12.07.2015 Views

Diabetes and Exercise: Why Exercise Works When Insulin Does Not

Diabetes and Exercise: Why Exercise Works When Insulin Does Not

Diabetes and Exercise: Why Exercise Works When Insulin Does Not

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Diabetes</strong> <strong>and</strong> <strong>Exercise</strong>:<strong>Why</strong> <strong>Exercise</strong> <strong>Works</strong> <strong>When</strong> <strong>Insulin</strong> <strong>Does</strong> <strong>Not</strong>Laurie J. GoodyearMetabolism SectionJoslin <strong>Diabetes</strong> CenterHarvard Medical School


Type 2 <strong>Diabetes</strong> is Reaching Epidemic Levels A major factor leading to increased rates of type 2diabetes is inactivity. Physical exercise is critical in the prevention of type2 diabetes.


<strong>Diabetes</strong> <strong>and</strong> <strong>Exercise</strong>:<strong>Why</strong> <strong>Exercise</strong> <strong>Works</strong> <strong>When</strong> <strong>Insulin</strong> <strong>Does</strong> <strong>Not</strong> Background on <strong>Diabetes</strong> Skeletal Muscle Glucose Transport Studies in Human Subjects “The <strong>Exercise</strong> Pill”


Basic Physiology: Glucose concentrations in theblood rise after a meal. <strong>Insulin</strong> is released fromthe pancreas, binding to insulin receptors ontissues throughout the body, resulting in glucoseentering the tissues.MuscleLiverPancreasFat


Type 1 <strong>Diabetes</strong>(juvenile-onset or insulin-dependent)Pancreas loses its ability to produce <strong>and</strong> secrete insulin.This is almost always caused by autoimmune attack <strong>and</strong>destruction of the β cells.MuscleLiverPancreasFat


Type 2 diabetes(adult-onset or non-insulin dependent)<strong>Insulin</strong> is produced by the pancreas <strong>and</strong> levels in theblood are often normal or even high, but the tissuesdon’t respond - insulin resistance.MuscleLiverFatPancreas


<strong>Diabetes</strong> Complications Leading cause of blindness Leading cause of kidney failure Leading cause of amputations Major cause of heart attacks Major cause of strokes


<strong>Diabetes</strong> is Reaching Epidemic Levels2000 = 14.22010 = 17.523%9.414.150%26.532.924%84.5132.357%Zimmet et alWHO Data15.622.544%World2000 = 151 million2010 = 221 million2020 = 300 million1.01.333%


Type 2 <strong>Diabetes</strong> is Reaching Epidemic LevelsCumulative incidence (%)403020100Incidence of <strong>Diabetes</strong> (DPP)(Risk reduction31% by metforminPlacebo58% by lifestyle Metformin0 1 2 3 4Years from r<strong>and</strong>omizationLifestyle


<strong>Diabetes</strong> <strong>and</strong> <strong>Exercise</strong>:<strong>Why</strong> <strong>Exercise</strong> <strong>Works</strong> <strong>When</strong> <strong>Insulin</strong> <strong>Does</strong> <strong>Not</strong> Background on <strong>Diabetes</strong> Skeletal Muscle Glucose Transport Studies in Human Subjects “The <strong>Exercise</strong> Pill”


Effect of <strong>Exercise</strong> on Blood Glucose Concentrationsin a Subject with Type 2 <strong>Diabetes</strong>glucose (mM)9876543210basal<strong>Exercise</strong> at 70% VO 2 max5 10 20 45 75(minutes)


Type 2 <strong>Diabetes</strong>Blood VesselGlucose<strong>Exercise</strong>Muscle


Blood VesselGlucose<strong>Insulin</strong>Muscle


Type 2 <strong>Diabetes</strong>Blood VesselGlucoseX<strong>Insulin</strong>Muscle


Skeletal Muscle Glucose UptakeType 2 <strong>Diabetes</strong><strong>Exercise</strong>+<strong>Insulin</strong> What is the molecular basis for the ability ofexercise to increase glucose uptake in skeletalmuscle of patients with Type 2 diabetes?


