29.11.2012 Views

Epigenetics in disease control and prevention - Epidemiology ...

Epigenetics in disease control and prevention - Epidemiology ...

Epigenetics in disease control and prevention - Epidemiology ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Epigenetics</strong> <strong>in</strong> <strong>disease</strong> <strong>control</strong> <strong>and</strong> <strong>prevention</strong>:<br />

when will it be ready for prime time?<br />

Mukesh Verma, Ph.D.<br />

Chief<br />

Methods <strong>and</strong> Technologies Branch (MTB)<br />

Program Director<br />

<strong>Epidemiology</strong> <strong>and</strong> Genetics Research Program (EGRP)<br />

Division of Cancer Control <strong>and</strong> Population sciences (DCCPS)<br />

National Cancer Institute (NCI)<br />

National Institutes of Health (NIH)<br />

PUBLIC HEALTH GENOMICS Sem<strong>in</strong>ar Series (August 26, 2009)


<strong>Epidemiology</strong> <strong>and</strong> Genetics<br />

Research Program (EGRP)<br />

Outl<strong>in</strong>e<br />

EGRP manages a comprehensive program of grant-supported,<br />

population-based research that br<strong>in</strong>gs to bear the expertise of<br />

scientists to <strong>in</strong>crease our underst<strong>and</strong><strong>in</strong>g of cancer etiology <strong>and</strong><br />

<strong>prevention</strong>. Scientists from throughout the United States <strong>and</strong><br />

<strong>in</strong>ternationally are supported.<br />

• Molecular Basis of <strong>Epigenetics</strong><br />

• Epigenetic Profil<strong>in</strong>g: Technology<br />

• Examples from Cl<strong>in</strong>ical Studies (Cancer)<br />

Epigenetic<br />

Factors<br />

• Implication <strong>in</strong> Personal Health<br />

EGRP<br />

• NIH Roadmap: Epigenomics


Nucleosomes (Units of Chromat<strong>in</strong>)<br />

DNA<br />

Histones H2a, H2b, H3, H4<br />

To neutralize charge <strong>and</strong> provide stability<br />

Nucleosome: two turns of DNA (146 base pairs) wrapped around an octomeric complex of two<br />

of each of histone types


<strong>Epigenetics</strong>:<br />

Stable alterations <strong>in</strong> gene expression<br />

by several mechanisms, except<br />

nucleotide sequence changes<br />

Genetic Code<br />

Qiu NATURE 441: 143<br />

Methylation Code<br />

Histone Code<br />

The genetic <strong>in</strong>formation provides the blue pr<strong>in</strong>t for the manufacture of all the prote<strong>in</strong>s<br />

necessary to create a liv<strong>in</strong>g organism, whereas the epigenetic <strong>in</strong>formation<br />

provides the <strong>in</strong>structions on how, where <strong>and</strong> when the genetic <strong>in</strong>formation will be used.


EPIGENETICS<br />

Epigenetic alterations – changes <strong>in</strong>duced <strong>in</strong> cells that alter expression of<br />

the <strong>in</strong>formation on transcriptional, translational, or post-translational<br />

levels without change <strong>in</strong> DNA sequence<br />

Methylation of<br />

DNA<br />

DNMT1<br />

DNMT3a<br />

DNMT3b<br />

SAM SAH<br />

Genomic Impr<strong>in</strong>t<strong>in</strong>g<br />

Modifications of<br />

histones<br />

A<br />

Me - methylation<br />

P<br />

U<br />

Me<br />

A<br />

P U<br />

- acetylation<br />

- phosphorylation<br />

- ubiquit<strong>in</strong>ation<br />

RNA-mediated<br />

modifications<br />

• RNA-directed DNA methylation<br />

• RNA-<strong>in</strong>terference mediated<br />

chromat<strong>in</strong> remodel<strong>in</strong>g<br />

• RNAi, siRNA, miRNA …<br />

-3.0 0<br />

3.0<br />

Control Treated


Background<br />

Host Factors<br />

Environment/<br />

Life Style<br />

Factors<br />

Genetic<br />

Susceptibility<br />

Epigenetic<br />

Changes<br />

Instability CANCER<br />

Mutations<br />

Verma (2009) Hum Gen. <strong>Epidemiology</strong>. 2 nd Edn.


A multistage model of carc<strong>in</strong>ogenesis <strong>in</strong> sk<strong>in</strong><br />

Global hypomethylation<br />

Promoter hypermethylation<br />

Altered histone modifications<br />

Cancer is a genetic <strong>and</strong> epigenetic <strong>disease</strong><br />

Esteller, NEJM, 358:1148-59, 2008


Esteller, NEJM, 358:1148-59, 2008


<strong>Epigenetics</strong><br />

Epigenetic events are alterations <strong>in</strong><br />

gene expression without changes <strong>in</strong><br />

the DNA cod<strong>in</strong>g sequence that are<br />

heritable through cell division<br />

Epigenetic events occur early <strong>in</strong> the<br />

cancer development<br />

Epigenetic changes occur dur<strong>in</strong>g<br />

normal development but<br />

dysregulation of epigenetic<br />

events may result <strong>in</strong> cancer<br />

Genetics of <strong>Epigenetics</strong>: Tw<strong>in</strong> Studies<br />

Chakravarti <strong>and</strong> Little. Nature. 421: 412


Epigenetic differences arise dur<strong>in</strong>g the lifetime<br />

of monozygotic tw<strong>in</strong>s<br />

Monozygous tw<strong>in</strong>s share a common genotype. However, most monozygotic<br />

tw<strong>in</strong> pairs are not identical; several types of phenotypic discordance may be<br />

observed, such as differences <strong>in</strong> susceptibilities to <strong>disease</strong> <strong>and</strong> a wide range<br />

of anthropomorphic features.<br />

Manel Estellar exam<strong>in</strong>ed the global <strong>and</strong> locus-specific differences <strong>in</strong><br />

DNA methylation <strong>and</strong> histone acetylation of a large cohort of monozygotic<br />

tw<strong>in</strong>s.<br />

These f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>dicate how an appreciation of epigeneticsis miss<strong>in</strong>g from<br />

our underst<strong>and</strong><strong>in</strong>g of how different phenotypes can be orig<strong>in</strong>ated from<br />

the same genotype.<br />

EU Funded Tw<strong>in</strong> Consortium http://www.genomeutw<strong>in</strong>.org<br />

PNAS 102: 10604


Why Environmental Factors <strong>and</strong> <strong>Epigenetics</strong>?<br />

• More than 40% genes are regulated epigenetically<br />

• Environmental carc<strong>in</strong>ogens, such as arsenic <strong>and</strong> nickel, affect<br />

methylation of DNA <strong>and</strong> acetylation of histones, two key<br />

processes <strong>in</strong>volved <strong>in</strong> epigenetic regulation of genes lead<strong>in</strong>g to<br />

cancer<br />

• Arsenic gets methylated <strong>and</strong> thus depletes methyl<br />

group from the nutrients <strong>in</strong> the body<br />

• Inhibition <strong>and</strong> reversal of nickel-<strong>in</strong>duced transformation<br />

by the histone deacetylase <strong>in</strong>hibitor was observed<br />

Zhang et al.. Tox Appl Pharm 192: 201-211.


Herman Chest.125:119S-122S


Unmethylated CpG<br />

Methylated CpG<br />

Activated Oncogenes<br />

Inactivated Tumor Suppressors


Jones <strong>and</strong> Laird. Nat Rev Gen 21: 163


Factors<br />

Environmental<br />

Hormonal<br />

Genetic<br />

Deacetylation Inhibitor:<br />

Trichostat<strong>in</strong><br />

Methylation Inhibitors:<br />

5-aza-2’ deoxycytid<strong>in</strong>e<br />

Zebular<strong>in</strong>e<br />

MV<br />

Epigenetic Markers <strong>and</strong> Targets<br />

Methion<strong>in</strong>e Supplement:<br />

S-Adenosylmethione<br />

<strong>Epigenetics</strong> regulates:<br />

Cell Cycle Control<br />

DNA Damage<br />

Apoptosis<br />

Invasion<br />

X-Chromosome Inactivation<br />

Impr<strong>in</strong>t<strong>in</strong>g<br />

Ag<strong>in</strong>g<br />

DNA Methyl-transferases<br />

DNMT1<br />

DNMT3A<br />

DNMT3B<br />

•Verma <strong>and</strong> Srivastava (2002). Lancet Oncol. 3: 755-<br />

363;<br />

•Verma et al (2004) Crit. Rev. Cl<strong>in</strong>. Sc. 41: 585-607;<br />

•Verma <strong>and</strong> Manne (2006). Crit. Rev. Hematol.<br />

Oncol. 60: 9-18;<br />

•Verma et al (2006). Mol. Diag.Therapy. 10: 1-15.<br />

Hypermethylation<br />

APC<br />

BRCA1<br />

ER<br />

hMLH1<br />

GSTP1<br />

TIMP3<br />

DAPK1<br />

Hypomethylation<br />

Raf<br />

C-myc<br />

C-fos<br />

C-Ha-ras<br />

C-K-ras<br />

Acetylation/Deacetylation<br />

Histone Acetyltransferase<br />

Histone Decetylase<br />

(Dynamic Equilibrium)


