Investigation of the Seismic Response of Slender Concrete ... - PEER

Investigation of the Seismic Response of Slender Concrete ... - PEER Investigation of the Seismic Response of Slender Concrete ... - PEER

peer.berkeley.edu
from peer.berkeley.edu More from this publisher

Experimental TestingOf Planar Walls


ConvenXonalWallTesXngTest <strong>of</strong> High-Rise Core Wall: EffectiveStiffness for <strong>Seismic</strong> Analysis by P.Adebar, AM.M. Ibrahim and M. Bryson, 2008DamageMeasured<strong>Response</strong>


NEESExperimentalTesXngatUIUC• BoOomthreestories<strong>of</strong>10‐storyplanarprototypewall.• ShearandmomentappliedtosimulatelateralloaddistribuXonin10‐storyprototype• Targetaxialload<strong>of</strong>0.1A g f c ’.


NEESExperimentalTesXngatUIUC• PrimaryloadingviatwoLBCBs• Axialload(F z )• Shearload(cyclicallyincreasingΔ x )• Moment(M y =k1*V top )• Floorloadingviauniaxialactuators(V=k*V top ) F zΔ xM y = k1*V topk2*V topk3*V top


PlanarWallTestSpecimens• 1/3‐scalewithdetailsreflecXngmodernconstrucXonpracXce.BOUNDARYELEMENTS(3.5%)12’HEIGHT18in.THICK(4’/6in.LAB)SPLICEATBASEOFWALL


PlanarWallTestMatrixMoment-toShear RatioDistribution <strong>of</strong>ReinforcementSplices?STUDYPARAMETERSWall 1M b = 0.71hV bV b = 2.8√f ’c = 0.7V nBE at EDGEYESWall 2M b = 0.50hV bV b = 4.0√f ’c = 0.9V nBE at EDGEYESWall 3M b = 0.50hV bV b = 4.0√f ’c = 0.9V nUNIFORMYESWall 4M b = 0.50hV bV b = 4.0√f ’c = 0.9V nBE at EDGENO


FinalDamageStatesforPlanarWallsWall 1: V b = 3.6√f’c1.5% drift (3 rd story)2.1% drift (10 th story)Wall 2: : V b = 5.0√f’c1.5% drift (3 rd story)1.8% drift (10 th story)Wall 3: V b = 4.5√f’c1.25% drift (3 rd story)1.6% drift (10 th story)Wall 4: V b = 4.6√f’c1.0% drift (3 rd story)1.4% drift (10 th story)


InstrumentaXonforMonitoringLocal<strong>Response</strong>


Wall4DisplacementMeasuredUsingMetrisSystem


Wall4ShearDeformaXonfromMetrisData


KryptonandDisp.TransducerDataWall 1 Wall 23 rd floor shear2 nd floor shear1 st floor shear3 rd floor flexural2 nd floor flexural1 st floor flexuralBase rotationBase slipContribution to total drift (%)Contribution to total drift (%)Wall 3 Wall 4Drift at top <strong>of</strong> specimenDrift at top <strong>of</strong> specimen


Experimental Testing<strong>of</strong> Coupled Walls


ExperimentalTestProgram• Prototypestructure• ExperimentaltestmatrixCore Wall under Construction(Courtesy <strong>of</strong> MKA, Seattle)


Whatis<strong>the</strong><strong>Seismic</strong>Behavior<strong>of</strong>aModernCoupledWall?• Reviewinventory<strong>of</strong>moderncoupledwalls– 17buildingswithcoupled‐corewallsystemsdesignedforconstrucXoninCAorWAinlast10years.– InformaXoncollectedincludedgeometry,aspectraXos,reinforcementraXos,degree<strong>of</strong>coupling,sheardemand‐capacityraXo,pierwallaxialdemand‐capacityraXo,etc.• Reviewpreviousexperimentaltests– Numeroustests<strong>of</strong>couplingbeamswithdifferentreinforcementlayouts,raXosandconfinementdetails.– Fewcoupled‐wallstests.– CoupledwalltestspecimenswerenotrepresentaXve<strong>of</strong>currentdesignpracXces.• DesignandevaluatemulXple10‐storyplanarcoupledwalls– Designwallsfollowing<strong>the</strong>recommendaXons<strong>of</strong><strong>the</strong>SEAOC<strong>Seismic</strong>DesignManual,Vol.III,usingASCE7‐05,andmeeXngrequirements<strong>of</strong>ACI318‐08.– Progression<strong>of</strong>yieldingandfailuremechanismwasevaluatedviaconXnuumfiniteelementanalysisusingVecTor2


CoupledWallTestSpecimen• SpecimenisboOomthreestories<strong>of</strong>a10‐storyplanarcoupledwall.• CouplingbeamshaveaspectraXo<strong>of</strong>2.0anddiagonalreinforcement.• <strong>Seismic</strong>loadingresultsinyieldingincouplingbeamsandwallpiers.• Pierwallsarecapacity‐designedforshearinwallpiers.Boundary Element• ρ long = 3.5%• ρ trans = 1.4%Web• ρ long = 0.27%• ρ horz = 0.27%Coupling beams:• aspect ratio = 2.0• ρ diag = 1.25%• V n =


ConstrucXon


LoadingProtocolDevelopment• EachpierhassixDegrees<strong>of</strong>Freedomtocontrol– OnetranslaXonandtworotaXonssettozero– TwotranslaXonsandout<strong>of</strong>planerotaXonacXve


LoadingProtocolDevelopment• SpecimenhassixacXveDOFs• Totalaxialloadconstant• ∆ x prescribedfordisplacementcontrol• Totalbendingmomentattop<strong>of</strong>specimencalculatedfromassumedlateralloaddistribuXon• SixDOFs• ∆ x1 independentinput• 2force‐basedconstraintequaXons• Require3addiXonalequaXonstoaccomplishtesXng


LoadingProtocolDevelopment• Analyses<strong>of</strong>10‐storywallusingVecTor2conXnuummodel– MonotonicloadingwithprescribedloaddistribuXon– CyclicloadingwithprescribedeffecXveheight• DisplacementandrotaXonsattop<strong>of</strong>thirdfloormonitored. • Results:∆ x1 ≈∆ x2θ y1 ≈θ y2 ≈α∆ x


LoadingProtocolDevelopment• LoadingprotocolvalidatedbycomparingcrackpaOersandstressfieldsin10‐storywallwiththosein3‐storyspecimenwith∆ x1 =∆ x2 =βθ y1 =β θ y2


LoadingProtocolDevelopment• θ y forbothpierssetasmulXple<strong>of</strong>∆ x • RelaXonsaresetforcontrol<strong>of</strong><strong>the</strong>sixacXveDOFs:– F z1 +F z2 =constant– ∆ x1 =∆ x2 =∆ x– M y,total =k*(F x1 +F x2 )– θ y1 =θ y2 =n*∆ x


TesXng<strong>of</strong>CoupledWall


Questions?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!