Getting Started with CES Selector - Granta Design

Getting Started with CES Selector - Granta Design Getting Started with CES Selector - Granta Design

grantadesign.com
from grantadesign.com More from this publisher

<strong>Getting</strong> <strong>Started</strong> Guide


<strong>Getting</strong> <strong>Started</strong> <strong>with</strong> <strong>CES</strong> <strong>Selector</strong><br />

These exercises give an easy way to learn to use the <strong>CES</strong> <strong>Selector</strong> software. The comprehensive <strong>CES</strong> Help file<br />

<strong>with</strong>in the software gives more detailed guidance.<br />

There are three main tools in <strong>CES</strong> <strong>Selector</strong>:<br />

Brief Description of <strong>CES</strong> <strong>Selector</strong><br />

• BROWSE Explore the database and retrieve records via a hierarchical index or tree.<br />

• SEARCH Find information via a full-text search of records.<br />

• SELECT The central hub of <strong>CES</strong> <strong>Selector</strong>, used to apply the Rational Material Selection<br />

methodology. A powerful selection engine that identifies records that meet an<br />

array of design criteria and enables trade-offs between competing objectives.<br />

The following exercises cover the use and functionality of these tools.


Table:<br />

Subset:<br />

Browse Search Select<br />

MaterialUniverse<br />

All bulk materials<br />

MaterialUniverse<br />

Ceramics and glasses<br />

Hybrids: composites, foams etc.<br />

Metals and alloys<br />

Polymers: plastics, elastomers<br />

Browse Search Select<br />

Find what:<br />

Look in table:<br />

Polylactide<br />

MaterialUniverse<br />

© <strong>Granta</strong> <strong>Design</strong>, October 2009<br />

Browsing and Searching<br />

Exercise 1 Browse Materials<br />

• Find a record for STAINLESS STEEL<br />

• Find a record for CONCRETE<br />

• Find a record for POLYPROPYLENE<br />

• Open a POLYPROPYLENE record<br />

(Double-click on the record name in the tree)<br />

• Find PRO<strong>CES</strong>SES that can shape POLYPROPYLENE<br />

using the ProcessUniverse LINK at the bottom of the datasheet<br />

Exercise 2 Browse Processes<br />

Browse ProcessUniverse: All processes<br />

• Find a record for INJECTION MOLDING<br />

• Find record for LASER SURFACE HARDENING<br />

• Find record for FRICTION WELDING (METALS)<br />

• Find MATERIALS that can be DIE CAST,<br />

using the LINK at the bottom of the record for<br />

DIE CASTING<br />

Exercise 3 The Search Facility<br />

• Find the material POLYLACTIDE<br />

• Find materials for CUTTING TOOLS<br />

• Find the process RTM<br />

(Part of a material datasheet and attribute note are shown next)<br />

Table:<br />

Subset:<br />

<strong>Getting</strong> <strong>Started</strong> <strong>with</strong> <strong>CES</strong> <strong>Selector</strong> 2<br />

Browse Search Select<br />

ProcessUniverse<br />

All processes<br />

ProcessUniverse<br />

Joining<br />

Shaping<br />

Surface treatment


m~êí=çÑ=~=Ç~í~ëÜÉÉí=Ñçê=~=ã~íÉêá~äW=éçäóéêçéóäÉåÉ= ^ííêáÄìíÉ=åçíÉ=Ñçê=vçìåÖÛë=ãçÇìäìë=<br />

PP (Copolymer, UV stabilized)<br />

General properties<br />

<strong>Design</strong>ation<br />

Polypropylene (Copolymer, UV stabilized)<br />

Density 0.0325 - 0.0328 lb/in^3<br />

Price * 1.13 - 1.24 USD/lb<br />

Composition overview<br />

Composition (summary)<br />

copolymer of propylene -(CH2-CH(CH3))- and up to 7% ethylene or other comonomer + UV<br />