Background: <strong>Epigenetics</strong><br />

“Cancer epigenetics is important for<br />

<strong>prevention</strong> because we may be able to<br />

use methylation markers to identify<br />

people at higher risk of cancer <strong>and</strong><br />

perhaps detect cancer earlier”<br />

- Mukesh Verma, DCCPS<br />

<strong>Epigenetics</strong> events can be reversed<br />

March 13, 2007


S-Adenosyl Methion<strong>in</strong>e<br />

Deoxycytid<strong>in</strong>e<br />

(SAM)<br />

S-Adenosyl Homocyste<strong>in</strong>e<br />

DNMT<br />

SAH<br />

m m m m m m<br />

5-Methyldeoxycytid<strong>in</strong>e<br />

A A G A T C G C G C G C G C G C G A T C G A<br />

T T G T A G C<br />

G C<br />

G C<br />

G C<br />

G C<br />

G C<br />

T A G C T<br />

Asad Umar<br />

Mechanism of DNA methylation<br />

m<br />

m<br />

m<br />

m<br />

m<br />

m


Laird. Nat Rev Cancer 3:253<br />

Bisulphite Treatment of DNA


Bisulfite-Dependent DNA Methylation Analysis<br />

Bisulfite PCR<br />

Analysis of<br />

PCR<br />

Product<br />

Methylation-Specific<br />

PCR<br />

PCR<br />

Product<br />

Yes or No?<br />

Herman (1996) PNAS 93, 9821<br />

MethyLight<br />

Real-Time<br />

PCR<br />

Analysis


Nanochip to Detect Hypermethylation<br />

Sample Port 1<br />

Wash Port Buffer Port<br />

Fig. 5<br />

NanoChip Cartridge<br />

Front View<br />

Sample Port 2<br />

NanoChip Cartridge<br />

Rear View<br />

Micro-array test sites<br />

connected with plat<strong>in</strong>ium wires


DNA Methylation Detection by<br />

Hybridization of Bisulphite DNA<br />

EPIGENOMICS, Inc.<br />

Roche 454<br />

Agilent<br />

Solexa<br />

Illum<strong>in</strong>a<br />

Nimblegen<br />

Qiagen<br />

Biotage, Inc.


• Total methylation content of the cell<br />

• methylation level at specific stage<br />

• methylation pattern of a group of genes<br />

• profile of methylation of either a specific gene<br />

or a number of genes<br />

• pattern of methylation <strong>in</strong> the whole epigenome<br />

Pr<strong>in</strong>ciple of Methylation<br />

Laird Nat Rev Cancer 3:253<br />

To reduce<br />

• false negative<br />

• false positives


Me<br />

Me<br />

Me<br />

Heterochromat<strong>in</strong><br />

Ac<br />

Ac<br />

Me<br />

Euchromat<strong>in</strong><br />

SWI/SNF<br />

HMT<br />

MBP<br />

Me Me<br />

Histone cod<strong>in</strong>g for silenc<strong>in</strong>g<br />

Ac<br />

SWI/SNF<br />

HMT<br />

DNMT<br />

HDAC MeCP<br />

HAT<br />

Polycomb Repressor<br />

Complex<br />

DNMT<br />

P300/CBP<br />

Ac<br />

Me<br />

H3-MeK9<br />

H3-AcK9<br />

H3-MeK9<br />

Me<br />

Me<br />

Me<br />

Ac<br />

Silenced histone code (SHC)<br />

Histone cod<strong>in</strong>g for transcription<br />

Ac<br />

H3-MeK4<br />

Ac<br />

Me<br />

Active histone code (AHC)<br />

H3K27me3<br />

PRC I <strong>and</strong> II<br />

(differentiation)<br />

H3K9me<br />

Next am<strong>in</strong>o acid is ser -<br />

Upon phosphorylation,<br />

Change is permanent<br />

RNA pol II<br />

General Transcription factors


Inhibitors of DNA Methyltransferase (5-AZA-C) <strong>and</strong> Histone<br />

Deacetylase (TSA) can Restore Gene Activation<br />

Transcription Factor<br />

Complex<br />

5-Aza-deoxy-cytid<strong>in</strong>e (5-AZA-C)<br />

Trichostat<strong>in</strong> A (TSA)<br />

Transcription<br />

No Transcription<br />

DNA Methyl Transferase<br />

Methylation B<strong>in</strong>d<strong>in</strong>g Prote<strong>in</strong><br />

Histone Deacetylase<br />

v<br />

Relaxed Chromat<strong>in</strong><br />

Compact Chromat<strong>in</strong><br />

Methylation<br />

Verma <strong>and</strong> Srivastava (2002)<br />

Lancet Oncology. 3, 755-763.


A methylat<strong>in</strong>g enzyme (white)<br />

b<strong>in</strong>ds to its target site (red) on DNA; the methyl donor is shown <strong>in</strong> green.<br />

Dennis NATURE 421: 686<br />

•Merck<br />

•GlxSmith<br />

•J & J<br />

•Hoffman LaRoche<br />

•Novartis<br />

•Astra-Zeneca


DNA Methylation <strong>and</strong> Carc<strong>in</strong>ogenesis<br />

DNA Methylation<br />

Abnormal Increases Abnormal Decreases No Changes<br />

Tumor suppressor<br />

gene <strong>in</strong>activation<br />

Methylation<br />

of both<br />

alleles<br />

Methylation<br />

of 1 allele<br />

<strong>and</strong><br />

mutation<br />

or<br />

deletion of<br />

the other<br />

For impr<strong>in</strong>ted<br />

genes:<br />

hypomethylated<br />

allele<br />

replaced by<br />

mitotic<br />

recomb<strong>in</strong>ation<br />

with<br />

hypermethylated<br />

allele or<br />

methylated<br />

de novo<br />

Protooncogene<br />

activation<br />

<strong>and</strong> upregulation<br />

of other<br />

DNA<br />

sequences<br />

Increased<br />

DNA<br />

Rearrangements<br />

<strong>and</strong> possibly<br />

aneuploidy<br />

Latent<br />

viral<br />

activation<br />

or<br />

retroelement<br />

activation<br />

Chemically<br />

<strong>in</strong>duced<br />

mutations<br />

preferentially<br />

at m5C<br />

residue<br />

Deam<strong>in</strong>ation-spontaneous<br />

conversion of<br />

m5C to T<br />

mutations<br />

<strong>in</strong> tumor<br />

suppressor<br />

genes<br />

Poor<br />

repair<br />

of<br />

m5C


Cancer Development is a Multi-step Process


Markers <strong>in</strong> <strong>Epidemiology</strong> Research<br />

Currently Used:<br />

Genetic markers<br />

Biochemical (enzymatic or proteomic) markers<br />

Unexplored:<br />

Epigenetic markers<br />

In epidemiology, biomarkers are used to<br />

follow <strong>disease</strong> prevalence by determ<strong>in</strong><strong>in</strong>g<br />