Methods to Study <strong>Exercise</strong> <strong>and</strong> Muscle ContractionMuscle contractionsystem for culturedmyotubesContraction bydirect electricalstimulationContraction bysciatic <strong>and</strong> peronealnerve stimulationTreadmill running exercise(acute <strong>and</strong> chronic studies)Wheel running exercise(chronic studies)Human exercisewith biopsies


Glucose Transport System in Skeletal Muscleglucose glucose transport is the ratelimiting step in glucose utilization facilitated diffusion glucose transporter proteinsP GLUT1, GLUT4 expressed inskeletal muscleGLYCOGENGLYCOLYSIS exercise, insulin most potentphysiological stimuli


Under Basal Conditions GLUT4 isPrimarily Intracellularsurface membraneGLUT4-containing vesicle


<strong>Exercise</strong> Regulation of Glucose Transport<strong>Exercise</strong>GLUT4-containing vesicle


<strong>Exercise</strong> Regulation of Glucose TransportGlucose<strong>Exercise</strong>GLUT4 Translocation


<strong>Insulin</strong> Regulation of Glucose Transport<strong>Insulin</strong>ReceptorGlucose<strong>Exercise</strong>GLUT4 Translocation


<strong>Insulin</strong> Stimulates GLUT4 Translocationin Skeletal MuscleIn vivo imaging of GLUT4-GFPt=0 t=30Mouse quadriceps muscleBar = 20 µm(Lauritzen HPMM, <strong>Diabetes</strong>, 2006)


Contraction Stimulates GLUT4 Translocationin Skeletal MuscleIn vivo imaging of GLUT4-GFPt=0 t=15Mouse quadriceps muscleBar = 20 µm


Are there distinct mechanisms for insulin<strong>and</strong>exercise-stimulated glucose transport?<strong>Insulin</strong>ReceptorGlucose<strong>Exercise</strong>GLUT4 Translocation


Contraction + <strong>Insulin</strong> have Additive Effectson Glucose Transport in Skeletal Muscle1210Glucose TransportArbitrary units86420basalmaximalcontractionmaximalinsulincontraction+ insulin


<strong>Exercise</strong> <strong>and</strong> <strong>Insulin</strong> Regulate GlucoseTransport via Distinct Signaling Mechanisms<strong>Insulin</strong>ReceptorGlucose<strong>Exercise</strong>GLUT4 Translocation


What are the signaling mechanisms thatmediate glucose transport in skeletal muscle?<strong>Insulin</strong>ReceptorGlucose<strong>Exercise</strong>??GLUT4 Translocation


<strong>Insulin</strong> Regulation of Glucose Transport<strong>Insulin</strong>ReceptorGlucosePPPPP<strong>Exercise</strong>PIRS-1Pp85-p110PI 3-KinaseAktGLUT4 Translocation


<strong>Exercise</strong> <strong>and</strong> <strong>Insulin</strong> Regulate GlucoseTransport via Distinct Signaling Mechanisms<strong>Insulin</strong>ReceptorGlucosePPPPP<strong>Exercise</strong>PIRS-1Pp85-p110PI 3-KinaseAktGLUT4 Translocation


<strong>Exercise</strong> <strong>and</strong> <strong>Insulin</strong> Regulate GlucoseTransport via Distinct Signaling Mechanisms<strong>Insulin</strong>ReceptorGlucosePPPPP<strong>Exercise</strong>PIRS-1Pp85-p110PI 3-KinaseAktGLUT4 Translocation?


