumptions: nosurface runoff occurs under drip <strong>and</strong> spr<strong>in</strong>kler irrigation; dur<strong>in</strong>g daytime spr<strong>in</strong>kler irrigationevaporation losses can be up to 10 percent <strong>and</strong> dur<strong>in</strong>g night irrigation 5 percent; tail<strong>water</strong> <strong>in</strong>furrow <strong>and</strong> border irrigation can be up to 10 percent <strong>and</strong> evaporation losses up to 5 percent; <strong>and</strong>no runoff occurs <strong>in</strong> bas<strong>in</strong> irrigation <strong>and</strong> evaporation losses can be up to 5 percent.Thus, reasonable deep percolation losses may vary with the irrigation application method <strong>and</strong><strong>water</strong> <strong>management</strong> employed.


52Water conservationCanal seepageCanal seepage varies with: the nature of thecanal l<strong>in</strong><strong>in</strong>g; hydraulic conductivity; thehydraulic gradient between the canal <strong>and</strong>the surround<strong>in</strong>g l<strong>and</strong>; resistance layer at thecanal perimeter; <strong>water</strong> depth; flow velocity;<strong>and</strong> sediment load. The canal seepage canbe calculated us<strong>in</strong>g empirically developedformulae or solutions derived from analyticalapproaches (<strong>FAO</strong>, 1977). Canal seepagemight also be estimated on the basis ofTable 10.TABLE 10Seepage losses <strong>in</strong> percentage of the canal flowType of canalUnl<strong>in</strong>ed canalsL<strong>in</strong>ed canalsUnl<strong>in</strong>ed large lateralsL<strong>in</strong>ed large laterals <strong>and</strong> unl<strong>in</strong>edsmall lateralsSmall l<strong>in</strong>ed lateralsPipel<strong>in</strong>esSource: USBR, 1978.Seepage losses(%)20-3015-2015-2010-15100Excessive seepage can occur due to poor canal ma<strong>in</strong>tenance. Any seepage <strong>in</strong> excess of theaforementioned figures needs to be regarded as unreasonable.Seepage <strong>in</strong>flowSeepage <strong>in</strong>flow from outside areas is discussed <strong>in</strong> the section on l<strong>and</strong> retirement. Discussion ofseepage <strong>in</strong>flow from deep aquifers requires substantial geohydrological knowledge, which isbeyond the scope of this publication.Losses captured by collector <strong>and</strong> ma<strong>in</strong> dra<strong>in</strong>sThe <strong>dra<strong>in</strong>age</strong> discharge <strong>in</strong> collector <strong>and</strong> ma<strong>in</strong> dra<strong>in</strong>s depends on the discharge of field dra<strong>in</strong>s <strong>and</strong>additional <strong>in</strong>puts such as irrigation runoff from farmers’ fields, <strong>and</strong> operational <strong>and</strong> canal spills.The ILRI <strong>in</strong> collaboration with the ICID analysed irrigation efficiencies for 91 irrigated areas onthe basis of questionnaires submitted by 29 national committees of the ICID (Bos <strong>and</strong> Nugteren,1990). For the <strong>in</strong>terpretation of the data, the basic climate <strong>and</strong> socio-economic conditions weretaken as primary variables. On the basis of these variables, the irrigated areas were divided <strong>in</strong>tofour groups. Group I <strong>in</strong>cludes all areas with severe ra<strong>in</strong>fall deficit, <strong>and</strong> the farms are generallysmall with cereals as the ma<strong>in</strong> crop. For Group II, the ma<strong>in</strong> crop is rice <strong>and</strong> the ra<strong>in</strong>fall deficit isless than for Group I. Group III has a shorter irrigation season than the first two groups <strong>and</strong> theeconomic development is more advanced. In addition to cereals, the most important crops arefodder crops, fruits <strong>and</strong> vegetables. For Group IV, irrigation is supplementary as this group hasa cool, temperate climate.The operational or <strong>management</strong> losses <strong>in</strong> the conveyance system are related to: the size ofthe irrigation scheme; <strong>and</strong> the level of irrigation <strong>management</strong>, communication systems <strong>and</strong> controlstructures, i.e. manual versus automatic control. Figure 20 shows that there is a sharp <strong>in</strong>crease<strong>in</strong> operational losses <strong>in</strong> irrigation schemes of less than 100 ha <strong>and</strong> larger than 10 000 ha.Management losses can be as high as 50 percent.The size of the tertiary or rotational units also has a significant <strong>in</strong>fluence on the operationallosses. Bos <strong>and</strong> Nugteren (1990) estimate that optimum efficiency can be atta<strong>in</strong>ed if the size ofthe rotational unit lies between 70 <strong>and</strong> 300 ha. Where the rotational units are smaller, safetymarg<strong>in</strong>s above the actual amounts of <strong>water</strong> required are <strong>in</strong>troduced, as the system cannot copewith temporary deficits. Larger rotational units require a long fill<strong>in</strong>g time <strong>in</strong> relation to the periodsthat the canals are empty, as the canals are relatively long <strong>and</strong> of large dimensions. This requires<strong>org</strong>anizational measures to correct tim<strong>in</strong>g, which is often difficult.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 53FIGURE 20Management losses <strong>in</strong> relation to the size of the irrigation schemee c= <strong>water</strong> conveyance efficiencySource: Bos <strong>and</strong> Nugteren, 1990.In Egypt, canal tail losses are estimated to account for 25-50 percent of the total <strong>water</strong>losses <strong>in</strong> irrigation (EPIQ Water Policy Team, 1998). For Egypt, it is expected that operationallosses can be reduced significantly when measures such as automatic controls <strong>and</strong> night storageare <strong>in</strong>troduced.Other losses reach<strong>in</strong>g collector <strong>and</strong> ma<strong>in</strong> dra<strong>in</strong>s are from the distribution system. In additionto the seepage losses from the tertiary <strong>and</strong> quaternary canals, the method of <strong>water</strong> distribution,farm size, soil type <strong>and</strong> duration of the delivery period affect the e d. Figure 21 shows that the e dis a function of farm size <strong>and</strong> soil type. Farm units of less than 10 ha served by rotational supplyFIGURE 21Distribution losses <strong>in</strong> relation to farm size <strong>and</strong> soil typeSource: Bos <strong>and</strong> Nugteren, 1990.


54Water conservationhave a lower efficiency than larger units. This is a result of the losses that occur at the beg<strong>in</strong>n<strong>in</strong>g<strong>and</strong> end of each irrigation turn. Moreover, where farms are served by pipel<strong>in</strong>es or are situatedon less permeable soils, the e dwill be higher than average. Most of these losses do not occur iffarms receive a cont<strong>in</strong>uous <strong>water</strong> supply. Consequently, <strong>in</strong> this case, the e dis high irrespectiveof farm size.When the delivery periods are <strong>in</strong>creased, the e drises markedly. This is probably due to thelosses that occur at the <strong>in</strong>itial wett<strong>in</strong>g of the canals.Management options for on-farm source reductionImprov<strong>in</strong>g on-farm irrigation <strong>management</strong>Improv<strong>in</strong>g on-farm irrigation <strong>management</strong> <strong>in</strong>volves optimiz<strong>in</strong>g irrigation schedul<strong>in</strong>g. This meansdeterm<strong>in</strong><strong>in</strong>g when to irrigate <strong>and</strong> how much <strong>water</strong> to apply. This can be done by us<strong>in</strong>g real-timeweather data to obta<strong>in</strong> the reference crop evapotranspiration (ETo) <strong>and</strong> tak<strong>in</strong>g the product ofETo <strong>and</strong> crop coefficient to establish the depth of <strong>water</strong> to apply (SJVDIP, 1999e). Soil <strong>water</strong>balance methods are commonly used to determ<strong>in</strong>e tim<strong>in</strong>g <strong>and</strong> depth of future irrigations. TheCalifornia Irrigation Management Information System (CIMIS) <strong>and</strong> <strong>FAO</strong>’s CROPWAT (<strong>FAO</strong>,1992a) are based on these pr<strong>in</strong>ciples. Basic assumptions <strong>in</strong> these methods are that healthy highyield<strong>in</strong>gcrops are grown <strong>and</strong> that the soil moisture depletion between two irrigations equals thecrop evapotranspiration. The latter assumption may not be valid where the plant roots are extract<strong>in</strong>g<strong>water</strong> from shallow ground<strong>water</strong>. Where such conditions exist, us<strong>in</strong>g CIMIS or CROPWAT willgive an overestimation of the depletion <strong>and</strong> result <strong>in</strong> more <strong>water</strong> be<strong>in</strong>g applied than needed toreplenish soil moisture. Field experiments have been implemented all over the world to evaluatethe contribution of capillary rise from a shallow <strong>water</strong> table towards crop <strong>water</strong> requirements(e.g. Qureshi et al., 1997; DRI, 1997b; M<strong>in</strong>has et al., 1988; <strong>and</strong> Rao et al., 1992). However, nosimple calculation procedures have been developed yet. Ayars <strong>and</strong> Hutmacher (1994) proposea modified crop coefficient to <strong>in</strong>corporate ground<strong>water</strong> contribution to crop <strong>water</strong> use. A manualcalculation procedure is proposed <strong>in</strong> the section on shallow <strong>water</strong> table <strong>management</strong>. Roughestimates for capillary rise might be used, especially where drought resistant crops are grown ordur<strong>in</strong>g periods when the crop is less sensitive to <strong>water</strong> stress. <strong>FAO</strong> (1986) has determ<strong>in</strong>ed theyield response to <strong>water</strong> for a range of crops. Such <strong>in</strong>formation may be helpful <strong>in</strong> assess<strong>in</strong>g therisks <strong>in</strong>volved, <strong>in</strong> terms of yield losses, when rough estimates of capillary rise are used <strong>in</strong> optimiz<strong>in</strong>girrigation schedul<strong>in</strong>g.Soil sampl<strong>in</strong>g <strong>and</strong> soil <strong>water</strong> sens<strong>in</strong>g devices can provide valid estimates of soil moisturedepletion. Provided these <strong>in</strong>struments are properly <strong>in</strong>stalled <strong>and</strong> calibrated, <strong>and</strong> the usersadequately tra<strong>in</strong>ed, irrigation schedul<strong>in</strong>g can be based on the results.Improv<strong>in</strong>g <strong>water</strong> application uniformity <strong>and</strong> efficiencyUniformity <strong>and</strong> e acan be improved by upgrad<strong>in</strong>g the exist<strong>in</strong>g on-farm irrigation system or byconvert<strong>in</strong>g to a technique with a potential for higher efficiency <strong>and</strong> uniformity (SJVDIP, 1999e).Surface irrigation by gravity flow is the most common irrigation technique as it does not <strong>in</strong>volvethe costs for the O&M of pressurized systems. For this reason, over the com<strong>in</strong>g decades surfaceirrigation is likely to rema<strong>in</strong> the predom<strong>in</strong>ant approach (<strong>FAO</strong>, 2000), although better uniformity<strong>and</strong> e acan be obta<strong>in</strong>ed with spr<strong>in</strong>kler <strong>and</strong> drip irrigation.There are several ways of improv<strong>in</strong>g the performance of furrow irrigation. The first methodis to reduce the furrow length. This measure is most effective <strong>in</strong> reduc<strong>in</strong>g deep percolation


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 55below the rootzone for field lengths exceed<strong>in</strong>g 300 m. The set time has to be reduced at thesame time, <strong>and</strong> is equal to the difference <strong>in</strong> the <strong>in</strong>itial advance time <strong>and</strong> the new advance time.Failure to do so will greatly <strong>in</strong>crease the surface runoff <strong>and</strong> subsurface <strong>dra<strong>in</strong>age</strong>. A secondoption is to apply cutback irrigation. Cutback irrigation means reduc<strong>in</strong>g the <strong>in</strong>flow rate of irrigatedfurrows after the completion of advance.A third option is to use surge irrigation.Surge irrigation is <strong>in</strong>termittent applicationof <strong>water</strong> to an irrigation furrow (Yonts etal., 1994). Initial <strong>in</strong>filtration rates <strong>in</strong> a dryfurrow are high. As the <strong>water</strong> cont<strong>in</strong>ues torun, the <strong>in</strong>filtration rate reduces to aconstant rate. If <strong>water</strong> is shut off <strong>and</strong>allowed to <strong>in</strong>filtrate, surface soil particlesconsolidate <strong>and</strong> form a partial seal <strong>in</strong> thefurrow, which substantially reduces the<strong>in</strong>filtration rate. When the <strong>water</strong> <strong>in</strong>flow <strong>in</strong>tothe furrow is re-<strong>in</strong>troduced, more <strong>water</strong>FIGURE 22Infiltration losses <strong>in</strong> furrow irrigationIncreas<strong>in</strong>g<strong>in</strong>filtrationFlow directionCycle 1 Cycle 2 Cycle 3 Cycle 4Cont<strong>in</strong>uous flowSource: after Yonts et al., 1994.Surge after cutbackmoves down the furrow <strong>in</strong> the previously wetted area <strong>and</strong> less <strong>in</strong>filtration <strong>in</strong>to the soil takesplace. This process is repeated several times. As the previously wetted part of the furrow has alower <strong>in</strong>filtration rate <strong>and</strong> the advance <strong>in</strong> this part is higher, the f<strong>in</strong>al result is a more uniform<strong>in</strong>filtration pattern (Figure 22).Last, better l<strong>and</strong> grad<strong>in</strong>g <strong>and</strong> compaction of the furrow can improve the uniformity <strong>and</strong>efficiency of furrow irrigation (SJVDIP, 1999e).Improvements <strong>in</strong> bas<strong>in</strong> irrigation consist ma<strong>in</strong>ly of adjust<strong>in</strong>g the size of the bas<strong>in</strong>s <strong>in</strong> accordancewith the l<strong>and</strong> slope, the soil type <strong>and</strong> the available stream size. <strong>FAO</strong> (1990b) gives guidel<strong>in</strong>es onhow to estimate optimal bas<strong>in</strong> sizes. To obta<strong>in</strong> a uniformly wetted rootzone, the surface of thebas<strong>in</strong> must be level <strong>and</strong> the irrigation <strong>water</strong> must be applied rapidly.Drip <strong>and</strong> spr<strong>in</strong>kler irrigation systems have the potential to be highly efficient. However,where the systems are not properly designed, operated or ma<strong>in</strong>ta<strong>in</strong>ed, the efficiency can be aslow as <strong>in</strong> surface irrigation systems. Improv<strong>in</strong>g the uniformity <strong>and</strong> thus the efficiency <strong>in</strong> drip <strong>and</strong>spr<strong>in</strong>kler irrigation <strong>in</strong>volves reduc<strong>in</strong>g the hydraulic losses. Losses can be m<strong>in</strong>imized by select<strong>in</strong>gthe proper length of the laterals <strong>and</strong> pipel<strong>in</strong>e diameter <strong>and</strong> by apply<strong>in</strong>g appropriate pressureregulation throughout the system. After the system has been properly designed <strong>and</strong> <strong>in</strong>stalled,good O&M of the system is crucial. Phocaides (2001) provides guidel<strong>in</strong>es on the design <strong>and</strong>O&M of pressurized irrigation techniques.For additional details on on-farm irrigation <strong>management</strong>, the reader may refer to publicationsby Hoffman et al. (1990), <strong>and</strong> Skaggs <strong>and</strong> Van Schilfgaarde (1999).Options for source reduction at scheme levelAt a scheme level, numerous options can be applied to reduce the conveyance, distribution <strong>and</strong>operational losses. To reduce seepage <strong>and</strong> leakage, canal rehabilitation or upgrad<strong>in</strong>g might berequired. To reduce the operational losses, improvements <strong>in</strong> the irrigation <strong>in</strong>frastructure <strong>and</strong>communication system could be implemented. To <strong>in</strong>crease the distribution efficiency, tertiary<strong>and</strong> quaternary canals might need to be upgraded. Moreover, an <strong>in</strong>crease <strong>in</strong> delivery periodmight help to <strong>in</strong>crease the distribution efficiency. Furthermore, a number of policy options are


56Water conservationavailable. In many countries, driven largely by f<strong>in</strong>ancial constra<strong>in</strong>ts, the <strong>water</strong> users now managethe irrigation systems. It is hoped that h<strong>and</strong><strong>in</strong>g over the systems to the <strong>water</strong> users will raiseefficiency <strong>and</strong> profitability. <strong>FAO</strong> (1999b) has developed guidel<strong>in</strong>es for the transfer of irrigation<strong>management</strong> services.Impact of source reduction on long-term rootzone sal<strong>in</strong>ityThe ma<strong>in</strong> objective of source reduction <strong>in</strong> the context of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> is toreduce the amount of <strong>dra<strong>in</strong>age</strong> <strong>water</strong>. For the reduction of the amount of subsurface <strong>dra<strong>in</strong>age</strong>this means that the amount of <strong>water</strong> percolat<strong>in</strong>g below the rootzone will be reduced throughimprov<strong>in</strong>g <strong>water</strong> application efficiency. In areas where sal<strong>in</strong>ization is a major concern, it isimportant to assess the feasibility <strong>and</strong> impact of source reduction on rootzone sal<strong>in</strong>ity.The equilibrium rootzone sal<strong>in</strong>ity is a function of the sal<strong>in</strong>ity of the applied <strong>water</strong> that mixeswith the soil solution <strong>and</strong> the fraction of <strong>water</strong> percolat<strong>in</strong>g from the soil solution (Annex 4). Thiscan be expressed as:ECIWiEC (10)f r R= ECSW=LFwhere:EC frR= sal<strong>in</strong>ity of the percolation <strong>water</strong> which has been mixed with the soil solution(dS/m);EC SW= sal<strong>in</strong>ity of the soil <strong>water</strong> (dS/m);EC IWi= sal<strong>in</strong>ity of the <strong>in</strong>filtrated <strong>water</strong> that mixes with the soil solution (dS/m); <strong>and</strong>LF i= leach<strong>in</strong>g fraction of <strong>in</strong>filtrated <strong>water</strong> that mixes with the soil solution (-).Therefore, it is important to evaluate whether the average net amount of percolation <strong>water</strong>under proposed irrigation practices satisfies the m<strong>in</strong>imum leach<strong>in</strong>g requirements to avoid soilsal<strong>in</strong>ization. In this evaluation, ra<strong>in</strong>fall should be considered as it might supply adequate leach<strong>in</strong>g.The leach<strong>in</strong>g fraction of the <strong>in</strong>filtrated <strong>water</strong> that mixes with the soil solution can be expressedas:*frRLFi=(11)f I + Piiwhere:f r= leach<strong>in</strong>g efficiency coefficient of the percolation <strong>water</strong> (-);f i= leach<strong>in</strong>g efficiency coefficient related to the <strong>in</strong>com<strong>in</strong>g irrigation <strong>water</strong> that mixeswith the soil solution (-);I i= irrigation <strong>water</strong> <strong>in</strong>filtrated, which is the total applied irrigation <strong>water</strong> m<strong>in</strong>us theevaporation losses <strong>and</strong> surface runoff (mm);P e= effective precipitation (mm); <strong>and</strong>R * = net deep percolation (mm).In this equation, it is assumed that over the irrigation seasons a shallow zone of <strong>water</strong> iscreated below the rootzone which has a sal<strong>in</strong>ity equivalent to the percolation <strong>water</strong>. Where thisassumption is not correct or where deficit irrigation is actively practised under shallow ground<strong>water</strong>conditions, capillary rise <strong>and</strong> deep percolation have to be entered as separate entities <strong>in</strong> therootzone salt balance. In this case, the soil <strong>water</strong> sal<strong>in</strong>ity <strong>in</strong> the rootzone is a function of thesal<strong>in</strong>ity of the <strong>in</strong>filtrated <strong>water</strong>, capillary rise <strong>and</strong> percolation <strong>water</strong>.ei


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 57It is often assumed that the sal<strong>in</strong>ity of the deep percolation <strong>water</strong> is equivalent to the averagerootzone sal<strong>in</strong>ity. However, due to irrigation <strong>and</strong> root<strong>water</strong> extraction patterns, the sal<strong>in</strong>ity islower <strong>in</strong> the upper portion of the rootzone due to higher leach<strong>in</strong>g fractions (zone of salt leach<strong>in</strong>g)<strong>and</strong> the sal<strong>in</strong>ity is higher <strong>in</strong> the bottom portions because of smaller leach<strong>in</strong>g fractions (zone ofsalt accumulation). Under normal irrigation <strong>and</strong> root distribution, the typical extraction patternfor the rootzone is 40-30-20-10 percent <strong>water</strong> uptake from the upper to the lower quarter of therootzone. Equation 10 can be used to calculate the rootzone sal<strong>in</strong>ity of five successive depthsunder this <strong>water</strong> uptake pattern to obta<strong>in</strong> f<strong>in</strong>ally the average sal<strong>in</strong>ity <strong>in</strong> the rootzone (Figure 2 <strong>in</strong>Annex 4).Ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a favourable salt balance under source reductionThe relationship between EC IWi<strong>and</strong>the average soil sal<strong>in</strong>ity of thesaturated soil paste (EC e) can becalculated for each LF i<strong>and</strong>expressed as a concentrationfraction (Table 1 <strong>in</strong> Annex 4). Theseconcentration factors can be usedto calculate the relationshipbetween EC e<strong>and</strong> EC IWi(Figure 23). Where the sal<strong>in</strong>ity ofthe <strong>in</strong>filtrated <strong>water</strong> <strong>and</strong> the croptolerance to sal<strong>in</strong>ity are known, thenecessary LF to control soil sal<strong>in</strong>itycan be estimated from this figure.If the y-axis of the figure were thethreshold sal<strong>in</strong>ity for the crop underconsideration (EC ts), then thediagonal l<strong>in</strong>es would give a range ofleach<strong>in</strong>g requirements (LR)expressed as a LF.FIGURE 23Assessment of leach<strong>in</strong>g fraction <strong>in</strong> relation to the sal<strong>in</strong>ityof the <strong>in</strong>filtrated <strong>water</strong>ECe (dS/m)10864200 2 4 6 8 10EC IWi (dS/m)Source: after <strong>FAO</strong>, 1985b.0.5 0.10 0.15 0.20Leach<strong>in</strong>g fractions0.400.80Various researchers have developed other methods to calculate the LR to ma<strong>in</strong>ta<strong>in</strong> afavourable salt balance <strong>in</strong> the rootzone. An empirical formula developed by Rhoades (1974) <strong>and</strong>Rhoades <strong>and</strong> Merrill (1976) is:ECIWLR = (12)5*ECts− ECIWwhere EC tsis the threshold sal<strong>in</strong>ity for a crop above which the yield beg<strong>in</strong>s to decl<strong>in</strong>e (Annex 1)<strong>and</strong> EC IWis the sal<strong>in</strong>ity of the <strong>in</strong>filtrated <strong>water</strong>. The value 5 was obta<strong>in</strong>ed empirically (<strong>FAO</strong>,1985b).The salt equilibrium equation (Equation 10) can be used to assess the feasibility <strong>and</strong> impactof source reduction on the rootzone sal<strong>in</strong>ity by calculat<strong>in</strong>g the LR expressed as LF, <strong>and</strong> tocompare the results with the expected percolation under improved irrigation practices. Theamount of percolation <strong>water</strong> should cover the LR. A safety marg<strong>in</strong> is advisable because irrigationuniformity is never complete <strong>in</strong> the field (<strong>FAO</strong>, 1980). Depend<strong>in</strong>g on the distribution uniformityof the application method, the actual LR should be 1.1-1.3 times higher than the calculated LR.For example, for drip, spr<strong>in</strong>kler (solid set) <strong>and</strong> bas<strong>in</strong> irrigation, smaller safety marg<strong>in</strong>s might beadopted while for border irrigation a larger marg<strong>in</strong> might be more appropriate (Table 9).


58Water conservationBelow an illustrative calculation from Pakistan is given. The example shows the impact ofsource reduction on the rootzone sal<strong>in</strong>ity.Calculation example impact of source reduction on sal<strong>in</strong>ity of rootzoneGeneral <strong>in</strong>formationThe <strong>dra<strong>in</strong>age</strong> pilot study area is situated <strong>in</strong> the south east of the Punjab, Pakistan. The area hasbeen suffer<strong>in</strong>g from <strong>water</strong>logg<strong>in</strong>g <strong>and</strong> sal<strong>in</strong>ity problems for a long time <strong>and</strong> therefore was selectedas a priority area <strong>in</strong> urgent need of <strong>dra<strong>in</strong>age</strong>. The ma<strong>in</strong> causes of <strong>water</strong>logg<strong>in</strong>g are overirrigation<strong>and</strong> seepage <strong>in</strong>flow from surround<strong>in</strong>g irrigated areas <strong>and</strong> canals. The estimated average seepage<strong>in</strong>flow is 0.5 mm/d with a sal<strong>in</strong>ity of 5 dS/m. In 1998, a subsurface <strong>dra<strong>in</strong>age</strong> system was <strong>in</strong>stalledon a pilot area of 110 ha. The design discharge of the system is 1.5 mm/d <strong>and</strong> the design <strong>water</strong>table depth is 1.4 m. The soils are predom<strong>in</strong>antly silty (θ fc0.36) with an estimated leach<strong>in</strong>gefficiency coefficient (f i) of 0.9. The climate is <strong>semi</strong>-<strong>arid</strong> with an annual potential cropevapotranspiration of 1 303 mm <strong>and</strong> an average annual effective ra<strong>in</strong>fall of 197 mm. The ma<strong>in</strong>crops are wheat <strong>in</strong> w<strong>in</strong>ter (December to April) <strong>and</strong> cotton <strong>in</strong> summer (June to October/November).Both crops are irrigated throughout the year, as ra<strong>in</strong>fall is <strong>in</strong>sufficient to meet crop <strong>water</strong>requirements (Table 11). Irrigation <strong>water</strong> is supplied through open canals <strong>and</strong> has a sal<strong>in</strong>ity of1 dS/m. Wheat is irrigated through bas<strong>in</strong> irrigation <strong>and</strong> cotton is irrigated with furrow bas<strong>in</strong>s.The major application losses occur as a result of deep percolation due to poor field levell<strong>in</strong>g(non-uniformity) <strong>and</strong> as a result of uncerta<strong>in</strong>ties <strong>in</strong> relation to ra<strong>in</strong>fall <strong>and</strong> <strong>water</strong> distribution. Theannual average e ais 64 percent ((ET crop-P e)/I), <strong>in</strong>clud<strong>in</strong>g 5 percent evaporation losses. The depthof the rootzone is assumed to be 1 m <strong>and</strong> the <strong>water</strong> uptake pattern is 40, 30, 20, 10 percent fromthe first to the fourth quarter of the rootzone, respectively. It is assumed that no capillary riseoccurs.Long-term rootzone sal<strong>in</strong>ityLong-term sal<strong>in</strong>ity <strong>in</strong> the rootzone under these conditions is calculated us<strong>in</strong>g Equations 1-11presented <strong>in</strong> Annex 4 for the four-layer concept. The first step is to calculate EC IWius<strong>in</strong>gEquation 10:EC IWi= f iI i/ (f iI i+ P e) * EC I= (0.9 * 0.95 * 1718) / (0.9 * 0.95 * 1718 + 197) * 1 = 0.88 dS/mThe second step is to calculate the LF ivalues for the <strong>in</strong>filtrated <strong>water</strong> mix<strong>in</strong>g with the soilsolution for the successive quarters (Figure 2 <strong>in</strong> Annex 4):LF i1= (IW i- 0.4 * ET crop) / IW i= (0.9 * 0.95 * 1 718 + 197 - 0.4 * 1 303) / (0.9 * 0.95 * 1718 + 197) = 0.69LF i2= (IW i– (0.4 + 0.3) * ET crop) / IW i= (1 666 - 0.7 * 1 303) / 1 666 = 0.45LF i3= (IW i– (0.4 + 0.3 + 0.2) * ET crop) / IW i= (1 666 - 0.9 * 1303) / 1 666 = 0.30LF i4= (IW i– (0.4 + 0.3 + 0.2 + 0.1) * ET crop) / IW i= (1 666 - 1.0 * 1 303) / 1 666 = 0.22TABLE 11Agroclimatic data for the <strong>dra<strong>in</strong>age</strong> pilot study areaPeriod Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov YearCrop wheat cottonET (mm) 43 55 101 110 76 61 145 154 219 195 114 30 1303P e (mm) 5 15 15 9 5 15 80 35 10 0 3 5 197I (mm) 222 122 122 122 0 144 144 144 288 144 144 122 1718


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 59The third step is to calculate the EC evalues with Equation 7 (Annex 4). Consider<strong>in</strong>g that formost soils EC e≈ 0.5 EC sw:EC e1= 0.5 EC sw1= 0.5 * 0.88 / 0.69 = 0.64 dS/mEC e2= 0.5 EC sw2= 0.5 * 0.88 / 0.45 = 0.98 dS/mEC e3= 0.5 EC sw3= 0.5 * 0.88 / 0.30 = 1.47 dS/mEC e4= 0.5 EC sw4= 0.5 * 0.88 / 0.22 = 2.00 dS/mThe average EC eof the rootzone,<strong>in</strong>clud<strong>in</strong>g the first value of the <strong>in</strong>filtrated<strong>water</strong>, is 1.11 dS/m. Figure 24 presents theresults of these calculations.FIGURE 24Calculation of average rootzone sal<strong>in</strong>ity for the<strong>dra<strong>in</strong>age</strong> pilot study areaSource reduction <strong>and</strong> the impact onrootzone sal<strong>in</strong>ityDisposal of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>in</strong> southernPunjab is a major problem. Only verylimited volumes of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> can bedisposed <strong>in</strong>to ma<strong>in</strong> irrigation canals <strong>and</strong>rivers. Evaporation ponds have beenconstructed to relieve the disposal problembut adverse environmental effects areobserved. To susta<strong>in</strong> irrigated agriculture<strong>and</strong> to prevent serious environmentaldegradation, parallel conservationmeasures have to be implemented. As the0.40 ETcalculated rootzone sal<strong>in</strong>ity of 1.11 dS/m is far below the threshold sal<strong>in</strong>ity value of wheat <strong>and</strong>cotton, source reduction at field level should be considered. Source reduction might be atta<strong>in</strong>edthrough a comb<strong>in</strong>ation of measures <strong>in</strong>clud<strong>in</strong>g: precision l<strong>and</strong> levell<strong>in</strong>g; the shap<strong>in</strong>g of bas<strong>in</strong> <strong>and</strong>bas<strong>in</strong> furrows; improved irrigation <strong>water</strong> distribution; <strong>and</strong> the <strong>in</strong>troduction of <strong>water</strong> fees.The threshold EC evalue for wheat is 6 dS/m <strong>and</strong> for cotton 7.7 dS/m (Annex 1). To assessthe m<strong>in</strong>imum leach<strong>in</strong>g requirement, the threshold rootzone sal<strong>in</strong>ity of the most sensitive crop <strong>in</strong>the crop rotation will be used. Us<strong>in</strong>g Figure 23, theoretically, the leach<strong>in</strong>g fraction of the percolation<strong>water</strong> mix<strong>in</strong>g with the soil solution could be less than 5 percent. If the LF ivalue at the bottom ofthe rootzone is assumed to be 0.05, the total irrigation <strong>water</strong> applied can be calculated as:LF i= (f iI i+ P e- ET crop) / (f iI i+ P e)0.05 = (0.95 * 0.9 * I + 197 - 1 303)/(0.95 * 0.9 * I + 197)0.05 * (0.855 * I + 197) = (0.855 * I - 1 106)I = 1 374 mmECe 1=0.64 dS/mLF =1.000LF 1=0.690.30 ETECe 2= 0.98 dS/mLF 2 =0.450.20 ETECe 3=1.47 dS/mLF 3=0.300.10 ETECe 4=2 dS/mLF 4=0.22In this case, the e ais 80 percent, which is with<strong>in</strong> the range of reasonable deep percolationlosses (Table 9). Higher efficiencies cannot be achieved as farmers will need to cope withuncerta<strong>in</strong>ties <strong>in</strong> ra<strong>in</strong>fall <strong>and</strong> to a certa<strong>in</strong> extent <strong>in</strong> <strong>water</strong> supply. Second, some losses alwaysoccur as a result of non-uniformity <strong>and</strong> farmers’ <strong>in</strong>ability to apply exact amounts of <strong>water</strong>.Equation 10 (Annex 4) can be used aga<strong>in</strong> to calculate the sal<strong>in</strong>ity of the <strong>in</strong>filtrated <strong>water</strong> mixedwith the soil <strong>water</strong>:EC IWi= (0.9 * 0.95 * 1 374) / (0.9 * 0.95 * 1 374 + 197) * 1 = 0.86 dS/m0.9 * I iEC = 0.88 dS/mIWi0.1 * I i


60Water conservationThe LF values for the <strong>in</strong>filtrated <strong>water</strong>mix<strong>in</strong>g with the soil solution <strong>and</strong> the EC evalues for the successive quarters arecalculated the same way as for Figure 24<strong>and</strong> result <strong>in</strong> an average rootzone sal<strong>in</strong>ityof 2.77 dS/m (Figure 25) aga<strong>in</strong>st theorig<strong>in</strong>al value of 1.11 dS/m. Indeed, thesal<strong>in</strong>ity <strong>in</strong>creased, but it is still acceptablefor the common crops grown <strong>in</strong> the area.The above calculations were based ondivid<strong>in</strong>g the rootzone <strong>in</strong>to four equal parts(quadrants). However, this model can beextended <strong>in</strong>to n-number of layers providedthat the root<strong>water</strong> extraction pattern isknown, e.g. <strong>in</strong> 15-cm depth <strong>in</strong>crementsfor 90-cm root<strong>in</strong>g depth.FIGURE 25Calculation average rootzone sal<strong>in</strong>ity under sourcereduction <strong>in</strong> the <strong>dra<strong>in</strong>age</strong> pilot study area0.40 ET LF 0=1.00ECe 1=0.69 dS/mLF 1=0.620.30 ETECe 2=1.26 dS/m0.1 * I <strong>in</strong>filtratedLF 2=0.340.20 ETECe 3= 2.87 dS/m0.10 ETLF 3 =0.15ECe 4=8.60 dS/mLF=0.050.9 * I <strong>in</strong>filtratedEC = 0.86 dS/mIWiImpact of source reduction on salt storage with<strong>in</strong> the cropp<strong>in</strong>g seasonIn previous sections, long-term steady-state conditions were assumed to prevail. However, sal<strong>in</strong>itylevels dur<strong>in</strong>g a cropp<strong>in</strong>g season are not stable <strong>and</strong> change throughout the season. To study theimpact of irrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> measures on crop performance, it is important to know thechanges <strong>in</strong> rootzone sal<strong>in</strong>ity dur<strong>in</strong>g a cropp<strong>in</strong>g season over multiple time periods. These periodsmay range from a day to a monthly period. The mass of salts at the start of a period <strong>and</strong> at theend of a period normally differs <strong>and</strong> can be expressed as:where:S start= quantity of salts <strong>in</strong> the rootzone at the start of the period (ECmm 1 );S end= quantity of salts <strong>in</strong> the rootzone at the end of the period (ECmm); <strong>and</strong>∆S = change <strong>in</strong> salt storage <strong>in</strong> the rootzone (ECmm).Equations 16 to 24 <strong>in</strong> Annex 4 provide a full description of the derivation of the salt storageequation. The salt storage equation is def<strong>in</strong>ed as:where:IW = <strong>in</strong>filtrated <strong>water</strong> (mm); <strong>and</strong>= moisture content at field capacity (mm).W fcSstart= Send− ∆S*R SIW ECIW−W∆S=*R1+2W1The quantity ECmm requires some explanation. The parameter S is the mass of salts obta<strong>in</strong>ed from the product ofsalt concentration <strong>and</strong> <strong>water</strong> volume per area. For the sake of convenience, Van Hoorn <strong>and</strong> Van Alphen (1994) choseto use EC <strong>in</strong>stead of TDS <strong>in</strong> grams per litre. The unit millimetre equals litre per square metre. Thus, the parameterS corresponds with the amount of salt <strong>in</strong> grams per square metre.fcstartfc(13)(14)


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 61Equation 14 can be used to calculate changes <strong>in</strong> soil sal<strong>in</strong>ity with<strong>in</strong> a cropp<strong>in</strong>g season. Thesalt storage equation can also be applied to the four-layer concept. Us<strong>in</strong>g the data from theprevious example, the follow<strong>in</strong>g calculation example assesses the impact of source reduction onthe rootzone sal<strong>in</strong>ity on a monthly basis.Calculation example of impact of source reduction on salt balance of the rootzoneTo explore the changes <strong>in</strong> sal<strong>in</strong>ity over the grow<strong>in</strong>g season as a result of source reduction, thesalt storage equation (Equation 14) applied to the four-layer concept as expla<strong>in</strong>ed <strong>in</strong> Annex 4 isused. For each layer the change <strong>in</strong> salt storage is calculated us<strong>in</strong>g Equation 22 as presented <strong>in</strong>Annex 4 for the first layer <strong>and</strong> Equation 23 for the consecutive three layers. The average EC eis based on the quantity of salts stored <strong>in</strong> the rootzone at the end of the calculation periods.Equation 19 presented <strong>in</strong> Annex 4 is used to convert S to EC e. Table 12 presents the results forthe wheat-grow<strong>in</strong>g season.TABLE 12Salt balance <strong>in</strong> the root zone for the <strong>dra<strong>in</strong>age</strong> pilot study area dur<strong>in</strong>g wheat seasonCropWheatPeriod Dec Jan Feb Mar AprET crop (mm) 43 55 101 110 76P e (mm) 5 15 15 9 5I i (mm) 163.4 91.2 91.2 91.2 0EC IWi (dS/m) 0.97 0.85 0.85 0.90 0.00∆W 1 (mm) 0 0 0 0 -25.4R 1 (mm) 135 75 57 47 0LF 1 (-) 0.89 0.77 0.58 0.52 0.00S start 1 (ECmm) 131 103 100 115 132∆S 1 (ECmm) -28 -3 14 18 0S end 1 (ECmm) 103 100 115 132 132R 1 EC R1 (ECmm) 175 85 68 65 0∆W 2 (mm) 0 0 0 0 -22.8R 2 (mm) 122 59 26 14 0LF 2 (-) 0.90 0.78 0.47 0.30 0.00S start 2 (ECmm) 317 165 148 169 204∆S 2 (ECmm) -151 -17 21 35 0S end 2 (ECmm) 165 148 169 204 204R 2 EC R2 (ECmm) 326 102 46 29 0∆W 3 (mm) 0 0 0 -8 -23R 3 (mm) 101 48 6 0 0LF 3 (-) 0.83 0.81 0.23 0.00 0.00S start 3 (ECmm) 840 445 340 362 391∆S 3 (ECmm) -395 -106 22 29 0S end 3 (ECmm) 445 340 362 391 391R 3 EC R3 (ECmm) 721 207 24 0 0∆W 4 (mm) 0 0 -4 -15 -23R 4 (mm) 26 42 0 0 0LF 4 (-) 0.26 0.88 0.00 0.00 0.00S start 4 (ECmm) 1 506 1 758 1 260 1 284 1 284∆S 4 (ECmm) 252 -498 24 0 0S end 4 (ECmm) 1 758 1 260 1 284 1 284 1 284R 4 EC R4 (ECmm) 468 706 0 0 0E C e (dS/m) 2.84 2.14 2.23 2.33 2.24


62Water conservationFigure 26 shows the changes <strong>in</strong>the average rootzone sal<strong>in</strong>ity over anentire year. The sal<strong>in</strong>ity <strong>in</strong>creasesdur<strong>in</strong>g the summer months <strong>and</strong>reaches its peak towards the end ofthe cotton grow<strong>in</strong>g season. Beforeplant<strong>in</strong>g wheat <strong>in</strong> November-December, many farmers apply arauni (pre-irrigation) to leach anyaccumulated salts.FIGURE 26Change <strong>in</strong> the average rootzone sal<strong>in</strong>ity over the yearunder source reductionEC e(dS/m)3.532.521.510.50DecJanFebMarAprMayJunJulAugSepOctNovDecMonthsImpact of source reduction on sal<strong>in</strong>ity of <strong>dra<strong>in</strong>age</strong> <strong>water</strong>To estimate the impact of source reduction on the extent of reuse <strong>and</strong> disposal of <strong>dra<strong>in</strong>age</strong><strong>water</strong>, it is necessary to consider not only the <strong>water</strong> quantity but also the changes <strong>in</strong> <strong>water</strong>quality. Generally, the sal<strong>in</strong>ity of the <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>in</strong>creases as the <strong>dra<strong>in</strong>age</strong> discharge decreases.Where all the deep percolation is <strong>in</strong>tercepted by the subsurface <strong>dra<strong>in</strong>age</strong> system, the amount ofgenerated <strong>dra<strong>in</strong>age</strong> <strong>water</strong> is:**Dra= frR+ ( 1-fr) R + ( Si− Drn)(15)The salt load of the subsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong> is the sal<strong>in</strong>ity of the <strong>in</strong>tercepted <strong>water</strong> multipliedby the depth of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> plus the salt load of the seepage <strong>in</strong>flow m<strong>in</strong>us the salt load of thenatural <strong>dra<strong>in</strong>age</strong>. If the natural <strong>dra<strong>in</strong>age</strong> can be ignored the salt load of the subsurface <strong>dra<strong>in</strong>age</strong>sal<strong>in</strong>ity can be calculated as follows:where:EC DraEC frREC SiEC I*( 1-fr)R ECISiECSi*DraECDra= frRECfrR+ += sal<strong>in</strong>ity of the subsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong> (dS/m);= sal<strong>in</strong>ity of the percolation <strong>water</strong> that mixed with soil solution (dS/m); <strong>and</strong>= sal<strong>in</strong>ity of the seepage <strong>in</strong>flow <strong>in</strong>tercepted by the subsurface dra<strong>in</strong>s (dS/m).= sal<strong>in</strong>ity of the irrigation <strong>water</strong> (dS/m)The sal<strong>in</strong>ity of the subsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong> (EC Dra) is the salt load as calculated withEquation 16 divided by the depth of <strong>dra<strong>in</strong>age</strong> <strong>water</strong>.In the California studies, there appears to be some correlation between sal<strong>in</strong>ity, boron <strong>and</strong>selenium <strong>in</strong> terms of the waste discharge load, i.e. changes <strong>in</strong> flow result <strong>in</strong> similar changes <strong>in</strong>loads of salts, selenium <strong>and</strong> boron. This load-flow relationship exists because the shallowground<strong>water</strong> conta<strong>in</strong>s excessive levels of sal<strong>in</strong>ity, selenium <strong>and</strong> boron (Ayars <strong>and</strong> Tanji, 1999).Where this relationship exists <strong>in</strong> an area, regulat<strong>in</strong>g the sal<strong>in</strong>ity load would also regulate boron<strong>and</strong> selenium loads <strong>in</strong> <strong>dra<strong>in</strong>age</strong> discharge.The sal<strong>in</strong>ity of the subsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong> is diluted <strong>in</strong> the ma<strong>in</strong> <strong>dra<strong>in</strong>age</strong> system bysurface runoff <strong>and</strong> canal spills. These losses will be drastically reduced under irrigationimprovement projects. For example, <strong>in</strong> Egypt it is expected that through the <strong>in</strong>troduction of nightstorage reservoirs, the canal tail<strong>water</strong> losses will be reduced to almost zero (EPIQ Water PolicyTeam, 1998).(16)


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 63Calculation example of source reduction <strong>and</strong> the impact on <strong>dra<strong>in</strong>age</strong> <strong>water</strong> generation<strong>and</strong> sal<strong>in</strong>itySource reduction <strong>in</strong>fluences not only the rootzone sal<strong>in</strong>ity but also the amount of <strong>dra<strong>in</strong>age</strong> <strong>water</strong>generated <strong>and</strong> the sal<strong>in</strong>ity of the <strong>dra<strong>in</strong>age</strong> <strong>water</strong>. This is of special <strong>in</strong>terest when seek<strong>in</strong>g optionsfor reuse <strong>and</strong> disposal. Under normal conditions <strong>and</strong> source reduction, the amount of generated<strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>in</strong> the <strong>dra<strong>in</strong>age</strong> pilot study area <strong>in</strong> Pakistan can be calculated us<strong>in</strong>g Equation 15:D ra-normalD ra-reduction= 363 + 163 + 182.5 = 708.5 mm= 69 + 131 + 182.5 = 382.5 mmThus, when source reduction isapplied, 46 percent less <strong>dra<strong>in</strong>age</strong> <strong>water</strong>is produced. A major reduction isobta<strong>in</strong>ed <strong>in</strong> the first months of the w<strong>in</strong>terseason <strong>and</strong> to a lesser extent dur<strong>in</strong>g thesummer season (Figure 27).The sal<strong>in</strong>ity of the <strong>dra<strong>in</strong>age</strong> <strong>water</strong><strong>in</strong>creases ma<strong>in</strong>ly dur<strong>in</strong>g the first twomonths of the w<strong>in</strong>ter season whensource reduction is applied <strong>in</strong>comparison to the normal irrigationpractices (Figure 28). The <strong>in</strong>creasedrootzone sal<strong>in</strong>ity that develops over thesummer season as a result of reducedleach<strong>in</strong>g <strong>and</strong> the subsequent leach<strong>in</strong>g atthe start of the w<strong>in</strong>ter season are thema<strong>in</strong> reasons for this <strong>in</strong>crease <strong>in</strong> sal<strong>in</strong>ityof the <strong>dra<strong>in</strong>age</strong> <strong>water</strong>.The total salt load is normally of<strong>in</strong>terest for disposal options. The saltload can be expressed as the depth of<strong>water</strong> multiplied by the sal<strong>in</strong>ity of the<strong>dra<strong>in</strong>age</strong> <strong>water</strong> (ECmm). The annualsalt load is calculated us<strong>in</strong>g Equation 16:FIGURE 27Depth of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> generatedDra<strong>in</strong>age <strong>water</strong> (mm)200150100500DecJanFebMarAprMayD-normalJunMonthsJulAugD-reductionFIGURE 28Sal<strong>in</strong>ity of the generated <strong>dra<strong>in</strong>age</strong> <strong>water</strong>EC <strong>dra<strong>in</strong>age</strong> <strong>water</strong> (dS/m)14121086420DecJanFebMarAprMayEC-normalJunMonthsJulAugEC-reductionSepSepOctOctNovNovD raEC Dra-normalD raEC Dra-reduction= 363 * 2 * 2.0 + 163 * 1 + 182.5 * 5 = 2 528 ECmm= 69 * 2 * 8.60 + 131 * 1 + 182.5 * 5 = 2 230 ECmmThis means that the annual salt load reduction achieved under source reduction is 11.8 percent.If the TDS (g/litre) is approximately 0.64 EC (dS/m), the annual reduction is salt load is 1.9tonnes per ha. Figure 29 shows the distribution of salt load over the year.SHALLOW WATER TABLE MANAGEMENTIn the past, <strong>dra<strong>in</strong>age</strong> systems were typically designed to remove deep percolation from irrigatedl<strong>and</strong> plus any seepage <strong>in</strong>flow. In sal<strong>in</strong>e ground<strong>water</strong> areas the depth <strong>and</strong> spac<strong>in</strong>g was alsodeterm<strong>in</strong>ed to m<strong>in</strong>imize potential capillary rise of sal<strong>in</strong>e ground<strong>water</strong> <strong>in</strong>to the rootzone. However,the <strong>in</strong>teraction between crop <strong>water</strong> use from shallow ground<strong>water</strong> <strong>and</strong> irrigation <strong>management</strong>


64Water conservationhas been used to demonstrate thepotential impact on irrigation design <strong>and</strong>the active <strong>management</strong> of <strong>dra<strong>in</strong>age</strong>systems. However, there has been littleresearch on the active <strong>management</strong> of<strong>dra<strong>in</strong>age</strong> systems <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong>areas (Ayars, 1996). The concept ofcontrolled subsurface <strong>dra<strong>in</strong>age</strong> was firstdeveloped for humid climates.FIGURE 29Salt load <strong>in</strong> the generated <strong>dra<strong>in</strong>age</strong> <strong>water</strong>Salt load (ECmm)900.00800.00700.00600.00500.00400.00300.00200.00100.000.00DecJanFebMarAprMayJunJulAugSepOctNovMonthsControlled subsurface <strong>dra<strong>in</strong>age</strong>DEC-normalDEC-reductionThe concept of controlled subsurface<strong>dra<strong>in</strong>age</strong> can be applied as a means toreduce the quantity of <strong>dra<strong>in</strong>age</strong> effluent.Figure 30 shows how a control structureat the <strong>dra<strong>in</strong>age</strong> outlet or a weir placed<strong>in</strong> the open collector dra<strong>in</strong> allows the<strong>water</strong> table to be artificially set at anylevel between the ground surface <strong>and</strong>the pipe <strong>dra<strong>in</strong>age</strong> level, so promot<strong>in</strong>groot<strong>water</strong> extraction. The size of theareas where the <strong>water</strong> table iscontrolled by one structure depends onthe topography. Dur<strong>in</strong>g systemoperation, it is important that the <strong>water</strong>table be ma<strong>in</strong>ta<strong>in</strong>ed at a relativelyuniform depth. A detailed topographicalmap is essential for divid<strong>in</strong>g an area <strong>in</strong>tozones of control for the <strong>water</strong>FIGURE 30Controlled <strong>dra<strong>in</strong>age</strong>ROOT ZONEWater table profiledur<strong>in</strong>g <strong>dra<strong>in</strong>age</strong>CONVENTIONAL DRAINAGE MODEROOT ZONEWater table profile dur<strong>in</strong>gcontrolled <strong>dra<strong>in</strong>age</strong>CONTROLLED DRAINAGESource: Zucker <strong>and</strong> Brown, 1998.ControlstructureDrop logs <strong>in</strong>sertedto restrict <strong>dra<strong>in</strong>age</strong>Dra<strong>in</strong>ageoutlet orsumpDra<strong>in</strong>ageoutlet orsump<strong>management</strong> system (Fouss et al., 1999). Butterfly valves could be <strong>in</strong>stalled to restrict the flowfrom <strong>in</strong>dividual lateral l<strong>in</strong>es, <strong>and</strong> manholes with weir structures could be <strong>in</strong>stalled along thecollector (Ayars, 1996). In situations where the dra<strong>in</strong> laterals run parallel to the surface slope,<strong>in</strong>-field controls might be necessary to ma<strong>in</strong>ta<strong>in</strong> uniform ground<strong>water</strong> depths (Christen <strong>and</strong>Ayars, 2001).Rais<strong>in</strong>g the outlet or clos<strong>in</strong>g the valves at predeterm<strong>in</strong>ed times ma<strong>in</strong>ta<strong>in</strong>s the <strong>water</strong> table at ashallow depth. Withhold<strong>in</strong>g irrigation applications at the same time <strong>in</strong>duces capillary rise <strong>in</strong>to therootzone. In this way, plants meet part of their evapotranspiration needs directly from soil <strong>water</strong>,replac<strong>in</strong>g irrigation <strong>water</strong> with shallow ground<strong>water</strong> that would otherwise have been evacuatedby the <strong>dra<strong>in</strong>age</strong> system. Without irrigation applications, the <strong>water</strong> table gradually drops <strong>in</strong> areaswith no seepage <strong>in</strong>flow from outside, while a more or less constant <strong>water</strong> table can be ma<strong>in</strong>ta<strong>in</strong>ed<strong>in</strong> areas with high seepage <strong>in</strong>flow.Where shallow <strong>water</strong> table <strong>management</strong> through controlled <strong>dra<strong>in</strong>age</strong> is practised, the <strong>dra<strong>in</strong>age</strong>effluent <strong>and</strong> salt load discharged is reduced. Controlled <strong>dra<strong>in</strong>age</strong> also helps to reduce the loss ofnutrients <strong>and</strong> other pollutants <strong>in</strong> subsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong> (Skaggs, 1999; <strong>and</strong> Zucker <strong>and</strong>Brown, 1998). Ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a high ground<strong>water</strong> table significantly decreases the nitrateconcentration <strong>in</strong> the <strong>dra<strong>in</strong>age</strong> <strong>water</strong>. This decrease is a result of a load reduction <strong>in</strong> <strong>dra<strong>in</strong>age</strong>discharge <strong>and</strong> an <strong>in</strong>crease <strong>in</strong> denitrification.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 65Considerations <strong>in</strong> shallow <strong>water</strong> table <strong>management</strong>In <strong>arid</strong> to <strong>semi</strong>-<strong>arid</strong> areas the ma<strong>in</strong>purpose of <strong>dra<strong>in</strong>age</strong> is the control of<strong>water</strong>logg<strong>in</strong>g <strong>and</strong> sal<strong>in</strong>ity. Ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>gthe <strong>water</strong> table at a shallow depth <strong>and</strong>thus <strong>in</strong>duc<strong>in</strong>g capillary rise <strong>in</strong>to therootzone seems counterproductive toatta<strong>in</strong><strong>in</strong>g this objective. However,projects <strong>in</strong> Pakistan <strong>and</strong> India haveshown that the salts, which accumulated<strong>in</strong> the rootzone when shallowground<strong>water</strong> was used forBOX 4: CONTRIBUTION OF CAPILLARY RISE IN INDIAIn India, <strong>in</strong> a s<strong>and</strong>y loam soil with a <strong>water</strong> table at 1.7 mdepth <strong>and</strong> a sal<strong>in</strong>ity of 8.7 dS/m, capillary rise contributedup to 50 percent of the crop <strong>water</strong> requirement. Similarly, atanother site a shallow <strong>water</strong> table at 1.0 m depth withsal<strong>in</strong>ity <strong>in</strong> the range of 3.5-5.5 dS/m facilitated theachievement of the potential crop yields whilst reduc<strong>in</strong>g theirrigation application by 50 percent. In both cases, theaccumulated salts were leached <strong>in</strong> the subsequent monsoonseason (case study on India, Part II).evapotranspiration, were easily leached before the next cropp<strong>in</strong>g season. In monsoon-typeclimates, the accumulated salts are leached <strong>in</strong> the subsequent monsoon season (Box 4). Thisexperience shows that shallow <strong>water</strong> table <strong>management</strong> is an important mechanism for reduc<strong>in</strong>gthe <strong>dra<strong>in</strong>age</strong> effluent <strong>and</strong> at the same time for sav<strong>in</strong>g <strong>water</strong> for other beneficial uses.The extent to which shallow <strong>water</strong> table <strong>management</strong> can be used to reduce the <strong>dra<strong>in</strong>age</strong>effluent discharge depends on:• capillary rise <strong>in</strong>to the rootzone, which is related to the <strong>water</strong> table depth, soil type <strong>and</strong> <strong>water</strong>table recharge;• salt accumulation <strong>in</strong> relation to the salt tolerance of the crops; <strong>and</strong>• potential to ma<strong>in</strong>ta<strong>in</strong> a favourable salt balance.Capillary riseCapillary flow depends on: soil type; soil moisture depletion <strong>in</strong> the rootzone; depth to the <strong>water</strong>table; <strong>and</strong> recharge. Evapotranspiration depletes the soil moisture content <strong>in</strong> the rootzone. Whereno recharge through irrigation or ra<strong>in</strong>fall takes place, a difference <strong>in</strong> potential <strong>in</strong>duces capillaryrise from the ground<strong>water</strong>. In the unsaturated rootzone, the matrix head, which is caused by the<strong>in</strong>teraction between the soil matrix <strong>and</strong> <strong>water</strong>, is negative. At the <strong>water</strong> table, atmosphericpressure exists <strong>and</strong> therefore the matrix head is zero. The <strong>water</strong> moves from locations with ahigher potential to locations with lower potentials. Capillary rise from the ground<strong>water</strong> orunderly<strong>in</strong>g soil layers to the rootzone takes place under the <strong>in</strong>fluence of this head difference.Darcy’s Law (Annex 5) can be applied to calculate the capillary flow. However, theunsaturated hydraulic conductivity, K(θ), needs to be known. A difficulty is that K(θ) is a functionof the moisture content <strong>and</strong> the moisture content is a function of the pressure head.Although <strong>water</strong> movement <strong>in</strong> the unsaturated zone is <strong>in</strong> reality unsteady, calculations can besimplified by assum<strong>in</strong>g steady-state flow dur<strong>in</strong>g a certa<strong>in</strong> period of time. The steady-state flowequation can be written as:⎛ ⎞⎜ ⎟⎜ ⎟⎜ h ⎟2− h1(17)z2= z1+ ⎜ q ⎟⎜ −1−⎟_⎜ ⎛ ⎞ ⎟K⎜θ⎟⎝ ⎝ ⎠ ⎠


66Water conservationwhere:z 1,2h 1,2K(θ)= vertical coord<strong>in</strong>ates (positive upward <strong>and</strong> z = 0 at ground<strong>water</strong> table) (m);= soil pressure heads (m); <strong>and</strong>= unsaturated hydraulic conductivity (m/d).K( θ ) is the hydraulic conductivityfor h which is (h 1+ h 2)/2. With thisequation, the soil pressure headprofiles for stationary capillary risefluxes can be calculated. From thesepressure head profiles, thecontribution of the capillary rise undershallow ground<strong>water</strong> table<strong>management</strong> can be estimated.Figure 31 shows the capillary fluxesfor a silty soil where the referencelevel is the ground<strong>water</strong> table (z = 0).Box 5 provides an example onhow Figure 31 can be used toestimate maximum capillary rise.FIGURE 31Pressure head profiles for a silty soil for stationarycapillary rise fluxesz (cm)4504003503002502001501005000-30-60-90-120-150-180-210-240-270-300-330-360-390h (cm)q = 10 mm/dq = 7.5 mm/dq = 5 mm/dq = 2.5 mm/dq = 1 mm/dq = 0 mm/dAnnex 5 provides more theoreticalbackground <strong>and</strong> an example toshow the calculation procedures toderive the soil pressure head profilesfor a given stationary capillary flux.Instead of calculat<strong>in</strong>g the capillaryrise manually, computer programsmight be used. Programs are availablebased on both steady-state <strong>and</strong> nonsteady-statemodels. An example ofa steady-state model is CAPSEVBOX 5: CAPILLARY FLUX IN THE DRAINAGE PILOT STUDY AREAIn the <strong>dra<strong>in</strong>age</strong> pilot study area (previous calculationexamples), maximum crop evapotranspiration is 7.5 mm/d. Ifit is assumed that the soil moisture is readily available up to asoil pressure head of 400 cm, a <strong>water</strong> table depth up to 60cm below the bottom of the rootzone can deliver 100 percentof the crop <strong>water</strong> requirements through capillary rise (Figure31). If the <strong>water</strong> table is not recharged, the <strong>water</strong> table depthwill <strong>in</strong>crease <strong>and</strong> therefore the capillary flux will decrease.For example, at a depth of 160 cm below the rootzone thecapillary rise <strong>in</strong>to the rootzone is reduced to 1 mm/d.(Wessel<strong>in</strong>g, 1991). Non-steady-state models <strong>in</strong>clude SWAP (Kroes et al., 1999). SWAP is notspecifically designed to calculate capillary rise but ma<strong>in</strong>ly to simulate <strong>water</strong> <strong>and</strong> solute transport<strong>in</strong> the unsaturated zone <strong>and</strong> plant growth.Ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a favourable salt balance under shallow <strong>water</strong> table <strong>management</strong>The salt balance <strong>and</strong> salt storage equations apply for situations where the downward flux dom<strong>in</strong>atesover the capillary rise. When shallow ground<strong>water</strong> table <strong>management</strong> is implemented, capillaryrise is <strong>in</strong>duced <strong>and</strong> the upward flux dom<strong>in</strong>ates over the downward flux. Where no irrigation <strong>and</strong>percolation occurs dur<strong>in</strong>g the calculation period, the change <strong>in</strong> salt storage <strong>in</strong> the rootzone equals:∆S = GECgw(18)The change <strong>in</strong> salt storage is a function of the amount of capillary rise (as calculated <strong>in</strong> theprevious section) <strong>and</strong> the sal<strong>in</strong>ity of the ground<strong>water</strong>. The accumulated salts <strong>in</strong> the rootzoneneed to be leached before the next grow<strong>in</strong>g season. In <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> climates where ra<strong>in</strong>fall


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 67is absent dur<strong>in</strong>g this period, it is important to calculate the amount of <strong>water</strong> required to leach theaccumulated salts from the rootzone.Assum<strong>in</strong>g that the amount of evaporation can be ignored dur<strong>in</strong>g the leach<strong>in</strong>g process <strong>and</strong>that the soil moisture has been restored to field capacity so that the leach<strong>in</strong>g efficiency coefficientf iequals f r, the depth of leach<strong>in</strong>g <strong>water</strong> can be calculated if the leach<strong>in</strong>g coefficients are known.Under the assumption that there is no ra<strong>in</strong>fall, the follow<strong>in</strong>g equation can be used to calculatethe depth of leach<strong>in</strong>g <strong>water</strong> required (Van Hoorn <strong>and</strong> Van Alphen, 1994):where:f = leach<strong>in</strong>g efficiency coefficient (-);q = vertical flow rate (mm/d);t = time required to leach the accumulated salts (d);EC eoEC etfqt = Wfc2ECln2EC= sal<strong>in</strong>ity <strong>in</strong> the rootzone at the start of the calculation period (dS/m); <strong>and</strong>= the desired sal<strong>in</strong>ity <strong>in</strong> the rootzone at the end of the period (dS/m).eoet-EC-ECII(19)Calculation example of the impact of shallow <strong>water</strong> table <strong>management</strong> on sal<strong>in</strong>ity buildup<strong>and</strong> leach<strong>in</strong>g requirementIn the <strong>dra<strong>in</strong>age</strong> pilot study area, the <strong>water</strong> table depth is normally high <strong>in</strong> the w<strong>in</strong>ter, cropevapotranspiration is low <strong>and</strong> irrigation <strong>water</strong> supplies are limited dur<strong>in</strong>g the w<strong>in</strong>ter season. It isideal to practise shallow ground<strong>water</strong> table <strong>management</strong> <strong>in</strong> the w<strong>in</strong>ter when wheat is the ma<strong>in</strong>crop. Total crop evapotranspiration for wheat is 385 mm. The total seepage <strong>in</strong>flow dur<strong>in</strong>g thewheat grow<strong>in</strong>g season is 0.5 mm/d * 150 d = 75 mm. The sal<strong>in</strong>ity of the seepage <strong>in</strong>flow is 5 dS/m <strong>and</strong> the sal<strong>in</strong>ity of the irrigation <strong>water</strong> is 1.0 dS/m. The <strong>water</strong> table depth (WT) at the start ofthe season is 0.7 m. The readily available soil moisture for the silty soil as a volume percentage(θ) is 0.191. The dra<strong>in</strong>able pore space (µ) 0.15. The soil moisture content <strong>in</strong> the rootzone at fieldcapacity (θ fc) is 0.36.It is assumed that all farmers <strong>in</strong> the area will practice shallow ground<strong>water</strong> table <strong>management</strong><strong>and</strong> no additional seepage <strong>in</strong>to the area is <strong>in</strong>duced. Under these assumptions the follow<strong>in</strong>g stepsneed to be followed to calculate the change <strong>in</strong> ground<strong>water</strong> table depth <strong>and</strong> the contribution ofthe capillary rise (G = qt) towards crop evapotranspiration:Step 1. Calculate z, which is WT - half of the depth of the rootzone (D rz).Step 2. Estimate the <strong>in</strong>itial equilibrium θ (Table 3, Annex 5) for the calculated z. If the change<strong>in</strong> soil moisture content (∆W) = 0 then θ at the start of the next calculation period isequivalent to the equilibrium θ for the calculated z. At equilibrium conditions h = z.Otherwise, θ = equilibrium θ - (∆W / D rz). If θ drops below the readily available soilmoisture irrigation is required.Step 3. Estimate the maximum q by us<strong>in</strong>g Figure 31.Step 4. Calculate maximum G which is maximum qt.Step 5. Check if the maximum G can cover the <strong>water</strong> uptake by crops. If maximum G m<strong>in</strong>usET cropis positive then the actual G is equivalent to ET crop. Otherwise, the actual G isequivalent to the maximum G.