their level <strong>in</strong> cohort studies with potential of<br />

identify<strong>in</strong>g the high risk population


Exam<strong>in</strong><strong>in</strong>g Epigenetic Markers<br />

Technology exists to utilize these markers for<br />

population studies<br />

Easy to assay <strong>in</strong> small amount of sample (MS-PCR<br />

based assay)<br />

Automation possible (nanochips)<br />

Suitable for samples already collected for<br />

epidemiologic studies (tissue, blood, exfoliated cells)<br />

Small Hurdle: Familiarity with technology


Tumor Types<br />

<strong>and</strong> Genes<br />

Regulated<br />

by<br />

Epigenetic<br />

Mechanism<br />

TUMOR<br />

LOCATION<br />

GENE<br />

Breast p16, BRCA1, GSTP1, DAPK, CDH1, TIMP-3<br />

Bra<strong>in</strong> p16, p14 ARF , MGMT, TIMP-3<br />

Bladder p16, DAPK, APC<br />

Colon p16, p14 ARF , CRBP1, MGMT, hMLH1, DAPK, TIMP-3, APC<br />

Endometrium hMLH1<br />

Esophagus p16, p14 ARF , GSTP1, CDH1APC<br />

Head <strong>and</strong> Neck p16, MGMT, DAPK<br />

Kidney p16, p14 ARF , MGMT, GSTP1, TIMP-3, APC<br />

Leukemia p15, MGMT, DAPK1, CDH1, p73<br />

Liver p16, CRBP1, GSTP1, APC<br />

Lymphoma p16, p15, CRBP1, MGMT, DAPK, p73<br />

Lung p16, p14 ARF , CRBP1, MGMT, GSTP1, DAPK, FHIT, TIMP-3,<br />

RARbeta, RASSF1A<br />

Ovary p16, BRCA1, DAPK<br />

Pancreas p16, MGMT, APC<br />

Prostate GSTP1, p27(kip1)<br />

Stomach p14 ARF , P16, APC, hMLH1, MGMT<br />

Uterus p16, p14 ARF , hMLH1<br />

Verma <strong>and</strong> Srivastava (2002).<br />

Lancet Oncol. 3: 755-363;<br />

Verma et al (2004)<br />

Crit. Rev. Cl<strong>in</strong>. Sc.<br />

41: 585-607;<br />

Verma <strong>and</strong> Manne (2006). Crit.<br />

Rev. Hematol. Oncol. 60: 9-18;<br />

Verma et al (2006). Mol. Diag.<br />

Therapy. 10: 1-15.


Molecular Targets<br />

Tumor suppressor genes<br />

APC, p15, p16, p73, ARF/INK4A, VHL, ER, RARbeta, AR, HIC1, Rb<br />

Invasive/Metastasis suppressor genes<br />

E-cadher<strong>in</strong>, TIMP-3, mts-1, CD-44<br />

DNA repair genes<br />

Methylguan<strong>in</strong>e methyl transferase, hMLH1, BRCA1, GST<br />

Angiogenesis<br />

Thrombospond<strong>in</strong>-1 (TSP-1), TIMP-3


Methylation<br />

defect<br />

Normal<br />

Epithelium<br />

Potential Steps for Intervention<br />

APC (ch.5q21)<br />

K-Ras (ch.12p12)<br />

Early<br />

Adenoma<br />

Smad4 (ch.18q21-18tel)<br />

Intermediate<br />

Adenoma<br />

Modified from Jubb et al. J Path. 195: 111.<br />

p53 (ch. 17p13)<br />

Late<br />

Adenoma<br />

Mismatch Repair Defect<br />

TGFbRII, BAX mutations<br />

Carc<strong>in</strong>oma Metastasis<br />

MSI+<br />

Carc<strong>in</strong>oma<br />

A Model for Colorectal Tumorigenesis<br />

Other changes


CpG isl<strong>and</strong> methylator phenotype underlies sporadic<br />

microsatellite <strong>in</strong>stability <strong>and</strong> is tightly associated with BRAF<br />

mutation <strong>in</strong> colorectal cancer<br />

Nature Genetics 38, 787 - 793


Identification of tumor clusters.<br />

KRAS mutation <strong>in</strong>dicated by a red rectangle overlay<strong>in</strong>g the branch,<br />

BRAF mutations <strong>in</strong>dicated by a green rectangle<br />

MSI-H cases designated with a blue rectangle.<br />

Nature Genetics 38, 787 - 793<br />

48 Colorectal tumors


Nature Genetics 38, 787 - 793 (2006)<br />

MSI-high (MSI-H) (blue),<br />

MSI-low (MSI-L) (light blue)<br />

or microsatellite stable (MSS) (green).


Prediction of Tumor Class based on<br />

Methylation Analysis (AML <strong>and</strong> ALL)<br />

Lymphoma<br />

AML:Acute Myeloid Leukemia<br />

ALL: Acute Lymphoblastic Leukemia<br />

Adorjan et al Nuc Ac Res. 30: e21


Epigenetic Markers Dur<strong>in</strong>g Lung Cancer Progression<br />

Annex<strong>in</strong> I <strong>and</strong> II<br />

p63<br />

RARbeta,<br />

DAPK, GSTP1, FHIT<br />

RASSF1, MGMT Markers located on 3q<br />

Preneoplasia<br />

PIK3CA<br />

Progression of Lung Cancer<br />

Neoplasia<br />

Small Cell Lung Carc<strong>in</strong>oma


Figure 1. Unsupervised cluster<strong>in</strong>g of average {beta} values <strong>in</strong> tumor <strong>and</strong> nontumor<br />

pleura<br />

ASBESTOS MESOTHELIOMA<br />

Non-<br />

Mutagenic<br />

carc<strong>in</strong>ogen<br />

Christensen, B. C. et al. Cancer Res 2009;69:227-234<br />

Epigenetic Profiles Dist<strong>in</strong>guish Pleural Mesothelioma<br />

from Normal Pleura <strong>and</strong> Predict Lung Asbestos<br />

Burden <strong>and</strong> Cl<strong>in</strong>ical Outcome<br />

Copyright ©2009 American Association for Cancer Research<br />

803 cancer<br />

related<br />

genes<br />

158 pleural<br />

mesothelioma<br />

with m<strong>in</strong>imum<br />

mutation<br />

18 normal<br />

pleura<br />

Prediction<br />

of survival


Epigenetic Patterns <strong>in</strong><br />

the Progression of<br />

Esophageal<br />

Adenocarc<strong>in</strong>oma<br />

Cancer Research<br />

61:3410<br />

Cancer Progression


Esophageal Cancer: Probability of Survival<br />

Brock et al. Cl<strong>in</strong>ical Cancer Research. 9: 2912


Esophageal Cancer: Immuno-histochemistry<br />

Unmethylated<br />

Brock et al. Cl<strong>in</strong>ical Cancer Research. 9: 2912<br />

Methylated<br />

MGMT MGMT<br />

E-Cathedr<strong>in</strong> E-Cathedr<strong>in</strong>


Pancreatic Cancer: Methylation of<br />

p14ARF <strong>and</strong> p16INK4a<br />

Pancreatic Carc<strong>in</strong>oma (PCA) : 39 19/39 p16INK4a<br />

Chronic Pancreatitis (CP) : 16 0/16 p16INK4a<br />

Normal Pancreatogram (NAD) : 6 0/6 p16INK4a<br />

Sample: Pancreatic Fluid<br />

(Klump et al. Mol Cell Path 88: 217)


MethyLight Analysis of 35 Genes<br />

<strong>in</strong> 148 Human Breast Carc<strong>in</strong>omas<br />

Cluster 1<br />

Widschwendter et al. Cancer Research 4, 3807<br />

Cluster 2<br />

HR STATUS + / Š<br />

ESR1<br />

PGR<br />

TIMP3<br />

HSD17B4<br />

SYK<br />

CDKN2A<br />

CDH1<br />

TFF1<br />

CALCA<br />

MYOD1<br />

CDH13<br />

CCND2<br />

TERT<br />

GSTP1<br />

TWIST<br />

ESR2<br />

DAPK1<br />

RASSF1A<br />

PTGS2<br />

ABCB<br />

1SOCS1<br />

TGFBR2<br />

APC<br />

MCJ<br />

TNFRSF12<br />

HRAS<br />

RNR1<br />

ARH1<br />

MLH1<br />

MGMT<br />

THBS1<br />

TYMS<br />

BCL2<br />

BRCA1<br />

CYP1B1


Breast Cancer Response to Tamoxifen Treatment by<br />

ESR1 Methylation<br />

CUMULATIVE SURVIVAL (PERCENT)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

TAMOXIFEN TREATED<br />

10 ESR1 Logrank P = 0.0045 10 ESR1<br />

Logrank P = 0.26<br />

0<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14<br />

SURVIVAL TIME (YEARS)<br />

HIGH m C<br />

n = 49<br />

LOW mC<br />

n = 41<br />

Widschwendter et al. Cancer Research 4, 3807<br />

CUMULATIVE SURVIVAL (PERCENT)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

NOT<br />

TAMOXIFEN TREATED<br />

SURVIVAL TIME (YEARS)<br />

LOW mC<br />

n = 32<br />

HIGH m C<br />

n = 24


DNA methylation markers <strong>in</strong> Her-2/neu-positive <strong>and</strong> -negative cancers<br />

Fiegl et al. Cancer Res. 66: 29.<br />

Total<br />

143 samples<br />

E; epithelium<br />

S, stroma<br />

LN, lymph<br />

Node status<br />

LCM was<br />

Used<br />

To separate<br />

Epithelium<br />

<strong>and</strong> stroma<br />

N.D.<br />

Not Done


HER-2/neu expression<br />

Association between DNA methylation <strong>and</strong> HER-2/neu expression<br />