stabiliser additives<br />

Mechanical properties<br />

Young's modulus 0.179 - 0.183 10^6 psi<br />

Shear modulus * 0.0635 - 0.0651 10^6 psi<br />

Bulk modulus * 0.328 - 0.336 10^6 psi<br />

Poisson's ratio * 0.405 - 0.413<br />

Yield strength (elastic limit) 3.42 - 3.91 ksi<br />

Tensile strength 3.39 - 3.57 ksi<br />

Compressive strength * 4.28 - 4.49 ksi<br />

Flexural strength (modulus of rupture) * 4.53 - 5.21 ksi<br />

Elongation 139 - 865 %<br />

Hardness - Vickers * 7.37 - 7.74 HV<br />

Fatigue strength at 10^7 cycles * 1.36 - 1.43 ksi<br />

Fracture toughness * 1.37 - 1.44 ksi.in^1/2<br />

Mechanical loss coefficient (tan delta) * 0.0312 - 0.0328<br />

Thermal properties<br />

Melting point * 292 - 307 °F<br />

Glass temperature -11.2 - 3.2 °F<br />

Maximum service temperature * 148 - 179 °F<br />

Minimum service temperature * -13 - 14 °F<br />

Thermal conductivity * 0.114 - 0.118 BTU.ft/h.ft^2.F<br />

Specific heat capacity * 0.448 - 0.457 BTU/lb.F<br />

Thermal expansion coefficient 65.8 - 67.4 µstrain/°F<br />

Durability to flame, fluids, sunlight<br />

Flammability Slow-burning (UL94: HB)<br />

Fresh water Ver y good<br />

(Click on hyperlinked attribute names for attribute notes, which provide<br />

background information on properties, test notes, and selection guidelines)<br />

© <strong>Granta</strong> <strong>Design</strong>, October 2009<br />

Young's modulus<br />

<strong>Getting</strong> <strong>Started</strong> <strong>with</strong> <strong>CES</strong> <strong>Selector</strong> 3<br />

Stiffness in tension (also called Tensile Modulus, Elastic Modulus, Modulus of Elasticity).<br />

Test notes<br />

Young's modulus (E) is the slope of the initial linear-elastic part of the stress-strain curve in<br />

tension.<br />

Material selection notes<br />

Use to select materials <strong>with</strong> sufficient stiffness (high value) or sufficient compliance (low value).<br />

Modulus in tension, flexure, and compression are similar for most materials so can be<br />

interchanged for approximate work.<br />

Typical values:<br />

Flexible plastics and elastomers < 1 GPa<br />

Unfilled plastics 1–4 GPa<br />

Reinforced plastics 5–25 GPa<br />

Ferrous metals 70–250 GPa<br />

Non-ferrous metals 10–310 GPa<br />

Technical ceramics 20–700 GPa<br />

Ceramics and glasses 1–120 GPa<br />

Click to see science note.<br />

(For more information on the property and to drill down to the<br />

underlying science, follow the hyperlink to the science note)


Exercise 4 Making Property Charts<br />

Select MaterialUniverse: All bulk materials<br />

• Make a BAR CHART of YOUNG’S MODULUS (E)<br />

(Set y-axis to Young’s modulus; leave x-axis at )<br />

Property Charts<br />

(Click on a few materials to label them; double-click to go to their record in the Data Table)<br />

• Make a BUBBLE CHART of YOUNG’S MODULUS (E) against DENSITY (ρ)<br />

(Set both x-axis and y-axis; the default is a log-log plot)<br />

(Materials can be labeled as before – click and drag to move the labels; use DEL to delete a label)<br />

abibqb=qeb=pq^db=<br />

EoáÖÜí=ÅäáÅâ=çå=ëí~ÖÉ=áå=pÉäÉÅíáçå=pí~ÖÉë=~åÇ=ëÉäÉÅí=“aÉäÉíÉÒF=<br />

© <strong>Granta</strong> <strong>Design</strong>, October 2009<br />

Browse Search Select<br />

1. Selection Data<br />

MaterialUniverse: All bulk materials<br />

2. Selection Stages<br />

Graph/Index Limit Tree<br />

<strong>Getting</strong> <strong>Started</strong> <strong>with</strong> <strong>CES</strong> <strong>Selector</strong> 4<br />