68Water conservationStep 6. Calculate the change <strong>in</strong> soil moisture content (∆W) = (ET crop- actual G).Step 7. Calculate the drop <strong>in</strong> ground<strong>water</strong> table (∆h) = ((actual G - S i) / µ).Step 8. The WT <strong>in</strong> the succeed<strong>in</strong>g month is the WT of the calculated month plus ∆h.Step 9. Repeat previous steps for all the months <strong>in</strong> the calculation period.The below matrix presents a summary of the calculations of the changes <strong>in</strong> ground<strong>water</strong>table depth <strong>and</strong> the contribution of the capillary flow towards crop evapotranspiration.Dec Jan Feb Mar Apr TotalWT (cm) 70 89 116 173 203 213D rz (cm) 50 80 100 100 100z (cm) 45 49 66 123 153θ (for h = z) 0.42 0.42 0.41 0.36 0.31maximum q (cm/d) > 1.0 > 1.0 0.75 0.2 0.1maximum G (cm) > 30 > 30 22.5 6 3 > 91.5S i (cm) 1.5 1.5 1.5 1.5 1.5 7.5ET crop (cm) 4.3 5.5 10.1 11.0 7.6 38.5actual G (cm) 4.3 5.5 10.1 6.0 3.0 28.9∆W (cm) 0 0 0 - 5.0 - 4.6 - 9.6∆h (cm) 19 27 57 30 10 143The calculation example shows thatthe <strong>water</strong> table drops from 70 cm to213 cm below the soil surface (Figure32). The soil moisture contentdecreases towards the end of thegrow<strong>in</strong>g season but does not get belowthe readily available soil moisture.Irrigation is therefore not required.FIGURE 32Change <strong>in</strong> <strong>water</strong> table dur<strong>in</strong>g the w<strong>in</strong>ter season <strong>in</strong> the<strong>dra<strong>in</strong>age</strong> pilot study areaMiddle of rootzonez = 45 cmSoil surfaceInitial rootzone = 50 cmInitial WT = 70 cmAssum<strong>in</strong>g that the shallow ground<strong>water</strong>sal<strong>in</strong>ity is equivalent to thesal<strong>in</strong>ity of the seepage <strong>in</strong>flow <strong>in</strong>to thearea, the change <strong>in</strong> salt storage <strong>in</strong> therootzone over the w<strong>in</strong>ter season is:S i = 0.5 mm/dF<strong>in</strong>al WT = 213 cm∆S= 289 mm * 5 dS/m = 1 445 ECmmIf the sal<strong>in</strong>ity (EC e) at the start of the season was 2 dS/m, the sal<strong>in</strong>ity at the end of the seasonwould be:S endS endEC e end= S start+ ∆S= 2 * 2 * 360 + 1 445 = 2 885 ECmm= 2 885 / (2 * 360) = 4.0 dS/mEquation 19 can be used to calculate the leach<strong>in</strong>g requirements. If it is assumed that the soilsal<strong>in</strong>ity should be lowered to 2 dS/m aga<strong>in</strong> before the sow<strong>in</strong>g of cotton, the total leach<strong>in</strong>grequirement is:2*4.0 −1.00.9 qt = 360ln2*2.0 −1.0qt = 339 mm


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 69This leach<strong>in</strong>g might be obta<strong>in</strong>ed dur<strong>in</strong>g normal irrigation dur<strong>in</strong>g the follow<strong>in</strong>g season <strong>and</strong> maynot need any special leach<strong>in</strong>g irrigation unless the salts have actually accumulated <strong>in</strong> the seed zone.LAND RETIREMENTL<strong>and</strong> retirement <strong>in</strong>volves tak<strong>in</strong>g l<strong>and</strong> out of production because of <strong>water</strong> shortage <strong>and</strong>/or soil<strong>and</strong> <strong>water</strong> quality considerations. Elevated concentrations of toxic trace elements or extremelyhigh salt concentrations <strong>in</strong> comb<strong>in</strong>ation with <strong>water</strong>logg<strong>in</strong>g problems may be reasons for tak<strong>in</strong>gl<strong>and</strong> out of production. By retir<strong>in</strong>g salt-affected l<strong>and</strong>, the total salt or toxic trace element load tobe disposed of is reduced. Moreover, l<strong>and</strong> retirement conserves irrigation <strong>water</strong> for reallocationto other beneficial uses such as public <strong>water</strong> supply, wetl<strong>and</strong>s, etc. However, <strong>in</strong> California, theUnited States of America, <strong>water</strong> districts would generally prefer to reta<strong>in</strong> the conserved <strong>water</strong>for application to other l<strong>and</strong>s with<strong>in</strong> the district preferably on non-problem soils. In <strong>water</strong> shortregions of the Coleambally area <strong>in</strong> Australia, there is a policy to reta<strong>in</strong> a m<strong>in</strong>imum amount of<strong>water</strong> (2 000 m 3 /ha) to keep retired l<strong>and</strong>s from becom<strong>in</strong>g sal<strong>in</strong>ized so that retired l<strong>and</strong>s do notbecome a discharge zone (Christen, E.W., personal communication, 2001). If problem soils areencountered <strong>in</strong> the plann<strong>in</strong>g stages of new irrigation projects, it might be decided to leave theseuncultivated. Exclud<strong>in</strong>g l<strong>and</strong> dur<strong>in</strong>g the plann<strong>in</strong>g stages is comparable to l<strong>and</strong> retirement <strong>in</strong>developed projects. Where large contiguous blocks of l<strong>and</strong>s are retired, native vegetation <strong>and</strong>wildlife can be susta<strong>in</strong>ed.Hydrologic, soil <strong>and</strong> biologic considerationsL<strong>and</strong> retirement appears to be an attractive solution to the <strong>dra<strong>in</strong>age</strong> problem. However, analysisof hydrologic, biologic <strong>and</strong> soil consequences <strong>in</strong>dicates l<strong>and</strong> retirement is complex. For example,<strong>in</strong> the western side of the San Joaqu<strong>in</strong> Valley (SJVDIP, 1999c), the <strong>water</strong>logged areas withhigh-selenium shallow ground<strong>water</strong> are located downslope <strong>in</strong> the lower part of the alluvial fans<strong>and</strong> <strong>in</strong> the trough of the valley. The <strong>water</strong> table <strong>in</strong> upslope locations is deep <strong>and</strong> lateral subsurfaceflow of deep percolation from upslope areas contributes to downslope <strong>dra<strong>in</strong>age</strong> problems.Simulations with a two-dimensional hydrologic model (Purkey, 1998) ascerta<strong>in</strong>ed the follow<strong>in</strong>g:• Retirement of large contiguous l<strong>and</strong>s both upslope <strong>and</strong> downslope would provide the greatestoverall reduction <strong>in</strong> <strong>dra<strong>in</strong>age</strong> volume <strong>and</strong> lower<strong>in</strong>g of regional <strong>water</strong> table.• Retirement of downslope parcels with an exist<strong>in</strong>g high <strong>water</strong> table would reduce <strong>dra<strong>in</strong>age</strong>volume to a greater extent than retirement of the same area of upslope l<strong>and</strong> over the shortrun.• Retirement of undra<strong>in</strong>ed, upslope parcels would provide significant reduction <strong>in</strong> <strong>dra<strong>in</strong>age</strong>from l<strong>and</strong> immediately downslope <strong>and</strong> provide the greatest long-term relief.• Retirement of downslope parcels does not prevent the long-term upslope expansion of thezone of shallow ground<strong>water</strong> <strong>and</strong> the retired downslope parcels would be degraded by soil<strong>water</strong>logg<strong>in</strong>g <strong>and</strong> sal<strong>in</strong>ization.A l<strong>and</strong> retirement programme can lead to many wildlife benefits by reduc<strong>in</strong>g the load of toxictrace elements <strong>and</strong> salts discharged <strong>in</strong>to the environment, <strong>and</strong> especially if there is connectivitybetween retired l<strong>and</strong> parcels for the restoration of native animals <strong>and</strong> plants. However, l<strong>and</strong>retirement may potentially result <strong>in</strong> negative effects such as upwell<strong>in</strong>g of sal<strong>in</strong>e shallowground<strong>water</strong> lead<strong>in</strong>g to excessive accumulation of trace elements <strong>and</strong> salts on the l<strong>and</strong> surface,<strong>and</strong> the establishment of undesirable weed plant communities (SJVDIP, 1999c). Excessive salt


70Water conservationaccumulation might result <strong>in</strong> little or no vegetation cover, <strong>and</strong> w<strong>in</strong>d-blown salt <strong>and</strong> seleniumproblems downw<strong>in</strong>d. Therefore, retired l<strong>and</strong>s require l<strong>and</strong>, vegetation <strong>and</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong>order to obta<strong>in</strong> wildlife benefits.Selection of l<strong>and</strong>s to retireThe potential reduction <strong>in</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> effluent, sal<strong>in</strong>ity <strong>and</strong> toxic trace elements are the ma<strong>in</strong>criteria for selection of l<strong>and</strong>s to retire. For example, <strong>in</strong> the San Joaqu<strong>in</strong> Valley l<strong>and</strong> areas generat<strong>in</strong>gselenium concentrations of more than 200 ppb are prime c<strong>and</strong>idates for l<strong>and</strong> retirement, <strong>and</strong>those generat<strong>in</strong>g more than 50 ppb are secondary c<strong>and</strong>idates for l<strong>and</strong> retirement. Where reductionof <strong>dra<strong>in</strong>age</strong> effluent is the major goal, the retirement of undra<strong>in</strong>ed upslope l<strong>and</strong> would providethe greatest long-term relief while retirement of downslope <strong>water</strong>logged l<strong>and</strong> would reduce the<strong>dra<strong>in</strong>age</strong> volume to a greater extent on a short-term basis.One of the major concerns <strong>in</strong> l<strong>and</strong>retirement is the accumulation of salts<strong>and</strong> trace elements at or near the soilsurface destroy<strong>in</strong>g the vegetationcover <strong>and</strong> thus endanger<strong>in</strong>g its longtermsusta<strong>in</strong>ability. In this respect, it isimportant to make a dist<strong>in</strong>ctionbetween recharge <strong>and</strong> discharge areas(Figure 33).FIGURE 33Recharge <strong>and</strong> discharge areasRecharge AreasUpl<strong>and</strong>Discharge AreasLowl<strong>and</strong>It is relatively easy to differentiatebetween recharge <strong>and</strong> discharge areas<strong>in</strong> hilly <strong>and</strong> undulat<strong>in</strong>g terra<strong>in</strong>.Recharge occurs <strong>in</strong> the upl<strong>and</strong>s <strong>and</strong>discharge <strong>in</strong> the lowl<strong>and</strong>s <strong>and</strong> valleybottoms. In irrigated l<strong>and</strong>s, recharge<strong>and</strong> discharge areas are more difficultto identify. Before an irrigation event<strong>in</strong> <strong>water</strong>logged l<strong>and</strong>s, the l<strong>and</strong> becomesIrrigated l<strong>and</strong>Non-irrigated l<strong>and</strong>a discharge area under the <strong>in</strong>fluence of evapotranspiration while just after irrigation the l<strong>and</strong>turns <strong>in</strong>to a recharge area. For more long-term trends, it would be desirable to ascerta<strong>in</strong> directionsof ground<strong>water</strong> flow pathways for the identification of problem sites. Retirement of irrigatedl<strong>and</strong> <strong>and</strong> re-establishment of natural vegetation cover <strong>in</strong> irrigated flat pla<strong>in</strong>s will result <strong>in</strong> thecreation of localized discharge areas.Experience from Australia (Heuperman, 2000) shows that re-vegetation with salt tolerantcrops <strong>in</strong> recharge areas with high ground<strong>water</strong> tables is susta<strong>in</strong>able from a sal<strong>in</strong>ity po<strong>in</strong>t of view.It also reduces the recharge to the ground<strong>water</strong>, thereby reliev<strong>in</strong>g lateral <strong>in</strong>flow <strong>in</strong> dischargeareas. The plants <strong>in</strong> these areas rely on surface <strong>water</strong> <strong>in</strong>put for evapotranspiration, which iseither ra<strong>in</strong>fall or irrigation. L<strong>and</strong> retirement <strong>in</strong> discharge areas with <strong>water</strong> tables with<strong>in</strong> thecritical <strong>water</strong> table depth comb<strong>in</strong>ed with the <strong>in</strong>troduction of (natural) vegetation will lead to theaccumulation of salts <strong>in</strong> the vegetation’s rootzone. L<strong>and</strong> retirement under these conditions is notsusta<strong>in</strong>able if accumulated salts are not flushed down occasionally. Adequate <strong>dra<strong>in</strong>age</strong> is requiredfor the removal of sal<strong>in</strong>e <strong>dra<strong>in</strong>age</strong> effluent.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 71Management of retired l<strong>and</strong>sThe <strong>management</strong> of retired l<strong>and</strong>s differs for upl<strong>and</strong> <strong>and</strong> lowl<strong>and</strong> conditions. In the upl<strong>and</strong>s, the<strong>water</strong> table is deep <strong>and</strong> the vegetation depends on surface <strong>water</strong> <strong>in</strong>put to meet the crop <strong>water</strong>requirement. In lowl<strong>and</strong> areas, a shallow sal<strong>in</strong>e ground<strong>water</strong> table normally lies beneath theretired l<strong>and</strong>. Ma<strong>in</strong>tenance of the <strong>water</strong> <strong>and</strong> salt balance for both upl<strong>and</strong>s <strong>and</strong> lowl<strong>and</strong>s dependson the <strong>water</strong> requirement <strong>and</strong> salt tolerance of the vegetation. Annex 6 presents salt tolerancedata for trees <strong>and</strong> shrubs that are potentially suitable for retired l<strong>and</strong>s.It is sometimes suggested that the plant<strong>in</strong>g of salt tolerant trees, shrubs <strong>and</strong> fodder cropsmay help to atta<strong>in</strong> a positive salt balance. Chemical analysis of the bulk of dry weight of cropsshowed that 5 percent of the dry weight of a plant consists of m<strong>in</strong>eral constituents (Pallad<strong>in</strong>,1992; <strong>and</strong> P<strong>and</strong>ey <strong>and</strong> S<strong>in</strong>ha, 1995). Kapoor (2000) assumes that these m<strong>in</strong>eral constituents arederived from the soil solution. In this case, the biomass produced by salt tolerant crops on ayearly basis per hectare multiplied by the percentage m<strong>in</strong>eral content of the plant is the totalannual salt extraction per hectare of salt tolerant vegetation. The calculation example providedby Kapoor (2000) shows a favourable salt balance for an area where the only source of salt isimported surface <strong>water</strong> with a low salt concentration (86 mg/litre). However, from studies carriedout <strong>in</strong> California <strong>and</strong> Australia where sal<strong>in</strong>ity levels are considerably higher there seems to be noreal evidence that salt tolerant crops remove substantial amounts of salts from the soil <strong>water</strong>solution (Heuperman, 2000; Chauhan, 2000). Therefore, the <strong>water</strong> <strong>and</strong> salt balance equationsas used for conventional agricultural crops also apply to ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g favourable <strong>water</strong> <strong>and</strong> saltbalances for vegetation tolerant to sal<strong>in</strong>e <strong>and</strong> <strong>water</strong>logged conditions that is used on retired l<strong>and</strong>.


72Water conservation


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 73Chapter 6Dra<strong>in</strong>age <strong>water</strong> reuseINTRODUCTIONIn areas where irrigation <strong>water</strong> is scarce, the use of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> is an important strategy forsupplement<strong>in</strong>g <strong>water</strong> resources. Furthermore, reuse may help alleviate <strong>dra<strong>in</strong>age</strong> disposal problemsby reduc<strong>in</strong>g the volume of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>in</strong>volved. The reuse of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> for irrigationcan reduce the overall problems of <strong>water</strong> pollution. Reuse measures consist of: reuse <strong>in</strong>conventional agriculture; reuse to grow salt tolerant crops; IFDM systems; reuse <strong>in</strong> wildlifehabitats <strong>and</strong> wetl<strong>and</strong>s; <strong>and</strong> reuse for <strong>in</strong>itial reclamation of salt-affected l<strong>and</strong>s. This chapter dealswith only those <strong>dra<strong>in</strong>age</strong> <strong>water</strong> reuse measures that relate to agricultural production.Dra<strong>in</strong>age <strong>water</strong> is normally of <strong>in</strong>ferior quality compared to the orig<strong>in</strong>al irrigation <strong>water</strong>.Adequate attention needs to be paid to <strong>management</strong> measures to m<strong>in</strong>imize long-term <strong>and</strong> shorttermharmful effects on crop production, soil productivity <strong>and</strong> <strong>water</strong> quality at project or bas<strong>in</strong>scale. The <strong>dra<strong>in</strong>age</strong> <strong>water</strong> quality determ<strong>in</strong>es which crops can be irrigated. Highly sal<strong>in</strong>e <strong>dra<strong>in</strong>age</strong><strong>water</strong> cannot be used to irrigate salt sensitive crops, but it can be used on salt tolerant crops,trees, bushes <strong>and</strong> fodder crops. A major concern <strong>in</strong> reuse measures is that <strong>dra<strong>in</strong>age</strong> <strong>water</strong> fromreused <strong>water</strong>s is often highly concentrated, requir<strong>in</strong>g careful <strong>management</strong>.RELEVANT FACTORSDra<strong>in</strong>age <strong>water</strong> quality is the major concern <strong>in</strong> reuse possibilities as it def<strong>in</strong>es which crops canbe irrigated <strong>and</strong> whether long-term degradation of soil productivity is a major issue. On the otherh<strong>and</strong>, the soil type, <strong>dra<strong>in</strong>age</strong> conditions of the l<strong>and</strong> <strong>and</strong> the crop salt tolerance def<strong>in</strong>e what quality<strong>dra<strong>in</strong>age</strong> <strong>water</strong> can be used for irrigation <strong>in</strong> comb<strong>in</strong>ation with the availability of other fresh<strong>water</strong>resources.Pollutants from surface runoff, i.e. sediments, pesticides <strong>and</strong> nutrients, play a m<strong>in</strong>or role <strong>in</strong>reuse for crop production. However, for susta<strong>in</strong>able agricultural practices <strong>and</strong> to preventenvironmental degradation, nutrients supplied with reused <strong>dra<strong>in</strong>age</strong> <strong>water</strong> should be deductedfrom the fertilizer requirements <strong>in</strong> order to prevent imbalanced <strong>and</strong> excessive fertilizer application.Subsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong> generally shows <strong>in</strong>creased concentrations of salts <strong>and</strong> sometimescerta<strong>in</strong> trace elements <strong>and</strong> soluble nutrients. Salts <strong>and</strong> trace elements play a major role <strong>in</strong> thereuse of <strong>dra<strong>in</strong>age</strong> <strong>water</strong>. Above a certa<strong>in</strong> threshold value, high total concentrations of salts areharmful to crop growth, while <strong>in</strong>dividual salts can disturb nutrient uptake or be toxic to plants. Ahigh sodium to calcium plus magnesium concentration ratio may cause unstable soil structure.Soils with unstable structure are subject to crust<strong>in</strong>g <strong>and</strong> compaction, degrad<strong>in</strong>g soil conditionsfor optimal crop growth. Toxic trace elements such as boron can <strong>in</strong>terfere with optimal cropgrowth <strong>and</strong> others such as selenium <strong>and</strong> arsenic can enter the food cha<strong>in</strong> when crops areirrigated with <strong>water</strong> conta<strong>in</strong><strong>in</strong>g high concentrations of these trace elements. This is of majorconcern for human <strong>and</strong> animal health.


74Dra<strong>in</strong>age <strong>water</strong> reuseCONSIDERATIONS ON THE EXTENT OF REUSEMunicipalities <strong>and</strong> <strong>in</strong>dustries often useagricultural ma<strong>in</strong> dra<strong>in</strong>s to dispose oftheir waste<strong>water</strong>. In many areasaround the world, municipal <strong>and</strong><strong>in</strong>dustrial waste<strong>water</strong> is either<strong>in</strong>sufficiently treated, or not treatedat all. Bacteriological <strong>and</strong> <strong>org</strong>anic <strong>and</strong><strong>in</strong><strong>org</strong>anic compounds seriouslypollute ma<strong>in</strong> dra<strong>in</strong>s, pos<strong>in</strong>g anenvironmental hazard to both human<strong>and</strong> wildlife <strong>and</strong> restrict<strong>in</strong>g reuse fromma<strong>in</strong> dra<strong>in</strong>s. For example, <strong>in</strong> the NileTABLE 13Quality <strong>in</strong>dicators for some ma<strong>in</strong> dra<strong>in</strong>sIndicatorDelta, Egypt, the discharge of untreated waste<strong>water</strong> is a major concern for the susta<strong>in</strong>ability ofan irrigated agriculture that depends heavily on the large-scale reuse of agricultural <strong>dra<strong>in</strong>age</strong><strong>water</strong> to meet <strong>water</strong> shortfalls. Table 13 lists several <strong>water</strong> quality <strong>in</strong>dicators of some of thema<strong>in</strong> dra<strong>in</strong>s <strong>and</strong> the official limits for the quality of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> that is allowed to be mixedwith fresh<strong>water</strong> resources. The biochemical oxygen dem<strong>and</strong> (BOD) is def<strong>in</strong>ed as the amount ofoxygen consumed by microbes <strong>in</strong> decompos<strong>in</strong>g carbonaceous <strong>org</strong>anic matter. The chemicaloxygen dem<strong>and</strong> (COD) is the amount of oxygen required to oxidize the <strong>org</strong>anic matter <strong>and</strong> otherreduced compounds. The high chemical versus biological oxygen dem<strong>and</strong> (COD/BOD) ratiosimply significant <strong>in</strong>dustrial pollution (EPIQ Water Policy Team, 1998). Total coliform is the mostprobable number of faecal coliform (MPN) <strong>in</strong> 100 ml <strong>and</strong> a high value <strong>in</strong>dicates severe pollutionfrom municipal sewage <strong>water</strong>.The degraded <strong>water</strong> quality threatens the expansion <strong>and</strong> even the cont<strong>in</strong>uation of the reuseof <strong>dra<strong>in</strong>age</strong> <strong>water</strong> from the ma<strong>in</strong> dra<strong>in</strong>s (official reuse) <strong>in</strong> the Nile Delta. S<strong>in</strong>ce the 1990s, manyreuse mix<strong>in</strong>g stations have been under <strong>in</strong>creas<strong>in</strong>g pressure of <strong>water</strong> quality deterioration. Indeed,s<strong>in</strong>ce 1992, 7 of the 23 ma<strong>in</strong> reuse mix<strong>in</strong>g stations have been entirely or periodically closed(DRI, 1995). Due to the <strong>in</strong>creas<strong>in</strong>g deterioration of <strong>water</strong> quality, new opportunities for reuse of<strong>dra<strong>in</strong>age</strong> <strong>water</strong> are be<strong>in</strong>g explored. Between the centralized official reuse <strong>and</strong> the localizedunofficial reuse (where farmers pump <strong>dra<strong>in</strong>age</strong> <strong>water</strong> from the collector dra<strong>in</strong>s directly ontofields), there is the option to capture <strong>dra<strong>in</strong>age</strong> <strong>water</strong> from branch dra<strong>in</strong>s <strong>and</strong> pump it <strong>in</strong>to thebranch canals at their <strong>in</strong>tersections. This level of reuse, termed <strong>in</strong>termediate reuse, capturesrelatively good quality <strong>dra<strong>in</strong>age</strong> <strong>water</strong> before it is discharged <strong>in</strong>to the ma<strong>in</strong> dra<strong>in</strong>s where it is lostfor irrigation because of pollution from other sectors. This problem highlights the need forcatchment level plann<strong>in</strong>g to protect <strong>and</strong> use all <strong>water</strong> resources susta<strong>in</strong>ably.Dra<strong>in</strong>TDS (mg/litre)BOD (mg/litre)COD (mg/litre)NH 4 (mg/litre)MPN (10 6 /100ml)TSS (mg/litre)Source: DRI, 1997a.UpperSerw1395251183.01.2251Hamul13483410114.4480170UpperNo.17173213327.90.2202Edko1075542501.10.2450Limitsset <strong>in</strong>Law 48-< 10< 15< 0.5< 0.005-MAINTAINING FAVOURABLE SALT AND ION BALANCES AND SOIL CONDITIONSMa<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a favourable salt balanceThe major concern <strong>in</strong> the reuse of agricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong> is the buildup of salts <strong>and</strong> othertrace elements <strong>in</strong> the rootzone to such an extent that it <strong>in</strong>terferes with optimal crop growth <strong>and</strong>degradation of the aquifers. Apply<strong>in</strong>g more <strong>water</strong> than necessary dur<strong>in</strong>g the grow<strong>in</strong>g season forevapotranspiration can leach the salts. In areas with <strong>in</strong>sufficient natural <strong>dra<strong>in</strong>age</strong>, leach<strong>in</strong>g <strong>water</strong>will need to be removed through artificial <strong>dra<strong>in</strong>age</strong>. As safe disposal of agricultural <strong>dra<strong>in</strong>age</strong><strong>water</strong> is often the h<strong>in</strong>drance to susta<strong>in</strong>able <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong>, the solution <strong>in</strong> reuse


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 75lies <strong>in</strong> apply<strong>in</strong>g just enough <strong>water</strong> to ma<strong>in</strong>ta<strong>in</strong> a favourable salt balance. This was termed <strong>in</strong>Chapter 5 as beneficial non-consumptive use.Where the crop tolerance to sal<strong>in</strong>ity <strong>and</strong> the sal<strong>in</strong>ity of the irrigation <strong>water</strong> are known, the LR can becalculated (Chapter 5 <strong>and</strong> Annex 4). The follow<strong>in</strong>g example uses Equations 12-15 presented <strong>in</strong>Annex 4 to calculate the LR for lettuce, a salt sensitive crop with an EC tsof 1.3 dS/m. The EC Iof theapplied <strong>water</strong>, a mixture of fresh<strong>water</strong> <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong>, is assumed to be 1.2 dS/m <strong>and</strong> theET cropis 430 mm, <strong>and</strong> no ra<strong>in</strong>fall occurs dur<strong>in</strong>g the grow<strong>in</strong>g season. The crop is grown on acrack<strong>in</strong>g soil with an f iof 0.8. From Equation 14, the LR iis 0.23. The amount of applied <strong>water</strong>obta<strong>in</strong>ed from Equation 15 is 698 mm. If lettuce is irrigated under furrow irrigation, a safe marg<strong>in</strong>of 1.2 to account for non-uniformity (Table 9) is <strong>in</strong>corporated. The total amount of applied <strong>water</strong> isthen 838 mm, of which 670 mm mixed with the soil solution <strong>and</strong> 168 mm bypassed through thecracks.The follow<strong>in</strong>g example from theBroadview Water District <strong>in</strong> the SanJoaqu<strong>in</strong> Valley illustrates that <strong>dra<strong>in</strong>age</strong><strong>water</strong> reuse is a viable <strong>management</strong>option but that upper limits need to beestablished. Moreover, a m<strong>in</strong>imumamount of leach<strong>in</strong>g is required to avoiddeleterious impacts on the more saltsensitive crops. The BroadviewWater District is a l<strong>and</strong>locked tractof 4 100 ha of irrigated l<strong>and</strong> withouta surface <strong>dra<strong>in</strong>age</strong> outlet s<strong>in</strong>ce 1956.Surface irrigation return flow, bothtail<strong>water</strong> <strong>and</strong> subsurface <strong>dra<strong>in</strong>age</strong>,TABLE 14Flow-weighted concentration of sal<strong>in</strong>ity <strong>and</strong> boronconcentrations <strong>and</strong> mass transfer of salts <strong>in</strong> BroadviewWater District, 1976DescriptionEC(dS/m)TDS(mg/litre)B(mg/litre)TDS(tonne/year)Fresh canal <strong>water</strong> 0.41 272 0.19 5 500Captured dra<strong>in</strong><strong>water</strong> 2.99 2 085 2.19 37 630Mixed supply <strong>water</strong> 2.19 1 485 1.55 56 810 **Water quality was measured weekly <strong>and</strong> the flows of fresh canal <strong>water</strong> <strong>and</strong>mixed supply <strong>water</strong> were measured daily while that of captured dra<strong>in</strong><strong>water</strong>was estimated by monthly electrical charges on the pump <strong>and</strong> assumedpump efficiency. Thus, the mass of salts <strong>in</strong> captured dra<strong>in</strong><strong>water</strong> appears tobe underestimated.Source: Tanji, et al.1977.was recycled back completely <strong>in</strong>to the irrigation supply ditch. Table 14 conta<strong>in</strong>s a summary of<strong>water</strong> quality <strong>and</strong> mass flow of salts for this type of reuse. The annual 18 324 million m 3 ofimported canal <strong>water</strong> was a low-salt, low-boron <strong>water</strong> while the captured annual16 363 million m 3 of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> was a moderately sal<strong>in</strong>e, 2 mg/litre boron <strong>water</strong>. The blended<strong>water</strong> serv<strong>in</strong>g as the supply <strong>water</strong> to the Broadview Water District was considerably degraded.In terms of mass of salts, the captured <strong>dra<strong>in</strong>age</strong> <strong>water</strong> contributed about 66 percent of the saltsapplied <strong>in</strong> the <strong>water</strong> district.Figure 34 shows the average concentration of soil sal<strong>in</strong>ity <strong>and</strong> boron <strong>in</strong> seven soil profiles <strong>in</strong>the Broadview Water District <strong>in</strong> 1976. The subsurface dra<strong>in</strong>s are <strong>in</strong>stalled about 2.4 m deep <strong>and</strong>spaced about 90 m apart. The crops grown <strong>in</strong> the district were cotton, tomatoes, barley, wheat,sugar beet, <strong>and</strong> alfalfa seeds. Over time, the 800 ha of tomato plant<strong>in</strong>gs dropped to 0 ha <strong>in</strong>1987 when the seeds progressively failed to germ<strong>in</strong>ate. In 1989, the district ga<strong>in</strong>ed access todischarge part of the sal<strong>in</strong>e <strong>dra<strong>in</strong>age</strong> <strong>water</strong>s out of the district <strong>and</strong> reduce the blend<strong>in</strong>g of <strong>dra<strong>in</strong>age</strong><strong>water</strong> <strong>in</strong>to the supply <strong>water</strong>. With<strong>in</strong> a few years, the tomato plant<strong>in</strong>gs were re-established atformer levels.Ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g favourable soil structureThe sodium hazards of irrigation <strong>water</strong> are related to the ability of excessive sodium or extremelylow sal<strong>in</strong>ity concentrations to destabilize soil structure. The primary processes responsible forsoil degradation are swell<strong>in</strong>g <strong>and</strong> clay dispersion. Provided that the salt concentration <strong>in</strong> the soil<strong>water</strong> is below a critical flocculation concentration, clays will disperse spontaneously at high


76Dra<strong>in</strong>age <strong>water</strong> reuseexchangeable sodium percentage (ESP)values, whereas at low ESP levels <strong>in</strong>putsof energy are required for dispersion.The salt concentration <strong>in</strong> the soil <strong>water</strong>is crucial to determ<strong>in</strong><strong>in</strong>g soil physicalbehaviour because of its effects <strong>in</strong>promot<strong>in</strong>g clay flocculation (Sumner,1993). However, the boundary (ESP /salt concentration of the soil <strong>water</strong>)between stable <strong>and</strong> unstable conditionsvaries from one soil to the next <strong>and</strong>changes with the clay m<strong>in</strong>eralogy, pH,soil texture, <strong>and</strong> clay, <strong>org</strong>anic matter <strong>and</strong>oxide content (<strong>FAO</strong>, 1992b).FIGURE 34Average concentration of soil sal<strong>in</strong>ity <strong>and</strong> boron <strong>in</strong>seven soil profiles <strong>in</strong> Broadview Water District <strong>in</strong> 1976ECe <strong>and</strong> boron1098765432100 50 100 150 200 250 300Soil depth, cmECe, dS/mBoron, mg/litreThe short-term effects of irrigat<strong>in</strong>gwith <strong>water</strong> hav<strong>in</strong>g excess sodium orvery low salt concentrations relatema<strong>in</strong>ly to <strong>in</strong>filtration problems. Thereduction of <strong>in</strong>filtration can be attributedto the dispersion <strong>and</strong> migration of claym<strong>in</strong>erals <strong>in</strong>to soil pores, the swell<strong>in</strong>g ofexp<strong>and</strong>able clays <strong>and</strong> crust formation.The potential <strong>in</strong>filtration problems <strong>in</strong>relation to the quality of the irrigation<strong>water</strong> are normally evaluated on thebasis of the sal<strong>in</strong>ity <strong>and</strong> SAR 1 of theirrigation <strong>water</strong> (Box 6).Various authors have developedstability l<strong>in</strong>es related to the total sal<strong>in</strong>ityconcentration <strong>and</strong> the SAR. The actuall<strong>in</strong>e that represents the division betweenBOX 6: ADJUSTED SODIUM ADSORPTION RATIOThe SAR is def<strong>in</strong>ed as Na/((Ca + Mg)/2) 1/2 , <strong>in</strong> whichthe concentrations are expressed <strong>in</strong> milliequivalentsper litre, <strong>and</strong> it is used to assess the <strong>in</strong>filtrationproblems due to an excess of sodium <strong>in</strong> relation tocalcium <strong>and</strong> magnesium. It does not take <strong>in</strong>to accountthe changes <strong>in</strong> solubility of calcium <strong>in</strong> the upper soillayers after <strong>and</strong> dur<strong>in</strong>g irrigation. The solubility ofcalcium carbonate <strong>in</strong> the rootzone is <strong>in</strong>fluenced bydissolved carbon dioxide concentration, concentrationof the solution <strong>and</strong> the presence of carbonates,bicarbonates <strong>and</strong> sulphates. <strong>FAO</strong> (1985b) hasproposed a procedure for adjust<strong>in</strong>g the calciumconcentration of the irrigation <strong>water</strong> to the expectedequilibrium value follow<strong>in</strong>g irrigation.stable <strong>and</strong> unstable soil conditions is unique for each soil type <strong>and</strong> varies with soil conditions.Published guidel<strong>in</strong>es (Figure 35) on <strong>in</strong>filtration problems <strong>in</strong> relation to the SAR <strong>and</strong> the sal<strong>in</strong>ity ofthe applied <strong>water</strong> can therefore provide only approximate guidance. Where large-scale reuse of<strong>dra<strong>in</strong>age</strong> <strong>water</strong> is planned <strong>and</strong> sodium hazards might be expected, stability l<strong>in</strong>es need to beestablished for local conditions.Infiltration problems caused by the sodicity of irrigation <strong>water</strong> also depend on irrigation <strong>and</strong>soil <strong>management</strong>. Especially at lower SAR levels when chemical bond<strong>in</strong>g is weakened, but nospontaneous dispersion takes place, <strong>in</strong>puts of energy are required for actual dispersion. Forexample, spr<strong>in</strong>kler irrigation <strong>in</strong>creases the likelihood of surface crust<strong>in</strong>g due to the high physicaldisruption as the drops hit the soil surface aggregates. In soil <strong>management</strong>, <strong>in</strong>corporation of<strong>org</strong>anic matter <strong>in</strong>creases the stability of the soil aggregates <strong>and</strong> reduces the hazards of structuraldegradation as a result of sodicity.1Because of the strong relation between the exchangeable sodium percentage (ESP) <strong>and</strong> sodium adsorption ratio(SAR) sodicity hazards are normally assessed through SAR of the soil or irrigation <strong>water</strong> because SAR is easier todeterm<strong>in</strong>e than ESP.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 77Reduction of the hydraulicconductivity <strong>in</strong> the soil profile is normallya long-term effect result<strong>in</strong>g from the useof sodic <strong>water</strong>. In particular, thepresence of carbonates <strong>and</strong>bicarbonates <strong>in</strong> the <strong>water</strong> could result<strong>in</strong> soil degradation <strong>in</strong> the long termbecause precipitation of calciumcarbonate <strong>in</strong>creases soil SAR. Calcium<strong>in</strong> the form of calcite is one of the firstsalts to precipitate. Upon furtherconcentration magnesium salts will alsoprecipitate.FIGURE 35Relative rate of <strong>water</strong> <strong>in</strong>filtration as affected bysal<strong>in</strong>ity <strong>and</strong> SARSodium adsorption ratio (SAR)35302520151000 1 2 3 4 5 6There is little need to undertakeSal<strong>in</strong>ity of applied <strong>water</strong> (EC) <strong>in</strong> dS/maction to <strong>in</strong>crease <strong>in</strong>filtration <strong>and</strong> orSource: <strong>FAO</strong>, 1985b.hydraulic conductivity unless crop <strong>water</strong>or leach<strong>in</strong>g requirements cannot be metor if secondary problems reduce crop yields or impede seedl<strong>in</strong>g emergence. Secondary problems<strong>in</strong>clude crust<strong>in</strong>g of seed beds, excessive weed growth <strong>and</strong> surface <strong>water</strong> pond<strong>in</strong>g that cancause root rot, diseases, nutritional disorders, poor aeration <strong>and</strong> poor germ<strong>in</strong>ation (<strong>FAO</strong>, 1985b).Management options to mitigate <strong>and</strong> reduce these problems can be chemical, biological <strong>and</strong>physical. Chemical <strong>management</strong> options entail add<strong>in</strong>g chemical amendments to soil or <strong>water</strong><strong>and</strong> thereby chang<strong>in</strong>g the soil or <strong>water</strong> chemistry. The aim of biological methods is to improvesoil structure or to <strong>in</strong>fluence the soil chemistry through the decomposition of <strong>org</strong>anic materials.Physical methods <strong>in</strong>clude cultural practices to <strong>in</strong>crease <strong>in</strong>filtration rates dur<strong>in</strong>g irrigation <strong>and</strong>ra<strong>in</strong>fall or to prevent direct contact between pond<strong>in</strong>g <strong>water</strong> <strong>and</strong> plant stems, roots <strong>and</strong> seeds.5Severe reduction <strong>in</strong>rate of <strong>in</strong>filtrationSlight to moderatereduction <strong>in</strong> rate of<strong>in</strong>filtrationNo reduction <strong>in</strong> rateof <strong>in</strong>filtrationChemical soil <strong>and</strong> <strong>water</strong> amendments to prevent <strong>in</strong>filtration problems<strong>FAO</strong> (1985b) has analysed the <strong>management</strong> of <strong>in</strong>filtration problems by means of soil <strong>and</strong> <strong>water</strong>amendments <strong>in</strong> considerable detail. This section highlights the major issues. The aim of apply<strong>in</strong>gchemical amendments to soil or <strong>water</strong> is to improve poor <strong>in</strong>filtration caused by either a lowsal<strong>in</strong>ity or by excessive sodium. The problem is most severe at low electrolyte concentration<strong>and</strong> high SAR. Improvements can be expected if the soluble calcium content is <strong>in</strong>creased or asignificant <strong>in</strong>crease <strong>in</strong> sal<strong>in</strong>ity is achieved. Most soil <strong>and</strong> <strong>water</strong> amendments supply calciumdirectly or <strong>in</strong>directly through acid that reacts with soil calcium carbonates. Acid is not effectivewhere calcium carbonate is not present <strong>in</strong> the soil profile. However, calcium carbonate is oftenpresent <strong>in</strong> <strong>arid</strong> soils. Water amendments are most effective when <strong>in</strong>filtration problems are causedby low to moderate sal<strong>in</strong>e <strong>water</strong> (EC < 0.5 dS/m) with a high SAR. Where moderate to highsal<strong>in</strong>e <strong>water</strong> (EC > 1.0 dS/m) causes problems, soil amendments are more effective.Amendments need to react quickly if they are to solve actively <strong>in</strong>filtration problems causedby irrigation <strong>water</strong>. Many of the amendments for improv<strong>in</strong>g or reclaim<strong>in</strong>g sodic soils react onlyafter oxidation. Thus, they are slow <strong>and</strong> less suitable for solv<strong>in</strong>g <strong>in</strong>filtration problems caused byirrigation <strong>water</strong>. Slow react<strong>in</strong>g amendments <strong>in</strong>clude acid form<strong>in</strong>g substances such as sulphur,pyrite, certa<strong>in</strong> fertilizers <strong>and</strong> pressmud from sugar-cane factories (<strong>in</strong> India <strong>and</strong> Pakistan).Gypsum (CaSO 4.2H 2O) is the most commonly used amendment. It can either be applied tothe soil or irrigation <strong>water</strong>. Infiltration problems normally occur primarily <strong>in</strong> the upper few


78Dra<strong>in</strong>age <strong>water</strong> reusecentimetres of the soil. Hence, it is normally more effective to apply small frequent doses ofgypsum left on the soil surface or mixed with the upper few centimetres of the topsoil thanhigher doses <strong>in</strong>corporated deeper <strong>in</strong> the soil profile.The application of gypsum to irrigation<strong>water</strong> to prevent <strong>in</strong>filtration problems usuallyrequires less gypsum per hectare than whenit is used as soil application. Gypsumapplication to <strong>water</strong> is particularly effectivewhen added to low sal<strong>in</strong>ity <strong>water</strong> (< 0.5 dS/m) <strong>and</strong> less effective for higher sal<strong>in</strong>ityBOX 7: CONVERSION FROM MEQ/LITRE CALCIUM TOPURE GYPSUM1 milliequivalent of calcium per litre = 86 mg of 100percent gypsum per litre of <strong>water</strong> = 86 kg of 100percent gypsum per 1 000 m 3 of <strong>water</strong>.<strong>water</strong> because of the difficulty of obta<strong>in</strong><strong>in</strong>g sufficient calcium <strong>in</strong> solution. In practice, it is notpossible to obta<strong>in</strong> more than 1-4 meq/litre of dissolved calcium, or 0.86-3.44 g/litre of pure gypsum(Box 7), <strong>in</strong> fast-flow<strong>in</strong>g irrigation streams. In low sal<strong>in</strong>ity <strong>water</strong>, these small amounts of dissolvedcalcium ions may <strong>in</strong>crease the <strong>in</strong>filtration rate by as much as 300 percent. To use gypsum as a<strong>water</strong> amendment, f<strong>in</strong>ely ground gypsum (< 0.25 mm <strong>in</strong> diameter) is preferred as it has a highersolubility. This is also normally the purer grade of gypsum. A drawback is that f<strong>in</strong>ely groundpurer grades of gypsum are more expensive, which often prevents small farmers from us<strong>in</strong>g it.The coarser gr<strong>in</strong>ds <strong>and</strong> lower grades of gypsum are more satisfactory for soil application.Experiments have been conducted with the placement of gypsum rocks <strong>in</strong> the <strong>water</strong>course.The problem is that the amount of calcium dissolv<strong>in</strong>g from the gypsum rocks is low so theeffectiveness depends on the stream velocity <strong>and</strong> volume. Experiments from Pakistan haveshown that sufficient head <strong>and</strong> length of the supply canal from the tubewell to the <strong>water</strong>course(which is also used for fresh canal <strong>water</strong>) are required to dissolve enough calcium <strong>in</strong> tubewell<strong>water</strong>. Where technically feasible, the use of gypsum stones has proved to be f<strong>in</strong>ancially attractivefor farmers (Chaudry et al., 1984). In large-scale applications, a drawback might be the cost ofcanal ma<strong>in</strong>tenance, as the gypsum blocks need to be removed before mechanical clean<strong>in</strong>g.Sulphuric acid is an extensively used amendmentfor address<strong>in</strong>g <strong>in</strong>filtration problems. It is effective onlywhere lime is present <strong>in</strong> the soil surface. This highly0.61 tonne of sulphuric acid = 1 tonne,100 percent gypsum.corrosive acid can be applied to the soil directly, where it reacts with lime mak<strong>in</strong>g the naturallypresent calcium available for exchange with adsorbed sodium. Sulphuric acid reacts rapidlywith soil lime mak<strong>in</strong>g it a useful amendment to combat <strong>in</strong>filtration problems. When added to theirrigation <strong>water</strong>, it is neutralized by the carbonates <strong>and</strong> bicarbonates <strong>in</strong> the <strong>water</strong> <strong>and</strong> any excesswould contribute towards dissolv<strong>in</strong>g the soil lime.Biological soil amendmentsCrop residues or other <strong>org</strong>anic matter left <strong>in</strong> or added to the field improve <strong>water</strong> penetration.The more fibrous <strong>and</strong> less easily decomposable crop residues are more suitable for mitigat<strong>in</strong>gm<strong>in</strong>or <strong>in</strong>filtration problems. Fibrous <strong>org</strong>anic materials keep the soil porous by ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g openvoids <strong>and</strong> channels. The use of crop residues form<strong>in</strong>g polysacch<strong>arid</strong>es as a cement<strong>in</strong>g agent ismost effective where they are <strong>in</strong>corporated only <strong>in</strong> the upper few centimetres. Incorporation ofeasily decomposable <strong>org</strong>anic matter <strong>and</strong> <strong>in</strong>corporation deeper <strong>in</strong>to the soil profile do not generallyhelp reduce <strong>in</strong>filtration problems although they do improve soil structure by produc<strong>in</strong>gpolysacch<strong>arid</strong>es that promote soil aggregation <strong>and</strong> enhance soil fertility. Another important aspectof the decomposition of <strong>org</strong>anic matter is the production of carbon dioxide, which <strong>in</strong> turn <strong>in</strong>creasesthe solubility of lime. Box 8 provides an example of a green manure from Pakistan <strong>and</strong> India.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 79Cultural practicesCultivation is usually done for weedcontrol or soil aeration purposes ratherthan to improve <strong>in</strong>filtration. However,where <strong>in</strong>filtration problems are severe,cultivation or tillage are helpful as theyroughen the soil surface, which slowsdown the flow of <strong>water</strong>, so <strong>in</strong>creas<strong>in</strong>gthe time dur<strong>in</strong>g which the <strong>water</strong> can<strong>in</strong>filtrate. Cultivation is only a temporarysolution. After one or two irrigations,another cultivation may be needed.Moreover, the construction of (broad)beds may help mitigate the ill effects ofst<strong>and</strong><strong>in</strong>g <strong>water</strong> as it prevents directcontact of the plants with the <strong>water</strong>.Research from Pakistan has shown thatcotton <strong>in</strong> particular benefits from plant<strong>in</strong>gon broad beds.BOX 8: THE USE OF SESBANIA AS A GREEN MANURE TO IMPROVESOIL CHEMICAL AND PHYSICAL PROPERTIESIn India <strong>and</strong> Pakistan, farmers use Sesbania as agreen manure to improve the chemical <strong>and</strong> physicalproperties of soils degraded by the use of sodictubewell <strong>water</strong>. They also use it <strong>in</strong> the reclamation ofalkali soils. Sesbania decomposes rapidly, produc<strong>in</strong>g<strong>org</strong>anic acids which help to dissolve soil lime. Themore fibrous stems of Sesbania help to ma<strong>in</strong>ta<strong>in</strong>open voids <strong>and</strong> channels. In addition, Sesbania is anitrogen-fix<strong>in</strong>g tree <strong>and</strong> thus helps to improve soilfertility. The young branches of the tree can serve asfodder. Because of all these characteristics, Sesbaniais a very popular crop especially among farmers us<strong>in</strong>gpoor quality tubewell <strong>water</strong> <strong>in</strong> Punjab, Pakistan.Ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g favourable levels of ions <strong>and</strong> trace elementsHigh concentrations of trace elements <strong>in</strong> soil, ground <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> can occur <strong>in</strong> associationwith high sal<strong>in</strong>ity <strong>and</strong> can be affected by the same processes. However, <strong>in</strong> some places theymay also occur <strong>in</strong>dependently of sal<strong>in</strong>ity. In exam<strong>in</strong><strong>in</strong>g ways to control levels of ions <strong>and</strong> traceelements <strong>in</strong> the rootzone, it is necessary to underst<strong>and</strong> the processes that affect their mobility.Deverel <strong>and</strong> Fujii (1990) provide a framework for evaluat<strong>in</strong>g concentrations of trace elements<strong>in</strong> soil <strong>and</strong> shallow ground<strong>water</strong>. The two processes that largely control the mobility of traceelements <strong>in</strong> the soil <strong>water</strong> are: i) adsorption <strong>and</strong> desorption reactions; <strong>and</strong> ii) solid-phaseprecipitation <strong>and</strong> dissolution processes. These processes are <strong>in</strong>fluenced by changes <strong>in</strong> pH, redoxstate <strong>and</strong> reactions, chemical composition <strong>and</strong> solid-phase structural changes at the atomic level(H<strong>in</strong>kle <strong>and</strong> Polette, 1999).There are no well-tested <strong>and</strong> simple models for estimat<strong>in</strong>g changes <strong>in</strong> trace elementconcentration as a result of irrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong>. Nor have irrigation<strong>water</strong> quality criteria for trace elements been established. However, guidel<strong>in</strong>es have beendeveloped for trace elements based on results from s<strong>and</strong>, solution <strong>and</strong> pot trials, field trials withchemicals <strong>and</strong> laboratory studies of chemical reactions. Pratt <strong>and</strong> Suarez (1990) list recommendedmaximum concentrations for 15 trace elements. These guidel<strong>in</strong>es are designed to protect mostsensitive crops <strong>and</strong> animals from toxicity where the most vulnerable soils are irrigated.SeleniumAlbasel et al. (1989) reviewed the quality criteria for trace elements <strong>in</strong> irrigation <strong>water</strong> compiledby the National Academy of Eng<strong>in</strong>eer<strong>in</strong>g <strong>in</strong> 1973. The recommendation for selenium was thatthe concentrations <strong>in</strong> irrigation <strong>water</strong> should not exceed 20 µg/litre. The guidel<strong>in</strong>e wasrecommended for all irrigation <strong>water</strong> on any l<strong>and</strong> without consideration for soil texture, pH,plant species, climate <strong>and</strong> other <strong>water</strong> characteristics such as sulphate concentration. In the SanJoaqu<strong>in</strong> Valley, specific conditions <strong>in</strong>dicated that a review of this guidel<strong>in</strong>e was required: i)selenium <strong>in</strong> the <strong>dra<strong>in</strong>age</strong> <strong>water</strong> is <strong>in</strong> the form of selenate, which is not readily adsorbed onto soil


80Dra<strong>in</strong>age <strong>water</strong> reuseparticles <strong>and</strong> is thus readilyleached; ii) <strong>water</strong> conta<strong>in</strong><strong>in</strong>g highselenium concentrations also hasa high total sal<strong>in</strong>ity content <strong>and</strong>thus requires high leach<strong>in</strong>gfractions to prevent sal<strong>in</strong>ity buildup <strong>in</strong> the soil profile; <strong>and</strong> iii) <strong>water</strong>conta<strong>in</strong><strong>in</strong>g selenium has highconcentrations of SO 4-thatgreatly <strong>in</strong>hibit plant uptake ofselenium. Albasel et al. (1989)used the concentration fractionsfor various LFs to convert theconcentration of selenium <strong>in</strong> theirrigation <strong>water</strong> (Se I) <strong>in</strong>toselenium concentration <strong>in</strong> the soilsolution (Se ss). To derive theFIGURE 36Relationship between leach<strong>in</strong>g fraction of the soil solution,selenium concentration of the irrigation <strong>water</strong> <strong>and</strong> theselenium concentration <strong>in</strong> the soil solutionLF0.50.40.30.20.100 50 100 150 200Se I(µg/litre)Source: Albasel et al., 1989.100 150 200 250 300Sess (µg/litre)relationships shown <strong>in</strong> Figure 36, they assumed a <strong>water</strong> uptake pattern of 40-30-20-10 percentfrom the first to the fourth quarter of the rootzone. The concentration factors under this <strong>water</strong>uptake pattern are 5.56, 3.76, 2.58, 2.05, 1.74 <strong>and</strong> 1.53, respectively, for LF 0.05, 0.10, 0.20, 0.30,0.40 <strong>and</strong> 0.50. To establish guidel<strong>in</strong>es on the basis of these relationships, it is necessary to knowthe maximum selenium concentration <strong>in</strong> the soil solution (Se ssm) at which the maximumconcentration of selenium <strong>in</strong> the harvested product (Se hp) will not be exceeded. Moreover, it isnecessary that the LF be achievable.Research with alfalfa, which is the most sensitive crop to selenium accumulation <strong>in</strong> relationto the use of the harvested product, showed that Se ssmis 250 µg/litre without exceed<strong>in</strong>g the Se hpof 4-5 mg/kg if the sal<strong>in</strong>e irrigation <strong>water</strong> is dom<strong>in</strong>ated by sulphate. Assum<strong>in</strong>g that the LF wouldbe 0.2 or more, the Se Icould be 100 µg/litre (Albasel et al., 1989). Where other crops are grownon soils different from those <strong>in</strong> the San Joaqu<strong>in</strong> Valley, new guidel<strong>in</strong>es will be necessary. Theseshould be based on soil <strong>and</strong> <strong>water</strong> properties <strong>and</strong> the maximum Se hpspecific for those crops <strong>and</strong>the use of the harvested product.400500BoronBoron is an essential micronutrient for plants but it is toxic at concentrations only slightly abovedeficiency. The range of boron tolerance varies widely among crop plants. Salt sensitive cropssuch as citrus, fruit <strong>and</strong> nut trees are sensitive to boron while salt tolerant crops such as cotton,sugar beet <strong>and</strong> Sudan grass tolerate higher levels of boron (<strong>FAO</strong>, 1985b). Leach<strong>in</strong>g of soil boronis more difficult than soluble salts such as chloride. This is because of the slow dissolution ofboron m<strong>in</strong>erals <strong>and</strong> desorption of boron adsorbed to oxides of iron <strong>and</strong> alum<strong>in</strong>ium <strong>in</strong> the soil.Hoffman (1980) established a relationship to calculate the relative decrease of soluble boron <strong>in</strong>soils dur<strong>in</strong>g reclamation:(20)where:B sstB ss0D LD s= desired boron concentration <strong>in</strong> the soil solution (mg/litre);= <strong>in</strong>itial boron concentration <strong>in</strong> the soil solution (mg/litre);= depth of leach<strong>in</strong>g <strong>water</strong> (mm); <strong>and</strong>= depth of soil to be reclaimed (mm).