Total<br />

143 samples<br />

(0, +, ++, +++) <strong>in</strong> primary breast cancer specimens<br />

CDH13 CDH13<br />

BRCA1 HSD17B4<br />

Fiegl et al. Cancer Res. 66: 29.<br />

PGR<br />

Primary breast cancer<br />

Specimen (143)<br />

35 genes tested but<br />

only those were<br />

Included <strong>in</strong> the fig.<br />

which showed<br />

correlation<br />

PMR, Percent<br />

Methylated Region<br />

NN, Non neoplastic


Methylation <strong>and</strong> Cancer Associated Infectious Agents<br />

Viruses: p16 <strong>in</strong> HPV16/18 (Lung Cancer)<br />

RASSF1a <strong>in</strong> SV40 (Mesothelioma)<br />

HBV <strong>and</strong> HCV genes (Liver Cancer)<br />

LANA <strong>in</strong> EBV (Nasopharyngeal Carc<strong>in</strong>oma)<br />

asymptomatic Bacteria: healthy carriers COX2 <strong>in</strong> H.pylori Infected Cells (Gastric Cancer)<br />

chronically <strong>in</strong>fected tissues<br />

pre-malignant lesions<br />

full-blown <strong>in</strong>vasive tumor<br />

LANA EBNA<br />

LANA, Latency Associated Nuclear Antigen<br />

EBNA, Epste<strong>in</strong>-Barr Virus Nuclear Antigen<br />

Complete methylome of HPV, EBV, <strong>and</strong> HBV. Esteller M<br />

Genome Research. 2009. 19: 438


Pan troglodytes<br />

Homo sapiens<br />

Mus musculus<br />

Drosophila melanogaster<br />

Arabidopsis thaliana<br />

Caenorhabditis elegans<br />

Plasmodium falciparum<br />

Schizosaccharomyces pombe<br />

Saccharomyces cerevisiae<br />

Escherichia coli<br />

Human herpesvirus 5<br />

(CMV)<br />

Human herpesvirus 4<br />

(EBV)<br />

Human papillomavirus - 16<br />

Human papillomavirus - 18<br />

0,0079 Mb<br />

0,0078 Mb<br />

Hepatitis B virus 0,0032 Mb<br />

Genomes<br />

0,235 Mb<br />

0,171 Mb<br />

5,08 Mb<br />

12 Mb<br />

13,8 Mb<br />

23 Mb<br />

Double str<strong>and</strong> DNA viruses:<br />

-Lymphoma<br />

-Nasopharyngeal carc<strong>in</strong>oma<br />

-Cervical cancer<br />

-Oropharyngueal cancer<br />

-Liver tumors<br />

--------------------------------<br />

1 M cancer-related deaths<br />

100 Mb<br />

132,6 Mb<br />

120 Mb<br />

2664 Mb<br />

3108 Mb<br />

3350 Mb<br />

Human Genome<br />

Project<br />

The first completed DNA methylomes<br />

of liv<strong>in</strong>g organisms (2009)<br />

ESTELLAR M


E6<br />

E4 E5<br />

L1<br />

E7 A E1 E2<br />

L2 B<br />

correlation<br />

C<br />

E<br />

G<br />

CCL-866<br />

CaSki<br />

SiHa<br />

SCC-1<br />

SCC-2<br />

SCC-3<br />

SCC-4<br />

SCC-5<br />

Premalignant-1<br />

Premalignant-2<br />

CCL-879<br />

Premalignant-3<br />

Premalignant-4<br />

Premalignant-5<br />

Carrier-1<br />

Carrier-2<br />

Premalignant-6<br />

Premalignant-7<br />

Premalignant-8<br />

Carrier-3<br />

Carrier-4<br />

Carrier-5<br />

FK16a Pre-immortal<br />

FK16b Immortal<br />

CaSki<br />

URR<br />

CaSki-Aza<br />

The DNA Methylome of the Human Papilloma Virus 16<br />

URR<br />

949 bp<br />

E6<br />

E4<br />

E7 E1 E2<br />

E1<br />

1417 bp<br />

6989 bp<br />

L1 URR<br />

7365 bp<br />

U M U M U M U M U M U M U M M U M<br />

E5<br />

L2<br />

L1 URR<br />

URR<br />

F<br />

Cervical<br />

carc<strong>in</strong>oma<br />

cell l<strong>in</strong>e<br />

(CaSki)<br />

Primary<br />

cervical<br />

tumor<br />

Premalignant<br />

cervical<br />

lesion<br />

Carrier<br />

D<br />

CaSk<br />

i<br />

E2<br />

β- act<strong>in</strong><br />

Expression<br />

(Relative units)<br />

URR<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

E6 E7 E1<br />

URR E2 b<strong>in</strong>d<strong>in</strong>g site<br />

7780 bp<br />

E6 E7<br />

5mC HPV16 5mC+HPV16<br />

85 bp<br />

16 CaSki CaSki-Aza<br />

E2<br />

E4<br />

E5 L2<br />

Relative enrichment<br />

over <strong>in</strong>put<br />

E6<br />

E7<br />

β- act<strong>in</strong><br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Control<br />

L1<br />

CaSk<br />

i<br />

5-Aza<br />

Nab E2 IP<br />

CaSki CaSki-Aza<br />

URR<br />

Esteller, Genome Research 2009


A Heat-Map for the DNA Methylomes of Double-Str<strong>and</strong> DNA Viruses Associated with Human Cancer<br />

HPV16<br />

HPV18<br />

HBV<br />

EBV<br />

No CIN CIN 1 CIN 2-3 Carc<strong>in</strong>oma<br />

No CIN CIN 1 CIN 2-3 Carc<strong>in</strong>oma<br />

In cervical cancer, hepatocellular carc<strong>in</strong>oma <strong>and</strong><br />

lymphoma, methylation <strong>in</strong>creases with the aggression<br />

of the <strong>disease</strong><br />

Chronic Hepatitis<br />

Hepatic Cirrhosis<br />

Infectious Mononucleosis<br />

Lymphadenitis<br />

ESTELLAR M<br />

Hepatocarc<strong>in</strong>oma<br />

Lymphoma


Hepatocellular Carc<strong>in</strong>oma<br />

SOCS-1,<br />

a negative regulator of the JAK/STAT pathway<br />

Hypermethylated <strong>in</strong> Japanese population<br />

Other genes<br />

•P15, p16, APC, E-cadher<strong>in</strong> (Hypermethylated)<br />

•K-ras, c-myc (Hypomethylated)<br />

HCC: third most common cancer worldwide<br />

with annual <strong>in</strong>cidence of over 600,000<br />

Alternate approach: N-glycan screen<strong>in</strong>g<br />

Genes Methylated <strong>in</strong> Oral Cancer<br />

Nat Genet, 28, 29-35; Gastroenterol Jpn 24, 270-276<br />

Jpn J Cancer Res 76, 1136-1140


Immunology <strong>and</strong> <strong>Epigenetics</strong><br />

1: Sh<strong>in</strong> HJ, Park HY, Jeong SJ, Park HW, Kim YK, Cho SH, Kim YY, Cho ML,<br />

Kim HY, M<strong>in</strong> KU, Lee CW.Related Articles,<br />

L<strong>in</strong>ks STAT4 expression <strong>in</strong> human T cells is regulated by DNA<br />

methylation but not by promoter polymorphism.<br />

J Immunol.175(11):7143-50.<br />

2: Esp<strong>in</strong>oza CR, Feeney AJ.<br />

The extent of histone acetylation correlates with the<br />

differential rearrangement frequency of <strong>in</strong>dividual VH genes <strong>in</strong> pro-B cells.<br />

J Immunol. 175(10):6668-75.