<strong>Exercise</strong> <strong>and</strong> <strong>Insulin</strong> Regulate GlucoseTransport via Distinct Signaling Mechanisms<strong>Insulin</strong>ReceptorGlucosePPPPP<strong>Exercise</strong>PIRS-1Pp85-p110PI 3-KinaseAktGLUT4 TranslocationAMPK


5’AMP-Activated Protein Kinase (AMPK)βαγα1, α2 (α2 predominant in skeletal muscle)β1, β2γ1, γ2, γ3• A member of metabolite-sensing protein kinase family• Activated under conditions of low energy state, exercise• Proposed to regulate numerous metabolic <strong>and</strong>transcriptional processes in multiple cell types


5’AMP-Activated Protein Kinase (AMPK)Activating T-loop phosphorylation siteαAMPγβ


5’AMP-Activated Protein Kinase (AMPK)LKB1αAMP


What is the evidence that AMPK mediatesexercise-stimulated glucose transport?<strong>Insulin</strong>ReceptorGlucosePPPPP<strong>Exercise</strong>PIRS-1Pp85-p110PI 3-KinaseAktGLUT4 TranslocationAMPK


ACIAR <strong>and</strong> the Regulation of GlucoseTransport in Skeletal MuscleGlucose<strong>Insulin</strong>ReceptorAICARPPPPPPIRS-1Pp85-p110PI 3-KinaseAktGLUT4 TranslocationAMPK


NH2COCCH2NNCHNOHOHHOHHHCH2OOOOP--NH2COCCNNCHNOHOHHOHHHCH2OOOOP--HCZMPAMPAICAR(5-aminoimidazole-4-carboxamide-riboside)AICARZMPαβγAMPKKPAMPK ActivityAdenosine kinase


AICAR + <strong>Insulin</strong> have Additive Effects onGlucose Transport in Skeletal Muscle1210Glucose TransportArbitrary units86420basalmaximalAICARmaximalinsulinAICAR+ insulin


AICAR + Contraction do not have AdditiveEffects on Glucose Transport1210Glucose TransportArbitrary units86420basalmaximalAICARmaximalcontractionAICAR +contraction


ACIAR <strong>and</strong> <strong>Insulin</strong> Regulate GlucoseTransport via Distinct Signaling MechanismsGlucose<strong>Insulin</strong>ReceptorAICARPPPPP<strong>Exercise</strong>PIRS-1Pp85-p110PI 3-KinaseAktGLUT4 TranslocationAMPK


SummarySkeletal Muscle Glucose Transport <strong>Exercise</strong> <strong>and</strong> insulin increase glucose transport in skeletal muscle, resulting in glucose clearance from the blood. <strong>Exercise</strong> <strong>and</strong> insulin increase glucose transport through the translocation of GLUT4 transporters to the cell surface <strong>and</strong> transverse tubules in skeletal muscle. There are distinct proximal signaling mechanisms for exercise- <strong>and</strong> insulin-stimulated GLUT4 translocation. AICAR increases AMPK activity <strong>and</strong> can increase glucose transport in skeletal muscle.


<strong>Diabetes</strong> <strong>and</strong> <strong>Exercise</strong>:<strong>Why</strong> <strong>Exercise</strong> <strong>Works</strong> <strong>When</strong> <strong>Insulin</strong> <strong>Does</strong> <strong>Not</strong> Background on <strong>Diabetes</strong> Skeletal Muscle Glucose Transport Studies in Human Subjects “The <strong>Exercise</strong> Pill”


What is the physiological relevance of thesefindings for patients with type 2 diabetes?


Skeletal Muscle from Patients with Type 2 <strong>Diabetes</strong><strong>Exercise</strong>+<strong>Insulin</strong><strong>Does</strong> exercise bypass defects in insulinaction in skeletal muscle by utilizingalternative signaling mechanisms leading toincreased GLUT4 translocation?