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 81Keren et al. (1990) reported that native soil boron is more difficult to leach than boronaccumulated from irrigation with boron-rich <strong>water</strong>.Where steady-state conditionsexist between boron adsorbed <strong>and</strong>boron <strong>in</strong> the soil solution (B ss), then the<strong>in</strong>put <strong>and</strong> output of boron from therootzone, <strong>and</strong> thus B ss, is related to theboron concentration <strong>in</strong> the irrigation<strong>water</strong> (B I) <strong>and</strong> the LF (Pratt <strong>and</strong>Suarez, 1990). To establish therelationship between B I<strong>and</strong> B ss(Figure 37), a <strong>water</strong> uptake pattern of40-30-20-10 percent from the first tothe fourth quarter of the rootzone isassumed. The concentration factorsunder this <strong>water</strong> uptake pattern areas the same as for selenium above.Lysimeter experiments have shownthat Figure 37 can be used to assessthe use of boron-conta<strong>in</strong><strong>in</strong>g <strong>water</strong> forirrigation (Pratt <strong>and</strong> Suarez, 1990) wherenear steady-state conditions exist.REUSE IN CONVENTIONAL CROPPRODUCTIONFIGURE 37Relationship between mean B ss<strong>in</strong> the rootzone <strong>and</strong>between B Ifor several leach<strong>in</strong>g fractionsB ss(mg/litre)25201510500 1 2 3 4 5Source: Pratt <strong>and</strong> Suarez, 1990.B I (mg/litre)LF = 0.05FIGURE 38Use of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> for crop productionUse of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> for irrigationLeach<strong>in</strong>gfractionsLF = 0.1LF = 0.2LF = 0.3LF = 0.4Dra<strong>in</strong>age <strong>water</strong> of sufficiently goodquality might be used directly for cropproduction. Otherwise, <strong>dra<strong>in</strong>age</strong>Direct useConjunctive use<strong>water</strong> can be reused <strong>in</strong> conjunctionCyclicBlend<strong>in</strong>gwith fresh<strong>water</strong> resources(Figure 38). Conjunctive use <strong>in</strong>volvesblend<strong>in</strong>g <strong>dra<strong>in</strong>age</strong> <strong>water</strong> withfresh<strong>water</strong>. Alternatively, <strong>dra<strong>in</strong>age</strong><strong>water</strong> can be used cyclically withIntra-seasonal Interseasonalfresh<strong>water</strong> be<strong>in</strong>g applied separately. In cyclic use, the two <strong>water</strong> sources can be rotated with<strong>in</strong>the cropp<strong>in</strong>g season (<strong>in</strong>traseasonal cyclic use), or the two <strong>water</strong> resources can be used separatelyover the seasons for different crops (<strong>in</strong>terseasonal cyclic use). The choice of a certa<strong>in</strong> reuseoption depends largely on: <strong>dra<strong>in</strong>age</strong> <strong>water</strong> quality; crop tolerance to sal<strong>in</strong>ity; <strong>and</strong> availability offresh<strong>water</strong> resources. The quantity <strong>and</strong> time of availability of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> is of majorimportance. For example, where reuse takes place <strong>in</strong> an irrigation system <strong>in</strong> which <strong>water</strong> isdistributed on a rotational basis, the probable mode of reuse is either direct or cyclic.Direct useThe direct use of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> is implemented ma<strong>in</strong>ly at farm level, whereby the <strong>dra<strong>in</strong>age</strong><strong>water</strong> is not mixed with fresh<strong>water</strong> resources. Research results from India, Pakistan, CentralAsia <strong>and</strong> Egypt (Part II), where surface irrigation methods are applied, show that <strong>dra<strong>in</strong>age</strong>


82Dra<strong>in</strong>age <strong>water</strong> reuseBOX 9: DIRECT REUSE IN EGYPT AND PAKISTANIn the Nile Delta, Egypt, an official reuse policy exists whereby large-scale pump<strong>in</strong>g stations mixthe <strong>dra<strong>in</strong>age</strong> <strong>water</strong> from the ma<strong>in</strong> dra<strong>in</strong>s <strong>in</strong>to fresh<strong>water</strong> ma<strong>in</strong> canals. Unofficial direct reuse isgenerally a reaction of farmers to <strong>in</strong>adequate irrigation <strong>water</strong> supplies. Farmers directly pump the<strong>dra<strong>in</strong>age</strong> <strong>water</strong> from the collector dra<strong>in</strong> onto their fields without government approval. It is estimatedthat at least 3 000 million m 3 of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> is reused unofficially each year, almost equivalentto the volume of officially reused <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>in</strong> 1995/96 (Egypt case study <strong>in</strong> Part II).In Pakistan, another form of direct reuse takes place. In the 1960s, vertical <strong>dra<strong>in</strong>age</strong> was <strong>in</strong>itiated<strong>in</strong> the country to combat <strong>in</strong>creas<strong>in</strong>g <strong>water</strong>logg<strong>in</strong>g <strong>and</strong> sal<strong>in</strong>ity. As the surface irrigation system was<strong>in</strong>itially based on low cropp<strong>in</strong>g <strong>in</strong>tensities <strong>and</strong> low <strong>water</strong> allowances, farmers exploit <strong>dra<strong>in</strong>age</strong>effluent from the tubewells on a large scale to augment <strong>in</strong>sufficient surface <strong>water</strong> supplies. The<strong>dra<strong>in</strong>age</strong> <strong>water</strong> is either used <strong>in</strong> conjunction with fresh surface <strong>water</strong> resources, or used directlyfor crop production. For farmers at the tailend of the <strong>water</strong> distribution systems, tubewell <strong>water</strong> isoften the only source of <strong>water</strong> supply (Pakistan case study <strong>in</strong> Part II).<strong>water</strong> can be used directly for irrigation purposes without severe crop yield reductions wherethe sal<strong>in</strong>ity of the <strong>dra<strong>in</strong>age</strong> <strong>water</strong> does not exceed the threshold sal<strong>in</strong>ity value for the cropsgrown <strong>and</strong> good <strong>dra<strong>in</strong>age</strong> conditions exist. As crops are often more sensitive to sal<strong>in</strong>ity dur<strong>in</strong>gthe <strong>in</strong>itial growth stages, research <strong>in</strong> India has revealed the importance of pre-irrigation withgood quality irrigation <strong>water</strong>. Higher crop yields were atta<strong>in</strong>ed when fresh<strong>water</strong> pre-irrigationwas applied with only <strong>dra<strong>in</strong>age</strong> <strong>water</strong> be<strong>in</strong>g applied thereafter. Under these conditions, <strong>dra<strong>in</strong>age</strong><strong>water</strong> with sal<strong>in</strong>ity levels exceed<strong>in</strong>g the threshold value could be used whilst ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>gacceptable crop yields.In Pakistan, the major crops are wheat, cotton, sugar cane, rice <strong>and</strong> a variety of foddercrops. The <strong>water</strong> quality guidel<strong>in</strong>es state that the maximum sal<strong>in</strong>ity of <strong>water</strong> used directly forirrigation is 2.4 dS/m (Pakistan case study <strong>in</strong> Part II). Assum<strong>in</strong>g a concentration factor of 1.5 1between irrigation <strong>water</strong> <strong>and</strong> saturated paste, this limit is rather high for sugar cane, which hasa threshold value of 1.7 dS/m. Based on Maas <strong>and</strong> Grattan (1999), sugar cane irrigated with2.4 dS/m <strong>water</strong> would yield 89 percent of the maximum potential yield. The long-term susta<strong>in</strong>abilityof direct use of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> depends on ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a favourable salt balance <strong>and</strong> prevent<strong>in</strong>gsoil degradation due to sodicity problems. Box 9 describes direct reuse practices <strong>in</strong> Egypt <strong>and</strong>Pakistan.Conjunctive use – blend<strong>in</strong>gWhere <strong>dra<strong>in</strong>age</strong> <strong>water</strong> sal<strong>in</strong>ity exceeds the threshold values for optimal crop production, it canbe mixed with other <strong>water</strong> resources to create a mixture of acceptable quality for the prevail<strong>in</strong>gcropp<strong>in</strong>g patterns.Where reuse takes place by mix<strong>in</strong>g <strong>dra<strong>in</strong>age</strong> <strong>water</strong> from ma<strong>in</strong> dra<strong>in</strong>s with surface <strong>water</strong> <strong>in</strong>ma<strong>in</strong> irrigation canals, the most salt sensitive crop determ<strong>in</strong>es the f<strong>in</strong>al <strong>water</strong> quality. For example,accord<strong>in</strong>g to the regulations for the Nile Delta, the maximum sal<strong>in</strong>ity of the blended <strong>water</strong> israther low to ensure optimal production of the major crops grown, i.e. cotton, maize, wheat, rice<strong>and</strong> berseem. Maize <strong>and</strong> berseem are the most salt sensitive crops with an EC ethreshold of1.7 <strong>and</strong> 1.5 dS/m, respectively (Maas <strong>and</strong> Grattan, 1999). To ensure potential maximum yield1In the guidel<strong>in</strong>es for crop tolerance to sal<strong>in</strong>ity the relationship between soil sal<strong>in</strong>ity <strong>and</strong> sal<strong>in</strong>ity of the <strong>in</strong>filtrated<strong>water</strong> assumes a leach<strong>in</strong>g fraction of 15 to 20 percent <strong>and</strong> a typical rootzone soil moisture extraction pattern of 40-30-20-10 percent from the upper to the lower quarters of the rootzone.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 83production of these two crops <strong>and</strong>assum<strong>in</strong>g a concentration factor oftwo between the EC of the irrigation<strong>water</strong> <strong>and</strong> the EC e, the maximumallowable sal<strong>in</strong>ity of the irrigation<strong>water</strong> is about 0.8-0.9 dS/m(Table 15).Where mix<strong>in</strong>g takes place at thefarm level, the sal<strong>in</strong>ity of the blended<strong>water</strong> can be adjusted towards the salttolerance of <strong>in</strong>dividual crops. Table 16shows an experiment from India,where blended <strong>water</strong> with differentlevels of sal<strong>in</strong>ity was used to cultivatewheat.This experiment shows that for thecase of all irrigations applied with ablended <strong>water</strong> mixture hav<strong>in</strong>g amaximum sal<strong>in</strong>ity of 3 dS/m, apotential crop yield of 90 percent ofthe maximum yield was obta<strong>in</strong>ed.Accord<strong>in</strong>g to the crop tolerance datapublished by Maas <strong>and</strong> GrattanTABLE 15Dra<strong>in</strong>age <strong>water</strong> quality criteria for irrigation purposes <strong>in</strong>the Nile Delta, EgyptSal<strong>in</strong>ity of Restriction on use for irrigation<strong>dra<strong>in</strong>age</strong> <strong>water</strong>(dS/m)< 1.0 used directly for irrigation1.0 - 2.3 mixed with canal <strong>water</strong> at ratio 1:12.3 - 4.6 mixed with canal <strong>water</strong> at ratio 1:2 or 1:3> 4.6 not used for irrigationSource: Abu-Zeid, 1988.TABLE 16Effect of diluted <strong>dra<strong>in</strong>age</strong> <strong>water</strong> on wheat yieldEC I, dS/mRelative Yield (%)All irrigations Post-plant irrigations0.5 (canal <strong>water</strong>) 100 1003.0 90.2 -6.0 80.4 95.89.0 72.5 90.312.0 56.4 83.718.0 - 78.0Source: Sharma et al., 2000.(1999) <strong>and</strong> assum<strong>in</strong>g a concentration factor of 1.5 between <strong>water</strong> sal<strong>in</strong>ity <strong>and</strong> soil sal<strong>in</strong>ity, themaximum potential yield could be atta<strong>in</strong>ed. The difference between theory <strong>and</strong> the actual fieldsituation might be caused by a discrepancy <strong>in</strong> the actual concentration factor, which is the<strong>in</strong>verse of the LF. Moreover, the actual yields depend on many factors <strong>in</strong>clud<strong>in</strong>g physical, climate<strong>and</strong> farm <strong>management</strong> practices. In general, where all irrigations use the blended <strong>water</strong>, themaximum allowable sal<strong>in</strong>ity depends on the threshold value of the crops. Where the pre-irrigationuses fresh<strong>water</strong>, the blended <strong>water</strong> could have a sal<strong>in</strong>ity level exceed<strong>in</strong>g the threshold valuewithout affect<strong>in</strong>g yields. The experiment from India shows that <strong>water</strong> used <strong>in</strong> post-plant irrigationswith a sal<strong>in</strong>ity level of three times (EC I= 9 dS/m) the maximum allowable sal<strong>in</strong>ity level whenonly blended <strong>water</strong> is used (EC I= 3 dS/m) results <strong>in</strong> 90 percent yields.The leach<strong>in</strong>g of salts is necessary to ma<strong>in</strong>ta<strong>in</strong> a favourable sal<strong>in</strong>ity balance <strong>in</strong> the rootzone.The procedures presented above might be used for this purpose. On the other h<strong>and</strong>, if highersal<strong>in</strong>ity levels are tolerated towards the end of the grow<strong>in</strong>g period or if a more salt sensitive cropis grown after a more salt tolerant crop, the sal<strong>in</strong>ity levels have to be reduced sufficiently low <strong>in</strong>order not to <strong>in</strong>terfere with the growth of the next crop. Equation 19 could be used to calculatethe required amount of leach<strong>in</strong>g.Conjunctive use – cyclic useCyclic use, also known as sequential application or rotational mode, is a technique that facilitatesthe conjunctive use of fresh<strong>water</strong> <strong>and</strong> sal<strong>in</strong>e <strong>dra<strong>in</strong>age</strong> effluent. In this mode, sal<strong>in</strong>e <strong>dra<strong>in</strong>age</strong><strong>water</strong> replaces canal <strong>water</strong> <strong>in</strong> a predeterm<strong>in</strong>ed sequence or cycle. Cyclic use is an option forwhere the sal<strong>in</strong>ity of the <strong>dra<strong>in</strong>age</strong> <strong>water</strong> exceeds the sal<strong>in</strong>ity threshold value of the desired crop.A condition for cyclic use is that two different <strong>water</strong> sources can be applied to the field separately.


84Dra<strong>in</strong>age <strong>water</strong> reuseTABLE 17Effect of cyclic irrigation with canal <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong>s on yield of wheat <strong>and</strong> succeed<strong>in</strong>g summercrops (t/ha)Mode of application for wheat Wheat % Pearl millet % S<strong>org</strong>hum 4 %4 CW 1 6.1 100 3.3 100 43.3 100CW - DW 2 (alternate) 5.8 95 3.2 97 39.8 92DW - CW (alternate) 5.6 92 3.2 97 39.5 912 CW - 2 DW 5.7 93 3.2 97 40.2 932 DW - 2 CW 5.4 89 - 39.5 911 CW - 3 DW 5.1 84 3.1 94 37.8 874 DW 4.5 74 2.8 85 34.1 77Ra<strong>in</strong>fall (mm) 3 64 460 5701Canal <strong>water</strong> application, 2 <strong>dra<strong>in</strong>age</strong> <strong>water</strong> application, 3 dur<strong>in</strong>g the grow<strong>in</strong>g period, 4 as green forageSource: Sharma et al., 1994.Therefore, it is not normally applied at irrigation-scheme level but at a tertiary or farm level. InIndia <strong>and</strong> Pakistan, the canal irrigation <strong>water</strong> is delivered on a rotational basis to the <strong>water</strong>courses(tertiary canal) <strong>and</strong> <strong>in</strong>dividual farms. This offers considerable potential for cyclic use on tertiaryor farm level. Modell<strong>in</strong>g <strong>and</strong> field studies have demonstrated the feasibility of the cyclic reusestrategy (Rhoades, 1987; Rhoades et al., 1988a <strong>and</strong> b; Rhoades 1989; <strong>and</strong> Rhoades et al.,1989).The cyclic use of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> can be either <strong>in</strong>traseasonal or <strong>in</strong>terseasonal. The lattermode of cyclic use follows the same pr<strong>in</strong>ciples for each cropp<strong>in</strong>g season as the direct use of<strong>dra<strong>in</strong>age</strong> <strong>water</strong>.In <strong>in</strong>traseasonal cyclic use, the strategy implies that non-sal<strong>in</strong>e <strong>water</strong> is used for salt sensitivecropp<strong>in</strong>g stages <strong>and</strong> sal<strong>in</strong>e <strong>water</strong> when the salt tolerance of the plant <strong>in</strong>creases. Such experimentshave been carried out <strong>in</strong> India (India case study <strong>in</strong> Part II). Sal<strong>in</strong>e <strong>dra<strong>in</strong>age</strong> <strong>water</strong> (EC Iof 10.5-15.0 dS/m) was comb<strong>in</strong>ed with canal <strong>water</strong> for use <strong>in</strong> a pearl millet/s<strong>org</strong>hum-wheat rotation. Inthe experiment, canal <strong>water</strong> was used for pre-plant irrigations <strong>and</strong> thereafter four irrigationseach of 50 mm depth were applied as per the planned modes to irrigate wheat. Pearl millet <strong>and</strong>s<strong>org</strong>hum were given pre-plant irrigation <strong>and</strong> thereafter did not receive further irrigation exceptby monsoon ra<strong>in</strong>s dur<strong>in</strong>g the growth period. Table 17 shows that the results of the experimentsupport the cyclic use strategy. No significant yield losses occurred <strong>in</strong> wheat when sal<strong>in</strong>e <strong>dra<strong>in</strong>age</strong><strong>water</strong> was substituted <strong>in</strong> alternate sequences (canal <strong>water</strong> - <strong>dra<strong>in</strong>age</strong> <strong>water</strong>, or <strong>dra<strong>in</strong>age</strong> <strong>water</strong>- canal <strong>water</strong>), or when the first two irrigations were with canal <strong>water</strong> <strong>and</strong> the rema<strong>in</strong><strong>in</strong>g twoirrigations were with <strong>dra<strong>in</strong>age</strong> <strong>water</strong>, or when the first two irrigations were with sal<strong>in</strong>e <strong>dra<strong>in</strong>age</strong><strong>water</strong> <strong>and</strong> the rema<strong>in</strong><strong>in</strong>g two irrigations were with canal <strong>water</strong>.Intraseasonal cyclic use offers considerable potential as not all crops tolerate sal<strong>in</strong>ity equallywell at different stages of their growth. Most crops are sensitive to sal<strong>in</strong>ity dur<strong>in</strong>g emergence<strong>and</strong> early development. Moreover, the flower<strong>in</strong>g stage is also critical. Tolerance to sal<strong>in</strong>itygenerally <strong>in</strong>creases with the age of the crop (Table 18). An exception is the sal<strong>in</strong>ity tolerance ofmustard dur<strong>in</strong>g the flower<strong>in</strong>g to reproductive development stage.The long-term susta<strong>in</strong>ability of this <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> option entails devot<strong>in</strong>gsufficient to ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a favourable salt balance <strong>and</strong> to prevent<strong>in</strong>g a buildup of trace elements<strong>in</strong> the rootzone to levels toxic to plant growth.Cyclic use also requires attention to soil degradation as a result of us<strong>in</strong>g sodic <strong>water</strong>. A highexchangeable sodium percentage on the soil exchange complex does not normally lead to soil


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 85TABLE 18Crop response to sal<strong>in</strong>ity for three crops at various growth stagesCrop Period Response functionEC 01EC 502(dS/m)WheatAverageRY= 100 - 4.1 (EC e-3.8)28.416.0Sow<strong>in</strong>g timeRY = 109.9 - 6.2 EC e17.39.7Mid seasonRY = 115.7 - 5.5 EC e21.011.9HarvestRY = 106.7 - 3.4 EC e31.116.7MustardAverageRY= 100 - 5.5 (EC e-3.8)15.69.7Sow<strong>in</strong>g timeRY = 115.6 - 8.2 EC e14.18.0Mid-seasonRY = 168 - 12.6 EC e13.39.4HarvestRY = 106.6 - 3.3 EC e32.317.1Greengram AverageSow<strong>in</strong>g timeMid seasonHarvestRY= 100 - 20.7 (EC e- 1.2)RY = 115.3 - 20.9 EC eRY = 150.3 - 28.5 EC eRY = 157.2 - 24.8 EC e1EC 0= EC eat which zero yield is obta<strong>in</strong>ed2EC 50= EC eat which yields are reduced to 50 percentSource: M<strong>in</strong>has, 1998.6.65.55.36.34.23.13.64.3degradation if it is compensated by a high soil moisture sal<strong>in</strong>ity to suppress the extent of the socalleddiffuse double layer. However, upon irrigation with low sal<strong>in</strong>e irrigation <strong>water</strong> or ra<strong>in</strong>fall,the diffuse double layer swells result<strong>in</strong>g <strong>in</strong> soil dispersion. Add<strong>in</strong>g sufficient soil or preferably<strong>water</strong> amendments to compensate for the high sodium to calcium <strong>and</strong> magnesium content <strong>in</strong> thesal<strong>in</strong>e irrigation <strong>water</strong> can prevent these problems.CROP SUBSTITUTION AND REUSE FOR IRRIGATION OF SALT TOLERANT CROPSCrop substitutionCrops differ significantly <strong>in</strong> their tolerance to concentrations of soluble salts <strong>in</strong> the rootzone. Thedifference between the tolerance of the least <strong>and</strong> the most sensitive crops may be tenfold. Anumber of salt tolerant crop plants are available for greater use of sal<strong>in</strong>e <strong>dra<strong>in</strong>age</strong> effluent(Annex 1). Rais<strong>in</strong>g the extent of the sal<strong>in</strong>ity limits through select<strong>in</strong>g more salt tolerant cropsenables greater use of sal<strong>in</strong>e <strong>dra<strong>in</strong>age</strong> effluent <strong>and</strong> reduces the need for leach<strong>in</strong>g <strong>and</strong> <strong>dra<strong>in</strong>age</strong>.Table 19 shows promis<strong>in</strong>g cultivars from India <strong>and</strong> Pakistan. In other parts of the world, othersalt tolerant varieties have been developed.Reuse for irrigation of salt tolerant plants <strong>and</strong> halophytesWhere the irrigation <strong>water</strong> is too sal<strong>in</strong>e to grow conventional agricultural crops, irrigation ofhalophytes might be considered. The maximum amount <strong>and</strong> k<strong>in</strong>d of salt that salt tolerant plants<strong>and</strong> halophytes can tolerate vary among species <strong>and</strong> varieties. Halophytes have a special featureas their growth is improved at low to moderate sal<strong>in</strong>ity levels (Good<strong>in</strong> et al., 1999). In contrast,salt tolerant crops have maximum growths up to a threshold sal<strong>in</strong>ity level after which growth isreduced (Figure 39). Salt tolerant plants <strong>and</strong> halophytes have been grown successfully <strong>in</strong> manyplaces <strong>in</strong> the world to produce fuel, fodder <strong>and</strong> to a lesser extent food. Institutes <strong>in</strong> Australiahave gathered useful salt tolerance data on a large number of trees <strong>and</strong> shrubs species (Annex 6).Grow<strong>in</strong>g salt tolerant plants <strong>and</strong> halophytes under sal<strong>in</strong>e conditions requires <strong>management</strong> of the


86Dra<strong>in</strong>age <strong>water</strong> reuseTABLE 19Promis<strong>in</strong>g cultivars for sal<strong>in</strong>e <strong>and</strong> alkal<strong>in</strong>e environments <strong>in</strong> India <strong>and</strong> PakistanCrop Sal<strong>in</strong>e irrigation Alkal<strong>in</strong>e environmentIndia Pakistan IndiaWheatPearlmilletMustardCottonS<strong>org</strong>humBarleyRiceRaj.2325, Raj. 3077,WH 157MH 269, MH 331CS416, CS 330-1, PUSA BoldDHY 286, G 17060SPV-475, Spr 881, CH 511Ratna, RL 345, K169LU26S, Blue Silver, SARC-1 (well-dra<strong>in</strong>ed)Blue Silver, SARC-3, Pb-85 (<strong>water</strong>logged)Gobi sarsonNIAB-78, MNH-93Milo, JS-263, JS-1PK-30064, PK-30130, PK-30132, PK-30316NIAB-6, IRO-6, KS-282KRL1-4, KRL-1-19, HI 1077,WH 157MH 2669, MH 280, MH 427CS 15, CS52, VarunaHY 6SPV 475, CHI, CH 511DL 4, DL 106Source: AICRP Sal<strong>in</strong>e Water, 1998; <strong>and</strong> Qureshi, 1996.salt balance <strong>in</strong> the rootzone. Wherenatural <strong>dra<strong>in</strong>age</strong> is <strong>in</strong>sufficient, artificial<strong>dra<strong>in</strong>age</strong> is required to remove theleach<strong>in</strong>g <strong>water</strong>.FuelMany people <strong>in</strong> develop<strong>in</strong>g countries relyon wood for cook<strong>in</strong>g <strong>and</strong> heat<strong>in</strong>g. Asagricultural l<strong>and</strong> is required to feedgrow<strong>in</strong>g populations, it is unlikely thatgood quality agricultural l<strong>and</strong> will be usedfor fuel production (Good<strong>in</strong> et al., 1999).Salt tolerant trees <strong>and</strong> shrubs can begrown for fuel production <strong>and</strong> build<strong>in</strong>gmaterials us<strong>in</strong>g sal<strong>in</strong>e <strong>water</strong> <strong>and</strong> marg<strong>in</strong>all<strong>and</strong>s. Among the promis<strong>in</strong>g tree speciesfor these purposes are Prosopis,Eucalyptus, Casuar<strong>in</strong>a, Rizophora,Melaleunca, Tamarix <strong>and</strong> Acacia.FIGURE 39Relative growth response to sal<strong>in</strong>ity of conventionalversus halophytesRelative crop yield (%)14012010080604020Source: Good<strong>in</strong> et al., 1989.Growth response to sal<strong>in</strong>itySalt-sensitive crops00 10 20 30 40ECe (dS/m)HalophytesSalt-tolerant cropsFodderPasture improvement programmes <strong>in</strong> salt-affected regions throughout the world have usedhalophytes <strong>and</strong> salt tolerant shrubs <strong>and</strong> grass species. Trees <strong>and</strong> shrubs can be valuablecomplement to grassl<strong>and</strong>s. They can serve as a nutrient pump <strong>and</strong> lower sal<strong>in</strong>e shallowground<strong>water</strong> tables. They are less susceptible to moisture deficits <strong>and</strong> temperature changesthan grasses. They might also provide valuable complementary animal food or fuelwood. Salttolerant grasses, shrubs <strong>and</strong> trees with potential for fodder use <strong>in</strong>clude:Grasses Shrubs TreesKallar grass (Leptochloa fusca)Silt grass (Paspalum vag<strong>in</strong>atum)Russian-thistle (Salsola ibercia)Salt grasses (Distichlis spicata)Channel millet (Ench<strong>in</strong>ochloa turnerana)Cord grasses (Spat<strong>in</strong>a g.)Rhodes grass (Chloris gayana)Atriplex sp.Mairiena sp.Samphire sp.Acacia sp.Leucaena sp.Prosopis sp.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 87Other productsSalt tolerant plants can also produce other economically important materials, e.g. essential oils,gums, oils, res<strong>in</strong>s, pulp <strong>and</strong> fibre. Moreover, salt tolerant plants can be used for l<strong>and</strong>scape <strong>and</strong>ornamental purposes <strong>and</strong> irrigated with sal<strong>in</strong>e <strong>water</strong>, thereby conserv<strong>in</strong>g fresh<strong>water</strong> for otherpurposes (Good<strong>in</strong> et al., 1999).REUSE IN IFDM SYSTEMSThe IFDM system aims to utilize<strong>dra<strong>in</strong>age</strong> <strong>water</strong> as a resource toproduce marketable crops <strong>and</strong> toreduce the volume of <strong>dra<strong>in</strong>age</strong><strong>water</strong> to be discharged (SJVDIP,1999d; <strong>and</strong> Cerv<strong>in</strong>ka et al., 2001).Figure 40 depicts the pr<strong>in</strong>ciples of atypical IFDM system. UnderIFDM, <strong>dra<strong>in</strong>age</strong> <strong>water</strong> is usedsequentially to irrigate crops, trees<strong>and</strong> halophytes with progressively<strong>in</strong>creas<strong>in</strong>g salt tolerance. Each timethe <strong>dra<strong>in</strong>age</strong> <strong>water</strong> is reused, thevolume of effluent is reduced <strong>and</strong>the sal<strong>in</strong>ity concentration <strong>in</strong>creased.A typical IFDM system consists offour zones. In Zone 1, traditional saltsensitive crops are grown, e.g.vegetables, fruits, beans <strong>and</strong> corn.In Zone 2, traditional salt tolerantcrops are grown, e.g. cotton,s<strong>org</strong>hum <strong>and</strong> wheat. In Zone 3, salttolerant trees <strong>and</strong> shrubs are grown.In Zone 4, only halophytes can beplanted. The f<strong>in</strong>al non-re-usable<strong>dra<strong>in</strong>age</strong> <strong>water</strong> is discharged <strong>in</strong> asolar evaporator.The solar evaporator consists ofa levelled area l<strong>in</strong>ed with plastic onwhich the br<strong>in</strong>e is disposed <strong>and</strong> thecrystallized salts are collected. Thedaily discharge of <strong>dra<strong>in</strong>age</strong> <strong>water</strong>corresponds to the daily evaporation,this to prevent <strong>water</strong> pond<strong>in</strong>g thatattracts <strong>water</strong>birds. This is onlyFIGURE 40Pr<strong>in</strong>ciples of an IFDM systemFresh<strong>water</strong>QECSalt sensitive cropsSequential reuse of <strong>dra<strong>in</strong>age</strong> <strong>water</strong>s<strong>in</strong> <strong>dra<strong>in</strong>age</strong>-affected l<strong>and</strong>sSolar evaporatorSource: SJVDIP, 1999d.EucalyptusInterceptorSalt tolerant cropsHalophytesSalt toleranttreesimportant where high concentrations of toxic trace elements are present <strong>in</strong> the <strong>dra<strong>in</strong>age</strong> <strong>water</strong>,otherwise a normal evaporation bas<strong>in</strong> can be used.Figure 41 shows an example of IFDM from California <strong>and</strong> depicts the current layout of the260-ha Red Rock Ranch. The ranch was <strong>water</strong>logged <strong>and</strong> salt affected to such an extent that1ECIntegrated Farm Dra<strong>in</strong>ageManagement2INTEGRATED FARM DRAINAGE MANAGEMENTNon-sal<strong>in</strong>e Zone(Vegetables)Non-sal<strong>in</strong>e Zone(Vegetables)Q4RED ROCK RANCHLow-sal<strong>in</strong>e Zone(Cotton, alfalfa,grasses, sugar beets)Non-sal<strong>in</strong>e Zone(Vegetables)3Trees PondHigh discharge; low ECLow discharge; high ECFIGURE 41Layout of sequential reuse of subsurface <strong>dra<strong>in</strong>age</strong><strong>water</strong>s <strong>and</strong> salt harvest at Red Rock RanchNSource: SJVDIP, 1999a.Solar EvaporatorHigh-sal<strong>in</strong>e Zone(Halophytes)Moderate-sal<strong>in</strong>e ZoneSump


88Dra<strong>in</strong>age <strong>water</strong> reuseTABLE 20Changes <strong>in</strong> sal<strong>in</strong>ity <strong>and</strong> boron by depth at locations <strong>in</strong> the tile dra<strong>in</strong>ed Red Rock Ranch1995 1996 1997Field ID Soil depthcmECedS/mBoronppmECedS/mBoronppmECedS/mBoronppm10NW 0-30 10.0 15 1.8 2 1.0 130-60 11.3 16 6.8 7 4.1 460-90 10.3 9 9.5 14 6.6 910SW 0-30 13.8 13 3.1 4 1.5 430-60 10.7 11 7.5 7 8.4 1260-90 9.6 8 8.3 7 10.7 1210NE 0-30 10.0 4 2.0 2 2.0 130-60 4.4 5 6.9 6 4.5 360-90 5.8 6 9.0 10 5.5 410SE 0-30 2.9 3 1.1 1 0.8 130-60 6.1 4 3.7 3 1.8 260-90 7.7 5 7.3 6 3.1 7Source: Cerv<strong>in</strong>ka et al., 2001.the farmer was unable to obta<strong>in</strong> economic crop yields. Therefore, the farmer transformed it <strong>in</strong>toan agroforestry reuse system with f<strong>in</strong>al disposal <strong>in</strong> a solar evaporator.The shallow ground<strong>water</strong> flows northeast, <strong>and</strong> <strong>in</strong> some areas the <strong>water</strong> table was with<strong>in</strong> lessthan 30 cm of the l<strong>and</strong> surface. The farmer planted rows of Eucalyptus camendulensis <strong>in</strong> theupslope western boundary to <strong>in</strong>tercept some of the lateral ground<strong>water</strong>, <strong>and</strong> then tile dra<strong>in</strong>ed thefour parcels of l<strong>and</strong> progressively, start<strong>in</strong>g from the southwest parcel, then the northwest <strong>and</strong>southeast parcels, <strong>and</strong> f<strong>in</strong>ally the northeast parcel. With<strong>in</strong> a few years of subsurface <strong>dra<strong>in</strong>age</strong>,the l<strong>and</strong> was reclaimed to the po<strong>in</strong>t where alfalfa <strong>and</strong> broccoli were successfully grown <strong>in</strong> thenon-sal<strong>in</strong>e parcels with imported irrigation <strong>water</strong> of 0.5 dS/m EC I<strong>and</strong> 0.2 ppm boron. Cotton,sugar beets <strong>and</strong> salt tolerant grasses were grown successfully <strong>in</strong> the low-sal<strong>in</strong>e parcel us<strong>in</strong>g tile<strong>dra<strong>in</strong>age</strong> <strong>water</strong> (EC I6-8 dS/m) from the three non-sal<strong>in</strong>e parcels. Because there are noopportunities for off-farm disposal of <strong>dra<strong>in</strong>age</strong> <strong>water</strong>s <strong>in</strong> this subarea, the residual <strong>dra<strong>in</strong>age</strong><strong>water</strong> from this ranch is sequentially reused until no longer usable. A portion of the northeastparcel has been set aside to irrigate saltgrass (EC Iabout 10-20 dS/m) <strong>in</strong> the moderately sal<strong>in</strong>ezone. The subsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong> from saltgrass is used to irrigate Salicornia, <strong>and</strong> then its<strong>dra<strong>in</strong>age</strong> <strong>water</strong> (EC > 30 dS/m) is disposed <strong>in</strong>to a solar evaporator to harvest salts. A market forthe salts is currently be<strong>in</strong>g sought.Table 20 documents the extent of reclamation of the salt-affected soils on Red Rock Ranchpr<strong>in</strong>cipally due to the <strong>in</strong>stallation of subsurface <strong>dra<strong>in</strong>age</strong> <strong>and</strong> grow<strong>in</strong>g salt tolerant cotton <strong>and</strong>sugar beets <strong>in</strong>itially. Today, about 75 percent of the l<strong>and</strong> has been reclaimed sufficiently to growsalt sensitive, high-cash-value vegetable crops. The rema<strong>in</strong><strong>in</strong>g 25 percent of the l<strong>and</strong> is devotedto <strong>dra<strong>in</strong>age</strong> <strong>water</strong> reuse <strong>in</strong> salt tolerant plants <strong>and</strong> salt harvest.Table 21 details the average quality of the supply <strong>water</strong> <strong>and</strong> sequentially reused <strong>dra<strong>in</strong>age</strong><strong>water</strong> from salt sensitive crops, salt tolerant crops <strong>and</strong> halophytes. The quality of irrigation<strong>water</strong> for salt tolerant crops has improved <strong>and</strong> the sal<strong>in</strong>ity of the irrigation <strong>water</strong> is now about6 dS/m <strong>in</strong> contrast to the reported 9.4 dS/m. Some difficulties have been encountered <strong>in</strong> manag<strong>in</strong>gthe collected <strong>dra<strong>in</strong>age</strong> <strong>water</strong>, especially for reuse on moderately sal<strong>in</strong>e <strong>and</strong> halophyte plots dueto their comparatively small area. Dra<strong>in</strong>age <strong>water</strong> disposed <strong>in</strong>to the solar evaporator is controlledclosely to prevent pond<strong>in</strong>g by adjust<strong>in</strong>g spr<strong>in</strong>kler irrigation rates <strong>and</strong> tim<strong>in</strong>g to daily ETo values.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 89TABLE 21Water quality of supply <strong>and</strong> reused <strong>dra<strong>in</strong>age</strong> <strong>water</strong>s on Red Rock RanchECdS/mNappmSO4ppmClppmBppmIrrigat<strong>in</strong>g salt sensitive crops 0.5 64 28 89 0.2 NDIrrigat<strong>in</strong>g salt tolerant crops 9.4 1 422 3 070 1 189 10 322Irrigat<strong>in</strong>g halophytes 31.0 7 829 12 686 4 722 56 609Discharge <strong>in</strong>to solar evaporator 28.2 7 598 12 814 4 436 62 706Source: Cerv<strong>in</strong>ka et al., 2001.The extremely high selenium concentration <strong>in</strong> the <strong>dra<strong>in</strong>age</strong> <strong>water</strong> is of concern to wildlife biologists.This system was <strong>in</strong>itially established about 10 years ago but the present configuration has beenoperat<strong>in</strong>g for about 3 years <strong>and</strong> thus its susta<strong>in</strong>ability is not yet known.SeppbRECLAMATION OF SALT-AFFECTED LANDSodic soils often have low hydraulic conductivity as a result of the high sodium percentage onthe soil exchange complex. The reclamation of sodic soils requires that a divalent solute (ma<strong>in</strong>lycalcium) pass through the soil profile, replac<strong>in</strong>g exchangeable sodium <strong>and</strong> leach<strong>in</strong>g the desorbedsodium ions from the rootzone. Therefore, the rate at which sodic soils can be reclaimed dependson the <strong>water</strong> flow through the soil <strong>and</strong> the calcium concentration of the soil solution.The application of leach<strong>in</strong>g <strong>water</strong> with a high electrolyte concentration promotes flocculationof the soils <strong>and</strong> thus improves soil permeability. This expedites the reclamation process.Amendments need to be added <strong>in</strong> order to replace sodium with calcium ions on the soil exchangecomplex. Over time, less-sal<strong>in</strong>e <strong>water</strong> needs to replace the sal<strong>in</strong>e leach<strong>in</strong>g <strong>water</strong> <strong>in</strong> order tolower the sal<strong>in</strong>ity levels sufficiently to establish a crop.The use of sal<strong>in</strong>e <strong>dra<strong>in</strong>age</strong> <strong>water</strong> to reclaim salt-affected soils is not a permanent solution forreduc<strong>in</strong>g <strong>dra<strong>in</strong>age</strong> effluent disposal volumes. It is only a substitute for the use of good qualityirrigation <strong>water</strong> for reclamation purposes. <strong>FAO</strong> (1988) has compiled a list of procedures <strong>and</strong>measures for the reclamation <strong>and</strong> <strong>management</strong> of sal<strong>in</strong>e <strong>and</strong> sodic soils.


90Dra<strong>in</strong>age <strong>water</strong> reuse


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 91Chapter 7Dra<strong>in</strong>age <strong>water</strong> disposalREQUIREMENTS FOR SAFE DISPOSALDra<strong>in</strong>age <strong>water</strong> <strong>management</strong> is normally concerned with reduc<strong>in</strong>g the amount of <strong>dra<strong>in</strong>age</strong> <strong>water</strong><strong>and</strong> with manag<strong>in</strong>g its disposal. However, this aim is more complex than it appears. Dra<strong>in</strong>age ispractised to ma<strong>in</strong>ta<strong>in</strong> aeration <strong>in</strong> <strong>water</strong>logged rootzone <strong>and</strong>/or to leach excess soil sal<strong>in</strong>ity tosusta<strong>in</strong> agricultural production. The <strong>dra<strong>in</strong>age</strong> <strong>water</strong> generated must then be managed for reusepurposes where it is of suitable quality <strong>and</strong> f<strong>in</strong>ally discharged or disposed of. The discharge of<strong>dra<strong>in</strong>age</strong> <strong>water</strong>s <strong>in</strong> <strong>water</strong>courses may have impacts rang<strong>in</strong>g from beneficial to deleterious. Thedisposal of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>in</strong>to wetl<strong>and</strong>s, lakes, rivers <strong>and</strong> coastal <strong>water</strong>s entails considerationsabout the quantity <strong>and</strong> quality allowable <strong>and</strong> <strong>in</strong>deed sometimes required to ma<strong>in</strong>ta<strong>in</strong> desirableecological conditions <strong>and</strong> functions of that given <strong>water</strong> body.To susta<strong>in</strong> irrigated agriculture, thema<strong>in</strong>tenance of favourable sal<strong>in</strong>ity levelsis the major concern <strong>in</strong> assess<strong>in</strong>g them<strong>in</strong>imum <strong>dra<strong>in</strong>age</strong> disposalrequirements. When aimed at maximiz<strong>in</strong>gsource reduction or reuse of <strong>dra<strong>in</strong>age</strong><strong>water</strong>, m<strong>in</strong>imum leach<strong>in</strong>g is required toma<strong>in</strong>ta<strong>in</strong> favourable salt balances <strong>in</strong> therootzone. The m<strong>in</strong>imum LF depends onthe sal<strong>in</strong>ity of the irrigation <strong>water</strong> <strong>and</strong> thesalt tolerances of the crops grown. Box10 shows an example from the Nile Delta,Egypt.M<strong>in</strong>imum disposal requirements alsodepend on the requirements ofdownstream <strong>water</strong> uses. For example,many <strong>in</strong>l<strong>and</strong> fisheries are currentlythreatened because of <strong>in</strong>creas<strong>in</strong>g <strong>water</strong>BOX 10: MAXIMUM REUSE AND MINIMUM DISPOSAL OFDRAINAGE WATER IN THE NILE DELTA, EGYPT, BASED ONMAINTAINING FAVOURABLE SALT BALANCEMonitor<strong>in</strong>g data showed that <strong>in</strong> 1993-94,12 500 million m 3 of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> were disposed<strong>and</strong> 3 400 million m 3 were officially reused foragriculture (DRI, 1995). The effective reuse was3 000 million m 3 assum<strong>in</strong>g an LF of 12 percent.Data analysis showed that 13 300 million m 3 of<strong>dra<strong>in</strong>age</strong> <strong>water</strong> with a sal<strong>in</strong>ity level of less than4.7 dS/m (the official maximum sal<strong>in</strong>ity levelallowable for reuse) was theoretically available forreuse. The required LF for this sal<strong>in</strong>ity level wasestimated to be 0.19 (EPIQ Water Policy Team, 1998).Therefore, the effectively re-usable quantity of<strong>dra<strong>in</strong>age</strong> <strong>water</strong> for consumptive use would be10 800 million m 3 , leav<strong>in</strong>g 4 700 million m 3(12 500 + 3 000 million m 3 - 10 800 million m 3 ) of<strong>dra<strong>in</strong>age</strong> effluent to be disposed.pollution, degradation of aquatic habitats <strong>and</strong> excessive <strong>water</strong> abstraction (<strong>FAO</strong>, 1999a; <strong>and</strong>Barg et al., 1997). With the <strong>in</strong>crease <strong>in</strong> environmental awareness, there is <strong>in</strong>creas<strong>in</strong>g pressureto preserve sufficient <strong>water</strong> for aquatic environments, habitats <strong>and</strong> biodiversity. For example,wetl<strong>and</strong>s are considered to be among the world’s most valuable ecological sites. They form thehabitat for many species of plants <strong>and</strong> animals. Wetl<strong>and</strong>s perform various other vital functions,e.g. <strong>water</strong> storage, flood mitigation <strong>and</strong> <strong>water</strong> purification. Wetl<strong>and</strong>s also provide economicbenefits, of which fisheries, recreation <strong>and</strong> tourism are among the most important. These functions,values <strong>and</strong> attributes can only be ma<strong>in</strong>ta<strong>in</strong>ed if the ecological processes of wetl<strong>and</strong>s cont<strong>in</strong>uefunction<strong>in</strong>g (Ramsar Convention Bureau, 2000). If the ecological processes <strong>in</strong> the wetl<strong>and</strong>sdepend on <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>in</strong>flow <strong>and</strong> if the functions of the wetl<strong>and</strong>s are to be susta<strong>in</strong>ed, them<strong>in</strong>imum <strong>dra<strong>in</strong>age</strong> discharge will depend on the quality <strong>and</strong> quantity of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> required


92Dra<strong>in</strong>age <strong>water</strong> disposalBOX 11: MINIMUM DRAINAGE DISCHARGE REQUIREMENTS FOR MAINTAINING THE FRESHWATER FUNCTIONS OF THENORTHERN LAKES, EGYPTThe Northern Lakes (Maruit, Edko, Burrulus <strong>and</strong> Manzala) are located adjacent to theMediterranean Sea <strong>and</strong> they are no more than 2 m deep. The lakes are economically importantas they support a large fishery <strong>and</strong> many fish farms. Lake fisheries produce 52 percent of thenation’s total fish production <strong>and</strong> provide employment to 53 000 anglers. The lakes are alsoecologically important as they support a large bird population <strong>and</strong> serve as a stopover formigratory birds. As the lakes are also the s<strong>in</strong>k for a large part of the <strong>dra<strong>in</strong>age</strong> <strong>and</strong> waste<strong>water</strong>from the Nile Delta prior to outflow to the sea, the quality <strong>and</strong> quantity of the <strong>dra<strong>in</strong>age</strong> <strong>water</strong>discharge can threaten these two ma<strong>in</strong> functions of the lakes. Lake Maruit is heavily polluted <strong>and</strong>suffers from eutrophication due to dra<strong>in</strong> discharges carry<strong>in</strong>g <strong>in</strong>dustrial <strong>and</strong> municipal waste.The surviv<strong>in</strong>g fish species are limited <strong>and</strong> provide only a non-commercial food source to localresidents. As the lake would need large quantities of fresh<strong>water</strong> <strong>in</strong>flow to recover its ecology, theconsensus is that this lake will cont<strong>in</strong>ue its sal<strong>in</strong>ization process <strong>and</strong> eventually lose all fishproduction <strong>and</strong> its ecological value (EPIQ Water Policy Team, 1998). The other three lakesdepend on <strong>dra<strong>in</strong>age</strong> outflow to ma<strong>in</strong>ta<strong>in</strong> their brackish <strong>water</strong> environment. Based on theassumption that Lake Maruit will loose its function as a fresh<strong>water</strong> lake for fish production, theDra<strong>in</strong>age Re-use Work<strong>in</strong>g Group of the EPIQ Water Policy Team conducted an analysis of therequired m<strong>in</strong>imum <strong>dra<strong>in</strong>age</strong> <strong>water</strong> outflow to lakes Edko, Burrulus <strong>and</strong> Manzala. For cont<strong>in</strong>uedfish production, the sal<strong>in</strong>ity levels <strong>in</strong> the lakes should be ma<strong>in</strong>ta<strong>in</strong>ed between 5.5 <strong>and</strong> 6.25 dS/m. Lake Edko, Lake Manzala <strong>and</strong> Lake Burrulus have sal<strong>in</strong>ity levels of 2.1, 3.2 <strong>and</strong> 5.6 dS/m,respectively. To ma<strong>in</strong>ta<strong>in</strong> maximum sal<strong>in</strong>ity levels, the <strong>dra<strong>in</strong>age</strong> outflow to Lake Manzala <strong>and</strong>Lake Edko can be reduced to a maximum 50 percent of the present outflow level. However, theoutflow to Lake Burrulus is already on the low side <strong>and</strong> cannot be reduced any further. Them<strong>in</strong>imum <strong>dra<strong>in</strong>age</strong> discharge based on susta<strong>in</strong>ed fresh<strong>water</strong> lake fisheries is 8 500 million m 3per year. This is 3 800 million m 3 more than the reuse potential based on ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the saltbalance <strong>in</strong> the Nile Delta for agricultural production. Hence, less <strong>water</strong> is available for reuse ifthe lake fisheries are to be ma<strong>in</strong>ta<strong>in</strong>ed.for ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the ecological processes. Box 11 shows how the m<strong>in</strong>imum <strong>dra<strong>in</strong>age</strong> dischargeor maximum reuse potential for agriculture is estimated based on susta<strong>in</strong><strong>in</strong>g the fisheries <strong>in</strong> thecoastal lakes of the Nile Delta, Egypt.DISPOSAL CONDITIONSDepend<strong>in</strong>g on the location, hydrology <strong>and</strong> topography of the <strong>dra<strong>in</strong>age</strong> bas<strong>in</strong> (<strong>and</strong> the ecology <strong>and</strong>environmental conditions of receiv<strong>in</strong>g <strong>water</strong> bodies), <strong>dra<strong>in</strong>age</strong> <strong>water</strong> might be disposed to opensurface <strong>water</strong> bodies, e.g. rivers, lakes, outfall dra<strong>in</strong>s, <strong>and</strong> oceans. The oceans are often regardedas the safest <strong>and</strong> the f<strong>in</strong>al disposal site for agricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong>. This is true unless <strong>dra<strong>in</strong>age</strong><strong>water</strong> is contam<strong>in</strong>ated with sediments, nutrients <strong>and</strong> other pollutants <strong>and</strong> the disposal site is <strong>in</strong>the vic<strong>in</strong>ity of fragile coastal ecosystems such as mangroves <strong>and</strong> coral reefs. Therefore, at thepo<strong>in</strong>t of discharge, pollution may be of much concern. In general, oceans have significant dilutionor assimilative capacity. However, this is also limited <strong>in</strong> many cases especially <strong>in</strong> enclosed <strong>and</strong><strong>semi</strong>-enclosed seas. Inl<strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> disposal to fresh<strong>water</strong> bodies such as lakes <strong>and</strong>rivers requires care. Rivers are normally used for different <strong>water</strong> use purposes requir<strong>in</strong>g certa<strong>in</strong>qualities of <strong>water</strong>, while the accumulation of salts <strong>and</strong> other pollutants <strong>in</strong> fresh<strong>water</strong> lakesthreatens ecosystem functions <strong>and</strong> aquatic life.Disposal <strong>in</strong>to rivers or oceans is not always possible. In closed <strong>dra<strong>in</strong>age</strong> bas<strong>in</strong>s, alternativedisposal options need to be sought. The options for closed hydrologic bas<strong>in</strong>s <strong>in</strong>clude evaporationponds, deep-well <strong>in</strong>jection <strong>and</strong> <strong>in</strong>tegrated <strong>dra<strong>in</strong>age</strong> <strong>management</strong> systems. Dra<strong>in</strong>age <strong>water</strong><strong>management</strong> <strong>in</strong> closed bas<strong>in</strong>s presents numerous environmental <strong>and</strong> <strong>water</strong> quality challenges.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 93Disposal <strong>in</strong> wetl<strong>and</strong>s offers much potential but at the same time there are also accompany<strong>in</strong>gconstra<strong>in</strong>ts. Wetl<strong>and</strong>s might be either natural or specially constructed for <strong>dra<strong>in</strong>age</strong> <strong>water</strong> reuse.In the former case, the ma<strong>in</strong>tenance of ecological functions depends on the quality <strong>and</strong> quantityof <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>in</strong>flow.DISPOSAL IN FRESHWATER BODIESThe ma<strong>in</strong> aim of safe disposal <strong>in</strong> fresh<strong>water</strong> bodies such as lakes <strong>and</strong> rivers is to protect beneficialdownstream <strong>water</strong> uses. Rivers <strong>and</strong> lakes are normally multifunctional (municipal dr<strong>in</strong>k<strong>in</strong>g<strong>water</strong>,<strong>in</strong>dustrial <strong>water</strong>, fish<strong>in</strong>g, recreation <strong>and</strong> agriculture) <strong>and</strong> have an <strong>in</strong>tr<strong>in</strong>sic ecological value.Furthermore, rivers feed lakes, floodpla<strong>in</strong>s, wetl<strong>and</strong>s, estuaries <strong>and</strong> bays. To protect thesefunctions, it is necessary to determ<strong>in</strong>e the assimilative capacity of the river <strong>and</strong>, where necessary,of connected or receiv<strong>in</strong>g ecosystems. It is also necessary to identify the constituents of concern<strong>in</strong> the <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>in</strong> order to determ<strong>in</strong>e its discharge requirements. Moreover, the effects onsediments, riparian habitats <strong>and</strong> floodpla<strong>in</strong>s warrant consideration.The discharge requirements should specify the maximum allowable concentration of eachconstituent of concern <strong>and</strong> the volume of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> that will be acceptable. Concentrationis the <strong>water</strong> quality parameter normally used <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g-<strong>water</strong> st<strong>and</strong>ards or for the health ofaquatic animals <strong>and</strong> plants. However, plac<strong>in</strong>g only concentration limits on discharge mightencourage dilution <strong>and</strong> <strong>in</strong>efficient <strong>water</strong> use. Where both concentration <strong>and</strong> load limits (productof <strong>water</strong> concentration <strong>and</strong> <strong>water</strong> volume) are enforced, they tend to promote efficient <strong>water</strong>use. For example, <strong>in</strong> the San Joaqu<strong>in</strong> Valley, the discharge limitations <strong>in</strong>to the San Joaqu<strong>in</strong> River<strong>in</strong>clude limits on concentration of specific constituents <strong>and</strong> their loads. The concentration limitations<strong>in</strong>clude limits on sal<strong>in</strong>ity, boron, selenium <strong>and</strong> molybdenum <strong>in</strong> order to protect downstream <strong>water</strong>quality for domestic <strong>and</strong> agricultural uses <strong>and</strong> to safeguard the environment. To discouragedilution or <strong>in</strong>efficient <strong>water</strong> usage, load limits for these constituents are enforced for the dischargeof irrigation return flows <strong>in</strong>to the San Joaqu<strong>in</strong> River.The assimilative capacity of thereceiv<strong>in</strong>g <strong>water</strong> body varies from place toplace <strong>and</strong> from time to time depend<strong>in</strong>g onnumerous local conditions. These <strong>in</strong>cludeclimate <strong>and</strong> physical conditions <strong>and</strong> theupstream uses. The River Yamuna <strong>in</strong>Haryana, India, provides an example ofseasonal differences <strong>in</strong> disposalopportunities. Dur<strong>in</strong>g the dry w<strong>in</strong>ter season,November-March, the flow of the RiverYamuna is less than 50 m 3 /s. From July toSeptember, dur<strong>in</strong>g the monsoon season, theflow exceeds 1 000 m 3 /s with a peak of1 150 m 3 /s <strong>in</strong> August. The sal<strong>in</strong>ity of riverTABLE 22Allowable subsurface <strong>dra<strong>in</strong>age</strong> discharge <strong>and</strong>dra<strong>in</strong>able area <strong>in</strong>to the River YamunaMonthJuneJulyAugustSeptemberOctoberAllowabledischarge(m 3 /s)Dra<strong>in</strong>able area(ha)Effluent sal<strong>in</strong>ity (dS/m)6 10 6 10<strong>water</strong> dur<strong>in</strong>g monsoon is less than 0.2 dS/m. The river’s high flow <strong>and</strong> low sal<strong>in</strong>ity dur<strong>in</strong>g themonsoon period provides an opportunity for the disposal of sal<strong>in</strong>e effluents. As the <strong>water</strong> tableshows a marked rise dur<strong>in</strong>g the monsoon season, major pump<strong>in</strong>g for <strong>dra<strong>in</strong>age</strong> takes place betweenJuly <strong>and</strong> September. Table 22 shows projections of the amounts of subsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong>that could be disposed <strong>in</strong>to the River Yamuna. The criterion used was that the resultant sal<strong>in</strong>ityof the <strong>water</strong> <strong>in</strong> the river after mix<strong>in</strong>g should be less than 0.75 dS/m. A significant dra<strong>in</strong>able area0.925.447.66.53.0Source: <strong>FAO</strong>, 1985a.0.514.427.03.71.75 000146 000274 00037 00017 0003 00083 000156 00021 00010 000


94Dra<strong>in</strong>age <strong>water</strong> disposalFIGURE 42Map of the Grassl<strong>and</strong>s subarea <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> dischargeSan Francisco BayGrassl<strong>and</strong>sSubarea:151 000 haTracyPPDeltaKestersonreservoirDelta-MendotaCanalVernalisSacramento RiverSan Joaqu<strong>in</strong> RiverStanislaus RiverTuolumme RiverMerced RiverMud SloughSalt SloughbypassSouthGrassl<strong>and</strong>sDistrictNSack DamSan Joaqu<strong>in</strong>RiverDra<strong>in</strong>ageproblem area:39 600 hama<strong>in</strong>dra<strong>in</strong>San Luis Dra<strong>in</strong> forWestl<strong>and</strong>s SubareaDelta -Mendota CanalMendota PoolDra<strong>in</strong> flowdirectionwith sal<strong>in</strong>ity problems can use the River Yamuna as a possible <strong>dra<strong>in</strong>age</strong> outlet between July <strong>and</strong>September (India case study <strong>in</strong> Part II).Dra<strong>in</strong>age from the Grassl<strong>and</strong> subarea <strong>in</strong> the San Joaqu<strong>in</strong> Valley provides another example ofthe possibilities <strong>and</strong> constra<strong>in</strong>ts of river disposal. Figure 42 presents a schematic map of the area(39 600 ha) that has opportunities to discharge its irrigation return flow <strong>in</strong>to the San Joaqu<strong>in</strong>River. However, there are some constra<strong>in</strong>ts as dictated by the waste discharge requirementsset by the Central Valley Regional Water Quality Control Board (CVRWQCB, 1999).In the recent past, irrigated agriculture discharged its irrigation return flow <strong>in</strong>to the North <strong>and</strong>South Grassl<strong>and</strong>s District, an entity devoted to wetl<strong>and</strong> habitat for private duck clubs <strong>and</strong>birdwatch<strong>in</strong>g as well as pasturel<strong>and</strong> for graz<strong>in</strong>g animals. S<strong>in</strong>ce the discovery of selenium poison<strong>in</strong>gof <strong>water</strong>birds at Kesterson Reservoir from subsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong>s conveyed from theWestl<strong>and</strong>s Water District, <strong>dra<strong>in</strong>age</strong> from the problem area is no longer discharged <strong>in</strong>to theGrassl<strong>and</strong>s Water District. Instead, it is discharged directly <strong>in</strong>to the San Joaqu<strong>in</strong> River at MudSlough via the San Luis Dra<strong>in</strong> <strong>and</strong> a bypass.Figure 43 shows that although their flows are m<strong>in</strong>or, Salt Slough <strong>and</strong> Mud Slough are majorcontributors of TDS <strong>and</strong> selenium <strong>in</strong> the lower reaches of the San Joaqu<strong>in</strong> River. Thus, theCVRWQCB has placed monthly waste discharge requirements for Salt Slough <strong>and</strong> Mud Slough(CVRWQCB, 1998). The <strong>water</strong> quality objectives were established to protect downstream<strong>water</strong> uses as well as export <strong>water</strong> to southern California. The sal<strong>in</strong>ity <strong>water</strong> quality objectivefor Vernalis, a benchmark station on the river, is 1 dS/m for a 30-day runn<strong>in</strong>g average from1 September to 30 March, <strong>and</strong> 0.7 dS/m for a 30-day runn<strong>in</strong>g average from 1 April to 31 August.The boron objective is placed from Sack Dam to Merced River, the reach above <strong>and</strong> below SaltSlough <strong>and</strong> Mud Slough, at 2.0 mg/litre monthly mean for the year with a maximum of 5.8 mg/litre for a given month. The selenium <strong>water</strong> quality objective is placed on Salt Slough <strong>and</strong> MudSlough at 5 µg/litre, 4-day average, to protect aquatic biota <strong>and</strong> a maximum annual load of3 632 kg to control mass emission. Exceed<strong>in</strong>g the specified allowable loads of salt <strong>and</strong> selenium


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 95FIGURE 43The significance of irrigation return flows from Salt Slough <strong>and</strong> Mud Slough on the quality ofthe San Joaqu<strong>in</strong> River systemMean annual discharge, TDS <strong>and</strong> selenium loadsLower San Joaqu<strong>in</strong> River system100%80%60%40%20%0%Discharge TDS SeleniumSurface return flowsSubsurface return flowsSalt SloughMud SloughGround<strong>water</strong>East-side tributariesSource: CVRWQCB, 2000.results <strong>in</strong> monetary f<strong>in</strong>es to the dischargers. The selenium load is the most difficult for irrigatedagriculture to meet.Generally, rivers cont<strong>in</strong>ually cleanse themselves. In most cases, lakes do not have this capacityas they may not have an outlet, or flow volume from the lake is limited. The disposal of <strong>dra<strong>in</strong>age</strong><strong>water</strong> <strong>in</strong>to lakes might cause substantial long-term problems. Thus, it <strong>in</strong>volves specialconsiderations. There are numerous examples from all over the world where disposal ofagricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>in</strong>to fresh<strong>water</strong> lakes, often <strong>in</strong> comb<strong>in</strong>ation with reduced fresh<strong>water</strong><strong>in</strong>flow, has added to the development of immense <strong>and</strong> catastrophic environmental problems.Examples <strong>in</strong>clude Lake Chapala <strong>in</strong> Mexico, Lake Manchhar <strong>in</strong> Pakistan, Lake Biwa <strong>in</strong> Japan,<strong>and</strong> other lakes where significant effort is required to halt environmental degradation.DISPOSAL INTO EVAPORATION PONDSIn <strong>in</strong>l<strong>and</strong> <strong>dra<strong>in</strong>age</strong> bas<strong>in</strong>s without an adequate outlet to a river, lake or sea, or where disposalrestrictions prevent discharge <strong>in</strong>to rivers <strong>and</strong> lakes, one of the few options is disposal of <strong>dra<strong>in</strong>age</strong>effluent <strong>in</strong>to constructed evaporation ponds or natural depressions. Discharge <strong>in</strong>to naturaldepressions has been practised for centuries. The impounded <strong>water</strong> is dissipated by evaporation,transpiration <strong>and</strong> seepage losses. Disposal <strong>in</strong>to constructed ponds is practised worldwide. Theplann<strong>in</strong>g <strong>and</strong> design of evaporation ponds have to take account of numerous environmentalproblems. These <strong>in</strong>clude:• <strong>water</strong>logg<strong>in</strong>g <strong>and</strong> sal<strong>in</strong>ization problems <strong>in</strong> adjacent areas result<strong>in</strong>g from excessive seepagelosses;• salt-dust <strong>and</strong> sprays to areas downw<strong>in</strong>d of the pond surface dur<strong>in</strong>g dry <strong>and</strong> w<strong>in</strong>dy periods,which might damage vegetation <strong>and</strong> affect the health of humans <strong>and</strong> animals; <strong>and</strong>• concentration of trace elements that might become toxic to fish <strong>and</strong> <strong>water</strong>birds because ofbioaccumulation <strong>in</strong> the aquatic food cha<strong>in</strong>.The follow<strong>in</strong>g examples from Pakistan, the United States of America <strong>and</strong> Australia highlightthe opportunities <strong>and</strong> constra<strong>in</strong>ts of evaporation ponds.


96Dra<strong>in</strong>age <strong>water</strong> disposalEvaporation ponds <strong>in</strong> PakistanIn Pakistan, evaporation ponds have been constructed under the Sal<strong>in</strong>ity Control <strong>and</strong> ReclamationProject (SCARP) VI for the disposal of the highly sal<strong>in</strong>e <strong>dra<strong>in</strong>age</strong> effluent from the irrigatedareas on the fr<strong>in</strong>ges of the desert located 500-800 km from the sea. SCARP VI has employedvertical <strong>dra<strong>in</strong>age</strong> to lower <strong>and</strong> ma<strong>in</strong>ta<strong>in</strong> the <strong>water</strong> table at a depth of 2.3 m over an area of152 000 ha. The area is underla<strong>in</strong> by ground<strong>water</strong> with an EC rang<strong>in</strong>g from 15 to 34 dS/m. Atotal of 514 tubewells, rang<strong>in</strong>g <strong>in</strong> capacity from 30 to 90 litres/s, have been <strong>in</strong>stalled to pump out600 million m 3 annually. This <strong>water</strong> is discharged <strong>in</strong>to open surface dra<strong>in</strong>s for conveyance to theevaporation ponds for f<strong>in</strong>al disposal. Allow<strong>in</strong>g for conveyance losses, the dra<strong>in</strong>able surplus to bedisposed of is an estimated 540 million m 3 . It was anticipated that the resultant sal<strong>in</strong>ity <strong>in</strong> the<strong>dra<strong>in</strong>age</strong> <strong>water</strong> would be of the order of 30 dS/m (NESPAK-ILACO, 1981).The design of the evaporation ponds assumed a percolation rate of 280 mm per year (half ofthe estimated value) <strong>and</strong> an evaporation rate of 1 700 mm per year (aga<strong>in</strong>st the observed valueof 1 800 mm). The surface area of the ponds was estimated to be 27 300 ha. The evaporationponds were developed <strong>in</strong> a desert area on the fr<strong>in</strong>ges of the Indus Pla<strong>in</strong> just beyond the canalcomm<strong>and</strong> area of the project. The pond area is characterized by <strong>in</strong>terdunal depressions (withhighly sodic soils), between longitud<strong>in</strong>al s<strong>and</strong> dunes 4-9 m high. The underly<strong>in</strong>g ground<strong>water</strong> ishighly brackish. For the development of the evaporation ponds, dykes were provided across thesaddles <strong>and</strong> channels cut across the dunes to form a series of <strong>in</strong>terconnected ponds. The pondsthat have been developed so far have a surface area of 13 350 ha <strong>and</strong> a distance of 1-3 kmseparates their edges from the irrigated area. The <strong>dra<strong>in</strong>age</strong> effluent is discharged <strong>in</strong>to theevaporation ponds by gravity flow from one <strong>dra<strong>in</strong>age</strong> system <strong>and</strong> pumped from another <strong>dra<strong>in</strong>age</strong>system further downslope.The operation of the ponds started <strong>in</strong> 1989 <strong>and</strong> by May 1998 it was reported that <strong>water</strong> hadspread over a pond surface area of 4 200 ha (IWASRI, 1998). The period of operation has beentoo short to establish a state of equilibrium. However, soon after pond<strong>in</strong>g started some irrigatedareas close to the ponds were severely affected by <strong>water</strong>logg<strong>in</strong>g. This could be ascribed tosignificant seepage losses from the ponds generat<strong>in</strong>g a zone of high ground<strong>water</strong>, obstruct<strong>in</strong>g orretard<strong>in</strong>g the natural subsurface <strong>dra<strong>in</strong>age</strong> from the irrigated l<strong>and</strong>s (NRAP, 1991). The seepageaffected area had grown to about 4 000 ha <strong>in</strong> 1993, even though the tubewell pump<strong>in</strong>g waseffective <strong>in</strong> lower<strong>in</strong>g the <strong>water</strong> table to 3 m <strong>in</strong> parts of the dra<strong>in</strong>ed area.Evaporation ponds <strong>in</strong> California, the United States of AmericaBetween 1972 <strong>and</strong> 1985, 28 evaporation ponds were constructed cover<strong>in</strong>g an area of about2 800 ha receiv<strong>in</strong>g about 39 million m 3 annually of subsurface <strong>dra<strong>in</strong>age</strong> from 22 700 ha of tiledra<strong>in</strong>ed fields (SJVDIP, 1999d). Bas<strong>in</strong>wide, the pond area is about 12 percent of the total areadra<strong>in</strong>ed. Most of the ponds are located <strong>in</strong> the Tulare subarea, a closed bas<strong>in</strong> <strong>in</strong> the San Joaqu<strong>in</strong>Valley. The salt concentration <strong>in</strong> the <strong>water</strong>s discharged <strong>in</strong>to these ponds ranged from 6 to 70 dS/m with an annual salt load of 0.88 million tonnes, about 25 percent of the annual salt loadaccumulat<strong>in</strong>g <strong>in</strong> the more than 0.9 million ha of cropl<strong>and</strong>.The concentration range of selenium, the pr<strong>in</strong>cipal constituent of concern, is from 1 to over600 ppb. A selenium concentration of 2 ppb is considered the upper limit for aquatic life <strong>in</strong> pondsas selenium tends to bioaccumulate 1 000- to 2 500-fold <strong>in</strong> the aquatic food cha<strong>in</strong>. Selenium istoxic to <strong>water</strong>birds as it substitutes for sulphur <strong>in</strong> essential am<strong>in</strong>o acids result<strong>in</strong>g <strong>in</strong> embryodeformities <strong>and</strong> reduced reproduction rates. Ten ponds (with a surface area of about 4 900 ha)


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 97are active <strong>and</strong> managed by seven operators. The other ponds have been voluntarily deactivateddue to the high costs of meet<strong>in</strong>g the waste discharge requirements <strong>and</strong> mitigation measures forbird toxicity. The state/regional <strong>water</strong> quality regulatory agency ordered the closure of severalponds because of the unacceptable toxic effects of selenium on <strong>water</strong>birds from selenium present<strong>in</strong> the impounded <strong>dra<strong>in</strong>age</strong> <strong>water</strong>s.The waste discharge requirements for pond disposal def<strong>in</strong>e the requirements <strong>and</strong> complianceschedules designed to discourage wildlife use of evaporation ponds <strong>and</strong>/or provide mitigation<strong>and</strong> compensation measures to offset adverse effects on birds.The evaporation ponds are constructed by excavat<strong>in</strong>g the soil to form berms with side-slopesof at least 3:1 (h:v). The pond bottoms are unl<strong>in</strong>ed but compacted, the pond environs are keptfree of vegetation, <strong>and</strong> a m<strong>in</strong>imum <strong>water</strong> depth is ma<strong>in</strong>ta<strong>in</strong>ed at 60 cm. Migratory <strong>water</strong>birdsattracted to the pond site are to be scared off, <strong>and</strong> bird diseases kept under control. Compliancemonitor<strong>in</strong>g <strong>in</strong>cludes seasonal <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>and</strong> sediment selenium concentrations, <strong>and</strong> biologicalmonitor<strong>in</strong>g of birds for abundance <strong>and</strong> symptoms of toxicity. When adverse selenium impactsare noted, off-site mitigation measures must be implemented with either compensation oralternative habitats as guided by approved protocols <strong>and</strong> risk analysis methods. Compensationhabitats are constructed to compensate for unavoidable migratory bird losses by provid<strong>in</strong>g awetl<strong>and</strong> habitat safe from selenium <strong>and</strong> predators. Alternative habitats are year-round fresh<strong>water</strong>habitats immediately adjacent to contam<strong>in</strong>ated ponds <strong>in</strong> order to provide dietary dilution to seleniumexposure. In spite of the str<strong>in</strong>gent waste discharge requirements <strong>and</strong> associated high costs,farmers <strong>and</strong> districts <strong>in</strong> the Tulare subarea use evaporation ponds for <strong>dra<strong>in</strong>age</strong> <strong>water</strong> disposalbas<strong>in</strong>s. This is because there are no opportunities for off-site discharge <strong>in</strong>to the San Joaqu<strong>in</strong>River or other designated s<strong>in</strong>ks for <strong>dra<strong>in</strong>age</strong> <strong>water</strong>s. Evaporation ponds are the only economicmeans of disposal of sal<strong>in</strong>e <strong>dra<strong>in</strong>age</strong> <strong>in</strong> the Tulare-Kern subareas.Evaporation ponds <strong>in</strong> AustraliaThe Sal<strong>in</strong>ity Dra<strong>in</strong>age Strategy of the Murray-Darl<strong>in</strong>g Bas<strong>in</strong> Commission imposes constra<strong>in</strong>tson the amount of river disposal. Export of sal<strong>in</strong>e <strong>dra<strong>in</strong>age</strong> <strong>water</strong> via pipel<strong>in</strong>es to the sea has beenconsidered but studies show that this option is relatively uneconomic compared to other disposaloptions (Leaney et al., 2000). Sal<strong>in</strong>e disposal bas<strong>in</strong>s have been an important measure for thedisposal of <strong>dra<strong>in</strong>age</strong> effluent <strong>and</strong> will rema<strong>in</strong> so. In the Murray-Darl<strong>in</strong>g Bas<strong>in</strong> <strong>in</strong> 1995, 107 bas<strong>in</strong>swere actively used with a total area of more than 15 900 ha, a total storage capacity of morethan 113 million m 3 <strong>and</strong> an annual disposal volume of more than 210 million m 3 /year.The use of regional-scale bas<strong>in</strong>s was a common approach <strong>in</strong> the Murray-Darl<strong>in</strong>g Bas<strong>in</strong>.Regional bas<strong>in</strong>s were developed on the most convenient sites from an eng<strong>in</strong>eer<strong>in</strong>g st<strong>and</strong>po<strong>in</strong>t.This sometimes had detrimental environmental, socio-economic <strong>and</strong> aesthetic impacts. Theseconcerns together with the new op<strong>in</strong>ion that beneficiaries of irrigation should be responsible fortheir own <strong>dra<strong>in</strong>age</strong> <strong>management</strong> led to the development <strong>and</strong> use of local-scale bas<strong>in</strong>s. Thesebas<strong>in</strong>s can be <strong>in</strong> the form of on-farm bas<strong>in</strong>s which are privately owned <strong>and</strong> located on <strong>in</strong>dividualproperties. They can also be privately or authority-owned community bas<strong>in</strong>s shared by a smallgroup of properties. The choice between on-farm or community bas<strong>in</strong>s should consider physical,environmental <strong>and</strong> sociopolitical issues as well as costs. Economic analysis has shown thatthere is generally little difference <strong>in</strong> cost between the two options (S<strong>in</strong>gh <strong>and</strong> Christen, 2000).Therefore, environmental <strong>and</strong> social considerations should outweigh the negligible economicdifferences <strong>in</strong> the choice between on-farm <strong>and</strong> community bas<strong>in</strong>s <strong>in</strong> the Murray-Darl<strong>in</strong>g Bas<strong>in</strong>.