X-axis Y-axis<br />

Density<br />

Single Property<br />

Yield strength<br />

Young's Modulus<br />

etc


Exercise 5 Selection <strong>with</strong> a Limit Stage<br />

• Find materials <strong>with</strong><br />

MAX. SERVICE TEMPERATURE > 200 °C<br />

THERMAL CONDUCTIVITY > 25 W/m.k<br />

ELECTRICAL RESISTIVITY > 1e15 µohm.cm<br />

(Enter the limits – minimum or maximum as appropriate – and click “Apply”)<br />

(Example results: aluminum nitride, alumina, silicon nitride)<br />

=<br />

abibqb=qeb=pq^db=<br />

=<br />

=<br />

© <strong>Granta</strong> <strong>Design</strong>, October 2009<br />

Selection using a Limit Stage<br />

Browse Search Select<br />

1. Selection Data<br />

MaterialUniverse: All bulk materials<br />

2. Selection Stages<br />

Graph/Index Limit Tree<br />

3. Results<br />

X out of Y pass Rank by: Property A<br />

Material 1<br />

Material 2<br />

Material 3<br />

Material 4<br />

etc.<br />

2130<br />

2100<br />

1950<br />

1876<br />

<strong>Getting</strong> <strong>Started</strong> <strong>with</strong> <strong>CES</strong> <strong>Selector</strong> 5<br />

Mechanical properties<br />

Thermal properties<br />

Max. service temperature<br />

Thermal conductivity<br />

Specific heat capacity<br />

Electrical properties<br />

Limit stage<br />

Min Max<br />

200<br />

Electrical resistivity 1e15<br />

µ ohm.cm<br />

Ceramics and glasses<br />

Composites<br />

Metals and alloys<br />

Polymers and elastomers<br />

1<br />

1E+8<br />

1E+20<br />

25<br />

Min Max<br />

°C<br />

W/m.K<br />

J/kg.K<br />

Limit<br />

guidance<br />

bars


Exercise 6 Selection <strong>with</strong> a Graph Stage<br />

• Make a BAR CHART of YIELD STRENGTH ( σ y ) (on the y-axis)<br />

• Use a BOX SELECTION to find materials <strong>with</strong> high values of elastic limit (or<br />

strength)<br />

(Click the box icon, then click-drag-release to define the box)<br />

• Add, on the other axis, DENSITY (ρ)<br />

Graph Selection<br />

(Either: highlight Stage 1 in Selection Stages, right-click and choose Edit Stage from the menu;<br />

or double-click the axis to edit)<br />

• Use a BOX SELECTION to find materials <strong>with</strong> high strength and low density<br />

© <strong>Granta</strong> <strong>Design</strong>, October 2009<br />

Browse Search Select<br />

1. Selection Data<br />

MaterialUniverse: All bulk materials<br />

2. Selection Stages<br />

Graph/Index Limit Tree<br />

3. Results<br />

X out of Y pass Rank by: Property A<br />

Material 1<br />

Material 2<br />

Material 3<br />

Material 4<br />

etc.<br />

Selection line,<br />

slope 1<br />

2130<br />

2100<br />

1950<br />

1876<br />

<strong>Getting</strong> <strong>Started</strong> <strong>with</strong> <strong>CES</strong> <strong>Selector</strong> 6<br />

Yield strength<br />

Yield strength<br />

Selection box<br />

Line<br />

selection<br />

Bar chart<br />

Bubble chart<br />

Density<br />

Box<br />

selection


• Replace the BOX <strong>with</strong> a LINE SELECTION<br />

the “specific strength”, σ y / ρ<br />

to find materials <strong>with</strong> high values of<br />

(Click the gradient line icon, then enter slope in the dialog: “1” in this case.<br />

Click on the graph to position the line through a particular point.<br />

Click above or below the line to select an area: above the line for high values of σ y / ρ<br />

in this case.<br />

Now click on the line and drag upwards, to refine the selection to fewer materials.)<br />