Skeletal Muscle Biopsy from Human Subjects


Are there defects in insulin- <strong>and</strong> exercisestimulatedGLUT4 translocation in patientswith type 2 diabetes?<strong>Insulin</strong>ReceptorGlucose<strong>Exercise</strong>GLUT4 Translocation


<strong>Insulin</strong>-stimulated GLUT4 Translocation isImpaired in Patients with Type 2 <strong>Diabetes</strong>100Arbitrary units7550250Basal <strong>Insulin</strong> Basal <strong>Insulin</strong>ControlsType 2 DM


<strong>Exercise</strong> Causes Normal GLUT4 Translocationin Subjects with Type 2 <strong>Diabetes</strong>100Arbitrary units7550250Basal <strong>Exercise</strong>ControlsBasal <strong>Exercise</strong>Type 2 DM


<strong>Exercise</strong> <strong>and</strong> <strong>Insulin</strong> Regulate GlucoseTransport via Distinct Signaling Mechanisms<strong>Insulin</strong>ReceptorGlucosePPPPP<strong>Exercise</strong>PIRS-1Pp85-p110PI 3-KinaseAktGLUT4 Translocation


ACIAR <strong>and</strong> <strong>Insulin</strong> Regulate GlucoseTransport via Distinct Signaling Mechanisms<strong>Insulin</strong>ReceptorGlucosePPPPP<strong>Exercise</strong>PIRS-1Pp85-p110PI 3-KinaseAktGLUT4 TranslocationAMPK


<strong>Exercise</strong> Increases AMPKα2 Activity InControls <strong>and</strong> Subjects with Type 2 <strong>Diabetes</strong>2.0*(pmol/mg/min)1.51.00.5** ***Type 2 DMControls0.0<strong>Exercise</strong> 70% VO 2max020 45 30’Restminutes


<strong>Exercise</strong> Can Bypass Defects in <strong>Insulin</strong> Signaling <strong>and</strong>GLUT4 Translocation in People with Type 2 <strong>Diabetes</strong><strong>Insulin</strong>ReceptorGlucosePPPPP<strong>Exercise</strong>PIRS-1Pp85-p110PI 3-KinaseAktGLUT4 TranslocationAMPK


Can we make a drug to activate AMPK leading toincreased glucose transport in skeletal muscle?<strong>Insulin</strong>ReceptorGlucosePPPPPDrug?PIRS-1Pp85-p110PI 3-KinaseAktGLUT4 TranslocationAMPK


Can we make a drug to activate AMPK leading toincreased glucose transport in skeletal muscle?<strong>Insulin</strong>ReceptorGlucosePPPPPMetforminPIRS-1Pp85-p110PI 3-KinaseAktGLUT4 TranslocationAMPK


Metformin- Single most prescribed oral antidiabetic drug in the U.S.- Cellular mechanism of action is unclear* Suppresses hepatic glucose production* Increases muscle glucose uptake* Inhibits Complex 1 of Respiratory Chain(Owen, Biochem J, 2000 <strong>and</strong> El-Mir, JBC, 2000)


AICAR <strong>and</strong> Metformin Share Metabolic EffectsAICARMetformin Inhibit Hepatic Glucose Production Stimulate Muscle Glucose Uptake Increase Lactic Acid Production


<strong>Does</strong> the mechanism of Metformin actioninvolve the regulation of AMPK?<strong>Insulin</strong>ReceptorGlucosePPPPPMetformin?PIRS-1Pp85-p110PI 3-KinaseAktGLUT4 TranslocationAMPK


Effect of Metformin on AMPK Activity(rat epitrochlearis muscles)(pmol/mg/min)1.61.41.21.00.80.60.40.2*0.0ControlMetformin3hr


Effects of 4 <strong>and</strong> 10 Weeks of MetforminTreatment on AMPKα2 Activity(human vastus lateralis muscle)0.80*(pmol/mg/min)0.600.400.20*0.00Basal 4 Weeks 10 Weeks


Activation of AMPK IncreasesSkeletal Muscle Glucose Transport<strong>Insulin</strong>ReceptorGlucosePPPPPPIRS-1Pp85-p110PI 3-KinaseAktGLUT4 TranslocationAMPK


SummaryStudies in Human Subjects <strong>Exercise</strong> <strong>and</strong> insulin increase GLUT4 translocation in human skeletal muscle. <strong>Insulin</strong> signaling <strong>and</strong> GLUT4 translocation are impairedin patients with type 2 diabetes. <strong>Exercise</strong>-stimulated AMPK activation <strong>and</strong> GLUT4 translocation are normal in patients with type 2 diabetes. Activation of AMPK can increase glucose transport in skeletal muscle, making AMPK a drug target for treatmentof type 2 diabetes. Metformin, the most widely used diabetes drug, works through stimulation of AMPK.