98Dra<strong>in</strong>age <strong>water</strong> disposalDesign considerations for evaporation pondsThe first step <strong>in</strong> the design of an evaporation pond is to determ<strong>in</strong>e the volume of <strong>dra<strong>in</strong>age</strong> <strong>water</strong><strong>in</strong> need of disposal. The volume of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> depends on the l<strong>and</strong> use, climate, irrigationpractice <strong>and</strong> type of <strong>dra<strong>in</strong>age</strong> system. The plann<strong>in</strong>g stage needs to <strong>in</strong>clude an assessment of thesal<strong>in</strong>ity of the <strong>dra<strong>in</strong>age</strong> <strong>water</strong> as well as a full analysis for trace elements, nutrients <strong>and</strong> pesticidesto prevent possible accumulation to toxic levels (Leaney et al., 2000). Trace elements <strong>in</strong> <strong>dra<strong>in</strong>age</strong><strong>water</strong> disposed <strong>in</strong>to the evaporation ponds <strong>in</strong>clude arsenic, boron, molybdenum, selenium, uranium<strong>and</strong> vanadium. The trace element of most concern <strong>in</strong> California for impounded <strong>dra<strong>in</strong>age</strong> <strong>water</strong>sis selenium. The <strong>in</strong>fluent selenium is subjected to a number of reactions such asevapoconcentration, seepage losses, reduction of oxidized species of selenate (Se+6) <strong>and</strong> selenite(Se+4) to selenide (Se-2) as well as elemental selenium (Se0), methylation by microbes <strong>and</strong>plants <strong>and</strong> volatilization as dimethylselenide (DMSe), <strong>and</strong> adsorption of selenite to pond bottoms(Tanji <strong>and</strong> Gao, 1999). Approximately 60 percent of the mass of selenium <strong>in</strong>fluent appears torema<strong>in</strong> <strong>in</strong> the ponded <strong>water</strong>, the balance be<strong>in</strong>g immobilized or lost by the above mechanisms.The hydrologic balance of evaporation ponds is relatively simple. The <strong>in</strong>puts <strong>in</strong>to the pond<strong>in</strong>clude <strong>dra<strong>in</strong>age</strong> <strong>water</strong> from cropped l<strong>and</strong>, ra<strong>in</strong>fall <strong>and</strong>, where applicable, <strong>water</strong> pumped <strong>in</strong>to thepond from a perimeter dra<strong>in</strong> <strong>in</strong>stalled to <strong>in</strong>tercept seepage <strong>water</strong> from the pond. The outputsconsist of evaporation, non-recovered seepage losses <strong>and</strong> transpiration from aquatic vegetation.An example of the hydrology of a typical pond system <strong>in</strong> California is: 1.91 m/year dra<strong>in</strong> <strong>in</strong>fluent;0.022 m/year precipitation; 1.87 m/year evaporation; 0.39 m/year seepage; <strong>and</strong> 0.46 m/year<strong>in</strong>fluent from the perimeter <strong>in</strong>terceptor dra<strong>in</strong> that collects both pond seepage losses <strong>and</strong> shallowground<strong>water</strong>.The required pond area can be calculated on the basis of this hydrologic balance <strong>and</strong> depend<strong>in</strong>gon the depth of <strong>water</strong> layer that is to be ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> the pond. When the sal<strong>in</strong>ity of the <strong>water</strong><strong>in</strong> the evaporation ponds <strong>in</strong>creases, the evaporation rate from the <strong>water</strong> surface decreases as aresult of a decrease <strong>in</strong> <strong>water</strong> vapour pressure. The design of the pond area needs to take thisaspect <strong>in</strong>to account. Evaporation rates <strong>in</strong> ponds have been measured. The pond evaporation canbe estimated us<strong>in</strong>g an empirical correction factor (Y) <strong>and</strong> ETo .(Johnston et al., 1997):E = Y ( ET ) O(21)<strong>in</strong> which Y = 1.3234 - 0.0066 EC for <strong>water</strong> between EC 14 <strong>and</strong> 60 dS/m.Seepage losses from evaporation ponds depend on soil, geohydrological <strong>and</strong> topographicalconditions. Site selection is very important for prevent<strong>in</strong>g excess seepage losses. Depend<strong>in</strong>g onthe hazards that excessive seepage might occur <strong>and</strong> depend<strong>in</strong>g on the environmental regulations,l<strong>in</strong><strong>in</strong>g <strong>and</strong> a seepage collection system may be required <strong>in</strong> order to ensure that there will be nocontam<strong>in</strong>ation of ground<strong>water</strong>, <strong>and</strong> to prevent <strong>water</strong>logg<strong>in</strong>g <strong>in</strong> adjacent areas. The availability ofmaterials should determ<strong>in</strong>e the type of l<strong>in</strong><strong>in</strong>g. Research from Australia has shown that a smallamount of controlled seepage of around 0.5-1.0 mm/d is required to ma<strong>in</strong>ta<strong>in</strong> evaporative disposalcapacity, as evaporation rates decrease substantially under hypersal<strong>in</strong>e conditions (Leaney etal., 2000). This implies that bas<strong>in</strong>s should be located preferably with<strong>in</strong> the dra<strong>in</strong>ed area. Wherethe bas<strong>in</strong> is sited outside the limits of the <strong>dra<strong>in</strong>age</strong> system, it should be located with<strong>in</strong> a specificsalt conta<strong>in</strong>ment area equipped with effective <strong>in</strong>terception <strong>and</strong> recycl<strong>in</strong>g works.For those pond systems deemed to be hazardous to <strong>water</strong>birds, pond operators are requiredto establish alternative <strong>and</strong> compensation habitats. Alternative habitats us<strong>in</strong>g fresh<strong>water</strong> arebuilt with<strong>in</strong> the functional l<strong>and</strong>scape of evaporation ponds to provide year-round habitat to dilute


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 99the diet to the feed<strong>in</strong>g birds. Compensation habitats are located outside the functional l<strong>and</strong>scapeof the evaporation ponds (about 5 km) dur<strong>in</strong>g the breed<strong>in</strong>g season.INJECTION INTO DEEP AQUIFERSDisposal by <strong>in</strong>jection <strong>in</strong>to deep aquifers is a process <strong>in</strong> which <strong>dra<strong>in</strong>age</strong> <strong>water</strong> is <strong>in</strong>jected <strong>in</strong>to awell for placement <strong>in</strong>to a porous geologic formation below the soil surface (Lee, 1994). The oil<strong>and</strong> gas <strong>in</strong>dustries use deep-well <strong>in</strong>jection to dispose of waste br<strong>in</strong>e. In California, the UnitedStates of America, deep-well <strong>in</strong>jection technology has been used for over 60 years for thedisposal of oil field br<strong>in</strong>es. The technology could potentially be applied for the disposal of agricultural<strong>dra<strong>in</strong>age</strong> <strong>water</strong> provided the conditions of the receiv<strong>in</strong>g geologic formation are adequate, thereare no environmental hazards <strong>and</strong> the costs are not prohibitive. The ma<strong>in</strong> environmental concernis leakage from pipes <strong>and</strong> conf<strong>in</strong><strong>in</strong>g aquifers. Dra<strong>in</strong>age effluent can contam<strong>in</strong>ate fresh<strong>water</strong>zones through leakage.The <strong>dra<strong>in</strong>age</strong> <strong>and</strong> aquifer <strong>water</strong> should be compatible, as the mixture should not produceprecipitates, which clog the wells. Furthermore, the receiv<strong>in</strong>g geologic formation should havesufficient porosity <strong>and</strong> thickness to receive the <strong>in</strong>jected <strong>water</strong>. If <strong>water</strong> conta<strong>in</strong><strong>in</strong>g nitrate is<strong>in</strong>jected <strong>in</strong>to aquifers conta<strong>in</strong><strong>in</strong>g <strong>org</strong>anic matter <strong>and</strong> ferrous iron, the growth of nitrate reduc<strong>in</strong>gbacteria might clog the pores of the receiv<strong>in</strong>g formation as they accumulate (Westcot, 1997).The Westl<strong>and</strong>s Water District, California, the United States of America, carried out a prototypedeep-well <strong>in</strong>jection to dispose of up to 4 000 m 3 /d of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> (Johnston et al., 1997). The<strong>dra<strong>in</strong>age</strong> <strong>water</strong> was to be <strong>in</strong> <strong>in</strong>jected <strong>in</strong>to shale <strong>and</strong> s<strong>and</strong> formations 1 554 <strong>and</strong> 2 164 m,respectively, beneath the ground surface. The well was drilled to a total depth of 2 469 m at acost of about US$1 million. The cas<strong>in</strong>g was perforated with 13 perforations per metre fromdepths of 2 245 to 2 344 m <strong>and</strong> from 2 411 to 2 414 m <strong>in</strong> the Mart<strong>in</strong>ez geologic formation for atotal length of perforations of 102 m. Follow<strong>in</strong>g the recovery of some natural formation <strong>water</strong>samples, an <strong>in</strong>jection test was conducted. The fluid <strong>in</strong>jected was irrigation <strong>water</strong> filtered througha 0.5-micron filter <strong>and</strong> treated with 2-percent potassium chloride <strong>and</strong> a chlor<strong>in</strong>e biocide. Thefiltered <strong>and</strong> treated <strong>water</strong> was <strong>in</strong>jected through a 4.75-cm tub<strong>in</strong>g at a rate of 12 litres/s for atotal of 175 000 litres of <strong>water</strong> <strong>in</strong>jected. Then, a 48-hour pressure fall-off test was conductedthat revealed the permeability of the geologic formation was 12 mm/d. This permeability valueis too low to achieve the desired <strong>in</strong>jection rate of 44 litre/s. In spite of the filtration <strong>and</strong> chlor<strong>in</strong>ationof the <strong>in</strong>jected <strong>water</strong>, plugg<strong>in</strong>g of conduct<strong>in</strong>g pores occurred <strong>in</strong> the shale. The United StatesEnvironmental Protection Agency rejected a request for permission to conduct a second <strong>in</strong>jectiontest <strong>in</strong> the s<strong>and</strong>y, more permeable formation above the shale. The Westl<strong>and</strong>s Water Districtab<strong>and</strong>oned this method of disposal.


100Dra<strong>in</strong>age <strong>water</strong> disposal


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 101Chapter 8Treatment of <strong>dra<strong>in</strong>age</strong> effluentNEED FOR DRAINAGE WATER TREATMENTTreat<strong>in</strong>g <strong>dra<strong>in</strong>age</strong> <strong>water</strong> is normally one of the last <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> options to beconsidered. This is due to the high costs <strong>in</strong>volved <strong>and</strong> to uncerta<strong>in</strong>ty about the treatment levelachievable. The treatment of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> should be considered where all other <strong>dra<strong>in</strong>age</strong><strong>water</strong> <strong>management</strong> measures fail to guarantee safe disposal or where it is f<strong>in</strong>ancially attractive.For subsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong> conta<strong>in</strong><strong>in</strong>g very high levels of sal<strong>in</strong>ity, selenium <strong>and</strong> other traceelements, the treatment objectives are: i) reduce salts <strong>and</strong> toxic constituents below hazardouslevels; ii) meet agricultural <strong>water</strong> <strong>management</strong> goals; iii) meet <strong>water</strong> quality objectives <strong>in</strong> surface<strong>water</strong>s; <strong>and</strong> iv) reduce constituent levels below risk levels for wildlife.TREATMENT OPTIONSThe treatment of agricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong> presents a challenge due to the complex chemicalcharacteristics of most <strong>dra<strong>in</strong>age</strong> <strong>water</strong>s (Lee, 1994). Table 23 details the average chemicalquality of subsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong>s disposed <strong>in</strong>to Kesterson Reservoir <strong>in</strong> the San Joaqu<strong>in</strong>Valley as well as those disposed <strong>in</strong>to evaporation ponds. The <strong>dra<strong>in</strong>age</strong> <strong>water</strong>s are sal<strong>in</strong>e <strong>and</strong> ofthe NaCl-Na 2SO 4-type <strong>water</strong>. The <strong>water</strong>s conveyed by the San Luis Dra<strong>in</strong> came from a s<strong>in</strong>glesite <strong>in</strong> Westl<strong>and</strong>s Water District <strong>in</strong> contrast to the evaporation pond <strong>water</strong>s that came from27 sites.TABLE 23Average composition of agricultural tile <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>in</strong> the San Luis Dra<strong>in</strong> (<strong>dra<strong>in</strong>age</strong> <strong>water</strong>sdisposed <strong>in</strong>to evaporation bas<strong>in</strong>s <strong>in</strong> parenthesis)ConstituentConcentrationppmSource: SJVDP, 1990; <strong>and</strong> Chilcott et al., 1993.ConstituentConcentrationSodium 2 230 Boron 14 400 (25 000)Calcium 554 Selenium 325 (16)Magnesium 270 Arsenic 1 (101)Potassium 6 Molybdenum ND (2 817)Alkal<strong>in</strong>ity as CaCO 3 196 Uranium ND (308)Sulphate 4 730 Vanadium ND (22)Chloride 1 480 Strontium 6 400Nitrate 48 Total chromium 19Silica 37 Cadmium


102Treatment of <strong>dra<strong>in</strong>age</strong> effluentThere are numerous waste<strong>water</strong> treatment processes for <strong>in</strong>dustrial <strong>and</strong> urban waste<strong>water</strong><strong>and</strong> for the preparation of dr<strong>in</strong>k<strong>in</strong>g-<strong>water</strong>. Many of them offer potential for the treatment ofagricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong>. Treatment processes for <strong>dra<strong>in</strong>age</strong> <strong>water</strong> can be divided <strong>in</strong>to processesthat reduce the total sal<strong>in</strong>ity of the <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>and</strong> processes that remove specific ions.Methods for the removal of trace elements can be biological, physical <strong>and</strong> chemical.Most desal<strong>in</strong>ization processes also remove trace elements but their costs are often prohibitive.Less costly methods for the removal of trace elements are be<strong>in</strong>g developed. Lee (1994) hasreviewed treatment technologies for <strong>dra<strong>in</strong>age</strong> <strong>water</strong>. The SJVDIP (1999b) has reviewed treatmenttechnologies for remov<strong>in</strong>g selenium from agricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong>. The follow<strong>in</strong>g is a briefsummary of their f<strong>in</strong>d<strong>in</strong>gs.Desal<strong>in</strong>izationThere are numerous desal<strong>in</strong>ization processes <strong>in</strong>clud<strong>in</strong>g ion exchange, distillation, electrodialysis<strong>and</strong> reverse osmosis. Of these processes, reverse osmosis is considered to be the most promis<strong>in</strong>gfor the treatment of agricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong> ma<strong>in</strong>ly due to its comparatively low cost.Reverse osmosis is a process capable of remov<strong>in</strong>g different contam<strong>in</strong>ants <strong>in</strong>clud<strong>in</strong>g dissolvedsalts <strong>and</strong> <strong>org</strong>anics. In reverse osmosis, a <strong>semi</strong>-permeable membrane separates <strong>water</strong> fromdissolved salts <strong>and</strong> other suspended solids. Pressure is applied to the feed-<strong>water</strong>, forc<strong>in</strong>g the<strong>water</strong> through the membrane leav<strong>in</strong>g beh<strong>in</strong>d salts <strong>and</strong> suspended materials <strong>in</strong> a br<strong>in</strong>e stream.The energy consumption of the process depends on the salt concentration of the feed-<strong>water</strong> <strong>and</strong>the salt concentration of the effluent. Depend<strong>in</strong>g on the quality of the <strong>water</strong> to be treated,pretreatment might be crucial to prevent<strong>in</strong>g foul<strong>in</strong>g of the membrane. Figure 44 describes one ofseveral pretreatment reverse osmosis systems studied <strong>in</strong> the San Joaqu<strong>in</strong> Valley. Otherpretreatment steps could be lime treatment along with ion exchange.FIGURE 44Reverse osmosis system with lime-soda pretreatmentSan Luis Dra<strong>in</strong>Lime-sodapretreatment2-3-stagereverseosmosisProduct <strong>water</strong>Br<strong>in</strong>eSource: after CH2M HILL, 1986.Table 24 presents the results of a trial-run reverse osmosis us<strong>in</strong>g the lime-soda soften<strong>in</strong>gpretreatment (CH2M HILL, 1986). The permeate is the product (desalted) <strong>water</strong> <strong>and</strong> theconcentrate is the br<strong>in</strong>e <strong>water</strong>. The results show that TDS can be desalted from 9 800 to 640 ppm,boron from 14.5 to 7.6 ppm, <strong>and</strong> selenium from 325 to 3 ppb <strong>in</strong> a three-stage reverse osmosissystem. The efficiency of removal decl<strong>in</strong>es with stages.The California Department of Water Resources conducted pilot-plant-scale reverse osmosisof sal<strong>in</strong>e <strong>dra<strong>in</strong>age</strong> us<strong>in</strong>g cellulose acetate membranes. The bacterial <strong>and</strong> chemical foul<strong>in</strong>g of themembrane was a major problem. The <strong>dra<strong>in</strong>age</strong> <strong>water</strong> had to be treated with alum, <strong>and</strong> passedthrough a sedimentation pond <strong>and</strong> a chlor<strong>in</strong>ated <strong>and</strong> filtration system. In spite of this level ofpretreatment, the membranes tended to foul due to the precipitation of gypsum <strong>and</strong> calcite. The<strong>dra<strong>in</strong>age</strong> <strong>water</strong>s are saturated with respect to calcite <strong>and</strong> gypsum. This same chemical foul<strong>in</strong>g


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 103TABLE 24Results of a trial-run for a three-stage reverse osmosis system, lime-soda pretreatmentDescriptionTDSppmSodiumppmChloride/nitrateppmSulphateppmBoronppmSeleniumppbInfluent 9 793 2 919 1 550 5 010 14.5 325Stage 1 concentrate 19 346 5 721 3 038 9 970 23.4 650Stage 1 permeate 240 117 62 50 5.4 0Stage 2 concentrate 38 071 13 156 5 924 19 791 38 1 298Stage 2 permeate 614 286 152 150 8.8 1Stage 3 concentrate 73 022 22 107 15 987 38 650 62 2 579Stage 3 permeate 1 480 669 355 396 14.3 3Overall permeate 640 176 155 201 7.6 3Source: CH2M HILL, 1986.problem is be<strong>in</strong>g faced by the Yuma desalt<strong>in</strong>g plant off the Colorado River us<strong>in</strong>g <strong>dra<strong>in</strong>age</strong> <strong>water</strong>sfrom the Wellton-Mohawk irrigation project. The estimated cost of desalt<strong>in</strong>g is more than US$0.81/m 3 , too expensive for irrigated agriculture but possibly affordable for municipalities with fresh<strong>water</strong>shortages. This cost does not <strong>in</strong>clude the <strong>management</strong> <strong>and</strong> disposal of the br<strong>in</strong>e <strong>water</strong>. However,a potential exists for partially treat<strong>in</strong>g the average 10-dS/m-<strong>dra<strong>in</strong>age</strong> <strong>water</strong> to about 2-3 dS/mfor use by agriculture <strong>and</strong> wildlife.Trace element treatmentAs the technology of reverse osmosis is experimental <strong>and</strong> expensive, cheaper methods ofremov<strong>in</strong>g toxic trace elements are be<strong>in</strong>g pursued.Biological processesConventional column reactor systems have been utilized to remove selenium from <strong>dra<strong>in</strong>age</strong><strong>water</strong>s (SJVDIP, 1999b). Selenium is microbially reduced to elemental selenium under anoxic(anaerobic) conditions <strong>in</strong> the presence of <strong>org</strong>anic carbon sources (Owens, 1998).Se(+6) + bacteria + <strong>org</strong>anic carbon Se(+4) Se(0)(soluble selenate) (soluble selenite) (elemental selenium particulates)In the <strong>in</strong>itial study, the biological reactor consisted of a two-stage upflow anaerobic sludgeblanket reactor followed by a fluidized bed reactor. As selenium cannot be reduced while nitratesare present, a key treatment process is the reduction of nitrates prior to enhanc<strong>in</strong>g seleniumreduction. The sludge blanket was seeded with <strong>in</strong>oculum from sludges from ord<strong>in</strong>ary sewagetreatment plants. This system yielded 30 ppb selenium product <strong>water</strong>.A subsequent large-scale pilot study exam<strong>in</strong>ed seven different reactor systems after upflowthrough a conical bottom liquid-gas-solid separator with the addition of methanol as the carbonsource. The conical separator was seeded with granular sludge from a bread-mak<strong>in</strong>g bakery.This first step reduced the average nitrate concentration from 45 to 3 ppm. The <strong>water</strong>s werethen fed to a number of packed bed column reactors. The best susta<strong>in</strong>ed results were about a90-percent removal of selenium from 500 to 50 ppb.Biological treatment normally refers to the use of bacteria <strong>in</strong> eng<strong>in</strong>eered column reactorsystems for the removal or transformation of certa<strong>in</strong> constituents, e.g. <strong>org</strong>anic compounds,


104Treatment of <strong>dra<strong>in</strong>age</strong> effluenttrace elements <strong>and</strong> nutrients (Owens <strong>and</strong> Ochs,1997). However, biological treatment also<strong>in</strong>cludes algal-bacterial treatment processes <strong>and</strong>wetl<strong>and</strong> systems. Much research has focusedon the removal of selenium from <strong>dra<strong>in</strong>age</strong>effluent. Box 12 describes an example of thebasics of an algal-bacterial system for theremoval of selenium (SJVDIP, 1999b).Chemical processesChemical treatment processes refer to the useof chemicals to remove trace elements frompolluted waste<strong>water</strong>. Chemicals are frequentlyused for <strong>in</strong>dustrial waste<strong>water</strong> treatment butare not effective <strong>in</strong> agricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong>due to their often complex chemicalcharacteristics (Lee, 1994). Chemicalprocesses have been developed for thereduction of selenate to elemental selenium bymeans of ferrous hydroxide. Under laboratoryconditions, ferrous hydroxide was able to reduce<strong>and</strong> precipitate selenium by 99 percent <strong>in</strong>30 m<strong>in</strong>. In field studies, although 90 percent ofthe selenate was reduced, the reactor timerequired was up to 6 h. It appeared thatdissolved bicarbonate, oxygen <strong>and</strong> nitrate<strong>in</strong>fluenced the reduction process.Physical processesPhysical processes <strong>in</strong>volve the adsorption ofions on natural <strong>and</strong> synthetic surfaces of activematerials, <strong>in</strong>clud<strong>in</strong>g ion exchange res<strong>in</strong>s. Box13 provides an example of a m<strong>in</strong>i-pilot plantfor the removal of heavy metals.BOX 12: BASICS OF AN ALGAL-BACTERIAL SYSTEM FORTHE REMOVAL OF SELENIUMThe concept of the algal-bacterial seleniumremovalprocess is to grow micro-algae <strong>in</strong> the<strong>dra<strong>in</strong>age</strong> <strong>water</strong> at the expense of nitrate <strong>and</strong>then to utilize the naturally settled algalbiomass as a carbon source for native bacteria.In the absence of oxygen, the bacteria reducethe rema<strong>in</strong><strong>in</strong>g nitrate to nitrogen gas <strong>and</strong>further reduce selenate to <strong>in</strong>soluble selenium.The <strong>in</strong>soluble selenium is then removed fromthe <strong>water</strong> by sedimentation <strong>in</strong> deep ponds<strong>and</strong>, as needed, by dissolved air flotation <strong>and</strong>s<strong>and</strong> filtration. Supplemental carbon sourcessuch as molasses can be employed asreductant <strong>in</strong> addition to algal biomass. Aprototype algal-bacterial selenium-removalsystem reduced the selenium content <strong>in</strong> <strong>water</strong>from 367 ppb (<strong>in</strong>fluent) selenium to 20 ppb(effluent).BOX 13: MINI-PILOT PLANT FOR THE REMOVAL OF HEAVYMETALSHarza Eng<strong>in</strong>eer<strong>in</strong>g Co. tested a pilot-scaletreatment plant <strong>in</strong> 1985. The processes usediron fil<strong>in</strong>gs <strong>in</strong> flow-through beds. The pr<strong>in</strong>ciplewas based on the idea that oxygen couldactivate the surface of the iron, which couldthen adsorb selenium. The test<strong>in</strong>g wasdiscont<strong>in</strong>ued as the beds quickly cementedwith precipitates. The advantage of zero-valentiron is that it can reduce the concentration ofselenium to very low concentrations. Thismethod could be used as a polish<strong>in</strong>g stepfollow<strong>in</strong>g microbial treatments. Where thewaste is anaerobic after microbial treatment,the formation of secondary precipitates ism<strong>in</strong>imized.FLOW-THROUGH ARTIFICIAL WETLANDSFigure 45 shows the layout of a pilot project for remov<strong>in</strong>g selenium by flow-through wetl<strong>and</strong>cells conducted <strong>in</strong> the Tulare Lake bed, a closed bas<strong>in</strong> of the San Joaqu<strong>in</strong> Valley (Tanji <strong>and</strong> Gao,1999). The goal was to remove selenium from <strong>dra<strong>in</strong>age</strong> <strong>water</strong>s to a bird-safe level prior todisposal <strong>in</strong>to evaporation ponds.Tile <strong>dra<strong>in</strong>age</strong> effluent conta<strong>in</strong><strong>in</strong>g about 20-ppb selenium from an adjacent farm was passedthrough a s<strong>and</strong> bed filter system <strong>and</strong> metered <strong>in</strong>to the cells (15.2 x 76 m) with a variety ofsubstrates (vegetation). The <strong>in</strong>flow <strong>water</strong> was measured twice a week by a totaliz<strong>in</strong>g meter.The <strong>water</strong> depth <strong>in</strong> Cells 1-7 was ma<strong>in</strong>ta<strong>in</strong>ed at about 20 cm, <strong>and</strong> outflow was measured by v-


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 105FIGURE 45Layout of pilot-scale constructed wetl<strong>and</strong> experimental plots at the Tulare Lake Dra<strong>in</strong>ageDistrictTLDD flow-throughwetl<strong>and</strong> systemfiltrationtile sump1- Saltmarsh bulrushTLDDsubsurface dra<strong>in</strong>evaporation pond<strong>dra<strong>in</strong>age</strong> <strong>water</strong>supply <strong>water</strong>2- Balticrush3- Open4- Smooth cord grassBulrush/Widgeon grass/Bulrush -85- Rabbitsfoot grassTule-Widgeon grass-Cattail -96- SaltgrassCattail -107- CattailSource: Tanji <strong>and</strong> Gao, 1999.notch weir. Cells 8-10 had variable <strong>water</strong> depths of about 20 cm, 60 cm where widgeon grass(Ruppia) was grown. The target residence time for the flow<strong>in</strong>g <strong>water</strong>s was 7 days for Cells 1-7, 21 days <strong>in</strong> Cells 8 <strong>and</strong> 9, <strong>and</strong> 14 days <strong>in</strong> Cell 10. These residence times were selected afterprelim<strong>in</strong>ary runs for optimal removal. A residence time of three days was too short for seleniumremoval <strong>and</strong> a residence time of more than 21 days did not <strong>in</strong>crease selenium removal. Seepagerates <strong>in</strong> the cells were about 1 cm/d <strong>and</strong> evapotranspiration slightly greater than ETo (annualvalue about 1 600 mm).Table 25 presents the performance results for the year 1999 with average weekly <strong>water</strong>selenium of 18.2 ppb, over 90 percent <strong>in</strong> the selenate form (Se+6). The residence times achievedwere reasonably close to target values consider<strong>in</strong>g the variability <strong>in</strong> monthly ETo. The seleniumconcentration <strong>in</strong> the outflow <strong>water</strong>s varied from 4.6 to 12.3 ppb. The ratio of outflow to <strong>in</strong>flowTABLE 25Performance of the wetl<strong>and</strong> cells <strong>in</strong> remov<strong>in</strong>g selenium from <strong>dra<strong>in</strong>age</strong> <strong>water</strong> with 18.2-ppb seleniumWetl<strong>and</strong> cellResidencetime daysOutflowselenium ppbOutflow/<strong>in</strong>flowselenium conc.ratioOutflow/<strong>in</strong>flowselenium mass ratio1-Saltmarsh bulrush 10.3 6.1 0.33 0.072-Baltic rush 7.4 8.6 0.45 0.543-Open 7.5 12.3 0.68 0.574-Smooth cordgrass 9.7 6.7 0.37 0.245-Rabbitsfoot grass 8.4 10.3 0.55 0.116-Saltgrass 9.2 4.6 0.25 0.037-Cattail, shallow 7.0 11.6 0.63 0.598-Bulrush/Ruppia/Bulrush 24.1 10.5 0.57 0.219-Tule/Ruppia/Cattail 22.3 9.6 0.53 0.3010-Cattail, deep 17.9 6.4 0.35 0.21Source: Tanji <strong>and</strong> Gao, 1999.


106Treatment of <strong>dra<strong>in</strong>age</strong> effluentselenium concentration ranged from 0.25 to 0.68 (a small ratio <strong>in</strong>dicates high selenium removal).The ratio of outflow to <strong>in</strong>flow selenium on a mass basis ranged from 0.07 to 0.57 or 93 to43 removal. The cell with open <strong>water</strong> had reduced selenium because algae <strong>and</strong> microbes naturallypopulated the cell <strong>and</strong> contributed to some selenium removal. In terms of performance, the ratiobased on mass of selenium is a good <strong>in</strong>dicator. However, <strong>in</strong> terms of potential impact on birds,the outflow concentration <strong>and</strong> ratio based on concentration are better <strong>in</strong>dicators.The control volume for each cell is the st<strong>and</strong><strong>in</strong>g <strong>water</strong>, plants <strong>and</strong> the rootzone. Thus, themass flux balance on selenium for each cell is:∆M∆tThe righth<strong>and</strong>-side terms of Equation 22 are mass fluxes, <strong>and</strong> mass (M Se) is def<strong>in</strong>ed as theproduct of selenium concentration <strong>and</strong> <strong>water</strong> volume, except for the volatilization term. Water<strong>in</strong>flow <strong>and</strong> outflow was monitored twice a week, <strong>water</strong> seepage estimated from the differencefrom <strong>in</strong>flow <strong>and</strong> outflow <strong>and</strong> ET cropfrom ETo * Kc, where Kc is the crop coefficient. Volatilizationof selenium by microbes <strong>and</strong> plants was monitored monthly. The ∆M/∆t is the mass flux ofselenium accumulat<strong>in</strong>g <strong>in</strong> the control volume (cell) consist<strong>in</strong>g of the sediments, <strong>org</strong>anic detritalmatter, fallen litter, st<strong>and</strong><strong>in</strong>g <strong>water</strong> <strong>and</strong> st<strong>and</strong><strong>in</strong>g crop.Figure 46 presents asummary of the mass balanceon selenium <strong>in</strong> the tenwetl<strong>and</strong>s cells from July1997 to September 2000. Thevalues reported are based onthe percentage of the mass ofselenium <strong>in</strong> the <strong>in</strong>flow <strong>water</strong>.On average, about 35 percentof the mass <strong>in</strong>flow of seleniumrema<strong>in</strong>ed <strong>in</strong> the treatedoutflow <strong>water</strong>, with smallerpercentages lost throughseepage <strong>and</strong> volatilizationlosses.The rema<strong>in</strong>der of theselenium accumulated <strong>in</strong> theSe= MSe, <strong>in</strong>flow− MSe,outflow− MSe,seepage−Percentage of total Se <strong>in</strong>put403530252015105035.33.6cell as selenium present <strong>in</strong> the sediments, <strong>org</strong>anic detrital matter, fallen litter, st<strong>and</strong><strong>in</strong>g <strong>water</strong> <strong>and</strong>st<strong>and</strong><strong>in</strong>g plants. The values reported are the mass of selenium found <strong>in</strong> the cells <strong>in</strong> September2000. About 11 percent of the total selenium could not be accounted for due to errors <strong>in</strong> sampl<strong>in</strong>g<strong>and</strong> monitor<strong>in</strong>g over a four-year period, <strong>and</strong> the difficulties of analys<strong>in</strong>g for reduced forms ofselenium. The s<strong>in</strong>k mechanisms remov<strong>in</strong>g selenium from the flood<strong>water</strong> were: adsorption ofselenite (Se+4) to the m<strong>in</strong>eral sediments ma<strong>in</strong>ly <strong>in</strong> the top 10 cm or so; selenium immobilized <strong>in</strong>toelemental selenium (Se0) due to reduced conditions <strong>in</strong> the <strong>org</strong>anic detrital layer; <strong>and</strong> <strong>org</strong>anicforms of selenium (Se-2) tied up with the detritus <strong>and</strong> fallen litter. The pr<strong>in</strong>cipal removalmechanisms were adsorption <strong>and</strong> immobilization <strong>in</strong>to elemental selenium <strong>and</strong> <strong>org</strong>anic selenium.The recommended selenium <strong>water</strong> st<strong>and</strong>ard to protect <strong>water</strong>birds is 2 ppb. None of thesecells achieved that level of remediation but many cells certa<strong>in</strong>ly will reduce selenium toxicity.21.6M11.515.01.0 0.5 0.4Outflow Seepage Volatilization Sediment Organic(0-20 cm) detrituslayerSe,volatilizationFallenlitterSt<strong>and</strong><strong>in</strong>gplantsInitial estimate on Se mass balance for 1997-2000St<strong>and</strong><strong>in</strong>g<strong>water</strong>11.1(22)FIGURE 46Initial estimate on mass balance of selenium <strong>in</strong> ten flow-throughwetl<strong>and</strong> cells, 1997-2000Unaccountedlosses


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 107However, outflow <strong>water</strong>s from these cells conta<strong>in</strong> <strong>org</strong>anic selenium (17-33 percent of the totalselenium), which is more toxic than <strong>in</strong><strong>org</strong>anic forms to wildlife. These <strong>and</strong> other results arecurrently be<strong>in</strong>g reviewed to determ<strong>in</strong>e whether selenium removal flow-through wetl<strong>and</strong> cells isa viable treatment optionEVALUATION AND SELECTION OF TREATMENT OPTIONSThe first steps <strong>in</strong> the selection of any <strong>dra<strong>in</strong>age</strong> treatment process are: i) def<strong>in</strong>e the problem; ii)determ<strong>in</strong>e the reasons for the required treatment; <strong>and</strong> iii) determ<strong>in</strong>e what is to be achieved. Thema<strong>in</strong> reason for opt<strong>in</strong>g for <strong>dra<strong>in</strong>age</strong> <strong>water</strong> treatment is normally the desire to reuse the <strong>dra<strong>in</strong>age</strong>effluent or to conform to regulatory disposal requirements. For both purposes, specific <strong>water</strong>quality criteria apply.In order to make a prelim<strong>in</strong>ary selection of suitable treatment processes, it is necessary thatsufficient data be available. These data consist of historical data on the chemical constituents ofthe <strong>dra<strong>in</strong>age</strong> <strong>water</strong>, seasonal flow variations <strong>and</strong> variations <strong>in</strong> the concentrations of the constituentsof concern. Once comb<strong>in</strong>ed with <strong>in</strong>formation on the targeted quality of the treated effluent, it isthen possible to shortlist <strong>dra<strong>in</strong>age</strong> treatment processes that are theoretically suitable.The technical capability of the treatment process is an important factor <strong>in</strong> the selection of atreatment technology. However, it is important to consider economic, f<strong>in</strong>ancial, social <strong>and</strong><strong>in</strong>stitutional criteria <strong>in</strong> order to ensure the susta<strong>in</strong>ability of the treatment facilities.


108Treatment of <strong>dra<strong>in</strong>age</strong> effluent


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas109Part IISummaries of case studies from CentralAsia, Egypt, India, Pakistan <strong>and</strong> theUnited States of America


110 Part I – Framework <strong>and</strong> technical guidel<strong>in</strong>es


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 111Summaries of case studiesDRAINAGE WATER MANAGEMENT IN THE ARAL SEA BASINBy V. Dukhovny, K. Yakubov, A. Usmano <strong>and</strong> M. YakubovSummaryThe Aral Sea Bas<strong>in</strong> is located <strong>in</strong> Central Asia <strong>and</strong> covers an area of 154.9 million ha. Underfarm<strong>in</strong>g conditions characterized by high evaporation <strong>and</strong> low precipitation, most crops areirrigated. The irrigated area covered 7.9 million ha <strong>in</strong> 1999. The ma<strong>in</strong> crops grown under irrigationare cotton, rice, wheat, maize <strong>and</strong> fodder crops.Water resources <strong>in</strong> the region consist of renewable surface <strong>and</strong> ground<strong>water</strong> as well asreturn flows <strong>in</strong> the form of agricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>and</strong> waste<strong>water</strong>. The two major rivers <strong>in</strong>the bas<strong>in</strong> are the Amu Darya River <strong>in</strong> the south <strong>and</strong> Syr Darya River <strong>in</strong> the north. The totalmean annual river runoff is 116 000 million m 3 . The annual amount of ground<strong>water</strong> that can besubtracted without damage is 13 100 million m 3 . Water use <strong>in</strong> the Aral Sea Bas<strong>in</strong> ranges between110 000 million <strong>and</strong> 117 000 million m 3 annually depend<strong>in</strong>g on the actual <strong>water</strong> availability. Theground<strong>water</strong> abstracted is about 10 000 million m 3 per year. On average, the agriculture sectoraccounts for 95 percent of all <strong>water</strong> withdrawals.Each year about 5 000 million m 3 of <strong>water</strong> reaches the Aral Sea, compared with54 000 million m 3 before the large-scale expansion of irrigation. This has led to the gradual dry<strong>in</strong>gup of the Aral Sea, which has had severe adverse effects on the region’s environment, health<strong>and</strong> economy. It has been estimated that at least 73 000 million m 3 of <strong>water</strong> would have to bedischarged to the Aral Sea each year for a period of at least 20 years <strong>in</strong> order to restore it to its1960 level of 53 m above sea level. The riparian states consider this target to be unrealistic.Proposals have been made to restore part of the Aral Sea to a level of 38-40 m above sea level,requir<strong>in</strong>g an <strong>in</strong>flow of at least 6 000-8 000 million m 3 .Low irrigation efficiencies have resulted <strong>in</strong> ris<strong>in</strong>g ground<strong>water</strong> levels <strong>and</strong> secondary soilsal<strong>in</strong>ization. Nearly half of the irrigated l<strong>and</strong>s are affected by sal<strong>in</strong>ity. Salt balances show thatespecially <strong>in</strong> dry years <strong>in</strong> the middle <strong>and</strong> lower reaches of the Amu Darya River salt accumulationtakes place amount<strong>in</strong>g to 0.6-10 tonnes/ha annually. In the lower reaches, even <strong>in</strong> wet years saltaccumulation amounts to 8 tonnes/ha annually. For the Syr Darya Bas<strong>in</strong> this phenomena can beobserved <strong>in</strong> its middle reaches with an annual salt accumulation of 5.3 tonnes/ha. In addition tosal<strong>in</strong>ity, on 30 percent of the irrigated l<strong>and</strong>s shallow ground<strong>water</strong> poses a major problem foragricultural production. To combat these problems, a collector <strong>dra<strong>in</strong>age</strong> network has beendeveloped on 4.45 million ha. With<strong>in</strong> this area, 1.8 million ha have been equipped with horizontalor vertical subsurface dra<strong>in</strong>s. The disposal of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> causes considerable problems <strong>in</strong>terms of downstream <strong>water</strong> quality. About 92 percent of the total return flow consists of agricultural<strong>dra<strong>in</strong>age</strong> <strong>water</strong>. Most of this <strong>water</strong>, about 20 000 million m 3 /year, returns <strong>in</strong>to the river systems


112Summaries of case studies<strong>and</strong> a slightly smaller part, about 15 million m 3 /year, is diverted to desert s<strong>in</strong>ks. In total,137 million tonnes of salt are discharged annually together with agricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong>. Ofthis total, 81 million tonnes were orig<strong>in</strong>ally present <strong>in</strong> the irrigation <strong>water</strong> <strong>and</strong> 56 million tonnesorig<strong>in</strong>ate from the mobilization of salts from the subsoil.The guid<strong>in</strong>g pr<strong>in</strong>ciple <strong>in</strong> the plann<strong>in</strong>g <strong>and</strong> <strong>management</strong> of <strong>water</strong> resources <strong>in</strong> the Aral SeaBas<strong>in</strong> is to set targets for <strong>water</strong> use <strong>and</strong> conservation, <strong>and</strong> to establish mechanisms to reachthese targets. A wide range of measures has been implemented to decrease the losses fromirrigated areas (<strong>in</strong>clud<strong>in</strong>g replac<strong>in</strong>g cotton with wheat, which requires less <strong>water</strong>). Extensiveresearch has been undertaken to establish practices that reduce application, conveyance <strong>and</strong>operational losses. Research has shown that application efficiencies can be improved by furrowlevell<strong>in</strong>g <strong>and</strong> reschedul<strong>in</strong>g the amount <strong>and</strong> tim<strong>in</strong>g of irrigation <strong>water</strong> applications. One of thema<strong>in</strong> reasons for the present <strong>water</strong>logg<strong>in</strong>g <strong>and</strong> sal<strong>in</strong>ity problems is the high irrigation normsadopted <strong>in</strong> the past. Apply<strong>in</strong>g a larger number of irrigation turns with smaller amounts of <strong>water</strong><strong>in</strong>creases the efficiency. However, research results have not led to large changes <strong>in</strong> irrigationpractices. The large-scale adoption of research results requires an effective extension service.Another obstacle is that the <strong>in</strong>frastructure <strong>and</strong> irrigation schedul<strong>in</strong>g on former collective farmsdo not always allow <strong>in</strong>dividual farmers to apply the amounts of <strong>water</strong> that would be most efficient.In addition to on-farm losses, high distribution losses are a major concern. Follow<strong>in</strong>g the breakupof the former collective farms, new allocation <strong>and</strong> schedul<strong>in</strong>g rules have yet to come <strong>in</strong>to existence.The establish<strong>in</strong>g of <strong>water</strong> users associations could help reduce distribution losses with<strong>in</strong> theformer collective farms. However, such reductions can only be expected if irrigation supplyfrom higher levels also improves.Dra<strong>in</strong>age <strong>water</strong> use for irrigated agriculture <strong>in</strong> its place of orig<strong>in</strong> or <strong>in</strong> adjacent areas is oneof the options for reduc<strong>in</strong>g the disposal problems <strong>in</strong> the Aral Sea Bas<strong>in</strong>. For the Central Asianconditions, a <strong>water</strong> quality classification has been developed for the use of sal<strong>in</strong>e <strong>water</strong> <strong>and</strong>conditions for use <strong>in</strong> relation to its sal<strong>in</strong>ity <strong>and</strong> chemical composition. A soil classification for theuse of sal<strong>in</strong>e <strong>water</strong> has also been proposed. It is estimated that <strong>dra<strong>in</strong>age</strong> <strong>water</strong> use can be<strong>in</strong>creased to up to 25 percent of the annual <strong>dra<strong>in</strong>age</strong> flow <strong>in</strong> the Aral Sea Bas<strong>in</strong>, compared withthe current 11 percent. In addition, agricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong> can be reused <strong>in</strong> wetl<strong>and</strong>s <strong>and</strong>biodiversity development.Along the Amu Darya River, desert depressions are found <strong>in</strong> which <strong>dra<strong>in</strong>age</strong> effluent isdisposed <strong>and</strong> left for evaporation. These desert s<strong>in</strong>ks or <strong>dra<strong>in</strong>age</strong> lakes are of various sizes. Thispractice is a feasible alternative to disposal <strong>in</strong>to the river. Moreover, it avoids an <strong>in</strong>crease <strong>in</strong>m<strong>in</strong>eralization of the river. Specific forms of flora <strong>and</strong> fauna have become established aroundthese lakes, <strong>and</strong> fisheries may become a possibility. The ma<strong>in</strong> problem is that most lakes alongthe Amu Darya River have reached their maximum capacity. If the <strong>in</strong>flow <strong>in</strong>to the lakes is notcontrolled, there is a risk that the lakes will overflow <strong>and</strong> flood the surround<strong>in</strong>g areas.There have been plans to construct an outfall dra<strong>in</strong> to the Aral Sea s<strong>in</strong>ce the 1980s. Thisdra<strong>in</strong> would run parallel to the Amu Darya River for 900 km. Upon its completion, m<strong>in</strong>eralizationlevels <strong>in</strong> the river could be ma<strong>in</strong>ta<strong>in</strong>ed below 1 g/litre at all times. The dra<strong>in</strong> would collect<strong>dra<strong>in</strong>age</strong> <strong>water</strong> from an area exceed<strong>in</strong>g 1 million ha. Construction work commenced <strong>in</strong> theearly 1990s. However, due to a lack of funds, work stopped <strong>in</strong> 1994 with only 20 percent of thedra<strong>in</strong> completed.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 113DRAINAGE WATER REUSE AND DISPOSAL: A CASE STUDY FROM THE NILE DELTA, EGYPTBy N.C. KielenSummaryThe Nile Delta <strong>in</strong> northern Egypt starts north of Cairo where the Nile River splits <strong>in</strong>to twobranches, the Domitta <strong>and</strong> Rozetta. Egypt’s cultivated l<strong>and</strong> amounted to 3.3 million ha <strong>in</strong> 1994,nearly all of it irrigated. In the absence of effective ra<strong>in</strong>fall, the country’s <strong>water</strong> resourcesconsist of: surface <strong>water</strong> from the Nile River; shallow <strong>and</strong> deep ground<strong>water</strong>; <strong>and</strong> <strong>dra<strong>in</strong>age</strong><strong>water</strong>. The ma<strong>in</strong> source of <strong>water</strong> <strong>in</strong> Egypt is the Nile River. The 1959 agreement with Sudanallocates 55 500 million m 3 of the Nile discharge per year to Egypt. The annual recharge to theground<strong>water</strong> <strong>in</strong> the Nile Valley <strong>and</strong> Nile Delta is estimated to be between 5 600 million m 3 <strong>and</strong>6 300 million m 3 .The gross <strong>water</strong> use <strong>in</strong> the mid-1990s was about 60 300 million m 3 per year, of which51 500 million m 3 or 85 percent was extracted for irrigation purposes. The M<strong>in</strong>istry of WaterResources <strong>and</strong> Irrigation (MWRI) expects irrigation dem<strong>and</strong> to <strong>in</strong>crease to 61 500 million m 3per year by 2025. The projected total <strong>water</strong> dem<strong>and</strong> cannot be met by develop<strong>in</strong>g new <strong>water</strong>resources. Besides <strong>in</strong>creas<strong>in</strong>g <strong>water</strong> use efficiency, <strong>dra<strong>in</strong>age</strong> <strong>water</strong> reuse is the most promis<strong>in</strong>gimmediate <strong>and</strong> economically attractive option to make more <strong>water</strong> available for agriculture. Inthe 1980s, the reuse of agricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong> became a policy to augment Egypt’s limitedfixed fresh<strong>water</strong> resources <strong>and</strong> to close the gap between supply <strong>and</strong> dem<strong>and</strong>.Reuse is centrally <strong>org</strong>anized with the pump<strong>in</strong>g of <strong>water</strong> from the ma<strong>in</strong> dra<strong>in</strong>s <strong>in</strong>to the ma<strong>in</strong>canals. In 1996/97, the amount of <strong>water</strong> pumped at the reuse mix<strong>in</strong>g stations was 4 400 million m 3with an average sal<strong>in</strong>ity of 1.8 dS/m. The total quantity of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> released to theMediterranean Sea <strong>and</strong> coastal lakes was 12 400 million m 3 with an average sal<strong>in</strong>ity of 4.2 dS/m. The MWRI has committed another 3 000 million m 3 of the <strong>dra<strong>in</strong>age</strong> <strong>water</strong> for reuse with<strong>in</strong>the new reclamation areas of the El Salam Canal <strong>and</strong> Umoum Dra<strong>in</strong> projects. Another1 000 million m 3 of the <strong>dra<strong>in</strong>age</strong> <strong>water</strong> will be reused <strong>in</strong> the near future to irrigate newly reclaimedl<strong>and</strong>s <strong>in</strong> the Kalapsho area <strong>in</strong> the Middle Delta. Therefore, the volume of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> officiallyreused for irrigation is expected to <strong>in</strong>crease to 8 000 million m 3 per year <strong>in</strong> the near future.Farmers also use <strong>dra<strong>in</strong>age</strong> <strong>water</strong> directly by pump<strong>in</strong>g it from dra<strong>in</strong>s close to their fields. Thisis termed unofficial reuse. Estimates of the amount of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> unofficially used forirrigation range from 2 800 million m 3 to 4 000 million m 3 per year. Unofficial reuse <strong>in</strong> illegal ricefields <strong>in</strong> the Bahr Hadus area is of concern to the MWRI as it competes with the El SalamCanal <strong>dra<strong>in</strong>age</strong> diversion.A central issue <strong>in</strong> <strong>water</strong> resource <strong>management</strong> <strong>in</strong> Egypt is how much of the annual <strong>dra<strong>in</strong>age</strong>discharge can be reused. In theory, 13 300 million m 3 of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> with a sal<strong>in</strong>ity of lessthan 4.7 dS/m is available for reuse. This amount is equivalent to 84 percent of the generated<strong>dra<strong>in</strong>age</strong> <strong>in</strong> 1993/94. Tak<strong>in</strong>g leach<strong>in</strong>g requirements <strong>and</strong> deteriorat<strong>in</strong>g <strong>dra<strong>in</strong>age</strong> <strong>water</strong> quality dueto municipal <strong>and</strong> <strong>in</strong>dustrial pollution <strong>in</strong>to consideration, the total estimated reuse potential is9 700 million m 3 with a maximum sal<strong>in</strong>ity of 3.5 dS/m, of which 8 000 million m 3 can be usedeffectively. This is 5 000 million m 3 more than the reuse level <strong>in</strong> 1993/94.The Northern Lakes located adjacent to the Mediterranean Sea, compris<strong>in</strong>g lakes Maruit,Edko, Burrulus <strong>and</strong> Manzala, are economically important as they support a large fishery <strong>and</strong>many fish farms. For cont<strong>in</strong>ued fish production, the sal<strong>in</strong>ity levels <strong>in</strong> the lakes should be ma<strong>in</strong>ta<strong>in</strong>edbetween 5.5 <strong>and</strong> 6.25 dS/m. Based on ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g these sal<strong>in</strong>ity levels, the <strong>dra<strong>in</strong>age</strong> outflow to


114Summaries of case studiesLake Manzala <strong>and</strong> Lake Edko can be reduced by a maximum of 50 percent of the outflow level<strong>in</strong> 1993/94. The outflow to Lake Burrulus is already on the low side <strong>and</strong> cannot be reduced anyfurther. The additional <strong>dra<strong>in</strong>age</strong> reuse potential based on susta<strong>in</strong>ed fresh<strong>water</strong> lake fisheries is4 000 million m 3 per year, which is 1 000 million m 3 less than the reuse potential based onma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a favourable salt balance <strong>in</strong> the Nile Delta.The official strategy for <strong>dra<strong>in</strong>age</strong> <strong>water</strong> reuse has not caused major <strong>in</strong>crease <strong>in</strong> soil sal<strong>in</strong>itylevels on a large scale. In terms of ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a favourable salt balance <strong>in</strong> the Nile Delta,<strong>dra<strong>in</strong>age</strong> reuse <strong>in</strong> Egypt has been successful. Factors that have contributed to a susta<strong>in</strong>ableimplementation of reuse are that <strong>dra<strong>in</strong>age</strong> has been implemented on 90 percent of the irrigatedl<strong>and</strong>s, <strong>and</strong> that reused <strong>dra<strong>in</strong>age</strong> <strong>water</strong> after mix<strong>in</strong>g with fresh<strong>water</strong> has a low sal<strong>in</strong>ity content.Sal<strong>in</strong>ity levels of the <strong>water</strong> <strong>in</strong> the ma<strong>in</strong> dra<strong>in</strong>s <strong>in</strong>crease from south to north, which is the generalflow direction. Therefore, <strong>dra<strong>in</strong>age</strong> <strong>water</strong> with favourable sal<strong>in</strong>ity levels is <strong>in</strong>tercepted for reusewhile <strong>dra<strong>in</strong>age</strong> <strong>water</strong> with a high sal<strong>in</strong>ity content is disposed <strong>in</strong> the coastal lakes <strong>and</strong> MediterraneanSea. However, soil sal<strong>in</strong>ity levels might be high locally especially <strong>in</strong> tail end areas where irrigation<strong>water</strong> is <strong>in</strong>adequate <strong>and</strong> ground<strong>water</strong> sal<strong>in</strong>ity is high.S<strong>in</strong>ce the 1990s, pollution of the dra<strong>in</strong>s as a result of large-scale urbanization <strong>and</strong><strong>in</strong>dustrialization has received <strong>in</strong>creased attention. Due to the <strong>in</strong>creas<strong>in</strong>g deterioration of <strong>water</strong>quality <strong>in</strong> the ma<strong>in</strong> dra<strong>in</strong>s <strong>and</strong> the <strong>in</strong>creas<strong>in</strong>g concern about how to manage unofficial reuse of<strong>dra<strong>in</strong>age</strong> <strong>water</strong>, it appeared that it would be difficult to exp<strong>and</strong> official reuse. The MWRI explorednew opportunities for <strong>dra<strong>in</strong>age</strong> <strong>water</strong> reuse. Between the centralized official reuse <strong>and</strong> thelocalized unofficial reuse, there is the option of captur<strong>in</strong>g <strong>dra<strong>in</strong>age</strong> <strong>water</strong> from branch dra<strong>in</strong>s <strong>and</strong>pump<strong>in</strong>g it <strong>in</strong>to the branch canals at their <strong>in</strong>tersections. This level of reuse is termed <strong>in</strong>termediatereuse. It offers two ma<strong>in</strong> advantages. First, relatively good-quality <strong>dra<strong>in</strong>age</strong> <strong>water</strong> is capturedbefore discharg<strong>in</strong>g <strong>in</strong>to the ma<strong>in</strong> dra<strong>in</strong>s where it is lost to pollution. Second, with the poor level ofthe current delivery system, <strong>water</strong> shortages often occur at the tail end of canals. At <strong>in</strong>termediatelevel, <strong>dra<strong>in</strong>age</strong> <strong>water</strong> is pumped <strong>in</strong>to the tail end of the branch canals, so mak<strong>in</strong>g <strong>water</strong> availableto <strong>water</strong> shortage areas.Two alternative modes of reuse have been tested on an experimental basis. The first <strong>in</strong>volvedthe application of fresh<strong>water</strong> separately from <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>in</strong> the so-called cyclic mode. Theother option tested was deficit irrigation <strong>in</strong> which irrigation was withheld dur<strong>in</strong>g a certa<strong>in</strong> period.In this period, the crops took up shallow ground<strong>water</strong> to satisfy their <strong>water</strong> requirements. Thisstrategy seemed to offer considerable scope <strong>in</strong> <strong>water</strong> shortage areas. Additional reportedadvantages are: it saves on eng<strong>in</strong>eer<strong>in</strong>g <strong>and</strong> energy costs for pump<strong>in</strong>g; it avoids farmers hav<strong>in</strong>gto come <strong>in</strong>to contact with contam<strong>in</strong>ated <strong>water</strong>; it prevents the application of sal<strong>in</strong>e <strong>water</strong> to theupper rootzone layers; <strong>and</strong> it reduces nitrate pollution of <strong>dra<strong>in</strong>age</strong> effluent. Leach<strong>in</strong>g should beapplied periodically to guarantee long-term susta<strong>in</strong>able sal<strong>in</strong>ity levels. The alternative <strong>dra<strong>in</strong>age</strong>reuse strategies tested yielded reasonable results <strong>in</strong> terms of soil sal<strong>in</strong>ity <strong>and</strong> crop yields.DRAINAGE WATER REUSE AND DISPOSAL IN NORTHWEST INDIABy N.K. TyagiSummaryNorthwest India encompasses two major river bas<strong>in</strong>s (the Indus <strong>and</strong> the Ganges) <strong>and</strong> lies <strong>in</strong> thestates of Punjab (south), Haryana <strong>and</strong> Rajasthan (northeast <strong>and</strong> northwest). Although it is a<strong>water</strong> deficient region, the <strong>in</strong>troduction of canal irrigation has reduced the gap between supply