GSTP1 Methylation <strong>in</strong> Prostate Cancer<br />

GSTP1 codes for the drug detoxification enzyme which<br />

protects cells from genetic damage<br />

Berl<strong>in</strong>, Germany <strong>and</strong> Seattle, WA, U.S.A., February 25,<br />

2009 GSTP1 - Epigenomics is hypermethylated AG (Frankfurt, <strong>in</strong> majority Prime of prostate St<strong>and</strong>ard: cancerECX),<br />

a patients cancer molecular <strong>and</strong> <strong>in</strong> >70% diagnostics people with company, PIN lesionstoday<br />

announced<br />

that it has entered <strong>in</strong>to a non-exclusive licens<strong>in</strong>g agreement<br />

To date, no mutations have been reported <strong>in</strong> GSTP1 <strong>in</strong> tissue<br />

for its proprietary biomarker mGSTP1 with U.S.-based<br />

specimens from prostate cancer patients<br />

Quest Diagnostics Incorporated (NYSE: DGX), the world’s<br />

lead<strong>in</strong>g provider of diagnostic test<strong>in</strong>g, <strong>in</strong>formation <strong>and</strong><br />

services.<br />

Methylation <strong>in</strong>activation of GSTP1 appears to be the major<br />

mechanism of gene silenc<strong>in</strong>g step dur<strong>in</strong>g progression of<br />

prostate cancer


www.epigenomics.com


Bladder Cancer<br />

Methylation of LAMC2 <strong>in</strong> Exfoliated Cells<br />

Isolated from Ur<strong>in</strong>e<br />

Another Study:<br />

Schistosomes <strong>and</strong> Bladder Cancer<br />

(Sathyanarayana et al. Can Res 64: 1425)<br />

MI, Methylation Index


EPIGENETIC REMODELING BY ENVIRONMENTAL<br />

ARSENICALS<br />

CA127989-01<br />

Investigate the mechanisms <strong>and</strong> phenotypic consequences<br />

of epigenetic activation of Wnt5a gene <strong>in</strong> arsenical-<strong>in</strong>duced<br />

malignant transformation.<br />

Identify the decisive changes <strong>in</strong> the epigenome over the<br />

time course of arsenical <strong>in</strong>duced bladder cancer.<br />

Identify epigenetic targets of arsenic <strong>in</strong> human populations<br />

exposed to known levels of arsenic <strong>in</strong> their dr<strong>in</strong>k<strong>in</strong>g water.


ROLE OF EPIGENETIC CHANGES INDUCED BY DIETARY<br />

AND ENVIRONMENTAL FACTORS IN CANCER<br />

CA122396-01 (INTERNATIONAL AGENCY FOR RES ON CANCER )<br />

Large case-<strong>control</strong> studies on lung <strong>and</strong> upper-aero<br />

digestive tract (UADT) cancers <strong>in</strong> Europe<br />

Analyze DNA methylation profiles, histone modifications<br />

<strong>and</strong> to profile their genomic locations<br />

Study their association with dietary <strong>and</strong> environmental<br />

exposures<br />

Compare the profile of DNA methylation <strong>and</strong> histone<br />

modifications between cases <strong>and</strong> <strong>control</strong>s <strong>and</strong><br />

assess whether it can be a cancer susceptibility<br />

marker.


Dietary<br />

Polyphenols<br />

<strong>and</strong><br />

Chromat<strong>in</strong><br />

Remodel<strong>in</strong>g<br />

Irfan Rahman<br />

Surh Y-J<br />

Active component of turmeric Flavanoid found <strong>in</strong> red w<strong>in</strong>e<br />

Neutraceutica


Structure <strong>and</strong> functions of curcum<strong>in</strong><br />

Active <strong>in</strong>gredient-diferuloyulmethane<br />

•Derived from rhizome of the plant Curcuma longa<br />

(known as spice turmeric)<br />

•Dietary phenolic antioxidant<br />

•Used <strong>in</strong> the Ayurvedic system of medic<strong>in</strong>e<br />

•Antioxidant<br />

•Anticancer<br />

•Antiseptic


HAT <strong>in</strong>hibition at conc >10 µM<br />

J Biol Chem 2004<br />

Balasubramanyam et al<br />

Curcum<strong>in</strong>, a novel p300/CBP specific <strong>in</strong>hibitor of<br />

acetyltransferase, represses the acetylation of histones<br />

<strong>and</strong> HAT dependent chromat<strong>in</strong> transcription<br />

Biochem Pharmacol 2005<br />

Kang et al<br />

Curcum<strong>in</strong>-<strong>in</strong>duced histone hypoacetylation: The role of<br />

reactive oxygen species<br />

Khan, 2007<br />

Curcum<strong>in</strong><br />

p50<br />

p65<br />

CBP


METHYL-DEFICIENT MODEL OF ENDOGENOUS<br />

HEPATOCARCINOGENESIS<br />

• Chronic deficiency <strong>in</strong> the methyl donors methion<strong>in</strong>e, chol<strong>in</strong>e, folic acid<br />

<strong>and</strong> vitam<strong>in</strong> B 12<br />

• No exogenous carc<strong>in</strong>ogen added<br />

• No genetic manipulation<br />

• Hepatocellular carc<strong>in</strong>oma <strong>in</strong> 14-16 months <strong>in</strong> male rats <strong>and</strong> certa<strong>in</strong><br />

mouse stra<strong>in</strong>s<br />

• Sequence of pathological changes similar to the development of<br />

hepatocellular carc<strong>in</strong>oma <strong>in</strong> humans<br />

Normal tissue 36 weeks, GSTπ-foci >54 weeks, GSTπ-tumor Liver tumor<br />

Igor et al. 2007 (personal communication)


ALTERATIONS OF HISTONE H3 MODIFICATIOINS IN LIVER OF<br />

F344 RATS DURING METHYL DEFICIENCY<br />

ntrol 9 weeks 18 weeks<br />

M<br />

36 weeks<br />

Tumor<br />

H3K9me3<br />

H3K9me2<br />

H3K9me1<br />

H3K9ac<br />

H3S10ph<br />

H3<br />

Relative level of modification, % from <strong>control</strong><br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

H3K9me3 H3K9ac H3S10ph<br />

M M<br />

P M<br />

A P P A M A<br />

A M M P<br />

M<br />

N-ARTKQTARKSTGGKAPRKQLATKAARKSAPATGGVKKP-…-C<br />

2 4 9 10 11 14 17 18 23 26 27 28 36<br />

Interplay between H3K9me3, H3K9Ac, <strong>and</strong> H3S10ph<br />

*<br />

* *<br />

* *<br />

*<br />

*<br />

* *<br />

*<br />

Control<br />

9 week<br />

18 wee<br />

36 wee<br />

Tumor


Cl<strong>in</strong>ical Specimens Currently Used for<br />

Methylation Analysis<br />

Needle Biopsy<br />

Tissue<br />

Blood<br />

Fixed<br />

Fresh<br />

Lymphocytes<br />

Serum<br />

Biofluids<br />

Nipple aspirate<br />

Pancreatic secretions<br />

Ur<strong>in</strong>e<br />

Exfoliated Cells<br />

Buccal cells from oral r<strong>in</strong>se<br />

Cytological Smears<br />

Cervical cancer


CpG Isl<strong>and</strong> Distribution <strong>in</strong> Chromosome<br />

20, 21, <strong>and</strong> 22<br />

Chromosome 20 21 22 Total<br />

Length (Mb) 62 44 47 153<br />

Mapped Genes 1244 611 1034 2889<br />

First Cod<strong>in</strong>g Exon 204 104 226 524<br />

Other Exon 282 127 241 650<br />

Alu 187 76 194 457<br />

CpG Isl<strong>and</strong> Searcher:<br />

http://www.cpgisl<strong>and</strong>s.com<br />

http://www.uscnorris.com/cpgisl<strong>and</strong>s/cpg.cgi.


Fig. 3. DNA methylation profiles of chromosomes 2, 7, 12, <strong>and</strong> 17 that carry the HOXA, HOXB, HOXC,<br />