• RANK the results by specific strength (Yield strength / Density)<br />

(Rank by, Stage 1: Performance Index and click on results column to change order<br />

from low–high to high–low)<br />

(Example results: CFRP, Titanium alloys, Magnesium alloys)<br />

abibqb=qeb=pq^db=<br />

© <strong>Granta</strong> <strong>Design</strong>, October 2009<br />

3. Results<br />

Selection line,<br />

slope 1<br />

Show: Pass all Stages<br />

Rank by: Stage 1: Performance Index<br />

Name Stage 1: Index<br />

PEEK/IM Carbon Fiber, UD Composite...<br />

Cyanate Ester/HM Carbon Fiber, UD C...<br />

Epoxy/HS Carbon Fiber, UD Composite...<br />

BMI/HS Carbon Fiber, UD Composite...<br />

...<br />

1.55<br />

1.33<br />

1.24<br />

1.08<br />

<strong>Getting</strong> <strong>Started</strong> <strong>with</strong> <strong>CES</strong> <strong>Selector</strong> 7


Exercise 7 Selection <strong>with</strong> a Tree Stage<br />

• Find MATERIALS that can be MOLDED<br />

(In Tree Stage window, select ProcessUniverse, expand “Shaping” in the tree, select<br />

Molding, and click “Insert”, then OK)<br />

abibqb=qeb=pq^db=<br />

• Find PRO<strong>CES</strong>SES to join STEELS<br />

(First change Selection Data to select Processes: Joining processes)<br />

(Then, in Tree Stage window, select MaterialUniverse, expand “Metals and alloys”<br />

in the tree, select Ferrous, and click “Insert”, then OK)<br />

abibqb=qeb=pq^db=<br />

© <strong>Granta</strong> <strong>Design</strong>, October 2009<br />

Tree Selection<br />

Browse Search Select<br />

1. Selection Data<br />

MaterialUniverse: All bulk materials<br />

2. Selection Stages<br />

Graph/Index Limit Tree<br />

3. Results<br />

X out of Y pass<br />

Material 1<br />

Material 2<br />

Material 3<br />

Material 4<br />

etc.<br />

<strong>Getting</strong> <strong>Started</strong> <strong>with</strong> <strong>CES</strong> <strong>Selector</strong> 8<br />

Material<br />

Process<br />

Tree stage for material<br />

Ceramics<br />

Hybrids<br />

Metals<br />

Polymers<br />

Steels<br />

Al alloys<br />

Cu alloys<br />

Ni alloys...<br />

Tree stage for process<br />

Cast<br />

Join<br />

Shape<br />

Surface<br />

Deform<br />

Mold<br />

Composite<br />

Powder<br />

Prototype


Exercise 8 Combining Stages<br />

Change Selection Data to MaterialUniverse: All bulk materials<br />

Find MATERIALS <strong>with</strong> the following properties<br />

• DENSITY < 2000 kg/m 3<br />

• STRENGTH (Elastic limit) > 60 MPa<br />

• THERMAL CONDUCTIVITY < 10 W/m.K<br />

(3 entries in a Limit Stage)<br />

• Can be THERMOFORMED<br />

(a Tree Stage: ProcessUniverse – Shaping – Molding)<br />

• Rank the results by PRICE<br />

(a Graph Stage: bar chart of Price)<br />

(On the final Graph Stage, all materials that fail one or more stages are grayed-out.<br />

The RESULTS window shows the materials that pass all the stages.)<br />

(Example results, cheapest first: PET, Epoxies, PMMA, …)<br />

• GENERATE the SELECTION REPORT<br />

(Click the “Generate” button below the selection results. A selection report is<br />

created, containing a summary of the selection project on page one, and details of<br />

each selection stage on page two.)<br />

Exercise 9 Finding Supporting Information<br />

(Requires Internet connection)<br />

<strong>Getting</strong> It All Together<br />

• With the PET record open, click on SEARCH WEB to find additional information on<br />