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 115<strong>and</strong> potential dem<strong>and</strong> to a certa<strong>in</strong> extent. Irrigation is the ma<strong>in</strong>stay of agriculture <strong>in</strong> this area. Asirrigation development took place without the parallel development of <strong>dra<strong>in</strong>age</strong>, <strong>water</strong> <strong>and</strong> saltaccumulation has occurred <strong>in</strong> most canal comm<strong>and</strong> areas. Sal<strong>in</strong>ity has already affected an areaof 1 million ha. This area might exp<strong>and</strong> to more than 3 million ha <strong>in</strong> the next 20 to 30 yearsunless remedial measures are taken.In Punjab <strong>and</strong> Haryana, surface dra<strong>in</strong>s were constructed <strong>and</strong> ground<strong>water</strong> development <strong>and</strong>flood control were <strong>in</strong>itiated <strong>in</strong> order to overcome <strong>water</strong>logg<strong>in</strong>g <strong>and</strong> sal<strong>in</strong>ity problems. In areaswhere surface dra<strong>in</strong>s do not have a natural <strong>dra<strong>in</strong>age</strong> outlet, low-head high-discharge pumpsdispose the <strong>dra<strong>in</strong>age</strong> effluent <strong>in</strong>to major canal systems. Horizontal subsurface <strong>dra<strong>in</strong>age</strong> hasbeen developed on a small scale <strong>in</strong> the region. Vertical <strong>dra<strong>in</strong>age</strong> <strong>in</strong> the form of shallow tubewellsis widespread throughout the region. The density of the tubewells varies with the ground<strong>water</strong>quality <strong>and</strong> recharge. In areas located <strong>in</strong> the sal<strong>in</strong>e ground<strong>water</strong> zones, the annual ground<strong>water</strong>recharge from the extensive canal network cont<strong>in</strong>ues to exceed ground<strong>water</strong> abstraction. As aresult, the rise <strong>in</strong> the <strong>water</strong> table <strong>and</strong> subsequent sal<strong>in</strong>ization has cont<strong>in</strong>ued <strong>in</strong> these areas. Ifnational food security is to be ensured, this problem needs to be addressed. Efforts to date haveconsisted of l<strong>in</strong><strong>in</strong>g irrigation channels up to <strong>water</strong>course level <strong>and</strong> s<strong>in</strong>k<strong>in</strong>g public tubewells forirrigation. Water test<strong>in</strong>g facilitates have been improved <strong>and</strong> the technology for the use of tubewell<strong>water</strong> has been dissem<strong>in</strong>ated to farmers.The reuse of sal<strong>in</strong>e effluents is an important option for Northwest India as it could supplementscarce irrigation <strong>water</strong> supplies <strong>and</strong> also help to alleviate disposal problems. Reuse can takeplace by apply<strong>in</strong>g the <strong>dra<strong>in</strong>age</strong> <strong>water</strong> directly to the crop, blend<strong>in</strong>g it with canal <strong>water</strong> <strong>and</strong> us<strong>in</strong>git <strong>in</strong>termittently with canal <strong>water</strong>. The last form of reuse is most common for private tubewell<strong>water</strong> use as farmers receive canal <strong>water</strong> for only a few hours per week. The scope for reuseis highest dur<strong>in</strong>g the w<strong>in</strong>ter season when evaporative dem<strong>and</strong>s are low <strong>and</strong> the <strong>in</strong>itial soil sal<strong>in</strong>ityis low due to the leach<strong>in</strong>g which occurs dur<strong>in</strong>g the monsoon ra<strong>in</strong>s between June <strong>and</strong> September.Dur<strong>in</strong>g the w<strong>in</strong>ter season, the soil sal<strong>in</strong>ity will <strong>in</strong>crease slowly. When summer starts, the cropsare at maturity stage <strong>and</strong> are able to tolerate higher levels of sal<strong>in</strong>ity. The subsequent monsoonra<strong>in</strong>s will leach the salts that have accumulated dur<strong>in</strong>g the w<strong>in</strong>ter <strong>and</strong> early summer. If themonsoon ra<strong>in</strong>s are not sufficient, a heavy pre-irrigation might be given to ensure that the sal<strong>in</strong>ityis reduced to acceptable levels for a good germ<strong>in</strong>ation of the subsequent w<strong>in</strong>ter crop.In addition to <strong>dra<strong>in</strong>age</strong> <strong>water</strong> reuse, shallow <strong>water</strong> table <strong>management</strong> is an importantmechanism for the use of soil <strong>water</strong> <strong>in</strong> l<strong>and</strong>s provided with <strong>dra<strong>in</strong>age</strong>. Experiments showed thaton a s<strong>and</strong>y loam soil with a <strong>water</strong> table at a depth of 1.7 m <strong>and</strong> with a sal<strong>in</strong>ity of 8.7 dS/m, the<strong>water</strong> table contributed up to 50 percent of the <strong>water</strong> requirement when irrigation was withheld.Similarly, at another site, a shallow <strong>water</strong> table at a depth of about 1.0 m <strong>and</strong> with a sal<strong>in</strong>ity of3.0-5.5 dS/m facilitated the achievement of potential yields even when the surface <strong>water</strong>application was reduced to 50 percent. The sal<strong>in</strong>ity buildup was negligible <strong>and</strong> the small amountof accumulated salts was leached <strong>in</strong> the subsequent monsoon season.For the ma<strong>in</strong>tenance of a favourable salt balance <strong>in</strong> soil <strong>and</strong> ground<strong>water</strong>, the salt outflowfrom the system should at least equal the salt <strong>in</strong>flow plus any salt generation <strong>in</strong> the system itself.For Northwest India, the possible methods of dispos<strong>in</strong>g of the <strong>dra<strong>in</strong>age</strong> effluents <strong>in</strong>clude: (i)disposal <strong>in</strong>to the regional surface <strong>dra<strong>in</strong>age</strong> system that l<strong>in</strong>ks the major rivers flow<strong>in</strong>g through theregion; (ii) pump<strong>in</strong>g <strong>in</strong>to the ma<strong>in</strong> <strong>and</strong> branch canals that carry high flow discharges for most ofthe year; <strong>and</strong> (iii) disposal <strong>in</strong>to evaporation ponds.Dur<strong>in</strong>g the monsoon period, the Yamuna River carries a very high flow discharge. Thesal<strong>in</strong>ity of the river <strong>water</strong> dur<strong>in</strong>g the monsoon is less than 0.2 dS/m. The high flow <strong>and</strong> low


116Summaries of case studiessal<strong>in</strong>ity of the <strong>water</strong> dur<strong>in</strong>g the monsoon period <strong>in</strong>dicate the potential for the disposal of sal<strong>in</strong>eeffluents <strong>in</strong>to this river. In Haryana, an area of 1 633 000 ha dra<strong>in</strong>s <strong>in</strong>to the Yamuna River. Anextensive surface <strong>dra<strong>in</strong>age</strong> system to evacuate flood<strong>water</strong>s has been constructed. Projectionsregard<strong>in</strong>g the amount of subsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong> that could be disposed through the surfacedra<strong>in</strong>s <strong>in</strong>to the Yamuna River were made on the basis of a study cover<strong>in</strong>g a period of five years.In the bas<strong>in</strong>, <strong>water</strong>logg<strong>in</strong>g <strong>and</strong> sal<strong>in</strong>ity affect 183 000 ha. The study shows that the entire amountof subsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong> could be disposed <strong>in</strong>to the Yamuna River dur<strong>in</strong>g the monsoonperiod, whereby the river <strong>water</strong> sal<strong>in</strong>ity would rema<strong>in</strong> below 0.75 dS/m. In the w<strong>in</strong>ter months,low river flows reduce the disposal capacity considerably. However, <strong>in</strong> this period, the disposalrequirements can be reduced through the implementation of shallow <strong>water</strong> table <strong>management</strong><strong>and</strong> the reuse of generated <strong>dra<strong>in</strong>age</strong> <strong>water</strong>.As the need for sal<strong>in</strong>e <strong>water</strong> disposal is <strong>in</strong>creas<strong>in</strong>g, evaporation ponds might need to beconstructed. The performance of an evaporation pond constructed <strong>in</strong> a s<strong>and</strong>y area at Hisar wasnot encourag<strong>in</strong>g, probably the result of locat<strong>in</strong>g the pond <strong>in</strong> a slightly higher area. It may benecessary to construct a series of ponds <strong>in</strong> the lowest-ly<strong>in</strong>g areas.It will be necessary to ma<strong>in</strong>ta<strong>in</strong> a f<strong>in</strong>e balance between reuse <strong>and</strong> disposal <strong>in</strong> order to establisha favourable salt regime <strong>in</strong> the region. The exist<strong>in</strong>g experience from small pilot projects is only<strong>in</strong>dicative of the feasibility of reuse, shallow <strong>water</strong> table <strong>management</strong> <strong>and</strong> disposal requirements.The large-scale <strong>dra<strong>in</strong>age</strong> disposal <strong>and</strong> reuse programmes planned for Northwest India will needto give due weight to ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a favourable salt regime at bas<strong>in</strong> level.DRAINAGE WATER REUSE AND DISPOSAL: A CASE STUDY ON PAKISTANBy M. Badrudd<strong>in</strong>SummaryThe Indus River <strong>and</strong> its tributaries are the ma<strong>in</strong> sources of <strong>water</strong> <strong>in</strong> Pakistan. Under the IndusWater Treaty of 1960 between India <strong>and</strong> Pakistan, Pakistan is entitled to all the <strong>water</strong>s of theIndus <strong>and</strong> to that of two out of the five eastern tributary rivers, the Jehlum <strong>and</strong> Chenab. S<strong>in</strong>cethen the annual <strong>in</strong>flow has averaged 171 460 million m 3 . The quality of the <strong>water</strong> <strong>in</strong> the IndusRiver <strong>and</strong> its tributaries at their entry po<strong>in</strong>ts <strong>in</strong>to Pakistan is characterized by a low salt contentrang<strong>in</strong>g from 0.16 to 0.47 dS/m. Apart from surface <strong>water</strong>, ground<strong>water</strong> is an important sourceof supplemental irrigation supplies <strong>in</strong> the irrigation system of Pakistan. Estimates of the early1990s <strong>in</strong>dicate that 44 520 million m 3 is pumped annually with<strong>in</strong> the canal comm<strong>and</strong>s both fromprivate <strong>and</strong> public tubewells. The sal<strong>in</strong>ity content of ground<strong>water</strong> varies considerably. Aboutone-third of the irrigated area has ground<strong>water</strong> with a high salt content.Irrigation <strong>in</strong> Pakistan is based on the <strong>water</strong> supplies of the Indus River <strong>and</strong> its tributaries <strong>and</strong>is essentially conf<strong>in</strong>ed to the Indus Pla<strong>in</strong>. The surface irrigation system consists of the comm<strong>and</strong>areas of 43 ma<strong>in</strong> canals <strong>and</strong> covers the largest contiguous irrigated area <strong>in</strong> the world extend<strong>in</strong>gover a gross comm<strong>and</strong> area of 15.8 million ha. Due to the absence of any entrenched <strong>water</strong>ways<strong>in</strong> the flat pla<strong>in</strong>s (which could provide natural <strong>dra<strong>in</strong>age</strong>), the <strong>in</strong>troduction of irrigation caused agradual rise <strong>in</strong> the <strong>water</strong> table. This has resulted <strong>in</strong> widespread <strong>water</strong>logg<strong>in</strong>g <strong>and</strong> sal<strong>in</strong>ity problemswith serious adverse impacts on agricultural production. Under the Sal<strong>in</strong>ity Control <strong>and</strong>Reclamation Programme (SCARP), <strong>in</strong>itiated <strong>in</strong> the early 1960s, vertical subsurface dra<strong>in</strong>s, i.e.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 117deep tubewells, were <strong>in</strong>stalled <strong>in</strong> large tracts of affected l<strong>and</strong>s, while horizontal subsurface<strong>dra<strong>in</strong>age</strong> has been used for smaller areas.As a result of the low <strong>water</strong> allowances <strong>and</strong> the correspond<strong>in</strong>g low design cropp<strong>in</strong>g <strong>in</strong>tensities,there has been constant dem<strong>and</strong> for more irrigation <strong>water</strong> <strong>in</strong> order to cultivate the availablefarml<strong>and</strong> more <strong>in</strong>tensively. This dem<strong>and</strong> has cont<strong>in</strong>ued to grow with the <strong>in</strong>creas<strong>in</strong>g population<strong>and</strong> l<strong>and</strong> pressure. Alongside the need to implement <strong>water</strong> conservation measures to <strong>in</strong>creasefarmgate <strong>water</strong> availability, <strong>dra<strong>in</strong>age</strong> <strong>water</strong> represents a source of additional irrigation <strong>water</strong>.Government policies encourage the maximum use of ground<strong>water</strong> pumped for <strong>dra<strong>in</strong>age</strong> forirrigation <strong>in</strong> conjunction with the canal supplies. Where ground<strong>water</strong> is sal<strong>in</strong>e, <strong>dra<strong>in</strong>age</strong> effluentis allowed to be disposed <strong>in</strong>to the canals for reuse after dilution or it can be conveyed to therivers through dra<strong>in</strong>s at times of high river flows. Alternative disposal measures have beenprovided only where the ground<strong>water</strong> effluent is too sal<strong>in</strong>e.Ground<strong>water</strong> reuse <strong>in</strong> SCARP areas has had a significant impact on agricultural production.With the <strong>in</strong>creased irrigation supplies, the cropp<strong>in</strong>g <strong>in</strong>tensities <strong>in</strong> these areas rose from an averageof 80 percent <strong>in</strong> the 1960s <strong>and</strong> early 1970s to an average of 116 percent <strong>in</strong> the mid-1980s. The<strong>dra<strong>in</strong>age</strong> relief provided <strong>in</strong> conjunction with <strong>in</strong>creased irrigation supplies through ground<strong>water</strong>reuse has had a positive impact <strong>in</strong> terms of reduc<strong>in</strong>g salt-affected soils. However, the irrigationtechnology chosen may not have been the most suitable as the high O&M costs of the deeptubewells placed a heavy burden on the limited budget of the Irrigation Department. To ensuresusta<strong>in</strong>ed <strong>dra<strong>in</strong>age</strong>, tubewells <strong>in</strong> the fresh ground<strong>water</strong> zones have been transferred to privatesector undertak<strong>in</strong>gs, which use the effluent for irrigation purposes.In zones where ground<strong>water</strong> sal<strong>in</strong>ity exceeds 4.5 dS/m at a depth of 38 m, the effluentcannot be used for irrigation <strong>and</strong> needs to be safely disposed of. This might cause problems <strong>in</strong>certa<strong>in</strong> areas. However, <strong>in</strong> large areas with<strong>in</strong> the sal<strong>in</strong>e ground<strong>water</strong> zones, shallow layers ofusable ground<strong>water</strong> lies on top of the sal<strong>in</strong>e ground<strong>water</strong>. In these areas, skimm<strong>in</strong>g wells orhorizontal subsurface dra<strong>in</strong>s could be used to provide the required <strong>dra<strong>in</strong>age</strong> relief without disturb<strong>in</strong>gthe deeper sal<strong>in</strong>e ground<strong>water</strong>. Research has also shown that the effluent of horizontal subsurfacedra<strong>in</strong>s improves with time. Thus, the <strong>dra<strong>in</strong>age</strong> effluent from skimm<strong>in</strong>g wells <strong>and</strong> horizontalsubsurface dra<strong>in</strong>s could subsequently be used for irrigation, so also alleviat<strong>in</strong>g disposal problems.The case study also focuses on the reuse of <strong>water</strong> whose quality would be regarded as pooror marg<strong>in</strong>al. A number of local research <strong>in</strong>stitutes have <strong>in</strong>vestigated the effect of marg<strong>in</strong>al <strong>and</strong>poor-quality tubewell <strong>water</strong>s on crop production <strong>and</strong> soils. Based on their f<strong>in</strong>d<strong>in</strong>gs <strong>and</strong> experienceselsewhere, a case is made for sal<strong>in</strong>e agriculture. It shows that a number of salt tolerant crops<strong>and</strong> grasses can be commercially grown us<strong>in</strong>g <strong>water</strong> with a sal<strong>in</strong>ity of up to 27 dS/m with onlya moderate reduction <strong>in</strong> yield. Similarly, salt tolerant trees for fuel <strong>and</strong> forage production havebeen identified which can be irrigated with <strong>water</strong>s with a sal<strong>in</strong>ity of 19 dS/m. Salt bushes, whichcan tolerate high levels of sal<strong>in</strong>ity, have also been identified as a supplementary source of animalfeed.Evaporation ponds have been provided for the disposal of highly sal<strong>in</strong>e <strong>dra<strong>in</strong>age</strong> effluentfrom irrigated areas border<strong>in</strong>g the desert towards the southeast of the country. These areas arelocated 500-800 km from the sea <strong>and</strong> they are characterized by <strong>in</strong>terdunal depressions withhighly sodic soils ly<strong>in</strong>g between longitud<strong>in</strong>al s<strong>and</strong> dunes 4-9 m high. In order to develop theevaporation ponds, dykes were provided across the saddles <strong>and</strong> channels cut across the dunesto form a series of connected ponds. Soon after the ponds became operational, some irrigatedareas close to the ponds were severely affected by <strong>water</strong>logg<strong>in</strong>g. This could be due to significantseepage losses from the ponds generat<strong>in</strong>g a zone of high ground<strong>water</strong> that obstructs or retards


118Summaries of case studiesthe natural subsurface <strong>dra<strong>in</strong>age</strong> from the irrigated l<strong>and</strong>s. In the space of four years, the affectedarea had grown to 4 200 ha.A sp<strong>in</strong>al dra<strong>in</strong> has been constructed for areas located close to the sea. The outfall dra<strong>in</strong> is250 km long <strong>and</strong> has a capacity at the outfall of 113 m 3 /s. It has been constructed to conveyhighly sal<strong>in</strong>e subsurface <strong>dra<strong>in</strong>age</strong> effluent from 577 000 ha <strong>and</strong> the ra<strong>in</strong>fall excess from <strong>in</strong> <strong>and</strong>around the area to the sea. As the vertical method of subsurface <strong>dra<strong>in</strong>age</strong> predom<strong>in</strong>ates, theoperational plans provide for the tubewell pump<strong>in</strong>g to be stopped at times of heavy ra<strong>in</strong> storms<strong>in</strong> order to make room <strong>in</strong> the tributary surface dra<strong>in</strong>s for the evacuation of the excess ra<strong>in</strong>fall.Experience to date suggests that the lower fr<strong>in</strong>ges of the irrigated area are not at risk althoughthe gradients of the dra<strong>in</strong>s at the outfall are as low as 1:14 000.DRAINAGE WATER REUSE AND DISPOSAL: A CASE STUDY ON THE WESTERN SIDE OF THE SANJOAQUIN VALLEY, CALIFORNIA, THE UNITED STATES OF AMERICABy K.K. TanjiSummaryThis case study focuses on the western side of the San Joaqu<strong>in</strong> Valley, California, the UnitedStates of America. This area comprises the subareas of Northern, Grassl<strong>and</strong>s, Westl<strong>and</strong>s, Tulare<strong>and</strong> Kern. In the western side of the valley there is about 938 000 ha of irrigated l<strong>and</strong> whichreceives imported canal <strong>water</strong> from the Sacramento Valley. Water delivery to irrigated agricultureis based on <strong>water</strong> rights <strong>and</strong> <strong>water</strong> availability. The pr<strong>in</strong>cipal crops are cotton, almonds, grapes,tomatoes, feed gra<strong>in</strong>s, alfalfa hay, sugar beets, oilseeds, onions, garlic, lettuce, melons <strong>and</strong> broccoli.The western side of the San Joaqu<strong>in</strong> Valley is affected by worsen<strong>in</strong>g <strong>water</strong>logg<strong>in</strong>g <strong>and</strong>sal<strong>in</strong>ity problems. In 1990, <strong>water</strong> tables less than 1.5 m from the l<strong>and</strong> surface were found onabout 20 650 ha <strong>in</strong> Grassl<strong>and</strong>s, 2 020 ha <strong>in</strong> Westl<strong>and</strong>s, 17 000 ha <strong>in</strong> Tulare, <strong>and</strong> 4 450 ha <strong>in</strong>Kern. The estimated volume of collected subsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong>s <strong>in</strong> 1990 was46.854 million m 3 <strong>in</strong> Grassl<strong>and</strong>s, 4.932 million m 3 <strong>in</strong> Westl<strong>and</strong>s, 39.456 million m 3 <strong>in</strong> Tulare, <strong>and</strong>9.864 million m 3 <strong>in</strong> Kern. The extent of <strong>water</strong>logg<strong>in</strong>g <strong>and</strong> volume of subsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong>sthat need to be managed under a no-action scenario up to 2040 is expected to result <strong>in</strong> an<strong>in</strong>crease of 138 percent <strong>in</strong> <strong>water</strong>logg<strong>in</strong>g <strong>and</strong> an <strong>in</strong>crease of 143 percent <strong>in</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> volume.The soils on the western side of the valley are derived from mar<strong>in</strong>e sedimentary rocks of themounta<strong>in</strong>s of the Coast Range <strong>and</strong> are thus naturally sal<strong>in</strong>e. The rise <strong>in</strong> the <strong>water</strong> table does notonly cause <strong>water</strong>logg<strong>in</strong>g, it also br<strong>in</strong>gs salts <strong>in</strong>to the rootzone. Shallow ground<strong>water</strong> <strong>and</strong> rootzone<strong>dra<strong>in</strong>age</strong> <strong>in</strong>tercepted by tile dra<strong>in</strong>s is of poor quality. At the valley level, the sal<strong>in</strong>ity levels <strong>in</strong> these<strong>water</strong>s are elevated with a geometric mean of 13 073 ppm. The geometric means for boron <strong>and</strong>selenium concentrations are 14.9 ppm <strong>and</strong> 12.3 ppb, respectively. Currently, there is a saltimbalance <strong>in</strong> the western side of the valley based on the salt content of the <strong>water</strong> <strong>in</strong>flow <strong>and</strong>outflow. More salts need to be discharged out of the bas<strong>in</strong> to achieve a salt balance to susta<strong>in</strong>irrigated agriculture.The Sate of California promotes efficient <strong>water</strong> use through policies <strong>and</strong> legislation.Government policies exist for the reuse of reclaimed waste<strong>water</strong> but not for the reuse of irrigationsubsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong>. However, there are constra<strong>in</strong>ts on the discharge of irrigation returnflows to public <strong>water</strong> bodies. These constra<strong>in</strong>ts on <strong>dra<strong>in</strong>age</strong> <strong>water</strong> discharges serve as an <strong>in</strong>centivefor improved <strong>water</strong> <strong>management</strong> practices.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 119For the western side of the San Joaqu<strong>in</strong> Valley, eight <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> practiceswere identified. As the pr<strong>in</strong>cipal constra<strong>in</strong>t is subsurface <strong>dra<strong>in</strong>age</strong> <strong>water</strong> disposal, the <strong>management</strong>options are broader than merely reuse <strong>and</strong> disposal. Dra<strong>in</strong>age <strong>water</strong> <strong>management</strong> options <strong>in</strong>clude:source reduction, <strong>dra<strong>in</strong>age</strong> <strong>water</strong> reuse, <strong>dra<strong>in</strong>age</strong> <strong>water</strong> treatment, disposal <strong>in</strong> evaporation ponds,l<strong>and</strong> retirement, ground<strong>water</strong> <strong>management</strong>, river discharge, <strong>and</strong> salt utilization.A study from the Grassl<strong>and</strong>s subarea shows that source reduction is considered to be thepreferred <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> option. This is because it is comparatively easy for manygrowers to implement, contributes to manag<strong>in</strong>g <strong>water</strong> more efficiently <strong>and</strong> reduces the volumeof <strong>dra<strong>in</strong>age</strong> <strong>water</strong> that needs to be disposed. A comb<strong>in</strong>ation of source reduction <strong>and</strong> <strong>dra<strong>in</strong>age</strong><strong>water</strong> reuse is a natural follow-up to reduce irrigation return flows <strong>and</strong> to meet <strong>water</strong> disposalrequirements for river discharge. Moreover, source reduction <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> reuse willreduce the volume of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>and</strong> thus help reduce the need for evaporation ponds,<strong>dra<strong>in</strong>age</strong> <strong>water</strong> treatment, ground<strong>water</strong> <strong>management</strong> <strong>and</strong> l<strong>and</strong> retirement. However, <strong>dra<strong>in</strong>age</strong><strong>water</strong> reuse could degrade the soil physically <strong>and</strong> chemically if the load<strong>in</strong>g rate is too large.Moreover, deep percolation may eventually degrade ground<strong>water</strong> if the concentrated <strong>dra<strong>in</strong>age</strong><strong>water</strong> is not <strong>in</strong>tercepted <strong>and</strong> removed. Implement<strong>in</strong>g a real-time <strong>dra<strong>in</strong>age</strong> <strong>water</strong> disposalprogramme could exp<strong>and</strong> the possibilities for river disposal.For <strong>dra<strong>in</strong>age</strong> <strong>water</strong> treatment, the flow-through wetl<strong>and</strong> system appears to be the mostpromis<strong>in</strong>g option. It is relatively <strong>in</strong>expensive yet fairly effective at reduc<strong>in</strong>g aqueous seleniumconcentrations. However, this form of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> treatment has been implemented ma<strong>in</strong>lyon a pilot scale to date. Other technologies, such as reverse osmosis, do not at present appear tobe more viable economically. L<strong>and</strong> retirement will set aside l<strong>and</strong> for wildlife habitat <strong>and</strong> asrest<strong>in</strong>g areas for migratory birds. However, alternatives to l<strong>and</strong> retirement (<strong>in</strong>clud<strong>in</strong>g active l<strong>and</strong><strong>management</strong>) may yield the same results <strong>and</strong> thus should be considered. When retir<strong>in</strong>g l<strong>and</strong>, if<strong>water</strong> formerly used for the irrigation of those l<strong>and</strong>s is merely conveyed to nearby l<strong>and</strong>s forirrigation, then little improvement will be achieved <strong>in</strong> terms of reduc<strong>in</strong>g <strong>dra<strong>in</strong>age</strong> <strong>water</strong> quantity.Evaporation ponds would decrease the volume of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> which would otherwise bedisposed <strong>in</strong>to rivers. However, the mitigation measures <strong>and</strong> other measures necessary to meetthe <strong>water</strong> disposal requirements might be expensive, especially where selenium concentrationsare high. Although ground<strong>water</strong> <strong>management</strong> can play a major role <strong>in</strong> address<strong>in</strong>g <strong>dra<strong>in</strong>age</strong>problems, the <strong>management</strong> options available for ground<strong>water</strong> are all of a long-term nature <strong>and</strong>may be expensive. Salt utilization offers good long-term potential for help<strong>in</strong>g to meet the saltbalance <strong>in</strong> the valley. However, the conditions of a profitable market <strong>and</strong> economic harvest<strong>in</strong>g<strong>and</strong> transport arrangements are not <strong>in</strong> place.The current <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> options be<strong>in</strong>g practised, such as offsite <strong>dra<strong>in</strong>age</strong><strong>water</strong> disposal, source reduction <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> reuse, are perceived to be <strong>in</strong>adequate tosusta<strong>in</strong> irrigated agriculture <strong>in</strong> the western side of the valley. For example, less than 50 percentof the salts imported with irrigation <strong>water</strong> is discharged from the western side. Additional outof-valleydisposal of salts through ocean disposal or <strong>in</strong>l<strong>and</strong> salt s<strong>in</strong>ks is constra<strong>in</strong>ed by environmentalconcerns <strong>and</strong> costs. However, a concerted effort is underway to susta<strong>in</strong> agriculture with other<strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> options. If waste discharge requirements for the disposal of <strong>dra<strong>in</strong>age</strong><strong>water</strong>s cannot be met after implement<strong>in</strong>g many of the <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> options, itmay be necessary to modify the waste discharge requirements, export evapoconcentrated<strong>dra<strong>in</strong>age</strong> <strong>water</strong>s (br<strong>in</strong>es) to the ocean or a designated salt s<strong>in</strong>k, or limit the importation of <strong>water</strong>for irrigation. The susta<strong>in</strong>ability of irrigated agriculture <strong>in</strong> the western side of the San Joaqu<strong>in</strong>Valley is a public policy question.


120Summaries of case studies


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 121ReferencesAlbasel, N., Pratt, P.F. & Westcot, D.W. 1989. Guidel<strong>in</strong>es for selenium <strong>in</strong> irrigation <strong>water</strong>s.J. Environ. Qual., (18): 253-258.Abu-Zeid, M. 1988. Egyptian policies for us<strong>in</strong>g low quality <strong>water</strong> for irrigation. In R. Bouchet,ed. Proc. of the Cairo/Aswan sem<strong>in</strong>ar “Reuse of low quality <strong>water</strong> for irrigation <strong>in</strong>Mediterranean Countries”. Cairo.AHCC (Ad Hoc Coord<strong>in</strong>ation Committee). 2000. Evaluation of the 1990 <strong>dra<strong>in</strong>age</strong><strong>management</strong> for the Westside San Joaqu<strong>in</strong> Valley, California. F<strong>in</strong>al report. Submitted tothe San Joaqu<strong>in</strong> Valley Dra<strong>in</strong>age Implementation Program. http://www. dpla.<strong>water</strong>.ca.gov/agriculture/<strong>dra<strong>in</strong>age</strong>/implementation/hq/ahccf<strong>in</strong>alrpt.pdfAICRP Sal<strong>in</strong>e Water. 1998. All India co-ord<strong>in</strong>ated project on <strong>management</strong> of salt affectedsoils <strong>and</strong> use of sal<strong>in</strong>e <strong>water</strong>s <strong>in</strong> agriculture. Annual Reports 1972-98. Karnal, India,Central Soil Sal<strong>in</strong>ity Research Institute.Alex<strong>and</strong>er, P. 2001. Benchmark<strong>in</strong>g of Australian irrigation <strong>water</strong> providers. AustralianNational Committee on Irrigation <strong>and</strong> Dra<strong>in</strong>age. http://www.ancid.<strong>org</strong>.au/publications/<strong>in</strong>dex.html.Aragüés, R., Tanji, K.K., Quilez, D. & Faci, J. 1990. Conceptual irrigation return flowhydrosal<strong>in</strong>ity model. In K.K. Tanji, ed. <strong>Agricultural</strong> sal<strong>in</strong>ity assessment <strong>and</strong> <strong>management</strong>.ASCE Manuals <strong>and</strong> Reports on Eng<strong>in</strong>eer<strong>in</strong>g Practices No. 71. New York, The United Statesof America, American Society of Civil Eng<strong>in</strong>eers.Ayars, J.E. 1996. Manag<strong>in</strong>g irrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> systems <strong>in</strong> <strong>arid</strong> areas <strong>in</strong> the presence ofshallow ground<strong>water</strong>: case studies. Irrig. <strong>and</strong> Dra<strong>in</strong>. Sys., (10): 227-244.Ayars, J.E. & Hutmacher, R.B. 1994. Crop coefficients for irrigat<strong>in</strong>g cotton <strong>in</strong> the presenceof ground<strong>water</strong>. Irrig. Sci., 15(1): 45-52.Ayars, J.E. & Tanji, K.K. 1999. Effects of <strong>dra<strong>in</strong>age</strong> on <strong>water</strong> quality <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong>irrigated l<strong>and</strong>s. In R.W. Skaggs & J. van Schilfgaarde, eds. <strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong>. Number38 <strong>in</strong> the series Agronomy. Mad<strong>in</strong>son, Wiscons<strong>in</strong>, The United States of America, AmericanSociety of Agronomy, Crop Science Society of America, Soil Science Society of America.Barg, U., Dunn, I.G., Petr, T. & Welcomme, R.L. 1997. Inl<strong>and</strong> fisheries. In: A.K. Biswas,ed. Water resources: environmental plann<strong>in</strong>g, <strong>management</strong> <strong>and</strong> development. New York,The United States of America, McGraw-Hill.Bhutta, M.N. & Wolters, W. 2000. Reduc<strong>in</strong>g <strong>dra<strong>in</strong>age</strong> requirement through <strong>in</strong>terceptor dra<strong>in</strong>s<strong>and</strong> l<strong>in</strong><strong>in</strong>g. In Proc. of the 8th ICID International Dra<strong>in</strong>age Workshop, “Role of <strong>dra<strong>in</strong>age</strong><strong>and</strong> challenges <strong>in</strong> 21 st century”. Vigyan Bhawan, New Delhi. Vol. 2: 137-152.B<strong>in</strong>ey, C., Calamari, D., Naeve, H., Maembe, T.W., Nyakageni, B. & Saad, M.A.H.1994. Scientific bases for pollution control. In D. Calamari <strong>and</strong> H. Naeve, eds. Review ofpollution <strong>in</strong> the African aquatic environment. Committee for Inl<strong>and</strong> Fisheries of Africa(CIFA) Technical Paper 25. Rome, <strong>FAO</strong>.


122ReferencesBlumenthal, J.M., Ruselle, M.P. & Lamb, J.F.S. 1999. Subsoil nitrate <strong>and</strong> bromide uptakeby contrast<strong>in</strong>g alfalfa entries. Agron. J., (91): 269-275.Bos, M.G. & Nugteren, J. 1990. On irrigation efficiencies. Publ. 19, 4 th ed. Wagen<strong>in</strong>gen,The Netherl<strong>and</strong>s, ILRI.Bower, C., Spencer, J. & Weeks, L. 1969. Salt <strong>and</strong> <strong>water</strong> balance, Coachella Valley, California.J. Irrig. <strong>and</strong> Dra<strong>in</strong>age Div., ASCE 95 (IR3): 55-64.British Columbia M<strong>in</strong>istry of Environment, L<strong>and</strong> <strong>and</strong> Parks. 1998. A compendium ofwork<strong>in</strong>g <strong>water</strong> quality guidel<strong>in</strong>es for British Columbia. Water Management Branch,Environment <strong>and</strong> Resource Department, M<strong>in</strong>istry of Environment, L<strong>and</strong> <strong>and</strong> Parks. http://www.elp.gov.bc.ca/wat/wq/BCguidel<strong>in</strong>es/work<strong>in</strong>g.html.Burt, C.M., Clemmens, A.J., Strelkoff, T.S., Solomon, K.H, Bliesner, R.D., Hardy,L.A., Howell, T.A. & Eisenhuaer, D.E. 1997. Irrigation performance measures: efficiency<strong>and</strong> uniformity. J. Irrig. & Dra<strong>in</strong>age Engn., 123 (6): 423-442.Bustard, D.W., He, Z. & Wilkie, F.G. 2000. L<strong>in</strong>k<strong>in</strong>g soft systems <strong>and</strong> use-case modell<strong>in</strong>gthrough scenarios. Interact<strong>in</strong>g with Computers, (13): 97-110.CCME (Canadian Council of M<strong>in</strong>isters of the Environment). 1999a. Summary of theCanadian <strong>water</strong> quality guidel<strong>in</strong>es for the protection of aquatic life. Canadianenvironmental quality guidel<strong>in</strong>es. http://www.ec.gc.ca/ceqg-rcqe/<strong>water</strong>.pdf.CCME (Canadian Council of M<strong>in</strong>isters of the Environment). 1999b. Summary ofCanadian <strong>water</strong> quality guidel<strong>in</strong>es for the protection of agricultural <strong>water</strong> uses. Canadianenvironmental quality guidel<strong>in</strong>es. http://www2.ec.gc.ca/ceqg-rcqe/ agrtbl_e.doc.Cerv<strong>in</strong>ka, V., F<strong>in</strong>ch, C., Mart<strong>in</strong>, M., Menezes, F., Peters, D. & Buchnoff, K. 2001.Dra<strong>in</strong><strong>water</strong>, salt <strong>and</strong> selenium <strong>management</strong> utiliz<strong>in</strong>g IFDM/Agroforestry systems. Reportto US Bureau of Reclamation.CH2M HILL. 1986. Reverse osmosis desalt<strong>in</strong>g of San Luis Dra<strong>in</strong>. Conceptual level study.F<strong>in</strong>al Report to USDI Bureau of Reclamation.Ch<strong>and</strong>io, B.A. & Ch<strong>and</strong>io, A.S. 1995. Tubewell <strong>dra<strong>in</strong>age</strong> performance <strong>in</strong> Indus Pla<strong>in</strong> - itsoperation <strong>and</strong> ma<strong>in</strong>tenance cost. In IWASRI. 1998. Abstracts of past research on<strong>water</strong>logg<strong>in</strong>g, sal<strong>in</strong>ity <strong>and</strong> <strong>water</strong> <strong>management</strong> conducted <strong>in</strong> the country, except<strong>in</strong>gWAPDA work. Publication No. 200. Lahore, Pakistan.Chapman, D., ed. 1992. Water quality assessments. A guide to the use of biota, sediments <strong>and</strong><strong>water</strong> <strong>in</strong> environmental monitor<strong>in</strong>g. UNESCO/WHO/UNEP. Cambridge, United K<strong>in</strong>gdom,University Press.Chaudhry, M.R., Hamid, A. & Javid, M.A. 1984. Use of gypsum <strong>in</strong> amend<strong>in</strong>g sodic<strong>water</strong>s for crop production. Mona Reclamation Experimental Project Publication No.136.Bhalwal, Pakistan, WAPDA.Chauhan, H.S. 2000. Bio-<strong>dra<strong>in</strong>age</strong> <strong>and</strong> other alternatives to tile <strong>dra<strong>in</strong>age</strong>. In Proc. of the 8thICID International Dra<strong>in</strong>age Workshop, “Role of <strong>dra<strong>in</strong>age</strong> <strong>and</strong> challenges <strong>in</strong> 21 stcentury”. Vigyan Bhawan, New Delhi. Vol. 4: 79-96.Checkl<strong>and</strong>, P. 1981. Systems th<strong>in</strong>k<strong>in</strong>g, systems practice. New York, Wiley.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 123Checkl<strong>and</strong>, P.B. 1989. Soft systems methodology. Human Systems Management, (8): 273-289.Chilcott, J.E., Westcot, D.W., Johnson, S.D. & Toto, A.L. 1993. Water quality <strong>in</strong>evaporation bas<strong>in</strong>s used for the disposal of agricultural subsurface <strong>dra<strong>in</strong>age</strong> <strong>in</strong> theSan Joaqu<strong>in</strong> Valley, California. Central Valley Regional Water Quality Control Board.Christen, E.W. & Ayars, J.E. 2001. Subsurface <strong>dra<strong>in</strong>age</strong> system design <strong>and</strong> <strong>management</strong><strong>in</strong> irrigated agriculture: best <strong>management</strong> practices for reduc<strong>in</strong>g <strong>dra<strong>in</strong>age</strong> volume<strong>and</strong> salt load. Technical Report 38/01. Griffith NSW, Australia, CSIRO L<strong>and</strong> <strong>and</strong> Water.Christen, E.W. & Skehan, D. 2000. Improv<strong>in</strong>g <strong>and</strong> <strong>in</strong>tegrat<strong>in</strong>g irrigation <strong>and</strong> subsurface<strong>dra<strong>in</strong>age</strong> <strong>management</strong> <strong>in</strong> a v<strong>in</strong>eyard: a case study. In G.J. Connellan, ed. Proc. of theconference Australia 2000. Irrigation Association of Australia.Christen, E. & Skehan, D. 2001. Design <strong>and</strong> <strong>management</strong> of subsurface horizontal <strong>dra<strong>in</strong>age</strong>to reduce salt loads. J. Irrig. & Dra<strong>in</strong>age Engn., 127 (3): 148-155.Clemmens, A.J. & Burt, C.M. 1997. Accuracy of irrigation efficiency estimates. J. Irrig. &Dra<strong>in</strong>age Engn., 123 (6): 423-442.Cosgrove, W.J. & Rijsberman, F.R. 2000. Mak<strong>in</strong>g <strong>water</strong> everybody’s bus<strong>in</strong>ess: world<strong>water</strong> vision. London, Earthscan Publications Ltd.CVRWQCB (Central Valley Regional Water Quality Control Board). 1998. Water qualitycontrol plan. Bas<strong>in</strong> Plan, 5B for the San Joaqu<strong>in</strong> River Bas<strong>in</strong>, 4 th ed.CVRWQCB (Central Valley Regional Water Quality Control Board). 1999. Update on<strong>water</strong> quality objectives for the Lower San Joaqu<strong>in</strong> River.CVRWQCB, (Central Valley Regional Water Quality Control Board). 2000. <strong>Agricultural</strong><strong>dra<strong>in</strong>age</strong> contributions to <strong>water</strong> quality <strong>in</strong> Grassl<strong>and</strong>s <strong>water</strong>shed of western Mercedcounty, California, October 1997-September 1998.Deverel, S.J. & Fujii, R. 1990. Chemistry of trace elements <strong>in</strong> soils <strong>and</strong> ground <strong>water</strong>. InK.K. Tanji, ed. <strong>Agricultural</strong> sal<strong>in</strong>ity assessment <strong>and</strong> <strong>management</strong>. ASCE Manuals <strong>and</strong>Reports on Eng<strong>in</strong>eer<strong>in</strong>g Practices No. 71. New York, The United States of America, AmericanSociety of Civil Eng<strong>in</strong>eers.DRI. 1995. Reuse of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>in</strong> the Nile Delta: monitor<strong>in</strong>g, modell<strong>in</strong>g <strong>and</strong> analysis.Reuse Report No. 50. Cairo, Dra<strong>in</strong>age Research Institute <strong>and</strong> Wagen<strong>in</strong>gen, The Netherl<strong>and</strong>s,DLO W<strong>in</strong><strong>and</strong> Star<strong>in</strong>g Centre.DRI. 1997a. Dra<strong>in</strong>age <strong>water</strong> <strong>in</strong> the Nile Delta: Yearbook 1995/96. Reuse monitor<strong>in</strong>gprogramme, Report No. 41. Cairo, Dra<strong>in</strong>age Research Institute.DRI. 1997b. Dra<strong>in</strong>age <strong>water</strong> irrigation project. F<strong>in</strong>al report. Cairo, Dra<strong>in</strong>age ResearchInstitute, Louis Berger International, Inc. <strong>and</strong> Pacer Consultants.EIFAC (European Inl<strong>and</strong> Fisheries Advisory Commission). 1964. Water quality criteriafor European fresh<strong>water</strong> fish: report on f<strong>in</strong>ely divided solids <strong>and</strong> <strong>in</strong>l<strong>and</strong> fisheries.EIFAC Technical Paper No. 1. Rome, <strong>FAO</strong>.EPIQ Water Policy Team. 1998. National policy for <strong>dra<strong>in</strong>age</strong> <strong>water</strong>. Report No. 8. Cairo,M<strong>in</strong>istry of Public Works <strong>and</strong> Water Resources.


124References<strong>FAO</strong>. 1977. Irrigation canal l<strong>in</strong><strong>in</strong>g, by D.B. Kraatz. <strong>FAO</strong> Irrigation <strong>and</strong> Dra<strong>in</strong>age Paper No.2. Rome.<strong>FAO</strong>. 1980. Dra<strong>in</strong>age design factors: 28 questions <strong>and</strong> answers. <strong>FAO</strong> Irrigation <strong>and</strong> Dra<strong>in</strong>agePaper No. 38. Rome.<strong>FAO</strong>. 1985a. Technical report on studies for use of sal<strong>in</strong>e <strong>water</strong> <strong>in</strong> the comm<strong>and</strong> ofirrigation projects. Haryana, AG:DP/IND/81/010. Rome, UNDP-<strong>FAO</strong>.<strong>FAO</strong>. 1985b. Water quality for agriculture, by R.S. Ayers & D.W. Westcot. Irrigation <strong>and</strong>Dra<strong>in</strong>age Paper No. 29 (Rev. 1). Rome.<strong>FAO</strong>. 1986. Yield response to <strong>water</strong>, by J. Doorenbos, A.H. Kassam, C.L.M. Bentvelsen, V.Branscheid, J.M.G.A. Plusjé, M. Smith, G.O. Uittenbogaard & H.K. van der Wal. <strong>FAO</strong>Irrigation <strong>and</strong> Dra<strong>in</strong>age Paper No. 33. Rome.<strong>FAO</strong>. 1988. Salt-affected soils <strong>and</strong> their <strong>management</strong>, by I.P. Abrol, J.S.P. Yadav & F.I.Massoud. <strong>FAO</strong> Soils Bullet<strong>in</strong> No. 39. Rome.<strong>FAO</strong>. 1990a. Guidel<strong>in</strong>es for soil profile description; 3 rd ed. (revised). Soil Resources,Management <strong>and</strong> Conservation Service, L<strong>and</strong> <strong>and</strong> Water Management Division. Rome.<strong>FAO</strong>. 1990b. Irrigation <strong>water</strong> <strong>management</strong>: irrigation methods, by C. Brouwer, K. Pr<strong>in</strong>s,M. Kay & M. Heibloem. Tra<strong>in</strong><strong>in</strong>g manual No. 5 (Provisional edition). Rome.<strong>FAO</strong>. 1992a. CROPWAT a computer program for irrigation plann<strong>in</strong>g <strong>and</strong> <strong>management</strong>, byM. Smith. <strong>FAO</strong> Irrigation <strong>and</strong> Dra<strong>in</strong>age Paper No. 46. Rome.<strong>FAO</strong>. 1992b. The use of sal<strong>in</strong>e <strong>water</strong>s for crop production, by J.D. Rhoades, A. K<strong>and</strong>iah &A.M. Mashali. <strong>FAO</strong> Irrigation <strong>and</strong> Dra<strong>in</strong>age Paper No. 48. Rome.<strong>FAO</strong>. 1997a. Irrigation <strong>in</strong> the countries of the Former Soviet Union <strong>in</strong> figures. <strong>FAO</strong> WaterReport No. 15. Rome.<strong>FAO</strong>. 1997b. Irrigation <strong>in</strong> the Near East Region <strong>in</strong> figures. <strong>FAO</strong> Water Report No. 9. Rome.<strong>FAO</strong>. 1997c. Management of agricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong> quality, by C.A. Madramootoo,W.R. Johnston & L.S. Willardson, eds. <strong>FAO</strong> Water Report No. 13. Rome.<strong>FAO</strong>. 1999a. Review of the sate of world fishery resources: <strong>in</strong>l<strong>and</strong> fisheries. <strong>FAO</strong> FisheriesCircular No. 942. Rome.<strong>FAO</strong>. 1999b. Transfer of irrigation <strong>management</strong> services: guidel<strong>in</strong>es, by D.G. Vermillion &J.A. Sagardoy. <strong>FAO</strong> Irrigation <strong>and</strong> Dra<strong>in</strong>age Paper No. 58. Rome, <strong>FAO</strong>/IWMI/GTZ.<strong>FAO</strong>. 2000. Crops <strong>and</strong> drops: mak<strong>in</strong>g the best use of <strong>water</strong> for agriculture. <strong>FAO</strong> AdvanceEdition. Rome.Fio, J.L. & Deverel, S.J. 1991. Ground<strong>water</strong> flow <strong>and</strong> solute movement to dra<strong>in</strong> laterals,Western San Joaqu<strong>in</strong> Valley, California. 2. Quantitative hydrologic assessment. Water Resour.Res., 27 (9): 2247-2257.Fouss, J.L., Evans, R.O. & Belcher, H.W. 1999. Design of controlled <strong>dra<strong>in</strong>age</strong> <strong>and</strong>subirrigation facilities for <strong>water</strong> table <strong>management</strong>. In R.W. Skaggs & J. van Schilfgaarde,eds. <strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong>. Number 38 <strong>in</strong> the series Agronomy. Mad<strong>in</strong>son, Wiscons<strong>in</strong>, The


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 125United States of America, American Society of Agronomy, Crop Science Society of America,Soil Science Society of America.Ghadiri, H. & Rose, C.W., eds. 1992. Model<strong>in</strong>g chemical transport <strong>in</strong> soils, natural <strong>and</strong> appliedcontam<strong>in</strong>ants. Boca Raton, Florida, The United States of America, Lewis Publishers.Good<strong>in</strong>, J.R., Epste<strong>in</strong>, E., McKell, C.M. & O’Leary, J.W. 1999. Sal<strong>in</strong>e agriculture: salttolerant plants for develop<strong>in</strong>g countries. Wash<strong>in</strong>gton, DC, Panel of the Board on Science<strong>and</strong> Technology for International Development Office of International Affairs NationalResearch Council.Guyer, P.Q. 1996. Livestock <strong>water</strong> quality. G79-467-A. Cooperative Extension, Institute ofAgriculture <strong>and</strong> Natural Environment, University of Nebraska-L<strong>in</strong>coln, The United States ofAmerica. http://www.ianr.unl.edu/pubs/beef/g467.htm.Heuperman, A. 2000. Bio-<strong>dra<strong>in</strong>age</strong> an Australian overview <strong>and</strong> two Victorian case studies. InProc. of the 8th ICID International Dra<strong>in</strong>age Workshop, “Role of <strong>dra<strong>in</strong>age</strong> <strong>and</strong>challenges <strong>in</strong> 21 st century”. Vigyan Bhawan, New Delhi. Vol. 4: 1-16.H<strong>in</strong>kle, S.R. & Polette, D.J. 1999. Arsenic <strong>in</strong> ground <strong>water</strong> of the Willamette Bas<strong>in</strong>,Oregon, U.S. Geological Survey, Water-Resources. Investigations Report No. 98-4205.http://oregon.usgs.gov/pubs_dir/Onl<strong>in</strong>e/Html/WRIR98-4205/<strong>in</strong>dex.html.Hoffman, G.J. 1980. Guidel<strong>in</strong>es for the reclamation of salt-affected soils. Cited <strong>in</strong> R. Keren,B. Dagan & S. Miyamoto, 1990. Reclamation of sal<strong>in</strong>e, sodic <strong>and</strong> boron-effected soils. InK.K. Tanji, ed. <strong>Agricultural</strong> sal<strong>in</strong>ity assessment <strong>and</strong> <strong>management</strong>. ASCE Manuals <strong>and</strong>Reports on Eng<strong>in</strong>eer<strong>in</strong>g Practices No. 71. New York, The United States of America, TheAmerican Society of Civil Eng<strong>in</strong>eers.Hoffman, G.F., Howell, T.A. & Solomon, K.H., eds. 1990. Management of farm irrigationsystems. ASAE Monograph. New York, The United States of America, The American Societyof Civil Eng<strong>in</strong>eers.IWASRI. 1998. Design <strong>and</strong> <strong>management</strong> of evaporation ponds, <strong>in</strong>ception report. ReportNo. IR 98/29. Lahore, Pakistan.Johnston, W.R., Tanji, K.K. & Burns, R.T. 1997. Dra<strong>in</strong>age <strong>water</strong> disposal. In <strong>FAO</strong>.Management of agricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong> quality, by C.A. Madramootoo, W.R. Johnston& L.S. Willardson, eds. <strong>FAO</strong> Water Reports No. 13. Rome.Jur<strong>in</strong>ak, J.J. & Suarez, D.L. 1990. The chemistry of salt-affected soils <strong>and</strong> <strong>water</strong>s. In K.K.Tanji, ed. <strong>Agricultural</strong> sal<strong>in</strong>ity assessment <strong>and</strong> <strong>management</strong>. ASCE Manuals <strong>and</strong> Reportson Eng<strong>in</strong>eer<strong>in</strong>g Practices No. 71. New York, The United States of America, American Societyof Civil Eng<strong>in</strong>eers.Kaddah, M. & Rhoades, J. 1976. Salt <strong>and</strong> <strong>water</strong> balance <strong>in</strong> Imperial Valley, California. SoilSci. Soc. Am. J., (40): 93-100.Kapoor, A.S. 2000. Bio-<strong>dra<strong>in</strong>age</strong> feasibility <strong>and</strong> pr<strong>in</strong>ciples of plann<strong>in</strong>g <strong>and</strong> design. In Proc. ofthe 8th ICID International Dra<strong>in</strong>age Workshop, “Role of <strong>dra<strong>in</strong>age</strong> <strong>and</strong> challenges <strong>in</strong>21 st century”. Vigyan Bhawan, New Delhi. Vol. 4: 17-32.Keren, R., Dagan, B. & Miyamoto, S. 1990. Reclamation of sal<strong>in</strong>e, sodic <strong>and</strong> boron-effectedsoils. In K.K. Tanji, ed. <strong>Agricultural</strong> sal<strong>in</strong>ity assessment <strong>and</strong> <strong>management</strong>. ASCE Manuals


126References<strong>and</strong> Reports on Eng<strong>in</strong>eer<strong>in</strong>g Practices No. 71. New York, The United States of America,American Society of Civil Eng<strong>in</strong>eers.Kroes, J.G., van Dam, J.C., Huygens, J. & Vervoort, R.W. 1999. User’s guide of SWAPversion 2.0: simulation of <strong>water</strong> flow, solute transport <strong>and</strong> plant growth <strong>in</strong> the soil<strong>water</strong>-atmosphere-plantenvironment. Wagen<strong>in</strong>gen University Report No. 81 <strong>and</strong> DLOW<strong>in</strong><strong>and</strong> Star<strong>in</strong>g Centre Technical Document No. 53. Wagen<strong>in</strong>gen, The Netherl<strong>and</strong>s,Department of Water Resources.Leaney, F., Christen, E., Jolly, I. & Walker, G. 2000. On-farm <strong>and</strong> community-scale saltdisposal bas<strong>in</strong>s on the River<strong>in</strong>e Pla<strong>in</strong>: guidel<strong>in</strong>es summary. CRC for Catchment HydrologyReport 00/17 <strong>and</strong> CSIRO L<strong>and</strong> <strong>and</strong> Water Technical Report No. 24/00. Adelaide, Australia,CSIRO L<strong>and</strong> <strong>and</strong> Water. http://www.catchment.crc.<strong>org</strong>.au/pdfs/ sdb_2000_17.pdf.Lee, E.W. 1994. Dra<strong>in</strong>age <strong>water</strong> treatment <strong>and</strong> disposal. In K.K. Tanji & B. Yaron, eds.Management of <strong>water</strong> use <strong>in</strong> agriculture. New York, The United States of America,Spr<strong>in</strong>ger-Verlag.Maas, E.V. & Grattan, S.R. 1999. Crop yields as affected by sal<strong>in</strong>ity. In R.W. Skaggs & J.Van Schilfgaarde, eds. <strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong>. Number 38 <strong>in</strong> the series Agronomy. Mad<strong>in</strong>son,Wiscons<strong>in</strong>, The United States of America, American Society of Agronomy, Crop ScienceSociety of America, Soil Science Society of America.Martínez Beltrán, J. & Kielen, N.C. 2000. <strong>FAO</strong> programme on “Dra<strong>in</strong>age, control ofsal<strong>in</strong>ization <strong>and</strong> <strong>water</strong> quality <strong>management</strong>”. In Proc. of the 8th ICID InternationalDra<strong>in</strong>age Workshop, “Role of <strong>dra<strong>in</strong>age</strong> <strong>and</strong> challenges <strong>in</strong> 21 st century”. Vigyan Bhawan,New Delhi. Vol. 1: 19-32.M<strong>in</strong>has, P.S. 1998. Crop production <strong>in</strong> sal<strong>in</strong>e soils. In N.K. Tyagi & P.S. M<strong>in</strong>has, eds.<strong>Agricultural</strong> sal<strong>in</strong>ity <strong>management</strong> <strong>in</strong> India. Karnal, India, Central Soil Sal<strong>in</strong>ity ResearchInstitute.M<strong>in</strong>has, P.S., Sharma, D.R. & Khosla, B.K. 1988. Effect of quality <strong>and</strong> depth of ground<strong>water</strong> table on sal<strong>in</strong>isation <strong>and</strong> crop growth. Annual Report. Karnal, India, Central SoilSal<strong>in</strong>ity Research Institute.Mualem, Y. 1976. A catalogue of the hydraulic properties of soils. Project No. 442. Haifa,Israel, Institute of Technology.Murray-Darl<strong>in</strong> Bas<strong>in</strong> M<strong>in</strong>isterial Council. 2001. Bas<strong>in</strong> sal<strong>in</strong>ity <strong>management</strong> strategy 2001-2015. Canberra, Australia, Murray-Darl<strong>in</strong>g Commission. http://www.mdbc.gov.au/naturalresources/plann<strong>in</strong>g/sal<strong>in</strong>ity/pdf/cvrbck.pdfNESPAK-ILACO. 1981. Panjnad Abbasia sal<strong>in</strong>ity control <strong>and</strong> reclamation project (SCARPVI). F<strong>in</strong>al Plan Vol.1. Lahore, Pakistan.NRAP. 1991. Evaporation ponds: guidel<strong>in</strong>es for monitor<strong>in</strong>g, evaluation <strong>and</strong> research, byN.W. Trewhella & M. Badrudd<strong>in</strong>. LAWOO-IWASRI: NRAP Report No. 25. Lahore,Pakistan.NRC (National Research Council). 1993. Soil <strong>and</strong> <strong>water</strong> quality. An agenda for agriculture.Wash<strong>in</strong>gton, DC, National Academy of Science.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 127NRCS (National Resources Conservation Service). 1997. Water quality <strong>and</strong> agriculture;status, conditions, <strong>and</strong> trends. Work<strong>in</strong>g Paper No. 16. United States Department ofAgriculture. http://www.nhq.nrcs.usda.gov/l<strong>and</strong>/pubs/WP16.pdfOosterbaan, R.J. 2001. SALTMOD description of pr<strong>in</strong>ciples <strong>and</strong> applications. SpecialReport No. 11. Wagen<strong>in</strong>gen, The Netherl<strong>and</strong>s, ILRI.Open University. 1997. A systems approach to manufactur<strong>in</strong>g. Block 1, Topic 4 <strong>in</strong> T836International operations <strong>management</strong>. Nott<strong>in</strong>gham, United K<strong>in</strong>gdom.Owens, L.P. 1998. Bioreactors <strong>in</strong> remov<strong>in</strong>g selenium from agricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong>. In W.T.Frankenberger, Jr. & R.A. Engberg, eds. Environmental chemistry of selenium. New York,The United States of America, Marcel Dekker, Inc.Owens, L. & Ochs, W.J. 1997. Dra<strong>in</strong>age <strong>water</strong> treatment. In <strong>FAO</strong>. Management ofagricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong> quality, by C.A. Madramootoo, W.R. Johnston & L.S.Willardson. <strong>FAO</strong> Water Reports No. 13. Rome.Pallad<strong>in</strong>, V.I. 1992. Plant physiology second American edition. Cited <strong>in</strong> A.S. Kapoor. 2000.Bio-<strong>dra<strong>in</strong>age</strong> feasibility <strong>and</strong> pr<strong>in</strong>ciples of plann<strong>in</strong>g <strong>and</strong> design. In Proc. of the 8th ICIDInternational Dra<strong>in</strong>age Workshop, “Role of <strong>dra<strong>in</strong>age</strong> <strong>and</strong> challenges <strong>in</strong> 21 st century”.Vigyan Bhawan, New Delhi. Vol. 4: 17-32.P<strong>and</strong>ey, S.N. & S<strong>in</strong>ha, B.K. 1995. Plant physiology 3rd edition. Cited <strong>in</strong> A.S. Kapoor. 2000.Bio-<strong>dra<strong>in</strong>age</strong> feasibility <strong>and</strong> pr<strong>in</strong>ciples of plann<strong>in</strong>g <strong>and</strong> design. In Proc. of the 8th ICIDInternational Dra<strong>in</strong>age Workshop, “Role of <strong>dra<strong>in</strong>age</strong> <strong>and</strong> challenges <strong>in</strong> 21 st century”.Vigyan Bhawan, New Delhi. Vol. 4: 17-32.Perry, C.J. 2001. Charg<strong>in</strong>g for irrigation <strong>water</strong>: the issues <strong>and</strong> options, with a case studyfrom Iran. Research Report No. 52. Colombo, International Water Management Institute.Phocaides, A. 2001. H<strong>and</strong>book on pressurised irrigation techniques. Rome, <strong>FAO</strong>.Pratt, P.F. & Suarez, D.L. 1990. Irrigation <strong>water</strong> quality assessments. In K.K. Tanji, ed.<strong>Agricultural</strong> sal<strong>in</strong>ity assessment <strong>and</strong> <strong>management</strong>. ASCE Manuals <strong>and</strong> Reports onEng<strong>in</strong>eer<strong>in</strong>g Practices No. 71. New York, The United States of America, American Societyof Civil Eng<strong>in</strong>eers.Purkey, D.R. 1998. Development of a transient, non-Dupuit, unconf<strong>in</strong>ed aquifer modelto evaluate <strong>dra<strong>in</strong>age</strong> <strong>management</strong> options for the Western San Joaqu<strong>in</strong> Valley. Ph.D.dissertation. Davis, The United States of America, University of California.Qureshi. 1996. Management of salt effected soils. Cited <strong>in</strong> C.N. Ahmed & M.R. Chaudrey.1997. Review of research on reclamation of salt-affected soils <strong>in</strong> Pakistan. PublicationNo. 175. Lahore, Pakistan, IWASRI.Qureshi, A.S., Iqbal, M., Anwar, N.A., Aslam, M. & Chaudhry, M.R. 1997. Benefits ofshallow ground<strong>water</strong>. In M.R. Chaudhry, N.C. Kielen & A.B. Sufi, eds. Proc. of the sem<strong>in</strong>aron on-farm sal<strong>in</strong>ity, <strong>dra<strong>in</strong>age</strong> <strong>and</strong> reclamation. Publication No. 179. Lahore, Pakistan,IWASRI.Ramsar Convention Bureau. 2000. Ramsar <strong>in</strong>formation paper no. 1. http://www.ramsar.<strong>org</strong>/


128ReferencesRao, K.V.G.K., Sharma, D.P. & Oosterbaan, R.J. 1992. Subirrigation by ground<strong>water</strong><strong>management</strong> with controlled sub-surface <strong>dra<strong>in</strong>age</strong> <strong>in</strong> <strong>semi</strong>-<strong>arid</strong> areas. In Proc. of theInternational Conference on Supplementary Irrigation <strong>and</strong> Drought WaterManagement. Valenzano, Bari, Italy. Vol. 3: 56-57.Reeve, R.C., Pillbury A.F. & Wilcox, L.V. 1955. Cited <strong>in</strong> <strong>FAO</strong>. Management of agricultural<strong>dra<strong>in</strong>age</strong> <strong>water</strong> quality, by C.A. Madramootoo, W.R. Johnston & L.S. Willardson. <strong>FAO</strong>Water Reports No. 13. Rome.Rhoades, J.D. 1974. Dra<strong>in</strong>age for sal<strong>in</strong>ity control. Cited <strong>in</strong> <strong>FAO</strong>.1985. Water quality foragriculture, by R.S. Ayers & D.W. Westcot. <strong>FAO</strong> Irrigation <strong>and</strong> Dra<strong>in</strong>age Paper No. 29(Rev 1). Rome.Rhoades, J.D. 1987. Use of sal<strong>in</strong>e <strong>water</strong> for irrigation. Water Quality Bullet<strong>in</strong>, 12 (1): 14-20,44.Rhoades, J.D. 1989. Intercept<strong>in</strong>g, isolat<strong>in</strong>g <strong>and</strong> reus<strong>in</strong>g <strong>dra<strong>in</strong>age</strong> <strong>water</strong> for irrigation to conserve<strong>water</strong> <strong>and</strong> protect <strong>water</strong> quality. Agr. Water Mgmt., (16): 1, 2, 37-52.Rhoades, J.D., B<strong>in</strong>gham, F.T., Letley, J., Dedrick, A.R., Bean, M., Hoffman, G.L.,Alves, W.L., Swa<strong>in</strong>, R.V., Pecheco, P.G. & Lemert, R.D. 1988a. Reuse of <strong>dra<strong>in</strong>age</strong><strong>water</strong> for irrigation: results of Imperial Valley Study. I. Hypothesis, experimental procedures,<strong>and</strong> cropp<strong>in</strong>g results. Hilgardia, 56 (5): 1-16.Rhoades, J.D., B<strong>in</strong>gham, F.T., Letley, J., Dedrick, A.R., Bean, M., Hoffman, G.L.,Alves, W.L., Swa<strong>in</strong>, R.V., Pecheco, P.G. & Lemert, R.D. 1988b. Reuse of <strong>dra<strong>in</strong>age</strong><strong>water</strong> for irrigation: results of Imperial Valley study. II. Soil sal<strong>in</strong>ity <strong>and</strong> <strong>water</strong> balance.Hilgardia, 56 (5): 17-44.Rhoades, J.D., B<strong>in</strong>gham, F.T., Letey, J., Hoffman, G.J., Dedrick, A.R., P<strong>in</strong>ter, P.J. &Replogle, J.A. 1989. Use of sal<strong>in</strong>e <strong>dra<strong>in</strong>age</strong> <strong>water</strong> for irrigation: Imperial Valley study. Agr.Water Mgmt., (16): 1, 2, 25-36.Rhoades, J.D. & Merrill, S.D. 1976. Assess<strong>in</strong>g the suitability of <strong>water</strong> for irrigation: theoretical<strong>and</strong> empirical approaches. Cited <strong>in</strong> <strong>FAO</strong>. 1985. Water quality for agriculture, by R.S.Ayers & D.W. Westcot. <strong>FAO</strong> Irrigation <strong>and</strong> Dra<strong>in</strong>age Paper No. 29 (Rev. 1). Rome.Robb<strong>in</strong>s, C., Wagenet, R. & Jur<strong>in</strong>ak, J. 1980. A comb<strong>in</strong>ed salt transport-chemistry equilibriummodel for calcareous <strong>and</strong> gypsiferous soil. Soil Sci. Soc. Am. J., (44):1191-1194.Rutherford, B. 1997 Toxic chemicals <strong>and</strong> the Ramsar Convention. The Ramsar Conventionon wetl<strong>and</strong>s. http://www.ramsar.<strong>org</strong>/about_toxic_chemicals.htm.SJVDIP (San Joaqu<strong>in</strong> Valley Dra<strong>in</strong>age Implementation Program). 1999a. Dra<strong>in</strong>age reusetechnical committee report. Sacramento, United States of America, Department of WaterResources. 81 pp.SJVDIP (San Joaqu<strong>in</strong> Valley Dra<strong>in</strong>age Implementation Program). 1999b. Dra<strong>in</strong>age <strong>water</strong>treatment technical committee report. Sacramento, United States of America, Departmentof Water Resources. 41 pp.SJVDIP (San Joaqu<strong>in</strong> Valley Dra<strong>in</strong>age Implementation Program). 1999c. L<strong>and</strong> retirementtechnical committee report. Sacramento, United States of America, Department of WaterResources. 100 pp.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 129SJVDIP (San Joaqu<strong>in</strong> Valley Dra<strong>in</strong>age Implementation Program). 1999d. Evaporationpond technical committee report. Sacramento, United States of America, Department ofWater Resources. 77 pp.SJVDIP (San Joaqu<strong>in</strong> Valley Dra<strong>in</strong>age Implementation Program). 1999e. Sourcereduction technical committee report. Sacramento, United States of America, Departmentof Water Resources. 33 pp.SJVDIP (San Joaqu<strong>in</strong> Valley Dra<strong>in</strong>age Implementation Program). 1999f. Ground<strong>water</strong><strong>management</strong> technical committee report. Sacramento, United States of America, Departmentof Water Resources. 52 pp.SJVDIP (San Joaqu<strong>in</strong> Valley Dra<strong>in</strong>age Implementation Program). 1999g. River dischargetechnical committee report. Sacramento, United States of America, Department of WaterResources. 111 pp.SJVDP (San Joaqu<strong>in</strong> Valley Dra<strong>in</strong>age Program). 1990. A <strong>management</strong> plan for agriculturalsubsurface <strong>dra<strong>in</strong>age</strong> <strong>and</strong> related problems on the Westside San Joaqu<strong>in</strong> Valley.Sacramento, The United States of America, US Department of the Interior <strong>and</strong> CaliforniaResources Agency. 183 pp.Sharma, D.P., S<strong>in</strong>gh, K.N. & Kumbhare, P.S. 2000. Susta<strong>in</strong>able use of sal<strong>in</strong>e <strong>dra<strong>in</strong>age</strong><strong>water</strong> for irrigation <strong>in</strong> <strong>semi</strong>-<strong>arid</strong> regions. In Proc. of the 8th ICID International Dra<strong>in</strong>ageWorkshop, “Role of <strong>dra<strong>in</strong>age</strong> <strong>and</strong> challenges <strong>in</strong> 21 st century”. Vigyan Bhawan, NewDelhi. Vol. 3: 215-226.Sharma, D.P., Rao, K.V.G.K., S<strong>in</strong>gh, K.N., Kumbhare, P.S. & Oosterbaan, R.J. 1994.Conjunctive use of sal<strong>in</strong>e <strong>and</strong> non-sal<strong>in</strong>e irrigation <strong>water</strong>s <strong>in</strong> <strong>semi</strong>-<strong>arid</strong> regions. Irrig. Sci.,(15): 25-33.Simunek, J. & Suarez, D. 1993. UNSATCHEM-2D code, version 1.1. Research ReportNo. 125. Riverside, The United States of America, US Sal<strong>in</strong>ity Laboratory.Simunek, J., Suarez, D. & Sejna, M. 1996. UNSATCHEM software package, version 2.0.Research Report No. 141. Riverside, The United States of America, US Sal<strong>in</strong>ity Laboratory.Simunek, J., Huang, K. & Van Genuchten, M. T. 1998. The HYDRUS code, version 6.0.Research Report No. 144. Riverside, The United States of America, US Sal<strong>in</strong>ity Laboratory.Simunek, J., Huang, K. & Van Genuchten, M. T. 1999. The HYDRUS 2-D code, version2.0. Riverside, The United States of America, US Sal<strong>in</strong>ity Laboratory.S<strong>in</strong>gh, J. & Christen, E.W. 2000. On-farm <strong>and</strong> community-scale salt disposal bas<strong>in</strong>s onthe Riverr<strong>in</strong>e Pla<strong>in</strong>: cost comparisons of on-farm <strong>and</strong> community bas<strong>in</strong>s - Case studiesof the MIA <strong>and</strong> Wakool. CSIRO L<strong>and</strong> <strong>and</strong> Water Technical Report No. 14/00, CRC forCatchment Hydrology Technical Report No. 00/8. Griffith, Australia, CSIRO L<strong>and</strong> <strong>and</strong> Water.http://www.catchment.crc.<strong>org</strong>.au/pdfs/sdb_2000_08.pdfSkaggs, R.W. 1999. Water table <strong>management</strong>: subirrigation <strong>and</strong> controlled <strong>dra<strong>in</strong>age</strong>. In R.W.Skaggs & J. Van Schilfgaarde, eds. <strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong>. Number 38 <strong>in</strong> the seriesAgronomy. Mad<strong>in</strong>son, Wiscons<strong>in</strong>, The United States of America, American Society ofAgronomy, Crop Science Society of America, Soil Science Society of America.