Multiple Signals Mediate<strong>Exercise</strong>-Stimulated Glucose Transport<strong>Exercise</strong>Ca2 + AMP/ATP ROS mechanicalLKB1GLUT4 TranslocationcalmodulinCaMKsSNARK ?AMPKNRGaPKCsPPPPP PCBDTBC1D1RABGAPdomainPPPPP PCBDAS160RABGAPdomain


<strong>Diabetes</strong> <strong>and</strong> <strong>Exercise</strong>:<strong>Why</strong> <strong>Exercise</strong> <strong>Works</strong> <strong>When</strong> <strong>Insulin</strong> <strong>Does</strong> <strong>Not</strong> Background on <strong>Diabetes</strong> Skeletal Muscle Glucose Transport Studies in Human Subjects “The <strong>Exercise</strong> Pill”


News Headlines, August 2008“It’s the exercise pill: the pill that helps you burn offcalories just by sitting on the couch. It’s America’sdream.”Couch Mouse to Mr. Mighty byPills AlonePill may boost endurance without exercise


The <strong>Exercise</strong> Pill: AICAR


VolumeOctober 23, 2008 Number 17359:1842-1844The <strong>Exercise</strong> Pill — Too Good to Be True?Laurie J. Goodyear, Ph.D.


Effects of AICAR Treatment <strong>and</strong>Chronic AMPK ActivationAcute Effects:Blood Vessel Increase glucose uptake(Hayashi, Winder, others, 1998) Lower blood glucose levels(Shulman, others, 1999)GlucoseAICARChronic Effects: Increase exercise endurance(Witters, 2007) (Evans, 2008) Increase in muscle glycogen(Winder, Holloszy, others, 1999) Increase in GLUT4,mitochondrial enzymes (Winder,Holloszy, others, 1999)


The <strong>Exercise</strong> Pill — Too Good to Be True? AICAR has a short half-life after intravenous infusion<strong>and</strong> poor bioavailability after oral ingestion. AICAR treatment causes lactic acidosis in humans. AMPK activation in the hypothalamus can stimulateappetite. Activating mutations of AMPK cause heart conductionabnormalities in humans (WPW syndrome).


Benefits of Regular Physical <strong>Exercise</strong>Pulmonary functionIncrease lung capacityImprove sleepIncrease blood volumeImprove pancreaticfunctionImprove liver functionReduce fat storesPrevention of <strong>Diabetes</strong>Increase glucose toleranceIncrease insulin sensitivityIncrease muscle glucose uptakeIncrease mitochondrial functionDecrease depression, anxietyDecrease Alzheimer'sDecrease strokeDecrease appetiteImprove cardiac functionImprove lipid profileLower blood pressureIncrease bone densityIncrease muscle strengthIncrease flexibilityDecrease Rates of CancerColon, breast, endometrial


Joslin <strong>Diabetes</strong>CenterLongwood Medical Area, Boston


Ho-Jin KohNobuharu FujiiHans LauritzenJeff AnFritz KramerEric TaylorCarol WitczakJonas TreebakTaro ToyodaHaiyan YuCarrie SharoffMichelle JungKanokwan VichaiwongJan Willem MiddelbeekNiels JessenSarah LessardJulie RipleyMichael HirshmanHiroyasu Esumi(NCCRCR Institute East)Jianxin Xie(Cell Signaling)Jørgen WojtaszewskiEric Richter(U. Copenhagen)Funding Support:NIH (NIAMS, NIDDK)American Physiological SocietyAmerican <strong>Diabetes</strong> Association

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!