PET<br />

(<strong>CES</strong> <strong>Selector</strong> translates the material ID to search strings compatible <strong>with</strong> a group of<br />

high-quality material and process information sources and delivers the hits. Many of<br />

the sources require a subscriber-based password. The ASM source is particularly<br />

recommended.)<br />

`ilpb=qeb=a^q^pebbq=<br />

© <strong>Granta</strong> <strong>Design</strong>, October 2009<br />

Browse Search Select<br />

1. Selection Data<br />

MaterialUniverse: All bulk materials<br />

2. Selection Stages<br />

Graph/Index Limit Tree<br />

3. Results<br />

X out of Y pass Rank by: Property A<br />

Material 1<br />

Material 2<br />

Material 3<br />

Material 4<br />

etc.<br />

4. Selection Report<br />

Generate...<br />

Intersection of all stages<br />

2130<br />

2100<br />

1950<br />

1876<br />

<strong>Getting</strong> <strong>Started</strong> <strong>with</strong> <strong>CES</strong> <strong>Selector</strong> 9<br />

Price<br />

Process<br />

Density<br />

Yield strength<br />

T-conductivity<br />

Stacked stages<br />

Join<br />

Shape<br />

Surface<br />

Cast<br />

Deform<br />

Mold<br />

Composite<br />

Powder<br />

Prototype<br />

Min Max<br />

2000<br />

60<br />

10


Exercise 10 Selecting Processes<br />

Change Selection Data to select ProcessUniverse: Shaping processes<br />

Find PRIMARY SHAPING PRO<strong>CES</strong>SES to make a component <strong>with</strong><br />

• SHAPE = Dished sheet<br />

• MASS = 10 – 12 kg<br />

• SECTION THICKNESS = 4 mm<br />

• ECONOMIC BATCH SIZE > 1000<br />

(5 entries in a Limit Stage)<br />

• Made of a THERMOPLASTIC<br />

(a Tree Stage: MaterialUniverse – Polymers – Plastics – Thermoplastics)<br />

(Example results: compression molding, rotational molding, thermoforming)<br />

© <strong>Granta</strong> <strong>Design</strong>, October 2009<br />

Process Selection<br />

Mass<br />

Browse Search Select<br />

1. Selection Data<br />

ProcessUniverse: Shaping processes<br />

2. Selection Stages<br />

Shape<br />

Graph/Index Limit Tree<br />

Dished sheet �<br />

Physical attributes<br />

Section thickness<br />

Process characteristics<br />

Primary shaping<br />

Economic attributes<br />

Economic batch size<br />

�<br />

10 12<br />

kg<br />

4 4 mm<br />

1000<br />

<strong>Getting</strong> <strong>Started</strong> <strong>with</strong> <strong>CES</strong> <strong>Selector</strong> 10<br />

Material<br />

Ceramics<br />

Hybrids<br />

Metals<br />

Polymers<br />

Elastomers<br />

Plastics<br />

Thermoplastics<br />

Thermosets


Limit<br />

4. Selection Report<br />

Title<br />

Notes<br />

Stage Properties<br />

Limit<br />

Generate... Project Summary<br />

Project Settings<br />

Summary<br />

Title<br />

Notes<br />

Select all materials<br />

© <strong>Granta</strong> <strong>Design</strong>, October 2009<br />

Saving, Copying, and Report Writing<br />

Exercise 11 Adding Comments to a Project<br />

Users can add comments to a selection project as a reminder to<br />

why they have applied certain constraints and objectives.<br />

Comments are displayed on mouse-over, in the selection report<br />

and saved in the project file.<br />

Comments can be added to each selection stage in a project.<br />

(Click the Notes icon in the stage window heading, then<br />

type in the dialog)<br />

Comments can also be added to the selection report summary.<br />

For example, adding information on which material was finally<br />

selected and the reasons why, provides full traceability of the<br />

material selection.<br />

Exercise 12 Saving Selection Stages as a Project<br />

• SAVE the project – (give it a filename and directory location;<br />

<strong>CES</strong> <strong>Selector</strong> project files have the extension “.ces”)<br />

<strong>Getting</strong> <strong>Started</strong> <strong>with</strong> <strong>CES</strong> <strong>Selector</strong> 11<br />