130ReferencesSkaggs, R.W. & Van Schilfgaarde J., eds. 1999. <strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong>. Number 38 <strong>in</strong> theseries Agronomy. Mad<strong>in</strong>son, Wiscons<strong>in</strong>, The United States of America, American Society ofAgronomy, Crop Science Society of America, Soil Science Society of America.Smedema, L.K. & Rycroft, D.W. 1988. L<strong>and</strong> <strong>dra<strong>in</strong>age</strong>: plann<strong>in</strong>g <strong>and</strong> design of agricultural<strong>dra<strong>in</strong>age</strong> systems. London, B.T. Batsford Ltd.Smedema, L.K., Abdel-Dayem, S. & Ochs, W.J. 2000. Dra<strong>in</strong>age <strong>and</strong> agriculturaldevelopment. Irrig. & Dra<strong>in</strong>age Sys., 14 (3): 223-235.Snellen, W.B. 1997. Towards <strong>in</strong>tegration of irrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>management</strong>: <strong>in</strong>formationon symposium background, objectives <strong>and</strong> procedures. In W.B. Snellen, ed. “Towards<strong>in</strong>tegration of irrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>management</strong>” proceed<strong>in</strong>gs of the jubileesymposium. Wagen<strong>in</strong>gen, The Netherl<strong>and</strong>s, ILRI.Solomon, K.H., & Davidoff, B. 1999. Relat<strong>in</strong>g unit <strong>and</strong> sub-unit irrigation performance.Transactions, American Society of <strong>Agricultural</strong> Eng<strong>in</strong>eers, 42 (1): 115-122Soltanpour, P.N. & Raley, W.L. 2001. Livestock dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> quality. Colorado StateUniversity Cooperative Extension, No. 4.908. http://www.ext.colostate.edu/PUBS/LIVESTK/04908.html.Stephens, W. & Hess, T. 1999. System approaches to <strong>water</strong> <strong>management</strong> research.<strong>Agricultural</strong> Water Management, (40): 3-13.Sumner, M.E. 1993. Sodic soils: new perspectives. Aust. J. Soil Res., (31): 683-750.Tanji, K. & Gao, S. 1999. TLDD flow-through wetl<strong>and</strong> system: <strong>in</strong>flows <strong>and</strong> outflows of<strong>water</strong> <strong>and</strong> total selenium as well as <strong>water</strong> Se speciation <strong>and</strong> sediment Se speciation.Annual Report. UC Sal<strong>in</strong>ity Dra<strong>in</strong>age Program.Tanji, K., Biggar, J., Horner, J., Miller, R. & Pruitt, W. 1977. Irrigation tail<strong>water</strong><strong>management</strong>. 1976-77 Annual Report to US EPA. Water Science <strong>and</strong> Eng<strong>in</strong>eer<strong>in</strong>g Paper4014.Tanji, K.K., ed. 1990. <strong>Agricultural</strong> Sal<strong>in</strong>ity Assessment <strong>and</strong> Management. ASCE Manuals<strong>and</strong> Reports on Eng<strong>in</strong>eer<strong>in</strong>g Practices No. 71. New York, The United States of America,American Society of Civil Eng<strong>in</strong>eers.Tanji, K.K. & Hanson, B.R. 1990. Dra<strong>in</strong>age <strong>and</strong> return flows <strong>in</strong> relation to irrigation<strong>management</strong>. In R.W. Skaggs & J. Van Schilfgaarde, eds. <strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong>. Number38 <strong>in</strong> the series Agronomy. Mad<strong>in</strong>son, Wiscons<strong>in</strong>, The United States of America, AmericanSociety of Agronomy, Crop Science Society of America, Soil Science Society of America.Tanji, K.K., Iqbal, M.M. & Quek, A.F. 1977. Surface irrigation return flows vary. CaliforniaAgriculture, 31 (5): 30-31.Tanji, K.K., Lauchli, A., & Meyer, J. 1986. Selenium <strong>in</strong> the San Joaqu<strong>in</strong> Valley. Environment,28 (6): 6-11, 34-39.UNCED. 1992. Agenda 21. United Nations Susta<strong>in</strong>able Development, 2000. http://www.un.<strong>org</strong>/esa/sustdev/agenda21text.htm.USBR. 1978. Cited <strong>in</strong> L.G. James. 1988. Pr<strong>in</strong>ciples of farm irrigation system design. NewYork, The United States of America, John Wiley <strong>and</strong> Sons.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 131Van Dam, J.C., Huygen, J., Wessel<strong>in</strong>g, J.G., Feddes, R.A., Kabat, P., Van Walsum,P.E.V., Groenendijk P. & Van Diepen, C.A. 1997. Theory of SWAP version 2.0:simulation of <strong>water</strong> flow, solute transport <strong>and</strong> plant growth <strong>in</strong> the soil-<strong>water</strong>-atmosphereplantenvironment. Department Water Resources, Wagen<strong>in</strong>gen University Report No. 71<strong>and</strong> DLO W<strong>in</strong><strong>and</strong> Star<strong>in</strong>g Centre Technical Document No. 45. Wagen<strong>in</strong>gen, The Netherl<strong>and</strong>s.Van der Molen, W.H. 1996. Models <strong>and</strong> their use <strong>in</strong> irrigated area. Lecture notes for theInformal Consultation on Simulation Models for Integrated Management of Irrigation<strong>and</strong> Dra<strong>in</strong>age. Rome, <strong>FAO</strong>.Van Genuchten, M. T. 1980. A closed-form equation for predict<strong>in</strong>g the hydraulic conductivityof unsaturated soils. Soil Sci. Am. J., (44): 892-898.Van Hoorn, J.W. & van Alphen, J.G. 1994. Sal<strong>in</strong>ity control. In H.P. Ritzema, ed. Dra<strong>in</strong>agepr<strong>in</strong>ciples <strong>and</strong> applications. Publication No. 16 (2 nd ed.). Wagen<strong>in</strong>gen, The Netherl<strong>and</strong>s,ILRI.Varela-Ortega, C., Sumpsi, J.M., Garrido, A., Blanco, M. & Iglesias, E. 1998. Waterpric<strong>in</strong>g policies, public decision mak<strong>in</strong>g <strong>and</strong> farmers’ response: implications for <strong>water</strong> policy.Agric. Econ., (19): 93-202Wagenet, R. & Hutson, J. 1987. LEACHM-leach<strong>in</strong>g estimation <strong>and</strong> chemistry model.Cont<strong>in</strong>uum 2. Cornell University, Water Resources Institute.Weers<strong>in</strong>k, A. & Livernois, J. 1996. The use of economic <strong>in</strong>struments to resolve <strong>water</strong> qualityproblems from agriculture. Can. J. Agric. Econ., 44 (4): 345-353.Welch, A.H., Lico, M.S. & Hughes, J.L. 1988. Arsenic <strong>in</strong> ground <strong>water</strong> of the westernUnited States. J. Ground Water, 26 (3): 333-347.Wessel<strong>in</strong>g, J.G. 1991. CAPSEV: steady state moisture flow theory, program description<strong>and</strong> user manual. Report No. 37. Wagen<strong>in</strong>gen, The Netherl<strong>and</strong>s, W<strong>in</strong><strong>and</strong> Star<strong>in</strong>g Centre.Westcot, D.W. 1997. Dra<strong>in</strong>age <strong>water</strong> quality. In <strong>FAO</strong>. Management of agricultural <strong>dra<strong>in</strong>age</strong><strong>water</strong> quality, by C.A. Madramootoo, W.R. Johnston & L.S. Willardson, eds. <strong>FAO</strong> WaterReport No. 13. Rome.WHO. 1993. Guidel<strong>in</strong>es for dr<strong>in</strong>k<strong>in</strong>g-<strong>water</strong> quality, 2nd ed. Vol. 1.: Recommendations.Geneva, Switzerl<strong>and</strong>.WHO. 1996. Guidel<strong>in</strong>es for dr<strong>in</strong>k<strong>in</strong>g-<strong>water</strong> quality, 2nd ed. Vol. 2.: Health criteria <strong>and</strong>other support<strong>in</strong>g <strong>in</strong>formation. Geneva, Switzerl<strong>and</strong>.WHO. 1998. Guidel<strong>in</strong>es for safe recreational-<strong>water</strong> environments Vol. 1: coastal <strong>and</strong> fresh<strong>water</strong>s.(Unpublished document OS/Draft/98.14). Geneva, Switzerl<strong>and</strong>. http://www.who.<strong>in</strong>t/<strong>water</strong>_sanitation_health/Recreational_<strong>water</strong>/eosdraft9814.htm.WHO. 2000. Guidel<strong>in</strong>es for dr<strong>in</strong>k<strong>in</strong>g <strong>water</strong> quality tra<strong>in</strong><strong>in</strong>g pack. Onl<strong>in</strong>e edition. http://www.who.<strong>in</strong>t/<strong>water</strong>_sanitation_health/Tra<strong>in</strong><strong>in</strong>g_mat/GDWQtra<strong>in</strong><strong>in</strong>g.htm.Wichelns, D. 1991. Motivat<strong>in</strong>g reductions <strong>in</strong> dra<strong>in</strong> <strong>water</strong> with block-rate prices for irrigation<strong>water</strong>. Water Resour. Bull., 27 (4): 585-592Woolhiser, D.A. & Brakensiek, D.L. 1982. Hydrologic model<strong>in</strong>g of small <strong>water</strong>sheds. InC.T. Haan, H.P. Johnson & D.L. Brakensiek, eds. Hydrologic modell<strong>in</strong>g of small


132References<strong>water</strong>sheds. St. Joseph, Michigan, The United States of America, American Society of<strong>Agricultural</strong> Eng<strong>in</strong>eers.World Bank. 1996. Interpretation of recent sal<strong>in</strong>ity data of the Amu Darya <strong>and</strong> Syr Daryariver bas<strong>in</strong>s, Central Asia. Discussion note. Tashkent, Uzbekistan.World Bank. 1998. Uzbekistan <strong>dra<strong>in</strong>age</strong> project: susta<strong>in</strong>ability of irrigation schemesdepend<strong>in</strong>g on large pump<strong>in</strong>g lifts. World Bank-IFC-MIGA Office Memor<strong>and</strong>um. Tashkent,Uzbekistan.Wösten, J.H.M., Veerman, G.J., De Groot, W.J.M. & Stolte, J. 2001. Waterretentie- endoorlatendheidskarakteristieken van boven- en ondergronden <strong>in</strong> Nederl<strong>and</strong>: deStar<strong>in</strong>greeks. Alterra-rapport No. 153, Vernieuwde uitgave. Wagen<strong>in</strong>gen, The Netherl<strong>and</strong>s,Alterra Research Instituut voor de Groene Ruimte.Yonts, C.D., Cahoon, J.E., Eisenhauer, D.E. & Wertz, K. 1994. Surge irrigation. Irrigationoperations <strong>and</strong> <strong>management</strong>, electronic version issued July 1995. File NF176 under IrrigationEng<strong>in</strong>eer<strong>in</strong>g B-6. http://ianrwww.unl.edu/pubs/irrigation/nf176.htm.Young, C.A., & Wallender, W.W. 2000a. Spatially distributed irrigation hydrology. 1.Water balance. Transactions American Society of <strong>Agricultural</strong> Eng<strong>in</strong>eers, Soil <strong>and</strong> WaterDivision (submitted).Young, C.A., & Wallender, W.W. 2000b. Spatially distributed irrigation hydrology. 2.Solute balance. Transactions American Society of <strong>Agricultural</strong> Eng<strong>in</strong>eers, Soil <strong>and</strong> WaterDivision (submitted).Zucker, L.A. & Brown, L.C., eds. 1998. <strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong>: <strong>water</strong> quality impacts<strong>and</strong> subsurface <strong>dra<strong>in</strong>age</strong> studies <strong>in</strong> the Midwest. Extension Bullet<strong>in</strong> 871. The UnitedStates of America, Ohio State University.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 133Annexes


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 135Annex 1Crop salt tolerance dataINTRODUCTIONIn 1985, <strong>FAO</strong> published a revised version of Irrigation <strong>and</strong> Dra<strong>in</strong>age Paper No. 29. This publication<strong>in</strong>corporated an extensive list of crop salt tolerance data. S<strong>in</strong>ce then, Maas <strong>and</strong> Grattan (1999)have published updated lists of salt tolerance data. This annex reproduces these data togetherwith the <strong>in</strong>troductory sections.CROP YIELD RESPONSE FUNCTIONSThe salt tolerance of a crop can best be described by plott<strong>in</strong>g its relative yield as a cont<strong>in</strong>uousfunction of soil sal<strong>in</strong>ity. For most crops, this response function follows a sigmoidal relationship.However, some crops may die before the seed or fruit yields decrease to zero, thus elim<strong>in</strong>at<strong>in</strong>gthe bottom part of the sigmoidal curve. Maas <strong>and</strong> Hoffman (1977) proposed that this responsecurve could be represented by two l<strong>in</strong>e segments: one, a tolerance plateau with a zero slope, <strong>and</strong>the other, a concentration-dependent l<strong>in</strong>e whose slope <strong>in</strong>dicates the yield reduction per unit<strong>in</strong>crease <strong>in</strong> sal<strong>in</strong>ity. The po<strong>in</strong>t at which the two l<strong>in</strong>es <strong>in</strong>tersect designates the threshold, i.e. themaximum soil sal<strong>in</strong>ity that does not reduce yield below that obta<strong>in</strong>ed under non-sal<strong>in</strong>e conditions.This two-piece l<strong>in</strong>ear response function provides a reasonably good fit for commercially acceptableyields plotted aga<strong>in</strong>st the electrical conductivity of the saturated paste (EC e). EC eis the traditionalsoil sal<strong>in</strong>ity measurement with units of decisiemens per metre (1 dS/m = 1 mmho/cm). For soilsal<strong>in</strong>ities exceed<strong>in</strong>g the threshold of any given crop, relative yield (Y r) can be estimated with thefollow<strong>in</strong>g equation:Yr= 100 − b(EC − a)where a = the sal<strong>in</strong>ity threshold expressed <strong>in</strong> dS/m; b = the slope expressed <strong>in</strong> percent per dS/m;<strong>and</strong> EC e= the mean electrical conductivity of a saturated paste taken from the rootzone.The two-piece l<strong>in</strong>ear response function is also reasonably accurate when sal<strong>in</strong>ity is expressed<strong>in</strong> terms of the osmotic potential of the soil solution at field capacity (OP fc). When the OP fcisknown, yield responses can be determ<strong>in</strong>ed as a function of the osmotic stress that the plantsexperience. For osmotic potentials exceed<strong>in</strong>g the threshold of a crop:Y = 100 − B(OP − A)rwhere A = the sal<strong>in</strong>ity threshold expressed <strong>in</strong> bars; B = the slope expressed <strong>in</strong> percent per bar;<strong>and</strong> OP fc= osmotic potential of the soil <strong>water</strong> extracted from the rootzone at field capacity.Equation 2, like Equation 1, is l<strong>in</strong>ear even though OP fcis not a l<strong>in</strong>ear function of EC e. However,the deviation from l<strong>in</strong>earity is small, <strong>and</strong> relative yields calculated from Equation 2 are with<strong>in</strong>2 percent of those calculated from Equation 1. The salt tolerance data <strong>in</strong> the subsequent sectionsare expressed <strong>in</strong> terms of EC e. Threshold (A) <strong>and</strong> slope (B) parameters <strong>in</strong> terms of OP fccan bedeterm<strong>in</strong>ed from the EC edata with the follow<strong>in</strong>g relationships:eA = −0.725afc1.06(1)(2)(3)


136Annex 1 – Crop salt tolerance dataB = 1001.100 + ab06(4)− 0.725 − Ab1.06These equations are based on the relationship, OP fc= -0.725 EC e, which was obta<strong>in</strong>edfrom Figure 6 of the USDA H<strong>and</strong>book No. 60 (USSL, 1954) after convert<strong>in</strong>g osmotic pressure<strong>in</strong> atmospheres at 0 o C to osmotic potential <strong>in</strong> bars at 25 o C. It is further assumed that the solublesalt concentration <strong>in</strong> the soil <strong>water</strong> at field capacity is twice that of the saturated-soil extract.The threshold <strong>and</strong> slope concept has its greatest value <strong>in</strong> provid<strong>in</strong>g general salt toleranceguidel<strong>in</strong>es for crop <strong>management</strong> decisions. Farmers need to know the soil sal<strong>in</strong>ity levels thatbeg<strong>in</strong> to reduce yield <strong>and</strong> how much yield will be reduced at levels above the threshold. However,more precise plant response functions would be advantageous for crop simulation modell<strong>in</strong>g.Van Genuchten <strong>and</strong> Hoffman (1984) have described several non-l<strong>in</strong>ear models that moreaccurately describe the sigmoidal growth response of plants to sal<strong>in</strong>ity. Computer programs forthese models were developed <strong>and</strong> documented by Van Genuchten (1983).SALT TOLERANCE DATAHerbaceous cropsTable A1.1 lists threshold <strong>and</strong> slope values for 81 crops <strong>in</strong> terms of EC e. Most of the data wereobta<strong>in</strong>ed where crops were grown under conditions simulat<strong>in</strong>g recommended cultural <strong>and</strong><strong>management</strong> practices for commercial production. Consequently, the data <strong>in</strong>dicate relativetolerances of different crops grown under different conditions <strong>and</strong> not under a st<strong>and</strong>ardized setof conditions. Furthermore, the data apply only where crops are exposed to fairly uniform sal<strong>in</strong>itiesfrom the late seedl<strong>in</strong>g stage to maturity. Where crops have particularly sensitive stages, thetolerance limits are given <strong>in</strong> the footnotes.The data <strong>in</strong> Table A1.1 apply tosoils where chloride is thepredom<strong>in</strong>ant anion. Because of thedissolution of CaSO 4whenprepar<strong>in</strong>g saturated-soil extracts, theEC eof gypsiferous (non-sodic, lowMg 2+ ) soils will be 1–3 dS/m higherthan that of non-gypsiferous soilshav<strong>in</strong>g the same soil <strong>water</strong>conductivity at field capacity(Bernste<strong>in</strong>, 1962). The extent of thisdissolution depends upon theexchangeable ion composition,CEC, <strong>and</strong> solution composition.Therefore, plants grown ongypsiferous soils will tolerate EC esapproximately 2 dS/m higher thanFIGURE A1.1Division for classify<strong>in</strong>g crop tolerance to sal<strong>in</strong>ityRelative crop yield (%)100806040200SensitiveModeratelysensitiveModeratelytolerant0 5 10 15 20 25 30 35EC e (dS/m)Yields unacceptablefor most cropsthose listed <strong>in</strong> Table A1.1. The last column provides a qualitative salt tolerance rat<strong>in</strong>g that isuseful <strong>in</strong> categoriz<strong>in</strong>g crops <strong>in</strong> general terms. Figure A1.1 illustrates the limits of these categories.Some crops have only a qualitative rat<strong>in</strong>g because the experimental data are <strong>in</strong>adequate forcalculat<strong>in</strong>g the threshold <strong>and</strong> slope.Tolerant


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 137Woody cropsThe salt tolerance of trees, v<strong>in</strong>es <strong>and</strong> other woody crops is complicated because of additionaldetrimental effects caused by specific ion toxicities. Many perennial woody species are susceptibleto foliar <strong>in</strong>jury caused by the toxic accumulation of Cl - <strong>and</strong>/or Na + <strong>in</strong> the leaves. Becausedifferent cultivars <strong>and</strong> rootstocks absorb Cl - <strong>and</strong> Na + at different rates, considerable variation <strong>in</strong>tolerance may occur with<strong>in</strong> an <strong>in</strong>dividual species.In the absence of specific-ion effects, the tolerance of woody crops, like that of herbaceouscrops, can be expressed as a function of the concentration of total soluble salts or osmoticpotential of the soil solution. One could expect this condition to obta<strong>in</strong> for those cultivars <strong>and</strong>rootstocks that restrict the uptake of Cl - <strong>and</strong> Na + . The salt tolerance data <strong>in</strong> Table A1.2 arebelieved to be reasonably accurate <strong>in</strong> the absence of specific-ion toxicities. Because of the cost<strong>and</strong> time required to obta<strong>in</strong> fruit yields, tolerances of several crops have been determ<strong>in</strong>ed forvegetative growth only. In contrast to other crop groups, most woody fruit <strong>and</strong> nut crops tend tobe salt sensitive, even <strong>in</strong> the absence of specific-ion effects. Only date-palm is relatively salttolerant, whereas olive <strong>and</strong> a few others are believed to be moderately tolerant.


138Annex 1 – Crop salt tolerance dataTABLE A1.1Salt tolerance of herbaceous crops †Crop Salt Tolerance ParametersCommon name Botanical name ‡ onTolerance basedThreshold §(ECe) Slope Rat<strong>in</strong>g ReferencesdS/m % per dS/mFibre, gra<strong>in</strong> <strong>and</strong> special cropsArtichoke, Jerusalem Helianthus tuberosus L. Tuber yield 0.4 9.6 MS Newton et al., 1991Barley # Hordeum vulgare L. Gra<strong>in</strong> yield 8.0 5.0 T Ayars et al., 1952; Hassan et al., 1970aCanola or rapeseed Brassica campestris L.[syn. B. rapa L.]Seed yield 9.7 14 T Francois, 1994aCanola or rapeseed B. napus L. Seed yield 11.0 13 T Francois, 1994aChickpea Cicer ariet<strong>in</strong>um L. Seed yield -- -- MS Manch<strong>and</strong>a & Sharma, 1989; Ram et al., 1989Corn ‡‡ Zea mays L. Ear FW 1.7 12 MS Bernste<strong>in</strong> & Ayars, 1949b; Kaddah & Ghowail, 1964Cotton Gossypium hirsutum L. Seed cotton yield 7.7 5.2 T Bernste<strong>in</strong>, 1955, 1956; Bernste<strong>in</strong> & Ford, 1959aCrambe Crambe abyss<strong>in</strong>ica Hochst. exR.E. FriesSeed yield 2.0 6.5 MS Francois & Kleiman, 1990Flax L<strong>in</strong>um usitatissimum L. Seed yield 1.7 12 MS Hayward & Spurr, 1944Guar Cyamopsis tetragonoloba (L).Taub.Seed yield 8.8 17 T Francois et al., 1990Kenaf Hibiscus cannab<strong>in</strong>us L. Stem DW 8.1 11.6 T Francois et al., 1992Millet, channel Ech<strong>in</strong>ochloa turnerana (Dom<strong>in</strong>)J.M. BlackGra<strong>in</strong> yield -- -- T Shannon et al., 1981Oats Avena sativa L. Gra<strong>in</strong> yield -- -- T Mishra & Shitole, 1986; USSL ††Peanut Arachis hypogaea L. Seed yield 3.2 29 MS Shalhevet et al., 1969Rice, paddy Oryza sativa L. Gra<strong>in</strong> yield 3.0 §§ 12 §§ S Ehrler, 1960; Narale et al., 1969; Pearson, 1959;Venkateswarlu et al., 1972


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 139TABLE A1.1 (CONTINUED)Crop Salt Tolerance ParametersCommon name Botanical name ‡ onTolerance basedThreshold §(ECe) Slope Rat<strong>in</strong>g ReferencesdS/m % per dS/mRoselle Hibiscus sabdariffa L. Stem DW -- -- MT El-Saidi & Hawash, 1971Rye Secale cereale L. Gra<strong>in</strong> yield 11.4 10.8 T Francois et al., 1989Safflower Carthamus t<strong>in</strong>ctorius L. Seed yield -- -- MT Francois & Bernste<strong>in</strong>, 1964bSesame Sesamum <strong>in</strong>dicum L. Pod DW -- -- S Yousif et al., 1972S<strong>org</strong>hum S<strong>org</strong>hum bicolor (L.)MoenchGra<strong>in</strong> yield 6.8 16 MT Francois et al., 1984Soybean Glyc<strong>in</strong>e max (L.) Merrrill Seed yield 5.0 20 MT Abel & McKenzie, 1964; Bernste<strong>in</strong> et al., 1955;Bernste<strong>in</strong> & Ogata, 1966Sugar beet ## Beta vulgaris L. Storage root 7.0 5.9 T Bower et al., 1954Sugar cane Saccharum offic<strong>in</strong>arum L. Shoot DW 1.7 5.9 MS Bernste<strong>in</strong> et al., 1966; Dev & Bajwa, 1972; Syed& El-Swaify, 1972Sunflower Helianthus annuus L. Seed yield 4.8 5.0 MT Cheng, 1983; Francois, 1996Triticale X Triticosecale Wittmack Gra<strong>in</strong> yield 6.1 2.5 T Francois et al., 1988Wheat Triticum aestivum L. Gra<strong>in</strong> yield 6.0 7.1 MT Asana & Kale, 1965; Ayers et al., 1952;Hayward & Uhvits, 1944Wheat (<strong>semi</strong>dwarf)T. aestivum L. Gra<strong>in</strong> yield 8.6 3.0 T Francois et al., 1986†††Wheat, Durum T. turgidum L. var. durum Gra<strong>in</strong> yield 5.9 3.8 T Francois et al., 1986Desf.Alfalfa Medicago sativa L. Shoot DW 2.0 7.3 MS Bernste<strong>in</strong> & Francois, 1973; Bernste<strong>in</strong> & Ogata,1966; Bower et al., 1969; Brown & Hayward,1956; Gauch & Magistad, 1943; Hoffman et al.,1975Alkaligrass, Nuttall Pucc<strong>in</strong>ellia airoides (Nutt.)Wats. & Coult.Shoot DW -- -- T* USSL Staff, 1954Alkali sacaton Sporobolus airoides Torr. Shoot DW -- -- T* USSL Staff, 1954


140Annex 1 – Crop salt tolerance dataTABLE A1.1 (CONTINUED)Crop Salt Tolerance ParametersCommon name Botanical name ‡ onTolerance basedThreshold §(ECe) Slope Rat<strong>in</strong>g ReferencesdS/m % per dS/mBarley (forage) # Hordeum vulgare L. Shoot DW 6.0 7.1 MT Dregne, 1962; Hassan et al., 1970aBentgrass, creep<strong>in</strong>g Agrostis stolonifera L. Shoot DW -- -- MS Youngner et al., 1967Bermudagrass ‡‡‡ Cynodon dactylon (L.) Pers. Shoot DW 6.9 6.4 T Bernste<strong>in</strong> & Ford, 1959b; Bernste<strong>in</strong> & Francois, 1962;Langdale & Thomas, 1971Bluestem, Angleton Dichanthium aristatum (Poir.)C.E. Hubb. [syn. Andropogonnodosus (Willem.) Nash]Shoot DW -- -- MS* Gausman et al., 1954Broad bean Vicia faba L. Shoot DW 1.6 9.6 MS Ayars & Eberhard, 1960Brome, mounta<strong>in</strong> Bromus marg<strong>in</strong>atus Nees exSteud.Shoot DW -- -- MT* USSL Staff, 1954Brome, smooth B. <strong>in</strong>ermis Leyss Shoot DW -- -- MT McElgunn & Lawrence, 1973Buffelgrass Pennisetum ciliare (L). L<strong>in</strong>k.[syn. Cenchrus ciliaris]Shoot DW -- -- MS* Gausman et al., 1954Burnet Poterium sanguisorba L. Shoot DW -- -- MS* USSL Staff, 1954Canarygrass, reed Phalaris arund<strong>in</strong>acea L. Shoot DW -- -- MT McElgunn & Lawrence, 1973Clover, alsike Trifolium hybridum L. Shoot DW 1.5 12 MS Ayars, 1948aClover, Berseem T. alex<strong>and</strong>r<strong>in</strong>um L. Shoot DW 1.5 5.7 MS Asghar et al., 1962; Ayars & Eberhard, 1958;Ravikovitch & Porath, 1967; Ravikovitch & Yoles,1971Clover, Hubam Melilotus alba Dest. var. annuaH.S.CoeShoot DW -- -- MT* USSL Staff, 1954Clover, lad<strong>in</strong>o Trifolium repens L. Shoot DW 1.5 12 MS Ayars, 1948a; Gauch & Magistad, 1943


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 141TABLE A1.1 (CONTINUED)Crop Salt Tolerance ParametersCommon name Botanical name ‡ onTolerance basedThreshold §(ECe) Slope Rat<strong>in</strong>g ReferencesdS/m % per dS/mClover, Persian T. resup<strong>in</strong>atum L. Shoot DW -- -- MS* de F<strong>org</strong>es, 1970Clover, red T. pratense L. Shoot DW 1.5 12 MS Ayars, 1948a; Sa<strong>in</strong>i, 1972Clover, strawberry T. fragiferum L. Shoot DW 1.5 12 MS Ayars, 1948a; Bernste<strong>in</strong> & Ford, 1959b; Gauch &Magistad, 1943Clover, sweet Melilotus sp. Mill. Shoot DW -- -- MT* USSL Staff, 1954Clover, white Dutch Trifolium repens L. Shoot DW -- -- MS* USSL Staff, 1954Corn (forage) †† Zea mays L. Shoot DW 1.8 7.4 MS Hassan et al., 1970b; Ravikovitch, 1973; Ravikovitch& Porath, 1967Cowpea (forage) Vigna unguiculata (L.) Walp. Shoot DW 2.5 11 MS West & Francois, 1982Dallisgrass Paspalum dilatatum Poir. Shoot DW -- -- MS* Russell, 1976Dha<strong>in</strong>cha Sesbania bisp<strong>in</strong>osa (L<strong>in</strong>n.)W.F. Wight [syn. Sesbaniaaculeata (Willd.) Poir]Shoot DW -- -- MT Girdhar, 1987; Karadge & Chavan, 1983Fescue, tall Festuca elatior L. Shoot DW 3.9 5.3 MT Bower et al., 1970; Brown & Bernste<strong>in</strong>, 1953Fescue, meadow Festuca pratensis Huds. Shoot DW -- -- MT* USSL Staff, 1954Foxtail, meadow Alopecurus pratensis L. Shoot DW 1.5 9.6 MS Brown & Bernste<strong>in</strong>, 1953Glyc<strong>in</strong>e Neonotonia wightii [syn.Glyc<strong>in</strong>e wightii or javanica]Shoot DW -- -- MS Russell, 1976; Wilson, 1985Gram, blackor Urd beanVigna mungo (L.) Hepper [syn.Phaseolus mungo L.]Shoot DW -- -- S Keat<strong>in</strong>g & Fisher, 1985Grama, blue Bouteloua gracilis (HBK) Lag.ex Steud.Shoot DW -- -- MS* USSL Staff, 1954Gu<strong>in</strong>ea grass Panicum maximum Jacq. Shoot DW -- -- MT Russell, 1976


142Annex 1 – Crop salt tolerance dataTABLE A1.1 (CONTINUED)Crop Salt Tolerance ParametersCommon name Botanical name ‡ onTolerance basedThreshold §(ECe) Slope Rat<strong>in</strong>g ReferencesdS/m % per dS/mHard<strong>in</strong>ggrass Phalaris tuberosa L. var.stenoptera (Hack) A. S. Hitchc.Shoot DW 4.6 7.6 MT Brown & Bernste<strong>in</strong>, 1953Kallargrass Leptochloa fusca (L.) Kunth[syn. Diplachne fusca Beauv.]Shoot DW -- -- T S<strong>and</strong>hu et al., 1981Lablab bean Lablab purpureus (L.) Sweet[syn. Dolichos lablab L.]Shoot DW -- -- MS Russell, 1976Lovegrass §§§ Eragrostis sp. N. M. Wolf Shoot DW 2.0 8.4 MS Bernste<strong>in</strong> & Ford, 1959bMilkvetch, Cicer Astragalus cicer L. Shoot DW -- -- MS* USSL Staff, 1954Millet, Foxtail Setaria italica (L.) Beauvois Dry matter -- -- MS Ravikovitch & Porath, 1967Oatgrass, tall Arrhenatherum elatius (L.)Beauvois ex J. Presl & K. PreslShoot DW -- -- MS* USSL Staff, 1954Oats (forage) Avena sativa L. Straw DW -- -- T Mishra & Shitole, 1986; USSL ††Orchardgrass Dactylis glomerata L. Shoot DW 1.5 6.2 MS Brown & Bernste<strong>in</strong>, 1953; Wadleigh et al., 1951Panicgrass, blue Panicum antidotale Retz. Shoot DW -- -- MS* Abd El-Rahman et al., 1972; Gausman et al., 1954Pigeon pea Cajanus cajan (L.) Huth [syn.C. <strong>in</strong>dicus (K.) Spreng.]Shoot DW -- -- S Subbaro et al., 1991; Keat<strong>in</strong>g & Fisher, 1985Rape (forage) Brassica napus L. -- -- MT* USSL Staff, 1954Rescuegrass Bromus unioloides HBK Shoot DW -- -- MT* USSL Staff, 1954Rhodesgrass Chloris Gayana Kunth. Shoot DW -- -- MT Abd El-Rahman et al, 1972; Gausman et al., 1954Rye (forage) Secale cereale L. Shoot DW 7.6 4.9 T Francois et al., 1989Ryegrass, Italian Lolium multiflorum Lam. Shoot DW -- -- MT* Shimose, 1973


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 143TABLE A1.1 (CONTINUED)Crop Salt Tolerance ParametersCommon name Botanical name ‡ onTolerance basedThreshold §(ECe) Slope Rat<strong>in</strong>g ReferencesdS/m % per dS/mRyegrass, perennial Lolium perenne L. Shoot DW 5.6 7.6 MT Brown & Bernste<strong>in</strong>, 1953Ryegrass, Wimmera L. rigidum Gaud. -- -- MT* Malcolm & Smith, 1971Saltgrass, desert Distichlis spicta L. var. stricta(Torr.) BettleShoot DW -- -- T* USSL Staff, 1954Sesbania Sesbania exaltata (Raf.) V.L.CoryShoot DW 2.3 7.0 MS Bernste<strong>in</strong>, 1956Sirato Macroptilium atropurpureum(DC.) Urb.Shoot DW -- -- MS Russell, 1976Sphaerophysa Sphaerophysa salsula (Pall.)DCShoot DW 2.2 7.0 MS Francois & Bernste<strong>in</strong>, 1964aSudangrass S<strong>org</strong>hum sudanense (Piper)StapfShoot DW 2.8 4.3 MT Bower et al., 1970Timothy Phleum pratense L. Shoot DW -- -- MS* Sa<strong>in</strong>i, 1972Trefoil, big Lotus pedunculatus Cav. Shoot DW 2.3 19 MS Ayars, 1948a, 1948bTrefoil, narrowleafbirdsfootL. corniculatus var tenuifoliumL.Shoot DW 5.0 10 MT Ayars, 1948a, 1948bTrefoil, broadleafbirdsfootL. corniculatus L. var arvenis(Schkuhr) Ser. ex DCShoot DW -- -- MS Ayars, 1950bVetch, common Vicia angustifolia L. Shoot DW 3.0 11 MS Ravikovitch & Porath, 1967Wheat (forage) ††† Triticum aestivum L. Shoot DW 4.5 2.6 MT Francois et al., 1986Wheat, Durum(forage)T. turgidum L. var durum Desf. Shoot DW 2.1 2.5 MT Francois et al., 1986


144Annex 1 – Crop salt tolerance dataTABLE A1.1 (CONTINUED)Crop Salt Tolerance ParametersCommon name Botanical name ‡ onTolerance basedWheatgrass,st<strong>and</strong>ard crestedAgropyron sibiricum (Willd.)BeauvoisThreshold §(ECe) Slope Rat<strong>in</strong>g ReferencesdS/m % per dS/mShoot DW 3.5 4.0 MT Bernste<strong>in</strong> & Ford, 1958Wheatgrass, fairwaycrestedA. cristatum (L.) Gaertn. Shoot DW 7.5 6.9 T Bernste<strong>in</strong> & Ford, 1958Wheatgrass,<strong>in</strong>termediateA. <strong>in</strong>termedium (Host)BeauvoisShoot DW -- -- MT* Dewey, 1960Wheatgrass, slender A. trachycaulum (L<strong>in</strong>k) Malte Shoot DW -- -- MT McElgunn & Lawrence, 1973Wheatgrass, tall A. elongatum (Hort) Beauvois Shoot DW 7.5 4.2 T Bernste<strong>in</strong> & Ford, 1958Wheatgrass, western A. smithii Rydb. Shoot DW -- -- MT* USSL Staff, 1954Wildrye, Altai Elymus angustus Tr<strong>in</strong>. Shoot DW -- -- T McElgunn & Lawrence, 1973Wildrye, beardless E. triticoides Buckl. Shoot DW 2.7 6.0 MT Brown & Bernste<strong>in</strong>, 1953Wildrye, Canadian E. canadensis L. Shoot DW -- -- MT* USSL Staff, 1954Wildrye, Russian E. junceus Fisch. Shoot DW -- -- T McElgunn & Lawrence, 1973Vegetables <strong>and</strong> fruit cropsArtichoke Cynara scolymus L. Bud yield 6.1 11.5 MT Francois, 1995Asparagus Asparagus offic<strong>in</strong>alis L. Spear yield 4.1 2.0 T Francois, 1987Bean, common Phaseolus vulgaris L. Seed yield 1.0 19 S Bernste<strong>in</strong> & Ayars, 1951; Hoffman & Rawl<strong>in</strong>s, 1970;Magistad et al., 1943; Nieman & Bernste<strong>in</strong>, 1959;Osawa, 1965Bean, lima P. lunatus L. Seed yield -- -- MT * Mahmoud et al., 1988Bean, mung Vigna radiata (L.) R. Wilcz. Seed yield 1.8 20.7 S M<strong>in</strong>has et al., 1990Cassava Manihot esculenta Crantz Tuber yield -- -- MS Anonymous, 1976; Hawker & Smith, 1982


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 145TABLE A1.1 (CONTINUED)Crop Salt Tolerance ParametersCommon name Botanical name ‡ onTolerance basedThreshold §(ECe) Slope Rat<strong>in</strong>g ReferencesdS/m % per dS/mBeet, red ## Beta vulgaris L. Storage root 4.0 9.0 MT Bernste<strong>in</strong> et al., 1974; Hoffman & Rawl<strong>in</strong>s, 1971;Magistad et al., 1943Broccoli Brassica oleracea L. (BotrytisGroup)Shoot FW 2.8 9.2 MS Bernste<strong>in</strong> & Ayars, 1949a; Bernste<strong>in</strong> et al., 1974Brussels sprouts B. oleracea L. (GemmiferaGroup)-- -- MS*Cabbage B. oleracea L. (CapitataGroup)Head FW 1.8 9.7 MS Bernste<strong>in</strong> & Ayars, 1949a; Bernste<strong>in</strong> et al., 1974;Osawa, 1965Carrot Daucus carota L. Storage root 1.0 14 S Bernste<strong>in</strong> & Ayars, 1953a; Bernste<strong>in</strong> et al., 1974;Lagerwerff & Holl<strong>and</strong>, 1960; Magistad et al., 1943;Osawa, 1965Cauliflower Brassica oleracea L. (BotrytisGroup)-- -- MS*Celery Apium graveolens L. var dulce(Mill.) Pers.Petiole FW 1.8 6.2 MS Francois & West, 1982Corn, sweet Zea mays L. Ear FW 1.7 12 MS Bernste<strong>in</strong> & Ayars, 1949bCowpea Vigna unguiculata (L.) Walp. Seed yield 4.9 12 MT West & Francois, 1982Cucumber Cucumis sativus L. Fruit yield 2.5 13 MS Osawa, 1965; Ploegman & Bierhuizen, 1970Eggplant Solanum melongena L. varesculentum Nees.Fruit yield 1.1 6.9 MS Heuer et al., 1986Garlic Allium sativum L. Bulb yield 3.9 14.3 MS Francois, 1994bGram, blackor Urd beanVigna mungo (L.) Hepper [syn.Phaseolus mungo L.]Shoot DW -- -- S Keat<strong>in</strong>g & Fisher, 1985


146Annex 1 – Crop salt tolerance dataTABLE A1.1 (CONTINUED)Crop Salt Tolerance ParametersCommon name Botanical name ‡ onTolerance basedKale Brassica oleracea L. (AcephalaGroup)Threshold §(ECe) Slope Rat<strong>in</strong>g ReferencesdS/m % per dS/m-- -- MS* Malcolm & Smith, 1971Kohlrabi Brassica oleracea L.(Gongylodes Group)-- -- MS*Lettuce Lactuca sativa L. Top FW 1.3 13 MS Ayars et al., 1951; Bernste<strong>in</strong> et al., 1974; Osawa,1965Muskmelon Cucumis melo L. (ReticulatusGroup)Fruit yield 1.0 8.4 MS Mangal et al., 1988; Shannon & Francois, 1978Okra Abelmoschus esculentus (L.)MoenchPod yield -- -- MS Masih et al., 1978; Paliwal & Maliwal, 1972Onion (bulb) Allium cepa L. Bulb yield 1.2 16 S Bernste<strong>in</strong> & Ayars, 1953b; Bernste<strong>in</strong> et al., 1974;Hoffman & Rawl<strong>in</strong>s, 1971; Osawa, 1965Onion (seed) Seed yield 1.0 8.0 MS Mangal et al., 1989Parsnip Past<strong>in</strong>aca sativa L. -- -- S* Malcolm & Smith, 1971Pea Pisum sativum L. Seed FW 3.4 10.6 MS Cerda et al., 1982Pepper Capsicum annuum L. Fruit yield 1.5 14 MS Bernste<strong>in</strong>, 1954; Osawa, 1965; USSL ††Pigeon pea Cajanus cajan (L.) Huth [syn.C. <strong>in</strong>dicus (K.) Spreng.]Shoot DW -- -- S Keat<strong>in</strong>g & Fisher, 1985; Subbarao et al., 1991Potato Solanum tuberosum L. Tuber yield 1.7 12 MS Bernste<strong>in</strong> et al., 1951Pumpk<strong>in</strong> Cucurbita pepo L. var Pepo -- -- MS*Purslane Portulaca oleracea L. Shoot FW 6.3 9.6 MT Kumamoto et al., 1992Radish Raphanus sativus L. Storage root 1.2 13 MS Hoffman & Rawl<strong>in</strong>s, 1971; Osawa, 1965


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 147TABLE A1.1 (CONTINUED)Crop Salt Tolerance ParametersCommon name Botanical name ‡ onTolerance basedThreshold §(ECe) Slope Rat<strong>in</strong>g ReferencesdS/m % per dS/mSp<strong>in</strong>ach Sp<strong>in</strong>acia oleracea L. Top FW 2.0 7.6 MS Langdale et al., 1971; Osawa, 1965Squash, scallop Cucurbita pepo L. var melopepo (L.)Alef.Fruit yield 3.2 16 MS Francois, 1985Squash,zucch<strong>in</strong>iC. pepo L. var melopepo (L.) Alef. Fruit yield 4.9 10.5 MT Francois, 1985; Graifenberg et al., 1996Strawberry Fragaria x Ananassa Duch. Fruit yield 1.0 33 S Ehlig & Bernste<strong>in</strong>, 1958; Osawa, 1965Sweet potato Ipomoea batatas (L.) Lam. Fleshy root 1.5 11 MS Greig & Smith, 1962; USSL ††Tepary bean Phaseolus acutifolius Gray -- -- MS * Goertz & Coons, 1991; Hendry, 1918; Perez &M<strong>in</strong>guez, 1985Tomato Lycopersicon lycopersicum (L.)Karst. ex Farw. [syn. Lycopersiconesculentum Mill.]Fruit yield 2.5 9.9 MS Bierhuizen & Ploeman, 1967; Hayward & Long, 1943;Lyon, 1941; Shalhevet & Yaron, 1973Tomato, cherry L. lycopersicum var. Cerasiforme(Dunal) Alef.Fruit yield 1.7 9.1 MS Caro et al., 1991TurnipBrassica rapa L. (Rapifera Group) Storage root0.99.0 MS Francois, 1984Turnip (greens)Top FW3.34.3 MTWatermelon Citrullus lanatus (Thunb.) Matsum. &NakaiFruit yield -- -- MS* de F<strong>org</strong>es, 1970‡§#W<strong>in</strong>ged bean Psophocarpus tetragonolobus L. DC Shoot DW -- -- MT Weil & Khalis, 1986These data serve only as a guidel<strong>in</strong>e to relative tolerances among crops. Absolute tolerances vary, depend<strong>in</strong>g upon climate, soil conditions, <strong>and</strong> cultural practices.††‡‡§§##†††‡‡‡§§§Botanical <strong>and</strong> common names follow the convention of Hortus Third (Liberty Hyde Bailey Hortorium Staff, 1976) where possible.In gypsiferous soils, plants will tolerate an ECe about 2 dS/m higher than <strong>in</strong>dicated.Rat<strong>in</strong>gs are def<strong>in</strong>ed by the boundaries <strong>in</strong> Figure A1.1. Rat<strong>in</strong>gs with an * are estimates.Less tolerant dur<strong>in</strong>g seedl<strong>in</strong>g stage, ECe at this stage should not exceed 4 or 5 dS/m.Unpublished U. S. Sal<strong>in</strong>ity Laboratory data.Gra<strong>in</strong> <strong>and</strong> forage yields of DeKalb XL-75 grown on an <strong>org</strong>anic muck soil decreased about 26 percent per dS/m above a threshold of 1.9 dS/m (Hoffman et al., 1983).Because paddy rice is grown under flooded conditions, values refer to the electrical conductivity of the soil <strong>water</strong> while the plants are submerged. Less tolerant dur<strong>in</strong>g seedl<strong>in</strong>g stage.Sesame cultivars, Sesaco 7 <strong>and</strong> 8, may be more tolerant than <strong>in</strong>dicated by the S rat<strong>in</strong>g.Sensitive dur<strong>in</strong>g germ<strong>in</strong>ation <strong>and</strong> emergence, ECe should not exceed 3 dS/m.Data from one cultivar, "Probred".Average of several varieties. Suwannee <strong>and</strong> Coastal are about 20 percent more tolerant, <strong>and</strong> common <strong>and</strong> Greenfield are about 20 percent less tolerant than the average.Average for Boer, Wilman, S<strong>and</strong> <strong>and</strong> Weep<strong>in</strong>g cultivars. Lehmann seems about 50 percent more tolerant.


148Annex 1 – Crop salt tolerance dataTABLE A1.2SALT TOLERANCE OF WOODY CROPS †Crop Salt Tolerance ParametersCommon name Botanical name ‡ onTolerance basedThreshold §(ECe) Slope Rat<strong>in</strong>g ReferencesdS/m % per dS/mAlmond Prunus duclis (Mill.) D.A. Webb Shoot growth 1.5 19 S Bernste<strong>in</strong> et al., 1956; Brown et al., 1953Apple Malus sylvestris Mill. -- -- S Ivanov, 1970Apricot Prunus armeniaca L. Shoot growth 1.6 24 S Bernste<strong>in</strong> et al., 1956Avocado Persea americana Mill. Shoot growth -- -- S Ayars, 1950a; Haas, 1950Banana Musa acum<strong>in</strong>ata Colla Fruit yield -- -- S Israeli et al., 1986Blackberry Rubus macropetalus Doug. exHookFruit yield 1.5 22 S Ehlig, 1964Boysenberry Rubus urs<strong>in</strong>us Cham. <strong>and</strong>SchlechtendFruit yield 1.5 22 S Ehlig, 1964Castor seed Ric<strong>in</strong>us communis L. -- -- MS * USSL Staff, 1954Cherimoya Annona cherimola Mill. Foliar <strong>in</strong>jury -- -- S Cooper, Cowley & Shull, 1952Cherry, sweet Prunus avium L. Foliar <strong>in</strong>jury -- -- S * Beeft<strong>in</strong>k, 1955Cherry, s<strong>and</strong> Prunus besseyi L., H. Baley Foliar <strong>in</strong>jury, stemgrowth-- -- S * Zhemchuzhnikov, 1946Coconut Cocos nucifera L. -- -- MT * Kulkarni et al., 1973Currant Ribes sp. L. Foliar <strong>in</strong>jury, stemgrowth-- -- S * Beeft<strong>in</strong>k, 1955; Zhemchuzhnikov, 1946Date-palm Phoenix dactylifera L. Fruit yield 4.0 3.6 T Furr & Armstrong, 1962; Furr & Ream, 1968; Furr etal., 1966


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 149TABLE A1.2 (CONTINUED)Crop Salt Tolerance ParametersCommon name Botanical name ‡ onTolerance basedThreshold §(ECe) Slope Rat<strong>in</strong>g ReferencesdS/m % per dS/mFig Ficus carica L. Plant DW -- -- MT * Patil & Patil, 1983a; USSL Staff, 1954Gooseberry Ribes sp. L. -- -- S * Beeft<strong>in</strong>k, 1955Grape Vitis v<strong>in</strong>ifera L. Shoot growth 1.5 9.6 MS Groot Obb<strong>in</strong>k & Alex<strong>and</strong>er, 1973; Nauriyal & Gupta,1967; Taha et al., 1972Grapefruit Citrus x paradisi Macfady. Fruit yield 1.2 13.5 S Bielorai et al., 1978Guava Psidium guajava L. Shoot & rootgrowth4.7 9.8 MT Patil et al., 1984Guayule Parthenium argentatum A. Gray Shoot DWRubber yield8.77.811.610.8TTMaas et al., 1988Jambolan plum Syzygium cum<strong>in</strong>i L. Shoot growth -- -- MT Patil & Patil, 1983bJojoba Simmondsia ch<strong>in</strong>ensis (L<strong>in</strong>k) C. K.SchneidShoot growth -- -- T Tal et al., 1979; Yermanos et al., 1967Jujube, Indian Ziziphus mauritiana Lam. Fruit yield -- -- MT Hooda et al., 1990Lemon Citrus limon (L.) Burm. f. Fruit yield 1.5 12.8 S Cerda et al., 1990Lime Citrus aurantiifolia (Christm.)Sw<strong>in</strong>gle-- -- S *Loquat Eriobotrya japonica (Thunb). L<strong>in</strong>dl. Foliar <strong>in</strong>jury -- -- S * Cooper & L<strong>in</strong>k, 1953; Malcolm & Smith, 1971


150Annex 1 – Crop salt tolerance dataTABLE A1.2 (CONTINUED)Crop Salt Tolerance ParametersCommon name Botanical name ‡ onTolerance basedThreshold §(ECe) Slope Rat<strong>in</strong>g ReferencesdS/m % per dS/mMacadamia Macadamia <strong>in</strong>tegrifolia Maiden &BetcheSeedl<strong>in</strong>g growth -- -- MS * Hue & McCall, 1989M<strong>and</strong>ar<strong>in</strong>orange;tanger<strong>in</strong>eCitrus reticulata Blanco Shoot growth -- -- S * M<strong>in</strong>essy et al., 1974Mango Mangifera <strong>in</strong>dica L. Foliar <strong>in</strong>jury -- -- S Cooper et al., 1952Natal plum Carissa gr<strong>and</strong>iflora (E.H. Mey.) A.DC.Shoot growth -- -- T Bernste<strong>in</strong> et al., 1972Olive Olea europaea L. Seedl<strong>in</strong>g growth,Fruit yield-- -- MT Bidner-Barhava & Ramati, 1967; Taha et al., 1972Orange Citrus s<strong>in</strong>ensis (L.) Osbeck Fruit yield 1.3 13.1 S Bielorai et al., 1988; B<strong>in</strong>gham et al., 1974; Dasberg etal., 1991; Hard<strong>in</strong>g et al., 1958Papaya Carica papaya L. Seedl<strong>in</strong>g growth,foliar <strong>in</strong>jury-- -- MS Kottenmeier et al., 1983; Makhija & J<strong>in</strong>dal, 1983Passion fruit Passiflora edulis Sims. -- -- S * Malcolm & Smith, 1971Peach Prunus persica (L.) Batsch Shoot growth,Fruit yield1.7 21 S Bernste<strong>in</strong> et al., 1956; Brown, Wadleigh, Hayward,1953; Hayward et al., 1946Pear Pyrus communis L. -- -- S * USSL Staff, 1954Pecan Carya ill<strong>in</strong>o<strong>in</strong>ensis (Wangenh.) C.KochNut yield, trunkgrowth-- -- MS Miyamoto et al., 1986Persimmon Diospyros virg<strong>in</strong>iana L. - -- S * Malcolm & Smith, 1971


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 151TABLE A1.2 (CONTINUED)Crop Salt Tolerance ParametersCommon name Botanical name ‡ onTolerance basedThreshold §(ECe) Slope Rat<strong>in</strong>g ReferencesdS/m % per dS/mP<strong>in</strong>eapple Ananas comosus (L.) Merrill Shoot DW -- -- MT Wambiji & El-Swaify, 1974Pistachio Pistacia vera L. Shoot growth -- -- MS Sepaskhah & Maftoun, 1988; Picchioni et al., 1990Plum; Prune Prunus domestica L. Fruit yield 2.6 31 MS Hoffman et al., 1989Pomegranate Punica granatum L. Shoot growth -- -- MS Patil & Patil, 1982Pop<strong>in</strong>ac, white Leucaena leucocephala (Lam.) deWit [syn. Leucaena glauca Benth.]Shoot DW -- -- MS Gorham et al., 1988; Hansen & Munns, 1988Pummelo Citrus maxima (Burm.) Foliar <strong>in</strong>jury -- -- S * Furr & Ream, 1969Raspberry Rubus idaeus L. Fruit yield -- -- S Ehlig, 1964Rose apple Syzygium jambos (L.) Alston Foliar <strong>in</strong>jury -- -- S * Cooper & Gorton, 1951Sapote, white Casimiroa edulis Llave Foliar <strong>in</strong>jury -- -- S * Cooper et al., 1952Scarlet wisteria Sesbania gr<strong>and</strong>iflora Shoot DW -- -- MT Chavan & Karadge, 1986Tamarugo Prosopis tamarugo Phil. Observation -- -- T National Academy Sciences, 1975Walnut Juglans spp. Foliar <strong>in</strong>jury -- -- S * Beeft<strong>in</strong>k, 1955†‡§These data serve only as a guidel<strong>in</strong>e to relative tolerances among crops. Absolute tolerances vary, depend<strong>in</strong>g upon climate, soil conditions, <strong>and</strong> cultural practices. The data are applicable when rootstocksare used that do not accumulate Na + or Cl - rapidly or when these ions do not predom<strong>in</strong>ate <strong>in</strong> the soil.Botanical <strong>and</strong> common names follow the convention of Hortus Third (Liberty Hyde Bailey Hortorium Staff, 1976) where possible.In gypsiferous soils, plants will tolerate an ECe about 2 dS/m higher than <strong>in</strong>dicated.Rat<strong>in</strong>gs are def<strong>in</strong>ed by the boundaries <strong>in</strong> Figure A1.1. Rat<strong>in</strong>gs with an * are estimates.