<strong>and</strong> HOXD gene clusters<br />

Copyright ©2007 by the National Academy of Sciences<br />

Rauch, Tibor et al. (2007) Proc. Natl. Acad. Sci. USA 104, 5527-5532


Histone Modifications<br />

• Acetylation<br />

• Phosphorylation<br />

• Methylation<br />

• ADP Ribosylation<br />

• Ubiquit<strong>in</strong>ation<br />

• Propionylation


P<br />

Ac<br />

M<br />

U<br />

N<br />

Phosphorylation<br />

Acetylation<br />

Methylation<br />

Ubiquit<strong>in</strong>ation<br />

B Biot<strong>in</strong>ylation<br />

1<br />

S<br />

P<br />

5<br />

K<br />

9<br />

K<br />

M<br />

Ac Ac Ac Ac<br />

K<br />

B<br />

13<br />

B 15<br />

K<br />

Ac<br />

R<br />

36<br />

K<br />

Ac<br />

C<br />

26 S 28<br />

75 76 78<br />

K K K<br />

M M M<br />

95 99<br />

K K<br />

M M<br />

M M P Ac<br />

B T<br />

B 120 U<br />

K B<br />

129 K K<br />

K 125 119<br />

T<br />

80<br />

C<br />

H2A H2B<br />

H3 H4<br />

C<br />

99<br />

R<br />

M<br />

M<br />

R<br />

92<br />

85<br />

K<br />

Ac<br />

Ac<br />

K<br />

108<br />

Ac<br />

K<br />

91<br />

Figure 1. Verma <strong>and</strong> Kumar<br />

CRC Press (2008) In: Cancer <strong>Epigenetics</strong><br />

(Tollefsbol, T. ed.). Pp 347-457.<br />

43<br />

K<br />

M<br />

Ac<br />

K<br />

116<br />

36<br />

S<br />

P<br />

P<br />

C<br />

Ac<br />

Ac Ac<br />

M K<br />

77<br />

K<br />

79<br />

32<br />

S<br />

24<br />

K<br />

Ac<br />

U K120<br />

M<br />

K<br />

59<br />

P<br />

S<br />

47<br />

23<br />

K<br />

M<br />

20<br />

K<br />

Ac<br />

15<br />

K<br />

Ac<br />

Ac<br />

Ac<br />

K<br />

M 16<br />

K<br />

20<br />

14<br />

S<br />

P<br />

Ac<br />

M<br />

B<br />

K<br />

12<br />

5<br />

12 K<br />

K M<br />

Ac Ac<br />

5<br />

K<br />

Ac<br />

Ac<br />

B<br />

K<br />

8<br />

N<br />

1<br />

S<br />

P<br />

M<br />

Based on http://www.histone.com<br />

<strong>and</strong> J. Nutr. 136:1763-1765<br />

R<br />

3<br />

N


p53 is regulated by the lys<strong>in</strong>e demethylase LSD1<br />

Key Observation:<br />

Histone lys<strong>in</strong>e methylation has recently been shown to be<br />

reversible; however, it is not known whether non-histone prote<strong>in</strong>s<br />

are substrates for demethylation.<br />

LSD1 <strong>in</strong>teracts with p53 to repress p53-mediated transcriptional<br />

activation <strong>and</strong> <strong>in</strong>hibit the role of p53 <strong>in</strong> promot<strong>in</strong>g apoptosis.<br />

Histone lys<strong>in</strong>e-specific demethylase LSD1 removes both<br />

monomethylation (K370me1) <strong>and</strong> dimethylation (K370me2) at K370<br />

J<strong>in</strong>g Huang Mudit Verma<br />

Huang et al. Nature. 449:105-8


Number of Samples<br />

1<br />

10<br />

10 2<br />

10 3<br />

10 4<br />

Epigenome Analysis<br />

Number of Independent Loci per Genome<br />

1 10 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9<br />

BISULFITE<br />

SEQUENCING<br />

METHYLIGHT<br />

ILLUMINA<br />

TILING<br />

ARRAYS<br />

DIRECT<br />

SEQUENCING


DNA<br />

5’Cap<br />

AAAAAAA<br />

siRNA Mediated<br />

Inhibition of<br />

Gene<br />

Expression<br />

NUCLEUS<br />

RNA Polymerase II<br />

pre-miRNA<br />

pre-miRNA<br />

Dicer<br />

Delivery of miRNA-RISC complex to mRNA<br />

mRNA<br />

Drosha Pasha<br />

CYTOPLASM<br />

pre-miRNA<br />

miRNA-RISC complex<br />

Mature miRNA


Mirco RNA Signatures <strong>in</strong> Human Cancers<br />

Micro RNA Polymorphism to Identify<br />

High Risk Populations<br />

Cal<strong>in</strong> <strong>and</strong> Croce Nature Reviews Cancer 6, 857–866 (November 2006) | doi:10.1038/nrc1997<br />

Mir-31 <strong>in</strong>hibits metastasis <strong>in</strong> breast cancer


A microRNA DNA methylation signature for human cancer<br />

metastasis<br />

Used a pharmacological <strong>and</strong> genomic approach to reveal aberrant<br />

epigenetic silenc<strong>in</strong>g program by treat<strong>in</strong>g lymph node metastatic cancer<br />

cells with a DNA demethylat<strong>in</strong>g agent followed by hybridization to an<br />

expression microarray.<br />

Among the miRNAs that were reactivated upon drug treatment, miR-148a,<br />

miR-34b/c, <strong>and</strong> miR-9 were found to undergo specific hypermethylationassociated<br />

silenc<strong>in</strong>g <strong>in</strong> cancer cells compared with normal tissues.<br />

These f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>dicate that DNA methylation-associated silenc<strong>in</strong>g of tumor<br />

suppressor miRNAs contributes to the development of human cancer<br />

metastasis.<br />

Amaia Lujambioa,b, Manel Estellera,b,j<br />

PNAS March 27, 2008


Target Drug Cl<strong>in</strong>ical Trial<br />

DNA Methylation 5-Azacytid<strong>in</strong>e Phase I/II/II<br />

5-Aza-2'deoxycytid<strong>in</strong>e Phase I/II/II<br />

FCDR<br />

Zebular<strong>in</strong>e<br />

Proca<strong>in</strong>amide<br />

EGCG Phase I<br />

Psamapl<strong>in</strong> A<br />

Antisense Oligomers Phase I<br />

Histone deacetylase Phenylbutyric acid Phase I/II<br />

Eggr et al Nature. 429:457.<br />

SAHA (Suberoylanilide hydroxamic<br />

acid) or Vor<strong>in</strong>ostat<br />

PhaseI/II<br />

Depsipeptide Phase I/II<br />

Valproic Acid Phase I/II<br />

Adverse Experiences<br />

SAHA<br />

Duvic et al. 2007.<br />

Am S Hem 109:31.<br />

• Dehydration<br />

• Diarrhea<br />

• Nausea<br />

• Thrombocytopenia<br />

• Vomit<strong>in</strong>g


• HDAC <strong>in</strong>hibitors are a novel class of anticancer drugs<br />

that ma<strong>in</strong>ly leads to an accumulation of acetylated<br />

prote<strong>in</strong>s<br />

Thereby <strong>in</strong>duc<strong>in</strong>g<br />

- Cell cycle arrest<br />

- Differentiation<br />

- Migration<br />

- apoptosis <strong>in</strong> cancer <strong>and</strong> transformed cells<br />

• Few HDAC <strong>in</strong>hibitors act as radiation-sensitiz<strong>in</strong>g drugs<br />

result<strong>in</strong>g <strong>in</strong> better radiation therapy (head <strong>and</strong> neck<br />

cancer) responsiveness<br />

HDAC 1, 2, 3, 8, 11 have been characterized (Khan, I , 2007)


Phase I study of epigenetic modulation with 5-azacytid<strong>in</strong>e<br />

<strong>and</strong> valproic acid <strong>in</strong> patients with advanced cancers.<br />

Braiteh F, Soriano AO, Garcia-Manero G, Hong D, Johnson MM, Silva Lde P, Yang H, Alex<strong>and</strong>er S, Wolff J, Kurzrock R.<br />

Cl<strong>in</strong> Cancer Res. 2008 Oct 1;14(19):6296-301. (colorectal cancer, melanoma <strong>and</strong> breast cancer)<br />

5 Azacytid<strong>in</strong>e<br />

S.C. daily for 10 days<br />

+<br />

Valproic Acid<br />

Orally daily to titrate<br />

to 75-100 ug/ml<br />

28 Days Cycle<br />

55 people with<br />

Advanced cancer<br />

Median age 60<br />

Peripheral blood<br />

• Pyrosequenc<strong>in</strong>g<br />

• Chip<br />

Analysis<br />

Day 1, 10 <strong>and</strong> 28<br />

• The maximum tolerated dose was<br />

75 mg/m(2) of 5-AZA <strong>in</strong> comb<strong>in</strong>ation<br />

with valproic acid.<br />

• Dose-limit<strong>in</strong>g toxicities were<br />

neutropenic fever <strong>and</strong> thrombocytopenia,<br />

which occurred at a dose of 94 mg/m(2)<br />

of 5-AZA.<br />

• Stable <strong>disease</strong> last<strong>in</strong>g 4 to 12 months<br />

(median, 6 months) was<br />

observed <strong>in</strong> 14 patients (25%).<br />

A significant decrease <strong>in</strong> global DNA methylation <strong>and</strong> <strong>in</strong>duction of histone acetylation<br />

were observed.<br />

The comb<strong>in</strong>ation of 5-AZA <strong>and</strong> valproic acid is safe at doses up to 75 mg/m(2)<br />

for 5-AZA <strong>in</strong> patients with advanced malignancies.