152Annex 1 – Crop salt tolerance dataREFERENCESAbd-El-Rahman, A.A., El-Shourbagy, M.N., Shalaby, A.F. & El-Monayeri, M. 1972. Sal<strong>in</strong>ity effects ongrowth <strong>and</strong> <strong>water</strong> relations of some desert range plants. Flora, 161: 495-508.Abel, G.H. & MacKenzie, A.J. 1964. Salt tolerance of soybean varieties (Glyc<strong>in</strong>e max L. Merrill) dur<strong>in</strong>ggerm<strong>in</strong>ation <strong>and</strong> later growth. Crop Sci., 4: 157-161.Anon. 1976. Cent. Int. Agric. Trop. Annu. Rep. B63-66.Asana, R.D. & Kale, V.R. 1965. A study of salt tolerance of four varieties of wheat. Ind. J. Plant Physiol.,8: 5-22.Asghar, A.G., Ahmad, N. & Asghar, M. 1962. Salt tolerance of crops. Pak. J. Sci. Res., 14: 162-169.Ayers, A.D. 1948a. Salt tolerance of birdsfoot trefoil. J. Am. Soc. Agron., 40: 331-334.Ayers, A.D. 1948b. Salt tolerance of several legumes. In United States Sal<strong>in</strong>ity Laboratory Report toCollaborators, Riverside, CA. p. 23-25.Ayers, A.D. 1950a. Salt tolerance of avocado trees grown <strong>in</strong> culture solutions. In 1950 California AvocadoSociety Yearbook, Saticoy, CA., 35: 139-148.Ayers, A.D. 1950b. Salt tolerance of birdsfoot trefoil Lotus corniculatus var. tenuifolius <strong>and</strong> Lotuscorniculatus var. arvensis. In United States Sal<strong>in</strong>ity Laboratory Report to Collaborators, Riverside,CA. p. 44-45.Ayers A.D., Brown, J.W. & Wadleigh, C.H. 1952. Salt tolerance of barley <strong>and</strong> wheat <strong>in</strong> soil plots receiv<strong>in</strong>gseveral sal<strong>in</strong>ization regimes. Agron. J., 44: 307-310.Ayers, A.D. & Eberhard, D.L. 1958. Salt tolerance of berseem clover (Trifolium alex<strong>and</strong>r<strong>in</strong>um) <strong>and</strong> ediblebroadbean (Vicia faba). In United States Sal<strong>in</strong>ity Laboratory Report to Collaborators, Riverside,CA. p. 36-37.Ayers, A.D. & Eberhard, D.L. 1960. Response of edible broadbean to several levels of sal<strong>in</strong>ity. Agron. J.,52: 110-111.Ayers, A.D., Wadleigh, C.H. & Bernste<strong>in</strong>, L. 1951. Salt tolerance of six varieties of lettuce. Proc. Am. Soc.Hort. Sci., 57: 237-242.Beeft<strong>in</strong>k, W.G. 1955. Exam<strong>in</strong>ation of soils <strong>and</strong> crops after the <strong>in</strong>undations of 1st February, 1953. III.Sensitivity to salt of <strong>in</strong>undated fruit crops. Neth. J. Agric. Sci., 3: 15-34.Bernste<strong>in</strong>, L. 1954. Field plot studies on the salt tolerance of vegetable crops--peppers. In United StatesSal<strong>in</strong>ity Laboratory Report to Collaborators, Riverside, CA. p. 36-37.Bernste<strong>in</strong>, L. 1955. Salt tolerance of field crops--cotton. In 1955 United States Sal<strong>in</strong>ity LaboratoryReport to Collaborators, Riverside, CA. p. 37-41.Bernste<strong>in</strong>, L. 1956. Salt tolerance of field crops. In 1956 United States Sal<strong>in</strong>ity Laboratory Report toCollaborators, Riverside, CA. p. 33-34.Bernste<strong>in</strong>, L. 1962. Salt-affected soils <strong>and</strong> plants. In Proc. of the 18th UNESCO Symposium on Problemsof the Arid Zones. Paris. p. 139-174.Bernste<strong>in</strong>, L. & Ayers, A.D. 1949a. Salt tolerance of cabbage <strong>and</strong> broccoli. In United States Sal<strong>in</strong>ityLaboratory Report to Collaborators, Riverside, CA. p. 39.Bernste<strong>in</strong>, L. & Ayers, A.D. 1949b. Salt tolerance of sweet corn. In United States Sal<strong>in</strong>ity LaboratoryReport to Collaborators, Riverside, CA. p. 41-42.Bernste<strong>in</strong>, L. & Ayers, A.D. 1951. Salt tolerance of six varieties of green beans. Proc. Am. Soc. Hort. Sci.,57: 243-148.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 153Bernste<strong>in</strong>, L. & Ayars, A.D. 1953a. Salt tolerance of five varieties of carrots. Proc. Am. Soc. Hort. Sci., 61:360-366.Bernste<strong>in</strong>, L. & Ayars, A.D. 1953b. Salt tolerance of five varieties of onions. Proc. Am. Soc. Hort. Sci., 62:367-370.Bernste<strong>in</strong>, L., Ayars, A.D. & Wadleigh, C.H. 1951. The salt tolerance of white rose potatoes. Am. Soc.Hort. Sci., 57: 231-236.Bernste<strong>in</strong>, L., Brown, J.W. & Hayward, H.E. 1956. The <strong>in</strong>fluence of rootstock on growth <strong>and</strong> saltaccumulation <strong>in</strong> stone-fruit trees <strong>and</strong> almonds. Proc. Am. Soc. Hort. Sci., 68: 86-95.Bernste<strong>in</strong>, L. & Ford, R. 1958. Salt tolerance of forage crops. In United States Sal<strong>in</strong>ity LaboratoryReport to Collaborators, Riverside, CA. p. 32-36.Bernste<strong>in</strong>, L. & Ford, R.1959a. Salt tolerance of field crops. In United States Sal<strong>in</strong>ity Laboratory Reportto Collaborators, Riverside, CA. p. 34-35.Bernste<strong>in</strong>, L. & Ford, R. 1959b. Salt tolerance of forage crops. In United States Sal<strong>in</strong>ity LaboratoryReport to Collaborators, Riverside, CA. p. 39-44.Bernste<strong>in</strong>, L. & Francois, L.E. 1962. The salt tolerance of bermudagrass--NK37. In United States Sal<strong>in</strong>ityReport to Collaborators, Riverside, CA. p. 37-38.Bernste<strong>in</strong>, L. & Francois, L.E. 1973. Leach<strong>in</strong>g requirement studies: sensitivity of alfalfa to sal<strong>in</strong>ity ofirrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong>s. Proc. Soil Sci. Soc. Am., 37: 931-943.Bernste<strong>in</strong>, L., Francois, L.E. & Clark, R.A. 1966. Salt tolerance of N. Co. varieties of sugar cane. I.Sprout<strong>in</strong>g, growth <strong>and</strong> yield. Agron. J., 48: 489-493.Bernste<strong>in</strong>, L., Francois, L.E. & Clark, R.A. 1972. Salt tolerance of ornamental shrubs <strong>and</strong> ground covers.J. Am. Soc. Hort. Sci., 97: 550-566.Bernste<strong>in</strong>, L., Francois, L.E. & Clark, R.A. 1974. Interactive effects of sal<strong>in</strong>ity <strong>and</strong> fertility on yields ofgra<strong>in</strong>s <strong>and</strong> vegetables. Agron. J., 66: 412-421.Bernste<strong>in</strong>, L., MacKenzie, A.J. & Krantz, B.A. 1955. Salt tolerance of field crops -- soybeans. In UnitedStates Sal<strong>in</strong>ity Laboratory Report to Collaborators, Riverside, CA. p. 35-36.Bernste<strong>in</strong>, L. & Ogata, G. 1966. Effects of sal<strong>in</strong>ity on nodulation, nitrogen fixation, <strong>and</strong> growth of soybeans<strong>and</strong> alfalfa. Agron. J., 58: 201-203.Bidner-Barhava, N. & Ramati, B. 1967. Tolerance of three olive varieties to soil sal<strong>in</strong>ity <strong>in</strong> Israel. Exp.Agric., 3: 295-305.Bielorai, H., Dasberg, S., Erner, Y. & Brum, M. 1988. The effect of sal<strong>in</strong>e irrigation <strong>water</strong> on Shamoutiorange production. Proc. Intl. Citrus Cong., 6: 707-715.Bielorai, H., Shalhevet, J. & Levy, Y. 1978. Grapefruit response to variable sal<strong>in</strong>ity <strong>in</strong> irrigation <strong>water</strong> <strong>and</strong>soil. Irrig. Sci., 1: 61-70.Bierhuizen, J. F. & Ploegman, C. 1967. Zouttolerantie van tomaten. Mededel<strong>in</strong>gen van de DirectieTu<strong>in</strong>bouw, 30: 302-310.B<strong>in</strong>gham, F.T., Mahler, R.J., Parra, J. & Stolzy, L.H. 1974. Long-term effects of irrigation-sal<strong>in</strong>ity<strong>management</strong> on a Valencia orange orchard. Soil Sci., 117: 369-377.Bower, C.A., Moodie, C.D., Orth, P. & Gschwend, F.B. 1954. Correlation of sugar beet yields with chemicalproperties of a sal<strong>in</strong>e-alkali soil. Soil Sci., 77: 443-451.Bower, C.A., Ogata, G. & Tucker, J.M. 1969. Rootzone salt profiles <strong>and</strong> alfalfa growth as <strong>in</strong>fluenced byirrigation <strong>water</strong> sal<strong>in</strong>ity <strong>and</strong> leach<strong>in</strong>g fraction. Agron. J., 61: 783-785.Bower, C.A., Ogata, G. & Tucker, J.M. 1970. Growth of sudan <strong>and</strong> tall fescue grasses as <strong>in</strong>fluenced byirrigation <strong>water</strong> sal<strong>in</strong>ity <strong>and</strong> leach<strong>in</strong>g fraction. Agron. J., 62: 793-794.


154Annex 1 – Crop salt tolerance dataBrown, J.W. & Bernste<strong>in</strong>, L. 1953. Salt tolerance of grasses. Effects of variations <strong>in</strong> concentrations ofsodium, calcium, sulfate, <strong>and</strong> chloride. In United States Sal<strong>in</strong>ity Laboratory Report to Collaborators,Riverside, CA. p. 44-46.Brown, J.W. & Hayward, H.E. 1956. Salt tolerance of alfalfa varieties. Agron. J., 48: 18-20.Brown, J.W., Wadleigh, C.H. & Hayward, H.E. 1953. Foliar analysis of stone fruit <strong>and</strong> almond trees onsal<strong>in</strong>e substrates. Proc. Am. Soc. Hort. Sci., 61: 49-55.Caro, M., Cruz, V., Cuartero, J., Estan, M.T. & Bolar<strong>in</strong>, M.C. 1991. Sal<strong>in</strong>ity tolerance of normal-fruited<strong>and</strong> cherry tomato cultivars. Plant Soil, 136: 249-255.Cerda, A., Caro, M. & Fernández, F.G. 1982. Salt tolerance of two pea cultivars. Agron. J., 74: 796-798.Cerda, A., Nieves, M. & Guillen, M.G. 1990. Salt tolerance of lemon trees as affected by rootstock. Irrig.Sci., 11: 245-249.Chavan, P.D. & Karadge, B.A. 1986. Growth, m<strong>in</strong>eral nutrition, <strong>org</strong>anic constituents <strong>and</strong> rate ofphotosynthesis <strong>in</strong> Sesbania gr<strong>and</strong>iflora L. grown under sal<strong>in</strong>e conditions. Plant Soil., 93: 395-404.Cheng, S.F. 1983. Effect of sal<strong>in</strong>ity on sunflower production <strong>and</strong> m<strong>in</strong>eral concentration. J. Ch<strong>in</strong>ese Agric.Chem. Soc., 21: 231-237.Cooper, W.C., Cowley, W.R. & Shull, A.V. 1952. Selection for salt tolerance of some subtropical fruitplants. Texas Avocado Soc. Yearbook, 5: 24-36.Cooper, W.C. & Gorton, B.S. 1951. Relation of leaf composition to leaf burn of avocados <strong>and</strong> other subtropicalfruits. In Texas Avocado Soc. Yearbook. p. 32-38.Cooper, W.C. & L<strong>in</strong>k, H. 1953. Salt tolerance of subtropical ornamental plants. In Texas Avocado Soc.Yearbook, 6: 47-50.Dasberg, S., Bielorai, H., Haimowitz, A. & Erner, Y. 1991. The effect of sal<strong>in</strong>e irrigation <strong>water</strong> on “Shamouti”orange trees. Irrig. Sci., 12: 205-211.De F<strong>org</strong>es, J.M. 1970. Research on the utilization of sal<strong>in</strong>e <strong>water</strong> for irrigation <strong>in</strong> Tunisia. Nature Resources,6: 2-6.Dev, G. & Bajwa, M.S. 1972. Studies on salt tolerance of sugarcane. Ind. Sugar (Calcutta), 22: 723-726.Dewey, D.R. 1960. Salt tolerance of twenty-five stra<strong>in</strong>s of Agropyron. Agron. J., 52: 631-635.Dregne, H.E. 1962. Effects of various salts on barley growth. New Mexico Agric. Exp. Sta. Res. Rpt., 64:357-399.Ehlig, C.F. 1964. Salt tolerance of raspberry, boysenberry, <strong>and</strong> blackberry. Proc. Am. Soc. Hort. Sci., 85:318-324.Ehlig, C.F. & Bernste<strong>in</strong>, L. 1958. Salt tolerance of strawberries. Proc. Am. Soc. Hort. Sci., 72: 198-206.Ehrler, W. 1960. Some effects of sal<strong>in</strong>ity on rice. Bot. Gaz., 122: 102-104.El-Saidi, M.T. & Hawash, M. 1971. The effect of us<strong>in</strong>g sal<strong>in</strong>e <strong>water</strong> for irrigation on the growth <strong>and</strong>chemical properties of roselle plants (Hibiscus sabdariffa L.). Z. Acker Pflanzenbau, 134: 251-256.Francois, L.E. 1984. Sal<strong>in</strong>ity effects on germ<strong>in</strong>ation, growth, <strong>and</strong> yield of turnips. HortScience, 19: 82-84.Francois, L.E. 1985. Sal<strong>in</strong>ity effects on germ<strong>in</strong>ation, growth, <strong>and</strong> yield of two squash cultivars. HortScience,20: 1102-1104.Francois, L.E. 1987. Sal<strong>in</strong>ity effects on asparagus yield <strong>and</strong> vegetative growth. J. Am. Soc. Hort. Sci., 112:432-436.Francois, L.E. 1994a. Growth, seed yield, <strong>and</strong> oil content of canola grown under sal<strong>in</strong>e conditions. Agron.J., 86: 233-237.Francois, L.E. 1994b. Yield <strong>and</strong> quality response of salt-stressed garlic. HortScience, 29: 1314-1317.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 155Francois, L.E. 1995. Sal<strong>in</strong>ity effects on bud yield <strong>and</strong> vegetative growth of artichoke (Cynara scolymusL.). HortScience, 30: 69-71.Francois, L.E. 1996. Sal<strong>in</strong>ity effects on four sunflower hybrids. Agron. J., 88: 215-219.Francois L.E., & Bernste<strong>in</strong>, L. 1964a. Salt tolerance of Sphaerophysa salsula In United States Sal<strong>in</strong>ityLaboratory Report to Collaborators, Riverside, CA. p. 52-53.Francois, L.E. & Bernste<strong>in</strong>, L. 1964b. Salt tolerance of safflower. Agron. J., 56: 38-40.Francois, L.E., Donovan, T.J., Lorenz, K. & Maas, E.V. 1989. Sal<strong>in</strong>ity effects on rye gra<strong>in</strong> yield, quality,vegetative growth, <strong>and</strong> emergence. Agron. J., 81: 707-712.Francois, L.E., Donovan, T.J. & Maas, E.V. 1984. Sal<strong>in</strong>ity effects on seed yield, growth, <strong>and</strong> germ<strong>in</strong>ation ofgra<strong>in</strong> s<strong>org</strong>hum. Agron. J., 76: 741-744.Francois, L.E., Donovan, T.J. & Maas, E.V. 1990. Sal<strong>in</strong>ity effects on emergence, vegetative growth, <strong>and</strong>seed yield of guar. Agron. J., 82: 587-592.Francois, L.E., Donovan, T.J. & Maas, E.V. 1992. Yield, vegetative growth, <strong>and</strong> fiber length of kenaf grownon sal<strong>in</strong>e soil. Agron. J., 84: 592-598.Francois, L.E., Donovan, T.J., Maas, E.V. & Rubenthaler, G.L. 1988. Effect of sal<strong>in</strong>ity on gra<strong>in</strong> yield <strong>and</strong>quality, vegetative growth, <strong>and</strong> germ<strong>in</strong>ation of triticale. Agron. J., 80: 642-647.Francois, L.E. & Kleiman, R. 1990. Sal<strong>in</strong>ity effects on vegetative growth, seed yield, <strong>and</strong> fatty acidcomposition of crambe. Agron. J., 82: 1110-1114.Francois, L.E., Maas, E.V., Donovan, T.J. & Youngs, V.L. 1986. Effect of sal<strong>in</strong>ity on gra<strong>in</strong> yield <strong>and</strong> quality,vegetative growth, <strong>and</strong> germ<strong>in</strong>ation of <strong>semi</strong>-dwarf <strong>and</strong> durum wheat. Agron. J., 78: 1053-1058.Francois, L.E. & West, D.W. 1982. Reduction <strong>in</strong> yield <strong>and</strong> market quality of celery caused by soil sal<strong>in</strong>ity.J. Am. Soc. Hort. Sci., 107: 952-954.Furr, J.R. & Armstrong, Jr, W.W. 1962. A test of mature Halawy <strong>and</strong> Medjool date palms for salttolerance. Date Growers Inst. Rpt., 39: 11-13.Furr, J.R. & Ream, C.L. 1968. Sal<strong>in</strong>ity effects on growth <strong>and</strong> salt uptake of seedl<strong>in</strong>gs of the date, Phoenixdactylifera L. Proc. Am. Soc. Hort. Sci., 92: 268-273.Furr, J.R. & Ream, C.L. 1969. Breed<strong>in</strong>g citrus rootstocks for salt tolerance. In Proc. of the First InternationalCitrus Symposium. Vol. 1: 373-380.Furr, J.R., Ream, C.L. & Ballard, A.L. 1966. Growth of young date palms <strong>in</strong> relation to soil sal<strong>in</strong>ity <strong>and</strong>chloride content of the P<strong>in</strong>nae. Date Growers Inst. Rpt., 43: 4-8.Gauch, H.G. & Magistad, O.C. 1943. Growth of strawberry clover varieties <strong>and</strong> of alfalfa <strong>and</strong> lad<strong>in</strong>o cloveras affected by salt. J. Am. Soc. Agron., 35: 871-880.Gausman, H.W., Cowley, W.R. & Barton, J.H. 1954. Reaction of some grasses to artificial sal<strong>in</strong>ization.Agron J., 46: 412-414.Girdhar, I.K. 1987. Effect of root zone sal<strong>in</strong>ity on the performance of dha<strong>in</strong>cha. Indian J. Agric. Sci., 57:723-725.Goertz, S.H. & Coons, J.M. 1991. Tolerance of tepary <strong>and</strong> navy beans to NaCl dur<strong>in</strong>g germ<strong>in</strong>ation <strong>and</strong>emergence. Hortsci., 26: 246-249.Gorham, J., Tomar, O.S. & Wyn Jones, R.G. 1988. Sal<strong>in</strong>ity-<strong>in</strong>duced changes <strong>in</strong> the chemical compositionof Leucaena leucocephala <strong>and</strong> Sesbania bisp<strong>in</strong>osa. J. Plant Physiol., 132: 678-682.Graifenberg, A., Botr<strong>in</strong>i, L., Giust<strong>in</strong>iani L. & Lipucci di Paola, M. 1996. Yield, growth <strong>and</strong> elementalcontent of zucch<strong>in</strong>i squash grown under sal<strong>in</strong>e-sodic conditions. J. Hort. Sci., 71: 305-311.Greig, J.K. & Smith, F.W. 1962. Sal<strong>in</strong>ity effects on sweetpotato growth. Agron. J., 54: 309-313.


156Annex 1 – Crop salt tolerance dataGroot Obb<strong>in</strong>k, J. & McE. Alex<strong>and</strong>er, D. 1973. Response of six grapev<strong>in</strong>e cultivars to a range of chlorideconcentrations. American Journal of Enological Viticulture, 24: 65-68.Haas, A.R.C. 1950. Effect of sodium chloride on Mexican, Guatemalan, <strong>and</strong> West Indian avocado seedl<strong>in</strong>gs.CA Avocado Soc. Yearbk., 35: 153-160.Hansen, E.H. & Munns, D.N. 1988. Effects of CaSO 4<strong>and</strong> NaCl on growth <strong>and</strong> nitrogen fixation of Leucaenaleucocephala. Plant Soil., 107: 95-99.Hard<strong>in</strong>g, R.B., Pratt, P.F. & Jones, W.W. 1958. Changes <strong>in</strong> sal<strong>in</strong>ity, nitrogen, <strong>and</strong> soil reaction <strong>in</strong> adifferentially fertilized irrigated soil. Soil Sci., 85: 177-184.Hassan, N.A.K., Drew, J.V., Knudsen, D. & Olson, R.A. 1970a. Influence of soil sal<strong>in</strong>ity on production ofdry matter <strong>and</strong> uptake <strong>and</strong> distribution of nutrients <strong>in</strong> barley <strong>and</strong> corn. I. Barley (Hordeum vulgare).Agron. J., 62: 43-45.Hassan, N.A.K., Drew, J.V., Knudsen, D. & Olson, R.A. 1970b. Influence of soil sal<strong>in</strong>ity on production ofdry matter <strong>and</strong> uptake <strong>and</strong> distribution of nutrients <strong>in</strong> barley <strong>and</strong> corn: II. Corn (Zea mays). Agron. J.,62: 46-48.Hawker, J.S. & Smith, G.M. 1982. Salt tolerance <strong>and</strong> regulation of enzymes of starch synthesis <strong>in</strong> cassava(Manihot esculenta Crantz). Aust. J. Plant Physiol., 9: 509-518.Hayward, H.E. & Long, E.M. 1943. Some effects of sodium salts on the growth of the tomato. PlantPhysiol., 18: 556-559.Hayward, H.E., Long, E.M. & Uhvits, R. 1946. Effect of chloride <strong>and</strong> sulfate salts on the growth <strong>and</strong>development of the Elberta peach on Shalil <strong>and</strong> Lovell rootstocks. Tech. Bull. 922. Wash<strong>in</strong>gton, DC,U.S. Dept. Agric.Hayward, H.E. & Spurr, W.B. 1944. The tolerance of flax to sal<strong>in</strong>e conditions: Effect of sodium chloride,calcium chloride, <strong>and</strong> sodium sulfate. J. Am. Soc. Agron., 36: 287-300.Hayward, H.E. & Uhvits, R. 1944. The salt tolerance of wheat. In United States Sal<strong>in</strong>ity LaboratoryReport to Collaborators, Riverside, CA. p. 41-43.Hendry, G.W. 1918. Relative effect of sodium chloride on the development of certa<strong>in</strong> legumes. J. Am. Soc.Agron., 10: 246-249.Heuer, B., Meiri, A. & Shalhevet, J. 1986. Salt tolerance of eggplant. Plant <strong>and</strong> Soil, 95: 9-13.Hoffman, G.J., Catl<strong>in</strong>, P.B., Mead, R.M., Johnson, R.S., Francois, L.E. & Goldhamer, D. 1989. Yield <strong>and</strong>foliar <strong>in</strong>jury responses of mature plum trees to sal<strong>in</strong>ity. Irrig. Sci., 10: 215-229.Hoffman, G.J., Maas, E.V. & Rawl<strong>in</strong>s, S.L. 1975. Sal<strong>in</strong>ity-ozone <strong>in</strong>teractive effects on alfalfa yield <strong>and</strong><strong>water</strong> relations. J. Environ. Qual., 4: 326-331.Hoffman, G.J. & Rawl<strong>in</strong>s, S.L. 1970. Design <strong>and</strong> performance of sunlit climate chambers. Trans. ASAE, 13:656-660.Hoffman, G.J. & Rawl<strong>in</strong>s, S.L. 1971. Growth <strong>and</strong> <strong>water</strong> potential of root crops as <strong>in</strong>fluenced by sal<strong>in</strong>ity<strong>and</strong> relative humidity. Agron. J., 63: 877-880.Hooda, P.S., S<strong>in</strong>dhu, S.S., Mehta, P.K. & Ahlawat, V.P. 1990. Growth, yield <strong>and</strong> quality of ber (Zizyphusmauritiana Lamk.) as affected by soil sal<strong>in</strong>ity. J. Hort. Sci., 65: 589-593.Hue, N.V. & McCall, W.W. 1989. Soil sal<strong>in</strong>ity <strong>and</strong> the growth of macadamia seedl<strong>in</strong>gs. J. Plant Nutr., 12:449-464.Israeli, Y., Lahav, E. & Nameri, N. 1986. The effect of sal<strong>in</strong>ity <strong>and</strong> sodium adsorption ratio <strong>in</strong> the irrigation<strong>water</strong>, on growth <strong>and</strong> productivity of bananas under irrigation conditions. Fruits, 41: 297-302.Ivanov, V.F. 1970. Ma<strong>in</strong> pr<strong>in</strong>ciples of fruit crop salt resistance determ<strong>in</strong>ation. Pochvovedenie, 4: 78-85.Kaddah, M.T. & Ghowail, S.I. 1964. Sal<strong>in</strong>ity effects on the growth of corn at different stages of development.Agron. J., 56: 214-217.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 157Karadge, B.A. & Chavan, P.D. 1983. Physiological studies <strong>in</strong> sal<strong>in</strong>ity tolerance of Sesbania aculeata Poir.Biol. Planta., 25: 412-418.Keat<strong>in</strong>g, B.A. & Fisher, M.J. 1985. Comparative tolerance of tropical gra<strong>in</strong> legumes to sal<strong>in</strong>ity. Aust. J.Agric. Res., 36: 373-383.Kottenmeier, W., Chang, H., Siegel, S.M. & Siegel, B.Z. 1983. Stimulation of growth <strong>in</strong> papaya <strong>and</strong> otherplants by dilute salt solutions. Water Air Soil Pollut., 20: 447-450.Kulkarni, D.S., Saranmath, P.A. & Shanthappa, P.B. 1973. Prelim<strong>in</strong>ary studies on quality of underground<strong>water</strong>s on growth <strong>and</strong> yield of coconut (Cocos nucifera). Mysore J. Agric. Sci., 7: 122-124.Kumamoto, J., Scora, R.W., Clerx, W.A., Matsumura, M., Layfield, D. & Grieve, C.M. 1992. Purslane: apotential new vegetable crop rich <strong>in</strong> omega-3 fatty acid with a controllable sodium chloride content. InProc. of the First International Conference on New Industrial Crops <strong>and</strong> Products. Riverside, CA. p.229-233.Lagerwerff, J.V. & Holl<strong>and</strong>, J.P. 1960. Growth <strong>and</strong> m<strong>in</strong>eral content of carrots <strong>and</strong> beans as related tovary<strong>in</strong>g osmotic <strong>and</strong> ionic-composition effects <strong>in</strong> sal<strong>in</strong>e-sodic s<strong>and</strong> cultures. Agron. J., 52: 603-608.Langdale, G.W. & Thomas, J.R. 1971. Soil sal<strong>in</strong>ity effects on absorption of nitrogen, phosphorus, <strong>and</strong>prote<strong>in</strong> synthesis by coastal bermudagrass. Agron. J., 63: 708-711.Langdale, G.W., Thomas, J.R. & Littleton, T.G. 1971. Influence of soil sal<strong>in</strong>ity <strong>and</strong> nitrogen fertilizer onsp<strong>in</strong>ach growth. J. of Rio Gr<strong>and</strong>e Valley Hort. Soc., 25: 61-66.Liberty Hyde Bailey Hortorium Staff. 1976. Hortus Third. A concise dictionary of plants cultivated <strong>in</strong> theUnited States <strong>and</strong> Canada. New York, MacMillian Publish<strong>in</strong>g Co., Inc.Lyon, C.B. 1941. Responses of two species of tomatoes <strong>and</strong> the F1 generation to sodium sulphate <strong>in</strong> thenutrient medium. Bot. Gaz., 103: 107-122.Maas, E.V., Donovan, T.T. & Francois, L.E. 1988. Salt tolerance of irrigated guayule. Irrig. Sci., 9: 199-211.Maas, E.V. & Hoffman, G.J. 1977. Crop salt tolerance - current assessment. J. Irrig. <strong>and</strong> Dra<strong>in</strong>age Div.,ASCE 103 (IR2): 115-134.Magistad, O.C., Ayers, A.D., Wadleigh, C.H. & Gauch, H.F. 1943. Effect of salt concentration, k<strong>in</strong>d of salt,<strong>and</strong> climate on plant growth <strong>in</strong> s<strong>and</strong> cultures. Plant Physiol., 18: 151-166.Mahmoud, M.H., El-Beltagy, M.S. & El-Beltagy, A.S. 1988. Effect of sal<strong>in</strong>ity <strong>and</strong> soil moisture on growthof lima bean <strong>and</strong> cowpea. Egypt J. Hort., 15: 129-142.Makhija, M. & J<strong>in</strong>dal, P.C. 1983. Effect of different soil sal<strong>in</strong>ity levels on seed germ<strong>in</strong>ation <strong>and</strong> seedl<strong>in</strong>ggrowth <strong>in</strong> papaya (Carica papaya). Seed Res., 11: 125-128.Malcolm, C.V. & Smith, S.T. 1971. Grow<strong>in</strong>g plants with salty <strong>water</strong>. J. Agric. West. Aust., 12: 41-44.Manch<strong>and</strong>a, H.R. & Sharma, S.K. 1989. Tolerance of chloride <strong>and</strong> sulphate sal<strong>in</strong>ity <strong>in</strong> chickpea (Cicerariet<strong>in</strong>um). J. Agric. Sci., 113: 407-410.Mangal, J.L., Hooda, P.S. & Lal, S. 1988. Salt tolerance of five muskmelon cultivars. J. Agric. Sci., 110: 641-643.Mangal, J.L., Hooda, P.S. & Lal, S. 1989. Salt tolerance of the onion seed crop. J. Hort. Sci., 64: 475-477.Masih, S.N., Kumar, A. & Kumar, P. 1978. Salt tolerance of okra (Abelmoschus esculentus L.) cv. PusaSawni. E. Afr. Agric. For. J., 44: 171-174.McElgunn, J.D. & Lawrence, T. 1973. Sal<strong>in</strong>ity tolerance of Altai wild ryegrass <strong>and</strong> other forage grasses.Can. J. Plant Sci., 53: 303-307.M<strong>in</strong>essy, F.A., El-Azab, E.M. & Barakat, M.A. 1974. Effect of sal<strong>in</strong>ity <strong>and</strong> depth of <strong>water</strong> table on them<strong>in</strong>eral content of Wash<strong>in</strong>gton navel orange <strong>and</strong> Balady m<strong>and</strong>ar<strong>in</strong>. In Proc. of the II InternationalCitrus Congress. Murcia-Valencia, Spa<strong>in</strong>. Vol. 1: 321-330.


158Annex 1 – Crop salt tolerance dataM<strong>in</strong>has, P.S., Sharma, D.R. & Khosla, B.K. 1990. Mungbean response to irrigation with <strong>water</strong>s of differentsal<strong>in</strong>ities. Irrig. Sci., 11: 57-62.Mishra, D.N. & Shitole, M.G. 1986. Growth <strong>and</strong> yield of oat (Avena sativa L.) cv. Kent under Na 2SO 4dom<strong>in</strong>ated sal<strong>in</strong>e soil. Geobios, 13: 253-257.Miyamoto, S., Piela, K. & Petticrew, J. 1985. Salt effects on germ<strong>in</strong>ation <strong>and</strong> seedl<strong>in</strong>g emergence ofseveral vegetable crops <strong>and</strong> guayule. Irrig. Sci., 6: 159-170.Narale, R.P., Subramanyam, T.K. & Mukherjee, R.K. 1969. Influence of sal<strong>in</strong>ity on germ<strong>in</strong>ation, vegetativegrowth, <strong>and</strong> gra<strong>in</strong> yield of rice (Oryza sativa var. Dular). Agron. J., 61: 341-344.National Academy of Sciences. 1975. Underexploited tropical plants with promis<strong>in</strong>g economic value.Wash<strong>in</strong>gton, DC, National Academy of Sciences. 189 pp.Nauriyal, J.P. &. Gupta, O.P. 1967. Studies on salt tolerance of grape. I. Effect of total salt concentration.J. Res., 4: 197-205.Newton, P.J., Myers, B.A. & West, D.W. 1991. Reduction <strong>in</strong> growth <strong>and</strong> yield of Jerusalem artichokecaused by soil sal<strong>in</strong>ity. Irrig. Sci., 12: 213-221.Nieman, R.H. & Bernste<strong>in</strong>, L. 1959. Interactive effects of gibberellic acid <strong>and</strong> sal<strong>in</strong>ity on the growth ofbeans. Am. J. Bot., 46: 667-670.Osawa, T. 1965. Studies on the salt tolerance of vegetable crops with special reference to m<strong>in</strong>eral nutrition.Bull Univ. Osaka Prefecture, Series B, Osaka, Jap., 16: 13-57.Paliwal, K.V. & Maliwal, G.L. 1972. Effects of salts on the growth <strong>and</strong> chemical composition of okra(Abelmoschus esculentus) <strong>and</strong> sponge-gourd (Luffa cyl<strong>in</strong>drica). J. Hort. Sci., 47: 517-524.Patil, P.K. & Patil, V.K. 1982. Sal<strong>in</strong>ity tolerance of pomegranate. J. Maharashtra Agric. Univ,. 7 (3): 268-269.Patil, P.K. & Patil, V.K. 1983a. Sal<strong>in</strong>ity tolerance <strong>in</strong> fig (Ficus carica L.). Punjabrao Krishi VidyapeethRes. J., 7 (1): 12-14.Patil, P.K. & Patil, V.K. 1983b. Effect of soil sal<strong>in</strong>ity levels on growth <strong>and</strong> chemical composition ofSyzygium cum<strong>in</strong>i L. J. Hort. Sci., 58: 141-145.Patil, P.K., Patil, V.K. & Ghonsikar, C.P. 1984. Effect of soil sal<strong>in</strong>ity on growth <strong>and</strong> nutritional status ofguava (Psidium guajava L.). Intern. J. Trop. Agric., 2: 337-344.Pearson, G.A. 1959. Factors <strong>in</strong>fluenc<strong>in</strong>g sal<strong>in</strong>ity of submerged soils <strong>and</strong> growth of Caloro rice. Soil Sci.,87: 198-206.Perez, J.A.R. & M<strong>in</strong>guez, S.D. 1985. Tolerancia del tepari a la sal<strong>in</strong>idad. Agricola Vergel, 40: 242-249.Picchioni, G.A., Miyamoto, S. & Storey, J.B. 1990. Salt effects on growth <strong>and</strong> ion uptake of pistachiorootstock seedl<strong>in</strong>gs. J. Am. Soc. Hort. Sci., 115: 647-653.Ploegman, C. & Bierhuizen, J.F. 1970. Zouttolerantie van Komkommer. Bedrijfsontwikkel<strong>in</strong>g: EditieTu<strong>in</strong>bouw 1, 1: 32-39.Ram, P.C., Garg, O.P., S<strong>in</strong>gh, B.B. & Maurya, B.R. 1989. Effect of salt stress on nodulation fixed nitrogenpartition<strong>in</strong>g <strong>and</strong> yield attributes <strong>in</strong> chickpea (Cicer ariet<strong>in</strong>um L.) Indian J. Plant Physiol., 32: 115-121.Ravikovitch, S. 1973. Effects of brackish irrigation <strong>water</strong> <strong>and</strong> fertilizers on millet <strong>and</strong> corn. Exp. Agric., 9: 181-188.Ravikovitch, S. & Porath, A. 1967. The effect of nutrients on the salt tolerance of crops. Plant <strong>and</strong> Soil,26: 49-71.Ravikovitch, S. & Yoles, D. 1971. The <strong>in</strong>fluence of phosphorus <strong>and</strong> nitrogen on millet <strong>and</strong> clover grow<strong>in</strong>g<strong>in</strong> soils affected by sal<strong>in</strong>ity. I. Plant Development. Plant Soil, 35: 555-567.Russell, J.S. 1976. Comparative salt tolerance of some tropical <strong>and</strong> temperate legumes <strong>and</strong> tropical grasses.Aust. J. Exptl. Agric. Animal Husb., 16: 103-109.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 159Sa<strong>in</strong>i, G.R. 1972. Seed germ<strong>in</strong>ation <strong>and</strong> salt tolerance of crops <strong>in</strong> coastal alluvial soils of New Brunswick,Canada. Ecology, 53: 524-525.S<strong>and</strong>hu, G.R., Aslam, Z., Salim, M., Sattar, A., Qureshi, R.H., Ahmad, N. & Wyn Jones, R.G. 1981. Theeffect of sal<strong>in</strong>ity on the yield <strong>and</strong> composition of Diplachne fusca (Kallar grass). Plant Cell Environ.,4: 177-181.Sepaskhah, A.R. & Maftoun, M. 1988. Relative salt tolerance of pistachio cultivars. J. Hort. Sci., 63: 157-162.Shalhevet J., Re<strong>in</strong>iger, P. & Shimshi, D. 1969. Peanut response to uniform <strong>and</strong> non-uniform soil sal<strong>in</strong>ity.Agron. J., 61: 384-387.Shalhevet J. & Yaron, B. 1973. Effect of soil <strong>and</strong> <strong>water</strong> sal<strong>in</strong>ity on tomato growth. Plant Soil, 39: 285-292.Shannon, M.C. & Francois, L.E. 1978. Salt tolerance of three muskmelon cultivars. J. Am. Soc. Hort. Sci.,103: 127-130.Shannon, M.C., Wheeler, E.L. & Saunders, R.M. 1981. Salt tolerance of Australian channel millet. Agron.J., 73: 830-832.Shimose, N. 1973. Salt tolerance of crops. JARQ, 7: 178-184.Subbarao, G.V., Johansen, C., Jana, M.K. & Kumar Rao, J.V.D.K. 1991. Comparative sal<strong>in</strong>ity responsesamong pigeonpea genotypes <strong>and</strong> their wild relatives. Crop Sci., 31: 415-418.Syed, M.M. & El-Swaify, S.A. 1972. Effect of sal<strong>in</strong>e <strong>water</strong> irrigation on N. Co. 310 <strong>and</strong> H50-7209 cultivarsof sugar-cane. I. Growth parameters. Trop. Agric., Tr<strong>in</strong>idad, 49: 337-346.Taha, M.W., El-Sewey, A. & Fadliah, Z.G. 1972. Salt tolerance of grape, guava, <strong>and</strong> olive plants. Alex<strong>and</strong>riaJ. Agric. Res., 20: 123-134.Tal, M., Rosental, I., Abramovitz, R. & Forti, M. 1979. Salt tolerance <strong>in</strong> Simmondsia ch<strong>in</strong>ensis: Waterbalance <strong>and</strong> accumulation of chloride, sodium <strong>and</strong> prol<strong>in</strong>e under low <strong>and</strong> high sal<strong>in</strong>ity. Ann. Bot., 43:701-708.United States Sal<strong>in</strong>ity Laboratory Staff. 1954. Diagnosis <strong>and</strong> improvement of sal<strong>in</strong>e <strong>and</strong> alkali soils.H<strong>and</strong>book 60. United States Department of Agriculture. 160 pp.Van Genuchten, M.T. 1983. Analyz<strong>in</strong>g crop salt tolerance data: model description <strong>and</strong> user’s manual.Research Report No. 120. USDA-ARS-USSL.Van Genuchten, M.T. & Hoffman, G.J. 1984. Analysis of crop salt tolerance data. In I. Sha<strong>in</strong>berg & J.Shalhevet, eds. Soil sal<strong>in</strong>ity under irrigation - process <strong>and</strong> <strong>management</strong> ecological studies 51. NewYork, Spr<strong>in</strong>ger-Verlag. p. 258-271.Venkateswarlu, J., Ramesam, M. & Murali Mohan Rao, G.V. 1972. Salt tolerance <strong>in</strong> rice varieties. J. Ind.Soc. Soil Sci., 20: 169-173.Wadleigh, C.H., Gauch, H.G. & Kolisch, M. 1951. M<strong>in</strong>eral composition of orchard grass grown on Pachappaloam sal<strong>in</strong>ized with various salts. Soil Sci., 72: 275-282.Wambiji, H. & El-Swaify, S.A. 1974. Effects of soil sal<strong>in</strong>ity status on p<strong>in</strong>eapple. I. Growth parameters.Hawaii Agric. Expt. Sta. Dept. Paper No. 22. 14 pp.Weil, R.R. & Khalil, N.A. 1986. Sal<strong>in</strong>ity tolerance of w<strong>in</strong>ged bean as compared to that of soybean. Agron.J., 78: 67-70.West, D.W. & Francois, L.E. 1982. Effects of sal<strong>in</strong>ity on germ<strong>in</strong>ation, growth <strong>and</strong> yield of cowpea. Irrig.Sci., 3: 169-175.Wilson, J.R. 1985. Comparative response to sal<strong>in</strong>ity of the growth <strong>and</strong> nodulation of Macroptiliumatropurpureum cv. siratro <strong>and</strong> Neonotonia wightii cv. Cooper seedl<strong>in</strong>gs. Aust. J. Agric. Res., 36: 589-599.


160Annex 1 – Crop salt tolerance dataYermanos, D.M., Francois, L.E. & Tammadoni, T. 1967. Effects of soil sal<strong>in</strong>ity on the development ofjojoba. Econ. Bot., 21: 69-80.Younger, V.B., Lunt, O.R. & Nudge, F. 1967. Sal<strong>in</strong>ity tolerance of seven varieties of creep<strong>in</strong>g bentgrass,Agrostis palustris Huds. Agron. J., 59: 335-336.Yousif, Y.H., B<strong>in</strong>gham, F.T. & Yermanos, D.M. 1972. Growth, m<strong>in</strong>eral composition, <strong>and</strong> seed oil of sesame(Sesamum <strong>in</strong>dicum L.) as affected by NaCl. Soil Sci. Soc. Am. Proc., 36: 450-453.Zhemchuzhnikov, E.A. 1946. On salt resistance <strong>in</strong> trees <strong>and</strong> shrubs. Comptes Rendus Acad. Sci. I’URSS,51: 67-71.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 161Annex 2Water quality guidel<strong>in</strong>es for livestock <strong>and</strong>poultry production for parameters ofconcern <strong>in</strong> agricultural<strong>dra<strong>in</strong>age</strong> <strong>water</strong>TABLE A2.1Guide for the use of sal<strong>in</strong>e <strong>water</strong> for livestock <strong>and</strong> poultrySoluble salt content Rat<strong>in</strong>g< 1 000 mg/litre( 10 000 mg/litre(> 16 dS/m)ExcellentVery satisfactorySatisfactory forlivestockUnfit for poultryLimited use forlivestockUnfit for poultryVery limited useNot recommendedSource: <strong>FAO</strong>, 1985b, <strong>and</strong> Guyer, 1996.UsesExcellent for all classes of livestock <strong>and</strong> poultrySatisfactory for all classes of livestock. May cause temporary milddiarrhoea <strong>in</strong> livestock not accustomed to them. Those <strong>water</strong>sapproach<strong>in</strong>g the upper limits may cause some <strong>water</strong>y dropp<strong>in</strong>gs<strong>in</strong> poultry.Satisfactory for livestock but may be refused by animals notaccustomed to it. If sulphate salts predom<strong>in</strong>ate, animals mayshow temporary diarrhoea. Poor <strong>water</strong>s for poultry, often caus<strong>in</strong>g<strong>water</strong>y faeces, <strong>in</strong>creased mortality <strong>and</strong> decreased growthespecially <strong>in</strong> turkeys.This <strong>water</strong> can be used for livestock except for those that arepregnant or lactat<strong>in</strong>g. It may have some laxative effect <strong>and</strong> maybe refused by animals until they become accustomed to it. It isunsatisfactory for poultryConsiderable risk for pregnant <strong>and</strong> lactat<strong>in</strong>g cows, horses, sheep<strong>and</strong> for the young of these species. It may be used for olderrum<strong>in</strong>ants or horses. Unfit for poultry <strong>and</strong> probably sw<strong>in</strong>e.This <strong>water</strong> is unsatisfactory for all classes of livestock <strong>and</strong> poultry.TABLE A2.2Recommendations for levels of toxic substances <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g-<strong>water</strong> for livestockConstituent Upper limit (mg/litre) Constituent Upper limit (mg/litre)Arsenic (As)Boron (B)Cadmium (Cd)Chromium (Cr)Copper (Cu)Lead (Pb)Mercury (Hg)Molybdenum (Mo)Source: <strong>FAO</strong>, 1985b, <strong>and</strong> CCME, 1999b.0.025 15.00.05 20.05 30.5-5.0 40.10.01 50.5Nickel (Ni)Nitrate + nitrite(NO 3-N + NO 2-N)Nitrite (NO 2-N)Selenium (Se)Uranium (U)Vanadium (V)Z<strong>in</strong>c (Zn)1Upper limit recommended by <strong>FAO</strong> is 0.2 mg/litre.2 Upper limit recommended by CCME is 0.08 mg/litre.3 Upper limit recommended by <strong>FAO</strong> is 1.0 mg/litre.4 0.5 mg/litre for sheep, 1.0 mg/litre for cattle <strong>and</strong> 5.0 mg/litre for sw<strong>in</strong>e <strong>and</strong> poultry.5 Upper limit recommended by CCME is 0.003 mg/litre.6 Upper limit recommended by CCME is 50 mg/litre.1.0100100.050.20.124 6


162Annex 2 – Water quality guidel<strong>in</strong>es for livestock <strong>and</strong> poultry production


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 163Annex 3Dr<strong>in</strong>k<strong>in</strong>g-<strong>water</strong> quality guidel<strong>in</strong>es forparameters of concern <strong>in</strong> agricultural<strong>dra<strong>in</strong>age</strong> <strong>water</strong>Source: WHO, 1996. Guidel<strong>in</strong>es for dr<strong>in</strong>k<strong>in</strong>g-<strong>water</strong> quality, 2nd ed. Vol. 2 Health criteria <strong>and</strong>other support<strong>in</strong>g <strong>in</strong>formation, p. 940-949; <strong>and</strong> WHO, 1998. Addendum to Vol. 2. p. 281-283.Geneva, World Health Organization. Summary tables. http://www.who.<strong>in</strong>t/<strong>water</strong>_sanitation_health/GDWQ/Summary_tables/Sumtab.htmTABLE A3.1Bacteriological quality of all <strong>water</strong> <strong>in</strong>tended for dr<strong>in</strong>k<strong>in</strong>gOrganismsGuidel<strong>in</strong>e valueE. coli or thermotolerant coliform bacteria Must not be detectable <strong>in</strong> any 100-ml sampleTABLE A3.2In<strong>org</strong>anic constituents of health significance <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g-<strong>water</strong>Guidel<strong>in</strong>e value(mg/litre)RemarksArsenic 0.01 (P) For excess sk<strong>in</strong> cancer risk of 6 × 10 -4Boron0.5 (P)Cadmium 0.003Chromium0.05 (P)Copper 2 (P) Based on acute gastro<strong>in</strong>test<strong>in</strong>al effectsLead 0.01 It is recognized that not all <strong>water</strong> will meet the guidel<strong>in</strong>e valueimmediately; meanwhile, all other recommended measures toreduce the total exposure to lead should be implementedManganese 0.5 (P) Substance at or below the health-based guidel<strong>in</strong>e value mayaffect the appearance, taste <strong>and</strong> odour of the <strong>water</strong>.Mercury (total) 0.001Molybdenum 0.07NickelNitrate (as NO 3 - )Nitrite (as NO 2 - )0.02 (P)Selenium 0.01Uranium(P) Provisional guidel<strong>in</strong>e value.50 (acute)3 (acute)0.2 (P) (chronic)0.002 (P)


164Annex 3 – Dr<strong>in</strong>k<strong>in</strong>g-<strong>water</strong> quality guidel<strong>in</strong>esTABLE A3.3PesticidesGuidel<strong>in</strong>e value(µg/litre)RemarksAlachlor 20 For excess risk of 10 -5Aldicarb 10Aldr<strong>in</strong>/dieldr<strong>in</strong> 0.03Atraz<strong>in</strong>e 2Bentazone 300Carbofuran 7Chlordane 0.2Chlorotoluron 30Cyanaz<strong>in</strong>e 0.6DDT 21,2-dibromo-3-chloropropane 1 For excess risk of 10 -51,2-dibromoethane 0.4-15 (P) For excess risk of 10 -52,4-dichlorophenoxyacetic acid (2,4-D) 301,2-dichloropropane (1,2-DCP)1,3-dichloropropane40 (P)1,3-dichloropropene 20 For excess risk of 10 -5Diquat10 (P)Heptachlor <strong>and</strong> heptachlor epoxide 0.03Hexachlorobenzene 1 For excess risk of 10 -5Isoproturon 9L<strong>in</strong>dane 2MCPA 2Methoxychlor 20Metolachlor 10Mol<strong>in</strong>ate 6Pendimethal<strong>in</strong> 20Pentachlorophenol 9 (P) For excess risk of 10 -5Permethr<strong>in</strong> 20Propanil 20Pyridate 100Simaz<strong>in</strong>e 2Terbuthylaz<strong>in</strong>e (TBA) 7Triflural<strong>in</strong> 202,4-DB 90Dichlorprop 100Fenoprop 9MCPBMecoprop 102,4,5-T 9(P) Provisional guidel<strong>in</strong>e valueNADNAD


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 165TABLE A3.4Substances <strong>and</strong> parameters <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g-<strong>water</strong> that may give rise to compla<strong>in</strong>ts from consumersLevels likely to give rise to Reasons for consumer compla<strong>in</strong>tsconsumer compla<strong>in</strong>ts aabcPhysical parametersColour 15 TCU b appearanceTaste <strong>and</strong> odour — should be acceptableTemperature — should be acceptableTurbidity 5 NTU c appearance; for effective term<strong>in</strong>al dis<strong>in</strong>fection, medianturbidity = 1 NTU, s<strong>in</strong>gle sample = 5 NTUIn<strong>org</strong>anic constituentsGuidel<strong>in</strong>e valuemg/litreRemarksAlum<strong>in</strong>ium 0.2 depositions, discolorationAmmonia 1.5 odour <strong>and</strong> tasteChloride 250 taste, corrosionCopper 1 sta<strong>in</strong><strong>in</strong>g of laundry <strong>and</strong> sanitary ware (health-basedprovisional guidel<strong>in</strong>e value 2 mg/litre)Hardness — high hardness: scale deposition, scum formationlow hardness: possible corrosionHydrogen sulphide 0.05 odour <strong>and</strong> tasteIron 0.3 sta<strong>in</strong><strong>in</strong>g of laundry <strong>and</strong> sanitary wareManganese 0.1 sta<strong>in</strong><strong>in</strong>g of laundry <strong>and</strong> sanitary ware (health-basedguidel<strong>in</strong>e value 0.5 mg/litre)Dissolved oxygen — <strong>in</strong>direct effectspH — low pH: corrosionhigh pH: taste, soapy feelpreferably


166Annex 3 – Dr<strong>in</strong>k<strong>in</strong>g-<strong>water</strong> quality guidel<strong>in</strong>es


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 167Annex 4Impact of irrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong><strong>management</strong> on <strong>water</strong> <strong>and</strong> saltbalance <strong>in</strong> the absenceof capillary riseLONG-TERM SALT EQUILIBRIUM EQUATIONLong-term <strong>water</strong> balance of the rootzone <strong>and</strong> leach<strong>in</strong>g fractionThe basis for underst<strong>and</strong><strong>in</strong>g the impact of irrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>management</strong> on the salt balanceis the <strong>water</strong> balance of the rootzone. The <strong>water</strong> balance of the rootzone can be described withthe follow<strong>in</strong>g equation:I + P + G − R − ET = ∆Wierz(1)where:I i= irrigation <strong>water</strong> <strong>in</strong>filtrated which is the total applied irrigation <strong>water</strong> m<strong>in</strong>us theevaporation losses <strong>and</strong> surface runoff (mm);P e= effective precipitation (mm);G = capillary rise (mm);R = deep percolation (mm);ET = evapotranspiration (mm); <strong>and</strong>= change <strong>in</strong> moisture content <strong>in</strong> the rootzone (mm).∆W rzOn a long-term basis, it can be assumed that the change <strong>in</strong> soil moisture storage is zero. The<strong>water</strong> balance then reads:*Ii+ Pe− R − ET = 0(2)where:R * = net deep percolation, R-G (mm).Therefore, the depth of <strong>water</strong> percolat<strong>in</strong>g below the rootzone is the amount of <strong>water</strong> <strong>in</strong>filtratedm<strong>in</strong>us the <strong>water</strong> extracted by the plant roots to meet its evaporation dem<strong>and</strong>s. The fraction of<strong>water</strong> percolat<strong>in</strong>g from the rootzone is called the leach<strong>in</strong>g fraction (LF).*RLF =I i+ P e(3)Salt equilibrium equation of the rootzone with complete mix<strong>in</strong>gWith each irrigation, salts are added to the rootzone <strong>and</strong> evapoconcentrated by crop ET. Afraction of the salts is leached below the rootzone with the net deep percolation <strong>water</strong>. After a


168Annex 4 – Impact of irrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>management</strong> on <strong>water</strong> <strong>and</strong> salt balancecerta<strong>in</strong> period, salt accumulation <strong>in</strong> the soil will approach an equilibrium or steady-stateconcentration based on the sal<strong>in</strong>ity of the applied <strong>water</strong> <strong>and</strong> the LF (<strong>FAO</strong>, 1985b).The calculation of rootzone sal<strong>in</strong>ity makes the follow<strong>in</strong>g assumptions:• the irrigation <strong>water</strong> mixes completely with the soil <strong>water</strong>;• the exchange processes <strong>and</strong> chemical reactions which take place <strong>in</strong> the soil are not taken<strong>in</strong>to consideration;• the amount of salts supplied by ra<strong>in</strong>fall <strong>and</strong> fertilizers <strong>and</strong> exported by crops are negligible;<strong>and</strong>• a zone of shallow ground<strong>water</strong> is created with the same average sal<strong>in</strong>ity concentration asthe percolation <strong>water</strong>.Under these assumptions, the sal<strong>in</strong>ity of the soil <strong>water</strong> is equivalent to the sal<strong>in</strong>ity of the<strong>water</strong> percolat<strong>in</strong>g below the rootzone. The sal<strong>in</strong>ity of the <strong>water</strong> percolat<strong>in</strong>g below the rootzonecan be estimated from the salt balance:IW C = R*IWC R*(4)where:IWC IWC R*= <strong>in</strong>filtrated <strong>water</strong> (I i+ P e) (mm);= salt concentration of the <strong>in</strong>filtrated <strong>water</strong> (mg/litre); <strong>and</strong>= salt concentration of the net percolation <strong>water</strong> (mg/litre).The salt concentration of the <strong>in</strong>filtrated <strong>water</strong> can be calculated as:where:C ICIWIi= CI + P= salt concentration of the irrigation <strong>water</strong> (mg/litre).ieI(5)The sal<strong>in</strong>ity of the percolation <strong>water</strong> can also be calculated with the follow<strong>in</strong>g formula:LFA strong relation exists between the salt concentration C of a solution expressed <strong>in</strong> milligramsper litre <strong>and</strong> the electrical conductivity (EC) of a solution <strong>in</strong> decisiemens per metre (1 dS/mcorresponds approximately to 640 mg/litre). Therefore, the sal<strong>in</strong>ity of the net deep percolation,which is equivalent to the sal<strong>in</strong>ity of the soil <strong>water</strong>, can also be expressed as:where:EC SWEC R*EC IWC= *R= electrical conductivity of the soil <strong>water</strong> (dS/m);= electrical conductivity of the percolation <strong>water</strong> (dS/m); <strong>and</strong>= electrical conductivity of the <strong>in</strong>filtrated <strong>water</strong> (dS/m).CIWEC * = ECR SW=ECLFThe EC SWis <strong>in</strong>versely proportional to LF, i.e. a low LF results <strong>in</strong> a high EC SW<strong>and</strong> vice versa.Under the same assumptions for EC as a conservative parameter, one could replace EC byconcentrations of boron or selenium.IW(6)(7)


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 169Salt equilibrium equation <strong>in</strong>corporat<strong>in</strong>g the leach<strong>in</strong>g efficiency coefficientUntil now the assumption has been thatall the <strong>in</strong>filtrated <strong>water</strong> mixescompletely with the soil solution. Inreality, a fraction of the <strong>in</strong>filtratedirrigation <strong>water</strong> percolates directlybelow the rootzone through cracks <strong>and</strong>macro-pores without mix<strong>in</strong>g with thesoil moisture solution. A more realisticestimate of the rootzone sal<strong>in</strong>ity canbe obta<strong>in</strong>ed by <strong>in</strong>corporat<strong>in</strong>g leach<strong>in</strong>gefficiency coefficients for thepreferential flow pathways of salttransport. Figure A4.1 shows therelationship between the leach<strong>in</strong>gefficiency coefficient of thepercolation <strong>water</strong> (f r) <strong>and</strong> the leach<strong>in</strong>g efficiency coefficient related to the <strong>in</strong>com<strong>in</strong>g irrigation<strong>water</strong> that mixes with the soil solution (f i). It is assumed that P emixes completely with the soilsolution.The leach<strong>in</strong>g efficiency coefficient of the <strong>in</strong>com<strong>in</strong>g irrigation <strong>water</strong> is an <strong>in</strong>dependent variabledeterm<strong>in</strong>ed by soil texture, structure <strong>and</strong> irrigation method, whereas the leach<strong>in</strong>g efficiencycoefficient of the percolation <strong>water</strong> is a dependent variable. f rcan be expressed as:frECIifi− ET + Pe=*f r RFIGURE A4.1Relation between leach<strong>in</strong>g efficiency coefficient of thepercolation <strong>water</strong> (f r) <strong>and</strong> leach<strong>in</strong>g efficiency coefficientof the <strong>in</strong>com<strong>in</strong>g irrigation <strong>water</strong> (f i)= EC*Rf i I isoil solutionIntegrat<strong>in</strong>g the leach<strong>in</strong>g efficiency coefficient <strong>in</strong>to the salt equilibrium equation results <strong>in</strong>:SW(ET-P e ) (I i )EC=LF<strong>in</strong> which EC IWiis the sal<strong>in</strong>ity of the <strong>in</strong>filtrated <strong>water</strong> that mixes with the soil solution, <strong>and</strong>*EC frRis the sal<strong>in</strong>ity of the percolation <strong>water</strong> which has been mixed with the soil solution.EC IWiis equivalent to:fiIiECIWi= ECIf I + P(10)The leach<strong>in</strong>g fraction of the <strong>in</strong>filtrated <strong>water</strong> that mixes with the soil solution (LF i) is:IWii(1-f i ) I ibypass(f i I i -ET+P e ) = f r R * (1-f i )I i = (1-f r )R*Source: after Van Hoorn <strong>and</strong> Van Alphen, 1994.iie(8)(9)LFi=*frRf I + Piie(11)Salt equilibrium equation <strong>in</strong> the rootzone considered as a four-layer profileIt is often assumed that the sal<strong>in</strong>ity of the net deep percolation <strong>water</strong> is equivalent to the averagesoil sal<strong>in</strong>ity (as <strong>in</strong> the previous sections). However, due to irrigation <strong>and</strong> root<strong>water</strong> extractionpatterns, the sal<strong>in</strong>ity <strong>in</strong> the upper portions of the rootzone is lower than the average due to ahigher LF (zone of salt leach<strong>in</strong>g), <strong>and</strong> the sal<strong>in</strong>ity <strong>in</strong> the bottom portions is higher because of asmaller LF (zone of salt accumulation). Under normal irrigation <strong>and</strong> root<strong>in</strong>g pattern, the typicalextraction pattern for the rootzone is 40-30-20-10 percent <strong>water</strong> uptake from the upper to thelower quarter of the rootzone. Where irrigation is applied more frequently, crops tend to extract