Safety <strong>and</strong> cl<strong>in</strong>ical activity of the comb<strong>in</strong>ation of 5-azacytid<strong>in</strong>e,<br />

valproic acid, <strong>and</strong> all-trans ret<strong>in</strong>oic acid <strong>in</strong> acute myeloid<br />

leukemia <strong>and</strong> myelodysplastic syndrome.<br />

Soriano et al. Blood. 2007. 110(7):2302-8.<br />

• Comb<strong>in</strong>ation of 5-azacitid<strong>in</strong>e (5-AZA), valproic acid (VPA), <strong>and</strong><br />

ATRA <strong>in</strong> patients with acute myeloid leukemia or high-risk<br />

myelodysplastic syndrome.<br />

• A total of 53 patients were treated.<br />

• The overall response rate was 42%.<br />

• A significant decrease <strong>in</strong> global DNA methylation <strong>and</strong> <strong>in</strong>duction of histone<br />

acetylation were achieved.<br />

• VPA blood levels were higher <strong>in</strong> responders.<br />

• The comb<strong>in</strong>ation studied is safe <strong>and</strong> has significant cl<strong>in</strong>ical activity.<br />

This cl<strong>in</strong>ical trial was registered at www.cl<strong>in</strong>icaltrials.gov as no. NCT00326170.


Histone Inhibitors <strong>in</strong> Cl<strong>in</strong>ical Trials (Cl<strong>in</strong>icaltrials.gov)<br />

STATUS STUDY<br />

Recruit<strong>in</strong>g Safety Study of the Histone Deacetylase Inhibitor, CHR-3996, <strong>in</strong> Patients With Advanced Solid Tumours<br />

Recruit<strong>in</strong>g Phase II Study of Histone-Deacetylase Inhibitor ITF2357 <strong>in</strong> Refractory/Relapsed Lymphocytic Leukemia<br />

Recruit<strong>in</strong>g phII Study of an HDAC Inhibitor <strong>in</strong> Very High-Risk Relapsed/Refractory Hodgk<strong>in</strong>'s Lymphoma Patients<br />

Recruit<strong>in</strong>g Phase IIA Study of the HDAC Inhibitor ITF2357 <strong>in</strong> Patients With JAK-2 V617F Positive Chronic Myeloproliferative<br />

Diseases<br />

Recruit<strong>in</strong>g Phase II Trial of the Histone-Deacetylase Inhibitor ITF2357 Followed by Mechloretham<strong>in</strong>e <strong>in</strong> Relapsed/Refractory<br />

Hodgk<strong>in</strong>'s Lymphoma Patients<br />

Recruit<strong>in</strong>g HDAC Inhibitor Vor<strong>in</strong>ostat (SAHA) With Capecitab<strong>in</strong>e (Xeloda) Us<strong>in</strong>g a New Weekly Dose Regimen for Advanced<br />

Breast Cancer<br />

Recruit<strong>in</strong>g Valproic Acid, Temozolomide, <strong>and</strong> Radiation Therapy <strong>in</strong> Treat<strong>in</strong>g Patients With Glioblastoma Multiforme<br />

Recruit<strong>in</strong>g Study of Vor<strong>in</strong>ostat (MK0683) an HDAC Inhibitor, or Placebo <strong>in</strong> Comb<strong>in</strong>ation With Bortezomib <strong>in</strong> Patients With Multiple<br />

Myeloma<br />

Recruit<strong>in</strong>g Study of Vor<strong>in</strong>ostat (MK0683), an HDAC Inhibitor, <strong>in</strong> Comb<strong>in</strong>ation With Bortezomib <strong>in</strong> Patients With Relapsed or<br />

Refractory Multiple Myeloma<br />

Completed A Phase II Study of Epigenetic Therapy to Overcome Chemotherapy Resistance <strong>in</strong> Refractory Solid Tumors<br />

Recruit<strong>in</strong>g Sorafenib <strong>and</strong> LBH589 <strong>in</strong> Hepatocellular Carc<strong>in</strong>oma (HCC)<br />

Recrit<strong>in</strong>g Phase II Study of Valproic Acid With FEC100 for Patients With Locally Advanced Breast Cancer<br />

Total : 84 studies<br />

http://cl<strong>in</strong>icaltrials.gov/ct2/results?term=histone+<strong>in</strong>hibitors&pg=4


Methylation Inhibitors <strong>in</strong> Cl<strong>in</strong>ical Trials (Cl<strong>in</strong>icaltrials.gov)<br />

STATUS STUDY<br />

Completed A Phase II Study of Epigenetic Therapy to Overcome Chemotherapy Resistance <strong>in</strong> Refractory Solid Tumors<br />

Active Not<br />

Recruit<strong>in</strong>g<br />

Azacytid<strong>in</strong>e <strong>and</strong> Valproic Acid <strong>in</strong> Patients With Advanced Cancers<br />

Recruit<strong>in</strong>g Azacitid<strong>in</strong>e With or Without MS-275 <strong>in</strong> Treat<strong>in</strong>g Patients With Myelodysplastic Syndromes, Chronic<br />

Myelomonocytic Leukemia, or Acute Myeloid Leukemia<br />

Active Not<br />

Recruit<strong>in</strong>g<br />

PhII 5-Azacytid<strong>in</strong>e Plus Valproic Acid <strong>and</strong> Eventually Atra <strong>in</strong> Intermediate II <strong>and</strong> High Risk MDS<br />

Recruit<strong>in</strong>g Decitab<strong>in</strong>e With or Without Interferon Alfa-2b <strong>in</strong> Treat<strong>in</strong>g Patients With Unresectable or Metastatic Solid<br />

Tumors<br />

Recruit<strong>in</strong>g Hydralaz<strong>in</strong>e Valproate for Cervical Cancer<br />

Recruit<strong>in</strong>g Hydralaz<strong>in</strong>e Valproate for Ovarian Cancer<br />

Recruit<strong>in</strong>g Decitab<strong>in</strong>e <strong>in</strong> Treat<strong>in</strong>g Patients With Previously Untreated Acute Myeloid Leukemia<br />

Recruit<strong>in</strong>g Chronic Hepatitis C Non-Responder Study With AdoMet <strong>and</strong> Beta<strong>in</strong>e<br />

Recruit<strong>in</strong>g Azacitid<strong>in</strong>e, Docetaxel, <strong>and</strong> Prednisone <strong>in</strong> Treat<strong>in</strong>g Patients With Metastatic Prostate Cancer That Did Not<br />

Respond to Hormone Therapy<br />

Recruit<strong>in</strong>g Low Dose Decitab<strong>in</strong>e + Interferon Alfa-2b <strong>in</strong> Advanced Renal Cell Carc<strong>in</strong>oma<br />

Scher<strong>in</strong>g-Plough (Decitab<strong>in</strong>e {5-aza-Deoxycytad<strong>in</strong>e}<br />

Trial for melanoma) (8 hrs to <strong>in</strong>activate DNMT1)<br />

Total : 51 studies<br />

http://cl<strong>in</strong>icaltrials.gov/ct2/results?term=methylation+<strong>in</strong>hibitors<br />

Bristol-Myers Squibb (other compounds)


Gene Reactivation<br />

Pharmacoepigenomics is acquired dur<strong>in</strong>g persons life<br />

The pro-apoptotic BIK (Bcl2-<strong>in</strong>teract<strong>in</strong>g killer)<br />

Dai et al. 2006, BBRC 351:455-461


CANCER<br />

RISK<br />

ASSESSMENT<br />

DNA-Based Cancer Diagnostics<br />

SHEDDING OF<br />

ALTERED DNA<br />

Exfoliated Cells are Good Source of DNA<br />

to Study <strong>Epidemiology</strong><br />

PROGRESSION<br />

RISK<br />

ASSESSMENT<br />

EARLY<br />

DETECTION<br />

SHEDDING OF<br />

ALTERED DNA<br />

DIAGNOSIS,<br />

PREDICTION &<br />

PROGNOSIS<br />

SHEDDING OF<br />

ALTERED DNA<br />

MONITORING<br />

FOR<br />

RECURRENCE<br />

SHEDDING OF<br />

ALTERED DNA<br />

PREDISPOSITION HYPERPLASIA DYSPLASIA CARCINOMA METASTASIS<br />

Adapted from We<strong>in</strong>berg 1996


Epigenotype as an<br />

Intermediate Phenotype<br />

ENVIRONMENT<br />

GENOTYPE EPIGENOTYPE PHENOTYPE<br />

STOCHASTIC<br />

EVENTS<br />

ENVIRONMENT<br />

STOCHASTIC<br />

EVENTS


Research Opportunities<br />

Will <strong>in</strong>clusion of epigenetic markers help <strong>in</strong> identification of<br />

new risk factors (modifiable factors <strong>and</strong> host factors) <strong>in</strong><br />

different races <strong>and</strong> ethnic groups?<br />

Will epigenetic markers <strong>in</strong> cohort <strong>and</strong> case <strong>control</strong> studies<br />

improve sensitivity <strong>and</strong> specificity of markers <strong>and</strong> help <strong>in</strong><br />

identify<strong>in</strong>g high-risk populations?<br />

Are genetic <strong>and</strong> epigenetic events correlated dur<strong>in</strong>g cancer<br />

development?<br />

Are there race/ethnicity specific miRNAs?


Book Published by:<br />

New York Academy of Sciences<br />

2003


Books Available at:<br />

http://www.spr<strong>in</strong>ger.com/humana+press/cancer+research/book/978-1-60327-491-3<br />

http://www.allbookstores.com/author/Mukesh_Verma.html<br />

http://www.borders.com/onl<strong>in</strong>e/mukesh+verma&type=0&simple=1<br />

http://www.amazon.com/Cancer-<strong>Epidemiology</strong>-Modifiable-Factors-Molecular/<br />

http://books.sears.com/TRP/actions/searchH<strong>and</strong>ler.do?itemNum<br />

Methods <strong>in</strong> Molecular Biology. Vol 471 <strong>and</strong> 472


HuEE<br />

EPIGENIE


NIH Roadmap 1.5<br />

• Incubator space (5-10 year projects)<br />

• Microbiome<br />

• Prote<strong>in</strong> Capture/Proteomic Tools<br />

• Phenotyp<strong>in</strong>g Services <strong>and</strong> Tools<br />

• Inflammation<br />

• Trans-NIH, all Institutes/Centers participate<br />

(Science. June 22, 2007)<br />

Epigenetically Regulated Diseases:<br />

Several cancers, autoimmune disorders, reproductive disorders,<br />

<strong>and</strong> neurobehavioral <strong>and</strong> cognitive dysfunctions<br />

http://nihroadmap.nih.gov/epigenomics/<br />

• Test • <strong>Epigenetics</strong><br />

bed for high risk, enabl<strong>in</strong>g, or emerg<strong>in</strong>g scientific<br />

opportunities<br />

• Accelerate the pace of discovery<br />

• Must be transformative<br />

• NIH Common Fund


250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Cancer<br />

243<br />

23<br />

21<br />

19<br />

Blood<br />

Neuropsychiatric<br />

Neurodevelopment<br />

Fetal Development / Teratogenesis<br />

18<br />

15<br />

NIH <strong>Epigenetics</strong> Portfolio<br />

Major Disease Categories<br />

Number of Grants<br />

Extramural <strong>Epigenetics</strong> Portfolio<br />

by Major Disease Category<br />

No. awards <strong>in</strong> cancer = $104M (n=243)<br />

Multiple Diseasas<br />

Addiction / Substance Abuse<br />

13<br />

Infectious Disease<br />

10<br />

10<br />

Genetic Disorder<br />

Immune / Autoimmune<br />

9<br />

Neurodegenerative<br />

8 7 7 7<br />

Eye<br />

DISEASE TYPES<br />

Liver<br />

Reproductive - Male<br />

Reproductive - Female<br />

6 6 6 6 6<br />

Reproductive - General<br />

Age Related<br />

Cardiovascular<br />

Complex Disease (ENCODE)


Epigenomic Changes Have Been Implicated <strong>in</strong><br />

a Wide Variety of Human Diseases<br />

Development<br />

Cell Differentiation<br />

Ag<strong>in</strong>g<br />

GENOME DISEASE<br />

EPIGENOME<br />

Environmental exposures<br />

Nutrition<br />

Chemical tox<strong>in</strong>s<br />

Metals<br />

Mediators of stress<br />

Drugs of abuse<br />

Infection (<strong>in</strong>clud<strong>in</strong>g HIV)<br />

Cancer<br />

Cardiopulmonary <strong>disease</strong><br />

Autoimmune <strong>disease</strong><br />

Obesity<br />

Diabetes<br />

Neurodevelopmental disorders<br />

Schizophrenia<br />

Addiction<br />

Depression


Roadmap 1.5: Translation to Cl<strong>in</strong>ical Practice<br />

FY08<br />

Basic<br />

Basic Research<br />

Research<br />

• Reference epigenomes<br />

• Developmental biology<br />

• Technology development<br />

• Data <strong>in</strong>frastructure<br />

IC-based<br />

Priorities<br />

FY17<br />

Cl<strong>in</strong>ical<br />

Application<br />

• Application of epigenetics to<br />

<strong>disease</strong> <strong>and</strong> common<br />

conditions<br />

• Biomarker development –<br />

imag<strong>in</strong>g <strong>and</strong> predictive biology


NIH Roadmap Epigenomics Program<br />

• Mapp<strong>in</strong>g Centers <strong>in</strong>itiate process<strong>in</strong>g of hematopoietic progenitor<br />

Novel Marks<br />

subsets.<br />

Mapp<strong>in</strong>g<br />

These <strong>in</strong>clude lymphoid, myeloid, <strong>and</strong> erythroid progenitors<br />

Centers<br />

rout<strong>in</strong>ely isolated from total CD34+.<br />

New<br />

• All hematopoietic cell samples Technologies<br />

Health will be <strong>and</strong> processed for<br />

Disease<br />

EDACC Chromat<strong>in</strong> structural mapp<strong>in</strong>g by Digital DNaseI at mapp<strong>in</strong>g<br />

centers<br />

Concurrently, crossl<strong>in</strong>ked chromat<strong>in</strong>, total RNA, <strong>and</strong> purified<br />

DNA will be made available to the consortium for<br />

parallel studies of histone modifications, RNA,<br />

NCBI<br />

ANTIBODIES<br />

<strong>and</strong> DNA methylation by other Centers.<br />

WORKSHOPS


<strong>Epigenetics</strong> Work<strong>in</strong>g Group<br />

Co-Chairs: Sam wilson (NIEHS), Nora Volkow (NIDA)<br />

Ex officio Chairs: T<strong>in</strong>g-Kai Li (NIAAA), James Battey (NICHD)<br />

Brenda Weis NIEHS<br />

Jerry He<strong>in</strong>del NIEHS<br />

Fred Tyson NIEHS<br />

John Satterlee NIDA<br />

Joni Rutter NIDA<br />

Christ<strong>in</strong>e Colvis NIDA<br />

Jonathan Pollock NIDA<br />

David Shurtleff NIDA<br />

Grace Ault NCI<br />

Olivier Blondel NIDDK<br />

James Batty NICHD<br />

Lisa Brooks NHGRI<br />

Anthony Carter NIGMS<br />

Jennifer Couch NCI<br />

Johanna Dwyer OD/ODS<br />

Bruce Howard NICHD<br />

Rebecca Lipsitz NIH/OD<br />

Roger Little NIMH<br />

Conrad Mallia NIAID<br />

Anna McCormick NIA<br />

Nasr<strong>in</strong> Nabavi NIAID<br />

Paul Okano NCI<br />

Susan Old NHLBI<br />

Deborah Olster OD/OBSSR<br />

Jim Ostell NLM/NCBI<br />

Suzana Petanceska NIA<br />

Robert Riddle NINDS<br />

Sharon Ross NCI<br />

Rochelle Small NIDCR<br />

Philip Smith NIDDK<br />

Mukesh Verma NCI<br />

Ashley Xia NIAID<br />

Samir Zakhari NIAAA<br />

Keji Zhao NHLBI


JUMPSTART<br />

• International Committee<br />

• St<strong>and</strong>ardization; Database<br />

• Reagents (antibodies)<br />

RFA 1<br />

Mapp<strong>in</strong>g Cent.<br />

RFA 2<br />

RM/IC Projects<br />

RFA 3<br />

Data Analysis/<br />

Coord Center<br />

RFA 4<br />

Tech Develop<br />

Discovery of<br />

Novel Marks<br />

Timel<strong>in</strong>e for Epigenomics Program<br />

FY07<br />

FY08 FY09 FY10 FY11 FY12<br />

RFA RFA?<br />

• Comprehensive reference epigenomes<br />

• Incorporate new tech/targets as available<br />

• Public resource (cells/tissue, data)<br />

RFA RFA RFA RFA RFA<br />

• Co-fund RM/IC-based projects<br />

FY13 FY14 FY15<br />

RFA RFA<br />

• Contribute to public data resource (via NCBI)<br />

• Cross-cutt<strong>in</strong>g data <strong>in</strong>tegration, analysis, visualization<br />

RFA RFA RFA<br />

RFA 5 RFA RFA?<br />

• New tools/tech, application to mapp<strong>in</strong>g, RM/IC projects<br />

• New marks, application to mapp<strong>in</strong>g,<br />

RM/IC projects<br />

TRANSITION to ICs<br />

Transition to ICs


Viller-Garea <strong>and</strong> Estellar. 2004. .Int. J. Cancer 112, : 171-178<br />

Personalized Medic<strong>in</strong>e


Conclusion: <strong>Epigenetics</strong> <strong>in</strong> Cancer Management<br />

Esteller, NEJM, 358:1148-59, 2008

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!