170Annex 4 – Impact of irrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>management</strong> on <strong>water</strong> <strong>and</strong> salt balancemore <strong>water</strong> from the upperrootzone <strong>and</strong> less from the lowerrootzone. Under these conditions,the rootzone is generally shallower<strong>and</strong> the extraction pattern mightbe 60-30-7-3 (<strong>FAO</strong>, 1985b).As shown <strong>in</strong> Figure A4.2,Equation 9 can also be used tocalculate the rootzone sal<strong>in</strong>ity offive successive depths under this<strong>water</strong> uptake pattern to obta<strong>in</strong>f<strong>in</strong>ally the average sal<strong>in</strong>ity <strong>in</strong> therootzone (EC SW). In most soils,the sal<strong>in</strong>ity of the soil <strong>water</strong> at fieldcapacity is about twice the sal<strong>in</strong>ityof the soil <strong>water</strong> measured on thesaturated paste (EC e).It is not necessary to divide therootzone <strong>in</strong>to four equal parts(quadrants). The model can beFIGURE A4.2Calculation of rootzone sal<strong>in</strong>ity of five successive depths0.40 ETLF i1= (IW i-0.4ET)/IWi0.30 ETLF i1 = (IWi-0.4ET)/IWiLFi2= (IWi-0.7ET)/IWi0.20 ET)/IWiLF i3 = (IW i-0.9ET)/IWi0.10 )/IWiETLFi4= (IWi-ET)/IWi(f i I i + P e ) = IW iLF i0= 1EC SW 0 = EC IWi /LF i0EC = EC /LFSW 1 IWi i1EC = EC /LFSW 2 IWi i2EC = EC /LFSW 3 IWi i3EC = EC /LF = ECSW 4 IWi i14 frREC SW = EC SW0+ EC SW1+ EC SW2+ EC SW3+ EC SW4EC e = EC SW /2extended <strong>in</strong>to n-number of layers provided that the root<strong>water</strong> extraction pattern is known, e.g.the rootzone can be divided <strong>in</strong>to 15-cm depth <strong>in</strong>crements for 90-cm root<strong>in</strong>g depth.(1- f i )I iMa<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a favourable salt balanceA major concern <strong>in</strong> agricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> is the buildup of salts <strong>and</strong> othertrace elements <strong>in</strong> the rootzone to such an extent that it <strong>in</strong>terferes with optimal crop growth.Apply<strong>in</strong>g more <strong>water</strong> than needed dur<strong>in</strong>g the grow<strong>in</strong>g season for evapotranspiration can leachthe salts. In areas with <strong>in</strong>sufficient natural <strong>dra<strong>in</strong>age</strong>, leach<strong>in</strong>g <strong>water</strong> will need to be removedthrough artificial <strong>dra<strong>in</strong>age</strong>.Where the crop tolerance to sal<strong>in</strong>ity <strong>and</strong> the sal<strong>in</strong>ity of the irrigation <strong>water</strong> are known, theleach<strong>in</strong>g requirement (LR) can be calculated. Rhoades (1974) <strong>and</strong> Rhoades <strong>and</strong> Merrill (1976)developed an empirical equation to calculate the LR:LRECIW= 5*EC − ECtsEC tsis the threshold sal<strong>in</strong>ity for a crop <strong>in</strong> decisiemens per metre of the extract from thesaturated soil paste above which the yield beg<strong>in</strong>s to decl<strong>in</strong>e (Annex 1). In Equation 12, EC tsrepresents the average rootzone sal<strong>in</strong>ity, <strong>and</strong> the value 5 was obta<strong>in</strong>ed empirically (<strong>FAO</strong>, 1985b).If all the <strong>in</strong>filtrated <strong>water</strong> mixes completely with the soil moisture, the relation between thedepth of applied <strong>water</strong> (AW) for consumptive use <strong>and</strong> the LR dur<strong>in</strong>g a cropp<strong>in</strong>g season is:IW(12)ETAW = = I i+ P e1− LR(13)However, under normal conditions a fraction of the <strong>in</strong>filtrated irrigation <strong>water</strong>, equivalent to(1-f i) I i, will percolate directly below the rootzone through cracks <strong>and</strong> macro-pores without


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 171mix<strong>in</strong>g with the soil moisture solution. This <strong>water</strong> does not contribute to the leach<strong>in</strong>g of saltsfrom the rootzone. Under these conditions, the LR is:ECIWiLR(14)i= * ECts− ECIWiThe total amount of applied <strong>water</strong> is then:<strong>FAO</strong> (1985b) takes a different approach toassess<strong>in</strong>g the LR for non-crack<strong>in</strong>g soils. Theaverage rootzone sal<strong>in</strong>ity for the four-layerconcept can be calculated accord<strong>in</strong>g to theprocedures presented <strong>in</strong> Figure A4.2 <strong>in</strong> whichf iis assumed to be 1. The concentration of thesalts <strong>in</strong> the rootzone varies with the LF.Table A4.1 shows the concentration factors forthe average predicted rootzone sal<strong>in</strong>ity (EC e)for a selected number of LF. The concentrationfactors can be calculated <strong>in</strong> pr<strong>in</strong>ciple for anyLF.These concentration factors can be usedto calculate the relationship between EC e<strong>and</strong>5( 1−f i) I i= ( f iI i+ P e) + ( − f i) I iETAW = ⎛ ⎞⎜ +LR⎟⎝1−1i ⎠EC IWi<strong>in</strong> Figure A4.3. Where the sal<strong>in</strong>ity of the <strong>in</strong>filtrated <strong>water</strong> <strong>and</strong> the crop tolerance tosal<strong>in</strong>ity are known, the necessary LF can be estimated from this figure. If the y-axis of thefigure were EC ts, then the diagonal l<strong>in</strong>es would give a range of LR. Hence, LF <strong>and</strong> LR arecommonly used <strong>in</strong>terchangeably.(15)TABLE A4.1Concentration factors to predict the averageECe for selected leach<strong>in</strong>g fractionsLeach<strong>in</strong>g fraction LF Concentration factor X0.050.100.150.200.250.300.400.500.600.700.80Source: <strong>FAO</strong>, 1985b.3.22.11.61.31.21.00.90.80.70.60.6SALT STORAGE EQUATIONSIn previous sections, long-termsteady-state conditions were assumedto prevail. To study the impact ofirrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> measures oncrop performance, it is important toknow the changes <strong>in</strong> rootzone sal<strong>in</strong>itydur<strong>in</strong>g a cropp<strong>in</strong>g season over multipletime periods as well. The salt storageequation of Van Hoorn <strong>and</strong> VanAlphen (1994) can be used for suchdynamic changes. If the sameassumptions are made as for thesteady-state equations, i.e. a zone ofshallow ground<strong>water</strong> is created withthe same sal<strong>in</strong>ity as the percolation<strong>water</strong>, exchange processes <strong>and</strong>m<strong>in</strong>eral dissolution <strong>and</strong> precipitationare not taken <strong>in</strong>to consideration <strong>and</strong>FIGURE A4.3Assessment of leach<strong>in</strong>g fraction <strong>in</strong> relation to thesal<strong>in</strong>ity of the <strong>in</strong>filtrated <strong>water</strong>ECe (dS/m)10864200 2 4 6 8 10Source: after <strong>FAO</strong>, 1985b.Leach<strong>in</strong>g fractions0.05 0.10 0.15 0.20EC IWi (dS/m)0.400.80


172Annex 4 – Impact of irrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>management</strong> on <strong>water</strong> <strong>and</strong> salt balanceit is further assumed that the amount of salts supplied by ra<strong>in</strong>fall <strong>and</strong> fertilizers <strong>and</strong> exported bycrops are negligible, <strong>and</strong> the irrigation <strong>water</strong> mixes completely with the soil solution, then the saltbalance for the rootzone can be described with the follow<strong>in</strong>g equation:where:S IW*S R∆S∆S= S IW− S R= salts <strong>in</strong> <strong>in</strong>filtrated <strong>water</strong> (ECmm);= salts <strong>in</strong> net percolation <strong>water</strong> from the rootzone (ECmm); <strong>and</strong>= change <strong>in</strong> salt storage <strong>in</strong> the rootzone (ECmm).*(16)The quantity ECmm requires some explanation. The parameter S is the mass of salts obta<strong>in</strong>edfrom the product of salt concentration <strong>and</strong> <strong>water</strong> volume per area. For the sake of convenience,Van Hoorn <strong>and</strong> Van Alphen (1994) chose to use EC <strong>in</strong>stead of TDS <strong>in</strong> grams per litre. The unitmillimetre equals litre per square metre. Thus, the parameter S corresponds with the amount ofsalt <strong>in</strong> grams per square metre. Equation 16 can also be expressed as:∆S= IWEC− R*IWEC SW(17)The mass of salts at the start of a period <strong>and</strong> at the end of a period normally differ <strong>and</strong> canbe expressed as:∆S= S end− S start(18)where:S startS end= quantity of salts <strong>in</strong> the rootzone at the start of the period (ECmm); <strong>and</strong>= quantity of salts <strong>in</strong> the rootzone at the end of the period (ECmm).The sal<strong>in</strong>ity <strong>in</strong> the rootzone can be expressed as the conductivity of soil <strong>water</strong> or of thesaturated paste. As for most soils the soil moisture content of the saturated paste is twice thesoil moisture content at field capacity, the sal<strong>in</strong>ity at field capacity <strong>and</strong> of the saturated paste canbe expressed as:where:SW fcEC =SWSW= quantity of salts <strong>in</strong> rootzone (ECmm); <strong>and</strong>= moisture content at field capacity (mm).fcS<strong>and</strong> ECe=(19)2WfcThe average sal<strong>in</strong>ity of the soil <strong>water</strong> dur<strong>in</strong>g a calculation period is:ECSWS=+ S2WstartfcendS=Wstartfc∆S+2Wfc(20)Substitut<strong>in</strong>g Equation 20 for EC SW<strong>in</strong> Equation 17 yields the salt storage equation:∆S=IW ECIW*R1+2W*R S−Wfcstartfc(21)


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 173Equation 21 can be used to calculate changes <strong>in</strong> soil sal<strong>in</strong>ity with<strong>in</strong> a cropp<strong>in</strong>g season. Thesalt storage equation can also be applied to the four-layer concept. For the calculation of thechange <strong>in</strong> rootzone sal<strong>in</strong>ity <strong>in</strong> the first quarter, the equation becomes:∆S=1IW ECIWR11+2WR1S−WIn the subsequent rootzone quarters, the change <strong>in</strong> salt storage can be calculated as:∆S2−4=R1−3EC1−3*1 fcR1+2W*1start1 fc*R2−4S−W2−4fc*2−42−4fc2−4start(22)(23)where:1 to 4 = suffixes denot<strong>in</strong>g the four quarters of the rootzone.Integration of the leach<strong>in</strong>g efficiency coefficients <strong>in</strong> the salt storage equation results <strong>in</strong> thefollow<strong>in</strong>g equation:*frRSstart(fiIi+ Pe)ECIWi−Wfc∆S =*f(24)rR1+2Wfc


174Annex 4 – Impact of irrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>management</strong> on <strong>water</strong> <strong>and</strong> salt balance


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 175Annex 5Capillary rise <strong>and</strong> data set for soilhydraulic functionsCAPILLARY RISETo calculate the capillary recharge, it is possible to apply Darcy’s Law, which can be written forthe unsaturated zone as:where:qK(θ)hzδhq = -K ⎜ 1⎝ δz⎛ ⎞( θ ) + ⎟⎠= soil <strong>water</strong> flux (positive upward) (cm/d);= unsaturated hydraulic conductivity (cm/d);= soil pressure head (cm); <strong>and</strong>= vertical coord<strong>in</strong>ate (positive upward) (cm).(1)Water balance considerations of an <strong>in</strong>f<strong>in</strong>itely small soil volume result <strong>in</strong> the cont<strong>in</strong>uity equationfor soil <strong>water</strong>:δθ δ q= -(2)δ t δ zComb<strong>in</strong>ation of Equations 1 <strong>and</strong> 2 results <strong>in</strong> the general equation for flow through theunsaturated soil:δθ=δ t⎡δ ⎢K⎣( θ )⎛ δh⎞⎤⎜ + 1⎟δz⎥⎝ ⎠⎦δ z(3)To calculate the capillary rise, the unsaturated hydraulic conductivity, K(θ), needs to beknown. The hydraulic conductivity is a function of the moisture content <strong>and</strong> the moisture contentis a function of the pressure head. The soil-<strong>water</strong> retention curve is the graph represent<strong>in</strong>g therelationship between pressure head <strong>and</strong> <strong>water</strong> content. Each soil has a unique soil-<strong>water</strong> retentioncurve. Wösten et al. (2001) published a series of physical soil characteristics for functional soilphysical horizons (Tables A5.1, A5.2 <strong>and</strong> A5.3). These were based on measured values of soil<strong>water</strong>retention <strong>and</strong> hydraulic conductivity. This <strong>in</strong>formation can be extrapolated with caution toother soil layers that have identical soil textures. In a similar manner, Mualem (1976) developeda catalogue of hydraulic properties of soils.The unsaturated hydraulic conductivity can also be calculated based on a model developedby Van Genuchten (1980) <strong>in</strong> which Mualem’s model is comb<strong>in</strong>ed with an empirical S-shaped


176Annex 5 – Capillary rise <strong>and</strong> data set for soil hydraulic functionsTABLE A5.1Dutch nomenclature known as Star<strong>in</strong>g Series based on texture, <strong>org</strong>anic matter content, <strong>and</strong> s<strong>and</strong>fraction - topsoilsTopsoilsS<strong>and</strong>B1B2B3B4B5SiltB7B8B9ClayB10B11B12LoamB13B14Dutch nomenclature 1F<strong>in</strong>e to moderately f<strong>in</strong>e s<strong>and</strong>Loamy s<strong>and</strong>S<strong>and</strong>y loamS<strong>and</strong>y clay loamCoarse s<strong>and</strong>SiltLight silt loamHeavy silt loamSilty clay loamSilty clayClayLoamSilt loam1Translation of the Dutch nomenclature by means of <strong>FAO</strong> textural classes based on the clay, silt <strong>and</strong> s<strong>and</strong> fractions (<strong>FAO</strong>, 1990a).Source: Wösten et al., 2001.Clay-silt(< 50 mm)(%)0-1010-1818-3335-5050-8585-100Clay(< 2 mm)(%)8-1212-1818-2525-3535-5050-100Organicmatter(%)0-150-150-150-150-150-150-150-150-150-150-150-150-15M50(mm)105-210105-210105-210105-210210-2 000Numbercurves(-)32271492664329121391067TABLE A5.2Dutch nomenclature known as Star<strong>in</strong>g Series based on texture, <strong>org</strong>anic matter content, <strong>and</strong> s<strong>and</strong>fraction - subsoilsSubsoilsS<strong>and</strong>O1O2O3O4O5SiltO8O9O10ClayO11O12O13LoamO14O15Dutch nomenclature 1F<strong>in</strong>e to moderately f<strong>in</strong>e s<strong>and</strong>Loamy s<strong>and</strong>S<strong>and</strong>y loamS<strong>and</strong>y clay loamCoarse s<strong>and</strong>SiltLight silt loamHeavy silt loamSilty clay loamSilty clayClayLoamSilt loamClay-Silt(< 50 mm)(%)0-1010-1818-3333-5050-8585-100Clay(< 2 mm)(%)8-1212-1818-2525-3535-5050-100Organicmatter(%)0-30-30-30-30-30-30-30-3M50(mm)105-210105-210105-210105-210210-2 000Numbercurves1Translation of the Dutch nomenclature by means of <strong>FAO</strong> textural classes based on the clay, silt <strong>and</strong> s<strong>and</strong> fractions (<strong>FAO</strong>, 1990a).Source: Wösten et al., 2001.0-30-30-30-30-3(-)1091423917143025112519953


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 177curve for the soil-<strong>water</strong> retention function to predict the unsaturated hydraulic conductivitycurve. The Van Genuchten model conta<strong>in</strong>s six unknowns <strong>and</strong> can be written as follows:( θ)⎡⎢⎣n m( 1+αh) −n[ 1+αh]K =m(λ + 2)where:K s= saturated hydraulic conductivity (cm/d);h = pressure head (cm);λ = dimensionless shape parameter depend<strong>in</strong>g on dK/dh (-);α = shape parameter (cm -1 );n = dimensionless shape parameter (-); <strong>and</strong>m = 1-1/n (-).Wösten et al. (2001) have also published parameters for the different soil types (Table A5.4).Although <strong>water</strong> movement <strong>in</strong> the unsaturated zone is <strong>in</strong> reality unsteady, calculations can besimplified by assum<strong>in</strong>g steady-state flow dur<strong>in</strong>g a certa<strong>in</strong> period of time. The steady-state flowequation can be written as:⎛ h ⎞⎜− 2h1q = −Kθ + 1(5)⎝ z2− z1αh2n−1( )⎟ ⎟ ⎠⎤⎥⎦Ks(4)Equation 5 can be transformed to:z2= z1⎛ ⎞⎜ ⎟⎜ ⎟⎜ h ⎟2− h1+ ⎜ q ⎟⎜ −1−⎟_⎜ ⎛ ⎞ ⎟K⎜θ⎟⎝ ⎝ ⎠ ⎠(6)Where K(θ) is the hydraulic conductivity for h which is (h 1+ h 2)/2. With this equation, thesoil pressure head profiles for stationary capillary rise fluxes can be calculated. From thesepressure head profiles, the contribution of the capillary rise under shallow ground<strong>water</strong> table<strong>management</strong> can be estimated. The follow<strong>in</strong>g section provides an example to show the calculationprocedures to derive at the soil pressure head profiles for a given stationary capillary flux.EXAMPLE TO CALCULATE THE PRESSURE HEAD PROFILES FOR A SILTY SOIL FOR STATIONARYCAPILLARY RISE FLUXESGiven is a uniform silty soil with a clay percentage of 10 percent <strong>and</strong> a low <strong>org</strong>anic mattercontent (< 3 percent). As <strong>in</strong> <strong>semi</strong>-<strong>arid</strong> climates, the <strong>org</strong>anic matter content is <strong>in</strong> general lowTable A5.2 for subsoils will be used to establish the nomenclature. Table A5.2 shows that thissoil can be classified as O8. Six capillary fluxes will be calculated: q = 10 mm/d; q = 7.5 mm/d;q = 5 mm/d; q = 2.5 mm/d; q = 1 mm/d; <strong>and</strong> q = 0 mm/d.At the <strong>water</strong> table z = 0 <strong>and</strong> h = 0. To calculate the pressure head, profiles steps of h = -10 cm willbe used. In the first step, h 1= 0, h 2= -10 cm <strong>and</strong> h = -5 cm. The parameters found <strong>in</strong> TableA5.3 <strong>and</strong> A5.4 can be used to calculate K(θ ) with the model developed by Van Genuchten


178Annex 5 – Capillary rise <strong>and</strong> data set for soil hydraulic functionsTABLE A5.3Unsaturated hydraulic conductivity K(θ) (cm/d) <strong>and</strong> θ (cm 3 /cm 3 ) <strong>in</strong> relation to the soil pressure head⎥h⎥ (cm) <strong>and</strong> pF for topsoils <strong>and</strong> subsoils⎪h⎪(cm) 1 10 20 31 50 100 250 500 1000 2500 5000 10000 16000pF 0.0 1.0 1.3 1.5 1.7 2.0 2.4 2.7 3.0 3.4 3.7 4.0 4.2TopsoilsB1 K(θ)θB2 K(θ)θB3 K(θ)θB4 K(θ)θB5 K(θ)θB7 K(θ)θB8 K(θ)θB9 K(θ)θB10 K(θ)θB11 K(θ)θB12 K(θ)θB13 K(θ)θB14 K(θ)θSubsoilsO1 K(θ)θO2 K(θ)θO3 K(θ)θO4 K(θ)θO5 K(θ)θO8 K(θ)θO9 K(θ)θO10 K(θ)θO11 K(θ)θO12 K(θ)θO13 K(θ)θO14 K(θ)θO15 K(θ)θ23.410.43012.520.42015.420.46029.220.46052.910.36014.070.4002.360.4301.540.4300.700.4304.530.5905.370.54012.980.4200.800.42015.220.36012.680.38010.870.3409.860.35025.000.3209.080.4702.230.4602.120.48013.790.4201.020.5604.370.5701.510.3813.7011.380.4173.180.4026.560.4528.490.45117.540.3291.780.3900.590.4250.550.4270.140.4270.150.5810.120.5315.860.4170.290.41811.170.3547.600.3725.710.3343.930.34310.080.2872.330.4620.860.4550.450.4750.790.4120.110.5550.100.5631.280.3801.116.040.3911.570.3774.050.4394.860.4385.970.2720.930.3790.380.4190.390.4230.100.4240.080.5730.060.5234.130.4110.210.4156.880.3324.380.3513.480.3212.340.3322.430.2121.390.4510.580.4480.290.4690.410.4040.070.5500.050.5561.150.3790.740.410 0.407 0.403Source: Wösten et al., 2001.3.130.3560.850.3502.580.4232.970.4232.140.2190.550.3670.270.4120.290.4180.070.4200.050.5650.040.5163.050.4030.160.4123.640.2962.350.3212.100.3031.440.3180.550.1470.900.4380.410.4390.200.4610.250.3970.050.5440.030.5501.030.3770.530.3981.140.3020.380.3111.330.3931.480.3970.540.1590.280.3500.170.3990.200.4090.050.4140.030.5530.020.5051.980.3900.110.4051.150.2290.840.2690.960.2710.710.2950.080.0890.490.4170.260.4220.120.4490.130.3850.030.5340.020.5400.860.3740.320.3891.6E-10.2109.2E-20.2483.5E-10.3294.0E-10.3455.6E-20.0948.3E-20.3157.0E-20.3709.5E-20.3852.4E-20.3981.2E-20.5297.7E-30.4858.4E-10.3545.0E-20.3889.6E-20.1241.0E-10.1791.9E-10.2061.7E-10.2443.2E-30.0421.6E-10.3721.0E-10.3825.0E-20.4194.2E-20.3621.3E-20.5127.6E-30.5215.6E-10.3621.3E-10.3677.5E-30.1181.1E-20.1723.6E-20.2324.4E-20.2632.3E-30.0461.3E-20.2631.7E-20.3142.6E-20.3317.8E-30.3623.3E-30.4901.9E-30.4531.8E-10.2801.2E-20.3451.8E-30.0483.2E-30.0921.2E-20.1231.6E-20.1704.3E-50.0192.6E-20.2692.1E-20.3031.2E-20.3637.9E-30.3253.8E-30.4702.0E-30.4901.8E-10.3132.1E-20.3186.5E-40.0772.1E-30.1305.2E-30.1717.0E-30.2082.0E-40.0292.9E-30.2244.9E-30.2688.1E-30.2802.9E-30.3271.2E-30.4596.3E-40.4274.5E-20.2202.7E-30.3007.6E-50.0262.0E-40.0581.2E-30.802.1E-30.1241.6E-60.0145.4E-30.2395.1E-30.2403.2E-30.3152.0E-30.2951.4E-30.4316.6E-40.4644.2E-20.2424.0E-30.2735.4E-40.0533.8E-40.0986.9E-40.1251.0E-30.1631.8E-50.0206.0E-40.1901.4E-30.2252.3E-30.2291.0E-30.2894.0E-40.4282.0E-40.4021.0E-20.1685.4E-40.2533.2E-60.0161.2E-50.0401.1E-40.0532.7E-40.0906.0E-80.0111.1E-30.1911.1E-30.1858.4E-40.2694.8E-40.2674.6E-40.3922.2E-40.4396.3E-30.1676.3E-40.2292.0E-60.0364.0E-50.0704.7E-50.0858.1E-50.1196.9E-70.0147.4E-50.1512.4E-40.1764.0E-40.1732.4E-40.2439.5E-50.3894.5E-50.3701.4E-30.1175.4E-50.1975.0E-80.0122.9E-70.0284.8E-60.0321.7E-50.0608.3E-90.0101.2E-40.1401.5E-40.1301.3E-40.2167.3E-50.2331.0E-40.3424.8E-50.4063.7E-40.0944.9E-50.1791.6E-70.0297.3E-60.0566.1E-60.0651.2E-50.0956.0E-80.0121.5E-50.1276.3E-50.1461.0E-40.1388.1E-50.2123.2E-50.3621.4E-50.3483.0E-40.0899.2E-60.1622.2E-90.0111.7E-80.0244.5E-70.0242.0E-60.0454.1E-90.0092.3E-50.1113.2E-50.0983.3E-50.1831.7E-50.2103.4E-50.3081.5E-50.3824.1E-50.0616.9E-60.1481.4E-80.0251.3E-60.0457.9E-70.0511.7E-60.0775.2E-90.0113.1E-60.1071.7E-50.1222.7E-50.1112.7E-50.1851.1E-50.3364.6E-60.3276.4E-50.0681.5E-60.1331.2E-90.0101.1E-90.0224.2E-80.0182.4E-70.0341.2E-90.0084.3E-60.0886.7E-60.0758.1E-60.1554.0E-60.1891.1E-50.2785.0E-60.3604.3E-60.0419.5E-70.1222.6E-90.0244.2E-70.0402.0E-70.0444.4E-70.0671.0E-90.0111.0E-60.0956.7E-60.1081.1E-50.0951.3E-50.1695.2E-60.3202.1E-60.3132.3E-50.0574.5E-70.1171.0E-90.0091.0E-90.0218.3E-90.0165.8E-80.0291.1E-90.0071.4E-60.0752.3E-60.0623.1E-60.1381.5E-60.1765.1E-60.2592.3E-60.3469.4E-70.0322.5E-70.108


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 179TABLE A5.4Data set of soil hydraulic functions described with the Van Genuchten modelTopsoilsS<strong>and</strong>B1B2B3B4B5SiltB7B8B9ClayB10B11B12LoamB13B14SubsoilsS<strong>and</strong>O1O2O3O4O5O6O7SiltO8O9O10ClayO11O12O13LoamO14O15θ res(cm 3 /cm 3 )0.020.020.020.020.010.000.010.000.010.010.010.010.010.010.020.010.010.010.010.010.000.000.010.000.010.010.010.01Source: Wösten et al., 2001.θ sat(cm 3 /cm 3 )0.430.420.460.460.360.400.430.430.430.590.540.420.420.360.380.340.350.320.330.510.470.460.480.420.560.570.380.41K sat(cm/d)23.4112.5215.4229.2252.9114.072.361.540.704.535.3712.980.8015.2212.6810.879.8625.0033.9239.109.082.232.1213.791.024.371.513.70α(cm -1 )0.02340.02760.01440.01560.04520.01940.00990.00650.00640.01950.02390.00840.00510.02240.02130.01700.01550.05210.01620.01230.01360.00940.00970.01910.00950.01940.00300.0071λ(-)0.000-1.060-0.2150.000-0.359-0.802-2.244-2.161-3.884-5.901-5.681-1.4970.0000.0000.1680.0000.0000.000-1.330-2.023-0.803-1.382-1.879-1.384-4.295-5.955-0.2920.912n(-)1.8011.4911.5341.4061.9331.2501.2881.3251.2101.1091.0941.4411.3052.2861.9511.7171.5252.3741.3111.1521.3421.4001.2571.1521.1581.0891.7281.298(Equation 4). Table A5.3 could also be used to estimate the values of K(θ). However, this is lessaccurate as <strong>in</strong>terpolation between two values of h is required, which is difficult due to the nonl<strong>in</strong>earrelation.( )K θ=⎡⎢⎣For h = -5 cm, K(θ) = 3.33 (cm/d)1.342 1−( 1+0.0136h)1.342[ 1+0.0136h]z1/1.342⎛ ⎞⎜−10+ 0⎟= 0 + ⎜ ⎟⎜ 11 ⎟− −⎝ 3.33 ⎠2=− 0.0136h(1−1/1.342)(−0.803+2)7.7 cm1.342−1With Equation 6, the correspond<strong>in</strong>g z 2value for a flux of 1 cm/d (10 mm/d) can be calculated:⎤⎥⎦29.08


180Annex 5 – Capillary rise <strong>and</strong> data set for soil hydraulic functionsTABLE A5.5Tabulated z-values (cm) for a silty soil for stationary capillary fluxesh (cm)h(cm)K( ?)(cm/d)z-values (cm)q = 10 mm/d q = 7.5 mm/d q = 5.0 mm/d q = 2.5 mm/d q = 1.0 mm/d q = 0 mm/d0 0 0 0 0 0 0-10 -5 3.3 7.7 8.2 8.7 9.3 9.7 10.0-20 -15 1.8 14.1 15.2 16.5 18.1 19.2 20.0-30 -25 1.1 19.4 21.2 23.4 26.2 28.4 30.0-40 -35 0.8 23.8 26.3 29.5 33.8 37.2 40.0-50 -45 0.6 27.4 30.6 34.8 40.8 45.7 50.0-60 -55 0.4 30.4 34.2 39.5 47.1 53.8 60.0-70 -65 0.3 32.9 37.3 43.5 52.8 61.5 70.0-80 -75 0.3 35.0 39.9 46.9 58.0 68.8 80.0-90 -85 0.2 36.8 42.2 49.9 62.6 75.6 90.0-100 -95 0.2 38.3 44.1 52.6 66.7 82.0 100.0-110 -105 0.1 39.6 45.7 54.8 70.4 88.0 110.0-120 -115 0.1 40.7 47.1 56.8 73.8 93.5 120.0-130 -125 0.1 41.6 48.4 58.6 76.8 98.7 130.0-140 -135 0.1 42.5 49.5 60.1 79.5 103.5 140.0-150 -145 0.1 43.2 50.4 61.5 81.9 107.9 150.0-160 -155 0.1 43.9 51.3 62.7 84.1 112.0 160.0-170 -165 0.1 44.4 52.1 63.8 86.0 115.8 170.0-180 -175 0.1 45.0 52.7 64.8 87.8 119.4 180.0-190 -185 0.0 45.4 53.3 65.7 89.5 122.7 190.0-200 -195 0.0 45.8 53.9 66.5 90.9 125.7 200.0-210 -205 0.0 46.2 54.4 67.2 92.3 128.5 210.0-220 -215 0.0 46.6 54.8 67.9 93.5 131.1 220.0-230 -225 0.0 46.9 55.3 68.5 94.7 133.6 230.0-240 -235 0.0 47.2 55.6 69.1 95.7 135.8 240.0-250 -245 0.0 47.4 56.0 69.6 96.7 137.9 250.0-260 -255 0.0 47.7 56.3 70.0 97.6 139.9 260.0-270 -265 0.0 47.9 56.6 70.5 98.4 141.7 270.0-280 -275 0.0 48.1 56.9 70.9 99.2 143.5 280.0-290 -285 0.0 48.3 57.1 71.2 99.9 145.1 290.0-300 -295 0.0 48.4 57.3 71.6 100.6 146.6 300.0-310 -305 0.0 48.6 57.5 71.9 101.2 148.0 310.0-320 -315 0.0 48.8 57.8 72.2 101.8 149.3 320.0-330 -325 0.0 48.9 57.9 72.5 102.3 150.6 330.0-340 -335 0.0 49.0 58.1 72.7 102.8 151.8 340.0-350 -345 0.0 49.2 58.3 73.0 103.3 152.9 350.0-360 -355 0.0 49.3 58.4 73.2 103.7 153.9 360.0-370 -365 0.0 49.4 58.6 73.4 104.2 154.9 370.0-380 -375 0.0 49.5 58.7 73.6 104.6 155.9 380.0-390 -385 0.0 49.6 58.8 73.8 104.9 156.8 390.0-400 -395 0.0 49.7 59.0 74.0 105.3 157.6 400.0


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 181In the second step, h 1= -10, h 2= -20 cm <strong>and</strong> = -15 cm. For h = -15 cm, K θ = 1.76(cm/d). The correspond<strong>in</strong>g z 2value for a flux of 1 cm/d (10 mm/d) is:z⎛ ⎞⎜− 20 + 10⎟= 7.7 + ⎜ ⎟⎜ 11 ⎟− −⎝ 1.76 ⎠2=h ( )14.1 cmIn this manner, all the other values can be calculated (Table A5.5). Figure A5.1 presents thepressure head profiles as calculated.FIGURE A5.1Pressure head profiles for a silty soil for stationary capillary fluxes4504003503002502001501005000-30-60-90-120-150-180-210-240-270-300-330-360-390z (cm)q = 10 mm/dq = 7.5 mm/dq = 5 mm/dq = 2.5 mm/dq = 1 mm/dq = 0 mm/dh (cm)


182Annex 5 – Capillary rise <strong>and</strong> data set for soil hydraulic functions


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 183Annex 6Trees <strong>and</strong> shrubs for saltl<strong>and</strong>, sal<strong>in</strong>ityrat<strong>in</strong>gs <strong>and</strong> species listsThe follow<strong>in</strong>g tables <strong>and</strong> lists have been developed by the Department of Agriculture (formerlyAgriculture Western Australia), Revegetation on Farms Project of the Susta<strong>in</strong>able RuralDevelopment Program. 1998. http://www.agric.wa.gov.au/progserv/natural/trees/uses/salt2.htmTABLE A6.1Sal<strong>in</strong>ity classes for revegetation with different measuresEC e(dS/m)EC e(mS/m)EC gw(mS/m)TABLE A6.2Extremely sal<strong>in</strong>e sites (EC e>1 600 mS/m)EM-38 hor(mS/m)NaCl (sol.mmol/litre)EC1:5 (w/v) 1loam(mS/m) approx.EC1:5 (v/v) 2loam(mS/m) approx.Soil (a) Soil (b) Water (c) 'Soil' (d) Water (e) Soil (f)Non-sal<strong>in</strong>e 320(a) Based on USDA 1954 categories: used by CSIRO Canberra <strong>and</strong> others <strong>in</strong> Australia.(b) Units used <strong>in</strong> Western Australia.(c) Ground<strong>water</strong> from with<strong>in</strong> potential root<strong>in</strong>g distance of plant (bores). Suitability for 'tree' growth.(d) From D. Bennett <strong>and</strong> R. Ge<strong>org</strong>e, DAWA Bunbury.(e) 'Irrigation' <strong>water</strong> used <strong>in</strong> pot trials.(f) Based on conversions used by P. Bulman, Primary Industry SA.1 1:5 (w/v) is one part by weight (g) air-dried soil to five parts by volume (ml) distilled <strong>water</strong>.21:5 (v/v) is one volume part of soil to five volume parts of <strong>water</strong>.Proper NameCommon name <strong>and</strong> commentsAcacia cyclopsCoastal wattle. Severe to extreme tolerance (2, 3, 13). Sensitive to<strong>water</strong>logg<strong>in</strong>g.Atriplex spp (A rhagodioides, Avesicaria, A paludosa)Saltbush spp. Generally need well-dra<strong>in</strong>ed sites.Atriplex amnicolaRiver saltbush. (23, 24) Reports tolerance to 25-50 dS/m on alkal<strong>in</strong>e duplexsoils, <strong>and</strong> up to 38 dS/m on medium to heavy clays.Atriplex bunburyanaSilver saltbush.Atriplex c<strong>in</strong>ereaGrey saltbush. (23) Moderate <strong>water</strong>logg<strong>in</strong>g tolerance.Atriplex lentiformisQuailbrush. (24) Reports tolerance to 25-50 dS/m on alkal<strong>in</strong>e duplex soils, <strong>and</strong>up to 38 dS/m on medium to heavy clays.Atriplex muelleri(24) Reports tolerance <strong>in</strong> subtropical <strong>and</strong> tropical areas of up to 38 dS/m onmedium to heavy clays.Atriplex nummulariaOld man saltbush. (23) Not <strong>water</strong>logg<strong>in</strong>g tolerant.Atriplex undulataWavy-leaved saltbush. (24) Reports tolerance to 25-50 dS/m on alkal<strong>in</strong>eduplex soils.Acacia ampliceps Salt wattle. (2)Acacia stenophylla River cooba, River myall. (2)Casuar<strong>in</strong>a glaucaGrey Buloke. (2) <strong>in</strong> 8-16 dS/m. (8, 19) Wet or dry sites. (20) Gives 50%mortality at EC 1:5 of >400 mS/m. (22)Casuar<strong>in</strong>a obesa Salt sheoak. (6) In the 100-150 mS/m range from the EM38. (8, 9, 20)


184Annex 6 – Trees <strong>and</strong> shrubs for saltl<strong>and</strong>, sal<strong>in</strong>ity rat<strong>in</strong>gs <strong>and</strong> species listsEucalyptus halophila Salt lake mallee. (4, 17).Eucalyptus kond<strong>in</strong><strong>in</strong>ensis Kond<strong>in</strong><strong>in</strong> blackbutt. (2) (10, 11) Suggests much lower tolerance. (16, 17).Frankenia spp. (F ambita, Fbrachyphylla, F fecunda)(17).Halosarcia spp.Samphire. (1, 17, 20, 23) Comb<strong>in</strong>ed <strong>water</strong>logg<strong>in</strong>g <strong>and</strong> salt tolerance isparticularly high.Melaleuca halmaturorum subsp.Cymbifolia(4) A WA subspecies.Melaleuca halmaturorum subsp.HalmaturorumSouth Australian swamp paperbark. (2, 14, 15, 19) (24) Gives range of 15-25dS/m.Melaleuca thyoides (4, 12).Melaleuca cuticularis Swamp paperbark, salt paperbark. (2) Suggests 8-16 dS/m. (12)Paspalum vag<strong>in</strong>atumSalt<strong>water</strong> couch. (21) Very high <strong>water</strong>logg<strong>in</strong>g tolerance, no drought tolerance.Needs summer moisture.Pucc<strong>in</strong>ellia ciliataPucc<strong>in</strong>ellia. (21, 23) Moderate <strong>water</strong>logg<strong>in</strong>g tolerance. (24) Reports toleranceto 25-50 dS/m on alkal<strong>in</strong>e duplex soils.Sarcocornia spp. (S qu<strong>in</strong>queflora)Glasswort, samphire. (20) Comb<strong>in</strong>ed salt <strong>and</strong> <strong>water</strong>logg<strong>in</strong>g tolerance isparticularly high.Sporobolus virg<strong>in</strong>icusMar<strong>in</strong>e couch. (20). (24) Reports tolerance to 25-50 dS/m on alkal<strong>in</strong>e duplexsoils <strong>and</strong> wet sites.TABLE A6.3Very sal<strong>in</strong>e sites (EC e800-1 600 mS/m)Proper nameCommon name <strong>and</strong> commentsAcacia aff l<strong>in</strong>eolata(13) Good <strong>water</strong>logg<strong>in</strong>g tolerance.Acacia brumalis(3, 13) Sensitive to <strong>water</strong>logg<strong>in</strong>g.Acacia cyclopsCoastal wattle. (2,3,13) See Table 2 above.Acacia ligulata Umbrella bush. (14)Acacia mutabilis ssp. Stipulifera (13)Acacia ret<strong>in</strong>odes Wirilda. (2)Acacia salic<strong>in</strong>aCoobah, willow wattle. (2, 14) suckers <strong>and</strong> could be <strong>in</strong>vasive.Golden wreath wattle. (2) Puts this <strong>in</strong>to 4-8 dS/m. Variation <strong>in</strong> provenances. (3)Acacia saligna(6) In the 100-150 mS/m range for EM38. (12) Very good tolerance for salt <strong>and</strong>some <strong>water</strong>logg<strong>in</strong>g.Acacia stenophyllaRiver Coobah. (2, 14, 19) (24) Gives range of 15-25 dS/m.Casuar<strong>in</strong>a cristata ssp. Cristata Black oak, Belah. (2, 8, 19)Casuar<strong>in</strong>a cristata ssp. Pauper Belah (WA ssp.). (2)Casuar<strong>in</strong>a equisetifoliaHorsetail sheoak.Casuar<strong>in</strong>a equisetifolia var.<strong>in</strong>cana(8). Similar tolerance to Cas obesa <strong>and</strong> Cas glauca.Eucalyptus campaspe Silver gimlet. (2, 16)Eucalyptus moluccana Grey box. (2) Suggests 4-8 dS/m. (22)Eucalyptus occidentalisFlat top yate. (2) (6) In the 100-150 mS/m EM38 range. (10, 16, 17, 19) Wet ordry sites. (24) Range of 15-25 dS/m.Eucalyptus raveretiana (22) May be higher tolerance.Eucalyptus sargentii ssp.SargentiiSalt river gum, Sargent's mallee. (2, 10, 16, 17) Waterlogg<strong>in</strong>g tolerant.Eucalyptus spathulata ssp.SpathulataSwamp mallet. (2, 9, 10, 16)Melaleuca decussata Cross-leaf honey myrtle. (2, 14, 15, 19)Melaleuca hamulosa (12)Melaleuca lanceolataRottnest Isl<strong>and</strong> tea tree, moonah. (2, 14, 15, 19). Needs well-dra<strong>in</strong>ed site.Melaleuca leucadendra Cadjeput. (2)Melaleuca qu<strong>in</strong>qu<strong>in</strong>erva Five-ve<strong>in</strong>ed paperbark. (2)Melaleuca squarrosa Scented paperbark. (2)Melaleuca unc<strong>in</strong>ataBroombush. (2) Highly variable taxon. Variable tolerance.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 185TABLE A6.4Moderately sal<strong>in</strong>e (EC e400-800 mS/m)Proper nameCommon name <strong>and</strong> commentsAcacia acum<strong>in</strong>ata Jam. (2)Acacia collectoides Sp<strong>in</strong>e wattle. (12)Acacia iteaphylla Fl<strong>in</strong>der's Range wattle. (2)Acacia longifolia Sydney golden wattle. (2)Acacia merrallii Merrall's wattle. (12)Acacia pendula Weep<strong>in</strong>g myall. (19)Acacia pra<strong>in</strong>ii Pra<strong>in</strong>'s wattle. (12)Acacia redolensRavensthorpe source. (3, 12, 13) Tolerance varies with seed source.Allocasuar<strong>in</strong>a leuhmannii Buloke. (2)Allocasuar<strong>in</strong>a verticillata Droop<strong>in</strong>g sheoak. (2, 19)Atriplex <strong>semi</strong>baccataCreep<strong>in</strong>g saltbush.Callistemon paludosis River bottlebrush. (19)Callistemon phoeniceus Lesser bottlebrush. (12)Casuar<strong>in</strong>a cunn<strong>in</strong>ghamiana River sheoak. (2, 6, 19, 22)Chloris gayana Rhodes grass. (21)Eucalyptus aggregata (2)Eucalyptus anceps (5)Eucalyptus angustissima ssp.Angustissima(5)Eucalyptus astr<strong>in</strong>gensBrown mallet. (2, 16) Seed source critical.Eucalyptus botryoides Southern mahogany. (2)Eucalyptus brachycorys Comet Vale mallee. (9)Eucalyptus brockwayi Dundas mahogany. (2,16)Eucalyptus camaldulensisRiver red gum. (2, 6, 9) (10) Suggests lower tolerance. (16, 17) (19, 22)Suggests higher tolerance. Provenance critical.Eucalyptus coolabah(2) This group is be<strong>in</strong>g revised. Includes E microtheca.Eucalyptus dipteraTwo-w<strong>in</strong>ged gimlet. (10) Suggest higher tolerance.Eucalyptus famelica (5)Eucalyptus foliosa (5)Eucalyptus largiflorensBlack box. (2, 14, 19) Wet or dry sites.Eucalyptus leptocalyxHopetoun mallee.Eucalyptus lesouefii Goldfields blackbutt. (16, 17)Eucalyptus leucoxylonSouth Australian blue gum. (2) Four named ssp. <strong>and</strong> highly variable.Provenance critical.Eucalyptus leucoxylon ssp. Petiolaris Eyre Pen<strong>in</strong>sula blue gum. (17)Eucalyptus loxophleba ssp. Lissophloia Smooth barked York gum.Eucalyptus loxophleba ssp. Loxophleba York gum. (10, 16)Eucalyptus melliodora Yellow box. (2, 6, 22)Eucalyptus mimica(5) Mallet from Newdegate area.Eucalyptus platycorysBoorabb<strong>in</strong> mallee. (5, 9) Sensitive to <strong>water</strong>logg<strong>in</strong>g.Eucalyptus platypus var. heterophylla Coastal moort. (2, 10) Could have much higher tolerance.Eucalyptus platypus var. plpatypus Round-leafed moort.Eucalyptus polybractea Blue mallee. (2)Eucalyptus rigens (5)Eucalyptus robusta Swamp mahogany. (2, 6, 10, 19, 22)Eucalyptus rudis Flooded gum. (2, 6, 10)Eucalyptus salicolaSalt gum.Eucalyptus sideroxylonRed ironbark. (19) Needs well-dra<strong>in</strong>ed site.Eucalyptus tereticornisForest red gum. (2) (22) Suggests higher tolerance.Eucalyptus varia ssp. Salsug<strong>in</strong>osa (5) Mallee form of E gardneri.Eucalyptus vegr<strong>and</strong>is(5) Syn E spathulata ssp. gr<strong>and</strong>iflora.Eucalyptus xanthonema (5)Festuca arund<strong>in</strong>aceaTall fescue. (21) Moderate <strong>water</strong>logg<strong>in</strong>g tolerance.Lagunaria patersoniiNorfolk Isl<strong>and</strong> hibiscus. (14, 15) Coastal.Maireana brevifolia Small-leaved bluebush. (23)Melaleuca acum<strong>in</strong>ata Broombush. (12)Melaleuca armillarisBracelet honey myrtle. (2, 19) Needs well-dra<strong>in</strong>ed site.Melaleuca bracteata River teatree. (2)Melaleuca brevifolia Mallee honey myrtle. (12)Melaleuca ericifolia Swamp paperbark. (2, 19)


186Annex 6 – Trees <strong>and</strong> shrubs for saltl<strong>and</strong>, sal<strong>in</strong>ity rat<strong>in</strong>gs <strong>and</strong> species listsMelaleuca lateriflora(5) Grows with M unc<strong>in</strong>ata <strong>and</strong> others.Melaleuca l<strong>in</strong>arifolia Narrow-leaved paperbark. (2)Melaleuca microphylla (14)Melaleuca styphelioides Prickly-leaved paperbark. (2, 19)Myoporum desertii Turkey bush. (14)Myoporum <strong>in</strong>sulare Boobialla. (15)Pittosporum phylliraeoides Native apricot. (15)Th<strong>in</strong>opyrum elongatumTall wheat grass. (21, 23) Moderate <strong>water</strong>logg<strong>in</strong>g toleranceTrifolium michelianumBalansa clover. (23) Syn. T balansae. Highly tolerant of <strong>water</strong>logg<strong>in</strong>g.TABLE A6.5Slightly sal<strong>in</strong>e (EC e200-400 mS/m)Proper nameCommon name <strong>and</strong> comments.Acacia mearnsiiLate black wattle. (2) Possible weed spp.Acacia melanoxylon Tasmanian blackwood. (2)Callistemon salignusWillow bottlebrushCasuar<strong>in</strong>a littoralis (8)Casuar<strong>in</strong>a stricta (8)Casuar<strong>in</strong>a torulosa (8)Cynodon dactylon Couch. (21)Eucalyptus aggregata Black gum. (21)Eucalyptus calycogona ssp. calycogona (5, 16)Eucalyptus camphora Swamp gum. (2)Eucalyptus celastroides ssp. celastroides Mealy blackbutt. (5)Eucalyptus c<strong>in</strong>erea Argyle apple. (2)Eucalyptus cladocalyx Sugar gum. (2)Eucalyptus clel<strong>and</strong>iiClel<strong>and</strong>'s blackbutt. (11) Suggests higher tolerance.Eucalyptus conc<strong>in</strong>na Victoria Desert mallee. (16, 17)Eucalyptus conferrum<strong>in</strong>ata Bald Isl<strong>and</strong> marlock. (17)Eucalyptus cornutaYate. (2) (17) Suggests no tolerance of salt.Eucalyptus crenulata Victorian silver gum. (2)Eucalyptus elata River pepperm<strong>in</strong>t. (2)Eucalyptus flocktoniaeMerrit. (16) (17) Sensitive to <strong>water</strong>logg<strong>in</strong>g.Eucalyptus forrestiana ssp. forrestiana Fuschia mallee. (16)Eucalyptus globulus ssp. Globulus Blue gum. (2)Eucalyptus gr<strong>and</strong>isRose gum. (2) (22) suggests moderate tolerance.Eucalyptus griffithsii Griffith's grey gum. (16, 17)Eucalyptus hypochlamydea ssp. ecdysiastes (5)Eucalyptus longicornis Red morrell. (16)Eucalyptus macr<strong>and</strong>ra Long-flowered marlock. (15, 16, 17)Eucalyptus megacornutaWarted yate.Eucalyptus merrickiae Goblet mallee. (16, 17)Eucalyptus microcarpa (6)Eucalyptus ovata Swamp gum. (2)Eucalyptus ovularis Small-fruited mallee. (16, 17)Eucalyptus salmonophloia Salmon gum. (10) Suggests moderate tolerance. (16)Eucalyptus torquata Coral gum. (16, 17)Eucalyptus w<strong>and</strong>ooW<strong>and</strong>oo. (10) Suggests moderate tolerance. Seed sourceimportant.Eucalyptus yilgarnensisPhalaris aquatica Phalaris. (21)Sch<strong>in</strong>us molle var. areira Peppeer tree. (14)Trifolium fragiferumStrawberry clover. (21) High <strong>water</strong>logg<strong>in</strong>g tolerance. Best onsummer moisture.


<strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong> <strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas 187REFERENCES1. Runciman, H.V. & Malcolm, C.V. 1989. Forage shrubs <strong>and</strong> grasses for revegetat<strong>in</strong>g saltl<strong>and</strong>. Bullet<strong>in</strong>No. 4153. Department of Agriculture Western Australia. Includes <strong>in</strong>formation on saltbushes,bluebush, Quailbrush, samphire, Pucc<strong>in</strong>elia, salt<strong>water</strong> couch.2. Marcar, N., Crawford, D., Leppert, P., Jovanovic, T., Floyd, R. & Farrow, R. 1995. Trees for saltl<strong>and</strong>;a guide to select<strong>in</strong>g native species for Australia. Melbourne, Australia, CSIRO Press.3. Ferdowsian, R. & Greenham, K.J. 1992. Integrated catchment <strong>management</strong>: Upper DenmarkCatchment. Technical Report 130. Division of Resource Management, Department of Agriculture,Western Australia.4. Van der Moezel, P.G. & Bell, D.T. 1987. Comparative seedl<strong>in</strong>g salt tolerance of several Eucalyptus<strong>and</strong> Melaleuca species from Western Australia. Australian Forestry Research, 17: 151-158.5. White, P. Personal Communication. Conservation <strong>and</strong> l<strong>and</strong> <strong>management</strong>, Narrog<strong>in</strong> WA. Euc OilProgram, seed collection etc.6. Bennett, D. & Ge<strong>org</strong>e, R. Personal Communication. DAWA Bunbury WA. Results of EM38 research<strong>in</strong>to survival <strong>and</strong> growth <strong>in</strong> the field.7. Australian Plant Study Group. 1980. Grow what where. 1990 edition. Vik<strong>in</strong>g O’Neil, South Yarra,Australia, Pengu<strong>in</strong> Books.8. El-Lakanay, M.H. & Luard, E.J. 1982. Comparative salt tolerance of selected Casuar<strong>in</strong>a species.Australian Forestry Research, 13: 11-20.9. Van der Moezel, P.G., Watson, L.E., Pearce-P<strong>in</strong>to, G.V.N. & Bell, D.T. 1988. The response of sixEucalyptus species <strong>and</strong> Casuar<strong>in</strong>a obesa to the comb<strong>in</strong>ed effect of sal<strong>in</strong>ity <strong>and</strong> <strong>water</strong>logg<strong>in</strong>g.Australian Journal of Plant Physiology, 15: 465-47410. Pepper, R.G. & Craig, G.F. 1986. Resistance of selected Eucalyptus species to soil sal<strong>in</strong>ity <strong>in</strong> WesternAustralia. Journal of Applied Ecology, 23: 977-987.11. Blake, T.J. 1981. Salt tolerance of Eucalyptus species grown <strong>in</strong> sal<strong>in</strong>e solution culture. AustralianForestry Research, 11: 179-183.12. Anon. 1994. The tree grower’s <strong>in</strong>formation kit. Department of Conservation <strong>and</strong> L<strong>and</strong> Management,Western Australia.13. Craig, G.F., Bell, D.T. & Atk<strong>in</strong>s, C.A. 1990. Response to salt <strong>and</strong> <strong>water</strong>logg<strong>in</strong>g stress of ten taxa ofAcacia selected from naturally sal<strong>in</strong>e areas of Western Australia. Australian Journal of Botany,38: 619-630.14. South Australian Woods <strong>and</strong> Forests. 1984. Catalogue of plants for sale. No. 20 <strong>in</strong> a Series. Adelaide,Australia.15. Australian Plant Study Group. 1990. Grow what where. Vik<strong>in</strong>g O’Neill, South Yarra, Australia, Pengu<strong>in</strong>Books.16. Chippendale, G.M. 1973. Eucalyptus of the Western Australian goldfields (<strong>and</strong> the adjacentwheatbelt). Canberra, Australian Government Publish<strong>in</strong>g Service.17. Elliot, W.R. & Jones, D.L. 1986. Encyclopaedia of Australian plants suitable for cultivation. Vol. 4.Lothian, Melbourne, Australia.18. Ismail, S., Malcolm, C.V. & Ahmad, R. 1990. A bibliography of forage halophytes <strong>and</strong> trees for saltaffectedl<strong>and</strong>: their uses, culture <strong>and</strong> physiology. Karachi, Pakistan, Department of Botany,University of Karachi.19. Race, D., ed. 1993. Agroforestry: trees for productive farm<strong>in</strong>g. Melbourne, Australia, AgMedia.Chapters 17,19.


188Annex 6 – Trees <strong>and</strong> shrubs for saltl<strong>and</strong>, sal<strong>in</strong>ity rat<strong>in</strong>gs <strong>and</strong> species lists20. Hoy, N.T., Gale, M.J. & Walsh, K.B. 1994. Revegetation of a scalded sal<strong>in</strong>e discharge zone <strong>in</strong> centralQueensl<strong>and</strong>: 1. Selection of tree species <strong>and</strong> evaluation of an establishment technique. AustralianJournal of Experimental Agriculture, 34: 765-776.21. Sudmeyer, R.A., Saunders, C., Mal<strong>in</strong>g, I. & Clark, T. 1994. Perennial pastures: for areas receiv<strong>in</strong>gless than 800 mm annual ra<strong>in</strong>fall. Bullet<strong>in</strong> 4253. Department of Agriculture Western Australia.22. Dunn, G.M., Taylor, D.W., Nester, M.R. & Beetson, T.B. 1994. Performance of twelve selectedAustralian tree species on a sal<strong>in</strong>e site <strong>in</strong> southeast Queensl<strong>and</strong>. Forest Ecology <strong>and</strong>Management, 70: 255-26423. Barrett-Lennard, E.G. & Malcolm, C.V. 1995. Saltl<strong>and</strong> pastures <strong>in</strong> Australia. Bullet<strong>in</strong> 4312. Departmentof Agriculture, Western Australia.24. Barson, M. & Barrett-Lennard, E. 1995. Productive use <strong>and</strong> rehabilitation of Australia’s sal<strong>in</strong>el<strong>and</strong>s. Australian Journal of Soil <strong>and</strong> Water Conservation, 8(3): 33-37.


<strong>FAO</strong> TECHNICAL PAPERS<strong>FAO</strong> IRRIGATION AND DRAINAGE PAPERS1 Irrigation practice <strong>and</strong> <strong>water</strong> <strong>management</strong>,1972 (Ar* E* F* S*)1 Rev.1 Irrigation practice <strong>and</strong> <strong>water</strong> <strong>management</strong>,1984 (E)2 Irrigation canal l<strong>in</strong><strong>in</strong>g, 1971(New edition, 1977, available <strong>in</strong> E, F <strong>and</strong> S<strong>in</strong> the <strong>FAO</strong> L<strong>and</strong> <strong>and</strong> Water DevelopmentSeries, No. 1)3 Design criteria for bas<strong>in</strong> irrigation systems,1971 (E*)4 Village irrigation programmes a newapproach <strong>in</strong> <strong>water</strong> economy, 1971 (E* F*)5 Automated irrigation, 1971 (E* F* S*)6 Dra<strong>in</strong>age of heavy soils, 1971 (E* F* S*)7 Sal<strong>in</strong>ity sem<strong>in</strong>ar, Baghdad, 1971 (E* F*)8 Water <strong>and</strong> the environment, 1971 (E* F* S*)9 Dra<strong>in</strong>age materials, 1972 (E* F* S*)10 Integrated farm <strong>water</strong> <strong>management</strong>, 1971(E* F* S*)11 Plann<strong>in</strong>g methodology sem<strong>in</strong>ar, Bucharest,1972 (E* F*)12 Farm <strong>water</strong> <strong>management</strong> sem<strong>in</strong>ar, Manila,1972 (E*)13 Water use sem<strong>in</strong>ar, Damascus, 1972(E* F*)14 Trickle irrigation, 1973 (E* F* S*)15 Dra<strong>in</strong>age mach<strong>in</strong>ery, 1973 (E* F*)16 Dra<strong>in</strong>age of salty soils, 1973 (C* E* F* S*)17 Man’s <strong>in</strong>fluence on the hydrological cycle,1973 (E* F* S*)18 Ground<strong>water</strong> sem<strong>in</strong>ar, Granada, 1973(E* F S*)19 Mathematical models <strong>in</strong> hydrology, 1973(E*)20/1 Water laws <strong>in</strong> Moslem countries Vol. 1,1973 (E* F*)20/2 Water laws <strong>in</strong> Moslem countries Vol. 2,1978 (E F)21 Ground<strong>water</strong> models, 1973 (E*)22 Water for agriculture <strong>in</strong>dex, 1973 (E/F/S*)23 Simulation methods <strong>in</strong> <strong>water</strong> development,1974 (E* F* S*)24 Crop <strong>water</strong> requirements, (rev.) 1977(C* E F S)25 Effective ra<strong>in</strong>fall, 1974 (C* E* F* S*)26/1 Small hydraulic structures Vol. 1, 1975(E* F* S*)26/2 Small hydraulic structures Vol. 2, 1975(E* F* S*)27 Agro-meteorological field stations, 1976(E* F* S*)28 Dra<strong>in</strong>age test<strong>in</strong>g, 1976 (E* F* S*)29 Water quality for agriculture, 1976(E* F* S*)29 Rev.1 Water quality for agriculture, 1985(C** E* F* S*)30 Self-help wells, 1977 (E*)31 Ground<strong>water</strong> pollution, 1979 (C* E* S)32 Determ<strong>in</strong>istic models <strong>in</strong> hydrology, 1979(E*)33 Yield response to <strong>water</strong>, 1979 (C* E F S)34 Corrosion <strong>and</strong> encrustation <strong>in</strong> <strong>water</strong> wells,1980 (E*)35 Mechanized spr<strong>in</strong>kler irrigation, 1982(C E* F S*)36 Localized irrigation, 1980 (Ar C E* F S*)37 Arid zone hydrology, 1981 (C E*)38 Dra<strong>in</strong>age design factors, 1980 (Ar C E F S)39 Lysimeters, 1982 (C E* F* S*)40 Organization, operation <strong>and</strong> ma<strong>in</strong>tenanceof irrigation schemes, 1982 (C E* F S*)41 Environmental <strong>management</strong> for vectorcontrol <strong>in</strong> rice fields, 1984 (E* F* S*)42 Consultation on irrigation <strong>in</strong> Africa, 1987(E F)43 Water lift<strong>in</strong>g devices, 1986 (E F)44 Design <strong>and</strong> optimization of irrigationdistribution networks, 1988 (E F)45 Guidel<strong>in</strong>es for design<strong>in</strong>g <strong>and</strong> evaluat<strong>in</strong>gsurface irrigation systems, 1989 (E*)46 CROPWAT a computer program forirrigation plann<strong>in</strong>g <strong>and</strong> <strong>management</strong>, 1992(E F* S*)47 Waste<strong>water</strong> treatment <strong>and</strong> use <strong>in</strong>agriculture, 1992 (E*)48 The use of sal<strong>in</strong>e <strong>water</strong>s for cropproduction, 1993 (E*)49 CLIMWAT for CROPWAT, 1993 (E)50 Le pompage éolien, 1994 (F)51 Prospects for the <strong>dra<strong>in</strong>age</strong> of clay soils,1995 (E)52 Reform<strong>in</strong>g <strong>water</strong> resources policy, 1995(E)53 Environmental impact assessment ofirrigation <strong>and</strong> <strong>dra<strong>in</strong>age</strong> projects, 1995 (E)54 Crues et apports, 1996 (F)55 Control of <strong>water</strong> pollution from agriculture,1996 (E* S)56 Crop evapotranspiration, 1998 (E)57 Soil sal<strong>in</strong>ity assessment, 1999 (E)58 Transfer of irrigation <strong>management</strong>services: guidel<strong>in</strong>es, 1999 (E F S)59 Performance analysis of on-dem<strong>and</strong>pressurized irrigation systems, 2000 (E)60 Materials for subsurface l<strong>and</strong> <strong>dra<strong>in</strong>age</strong>systems, 2000 (E)61 <strong>Agricultural</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> <strong>in</strong><strong>arid</strong> <strong>and</strong> <strong>semi</strong>-<strong>arid</strong> areas, 2002 (E)Availability: October 2002Ar Arabic Multil Multil<strong>in</strong>gualC Ch<strong>in</strong>ese * Out of pr<strong>in</strong>tE English ** In preparationF FrenchP PortugueseS SpanishThe <strong>FAO</strong> Technical Papers are available through theauthorized <strong>FAO</strong> Sales Agents or directly from Sales <strong>and</strong>Market<strong>in</strong>g Group, <strong>FAO</strong>, Viale delle Terme di Caracalla,00100 Rome, Italy.


This publication provides planners, decision-makers <strong>and</strong> eng<strong>in</strong>eers with guidel<strong>in</strong>esto susta<strong>in</strong> irrigated agriculture <strong>and</strong> at the same time to protect <strong>water</strong> resources from thenegative impacts of agricultural <strong>dra<strong>in</strong>age</strong> <strong>water</strong> disposal. On the basis of case studiesfrom Central Asia, Egypt, India, Pakistan <strong>and</strong> the United States of America,it dist<strong>in</strong>guishes four broad groups of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> options: <strong>water</strong>conservation, <strong>dra<strong>in</strong>age</strong> <strong>water</strong> reuse, <strong>dra<strong>in</strong>age</strong> <strong>water</strong> disposal <strong>and</strong> <strong>dra<strong>in</strong>age</strong> <strong>water</strong>treatment. All these options have certa<strong>in</strong> potential impacts on the hydrology <strong>and</strong> <strong>water</strong>quality <strong>in</strong> an area, with <strong>in</strong>teractions <strong>and</strong> trade-offs occurr<strong>in</strong>g when more than one isapplied. This publication presents a framework to help make a selection from amongthe various <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> options <strong>and</strong> to evaluate their impact <strong>and</strong>contribution towards development goals. In addition, it presents technical background<strong>and</strong> guidel<strong>in</strong>es on each of the options to enable improved assessment of their impacts<strong>and</strong> to facilitate the preparation of <strong>dra<strong>in</strong>age</strong> <strong>water</strong> <strong>management</strong> plans <strong>and</strong> designs.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!