File<br />

Open Project<br />

Save Project<br />

Print...<br />

Edit View etc


4. Selection Report<br />

Generate... Project Summary<br />

© <strong>Granta</strong> <strong>Design</strong>, October 2009<br />

Print Export<br />

Acrobat (PDF) file<br />

Exercise 13 Saving a Selection Report<br />

• GENERATE the selection report<br />

• EXPORT the selection report as a PDF<br />

(Note: You will require a PDF reader such as Adobe Reade<br />

to view the exported selection report)<br />

Exercise 14 Copying <strong>CES</strong> Output into a Document<br />

Charts, Records and Results lists may be copied (CTRL-C)<br />

and pasted (CTRL-V) into a word processor application<br />

• Display a chart, click on it, then COPY and PASTE it into document<br />

• Double click a selected material in the Results window to display<br />

its datasheet, click on the datasheet, then COPY and PASTE it<br />

• Click on the Results window, then COPY and PASTE it<br />

• Try editing the document<br />

(The datasheet in Exercise 3 and the selection charts in<br />

Exercises 4 and 6 were made in this way)<br />

<strong>Getting</strong> <strong>Started</strong> <strong>with</strong> <strong>CES</strong> <strong>Selector</strong> 12<br />

File Edit<br />

Cut<br />

Copy<br />

Paste<br />

View etc<br />

Clipboard<br />

Word<br />

processor


Exercise 15 Favorites<br />

<strong>Getting</strong> the Most Out of <strong>CES</strong> <strong>Selector</strong><br />

Now that you have completed the ‘<strong>Getting</strong> <strong>Started</strong>’ exercises, the following exercises introduce you to<br />

some additional tools and features that will make your use of <strong>CES</strong> <strong>Selector</strong> particularly productive.<br />

Custom Selection<br />

The Favorites feature enables users to highlight their favorite records e.g. your<br />

company’s preferred materials.<br />

• Browse to the CAST ALUMINUM folder<br />

• Add the folder as a FAVORITE<br />

(Right click on “Cast” and select “Add to Favorites”)<br />

(On the tree and datasheet, favorites are marked <strong>with</strong> a star )<br />

• Add the “Type 66” PA folder as a FAVORITE as well<br />

(Expand “Polymers” in the tree, then “Plastics”, “Thermoplastics”, “PA (Polyamide/Nylon)”)<br />

Select MaterialUniverse: All bulk materials<br />

• Make a BUBBLE CHART of YOUNG’S MODULUS (E) against DENSITY ( ρ )<br />

(as in Exercise 4)<br />

• SHOW FAVORITES<br />

(Click the favorites icon)<br />

(On the Graph stage, all materials that are not favorites are grayed-out)<br />

(Click on a favorite material to label it)<br />

• CLEAR the favorites<br />

(Go to Tools > Favorites > Clear)<br />

DELETE THE STAGE<br />

© <strong>Granta</strong> <strong>Design</strong>, October 2009<br />

Table:<br />

Subset:<br />

Browse Search Select<br />

MaterialUniverse<br />

All bulk materials<br />

MaterialUniverse<br />

Metals and alloys<br />

Non-ferrous<br />

Aluminum<br />

Cast<br />

Wrought<br />

Add to Favorites<br />

<strong>Getting</strong> <strong>Started</strong> <strong>with</strong> <strong>CES</strong> <strong>Selector</strong> 13<br />

Tools


Exercise 16 Selection <strong>with</strong> a Custom Subset<br />

The <strong>CES</strong> <strong>Selector</strong> databases are supplied <strong>with</strong> a range of standard subsets (e.g. All bulk<br />

materials, Metals, Magnetic materials, etc.) which enable users to restrict their material<br />

selection to certain material groups <strong>with</strong>in the database. The custom subset feature<br />

enables users to define their own subsets.<br />

Select MaterialUniverse: All bulk materials<br />

• Make a BUBBLE CHART of YOUNG’S MODULUS (E) against DENSITY ( ρ )<br />

(as in Exercise 4)<br />

Change Selection Data to select CUSTOM Materials:<br />

• Select ALUMINUM and PLASTICS<br />

(In the Custom Subset dialog, click on checkboxes to include or exclude records or folders.<br />

A checked box means all records in the folder are selected.<br />

A cleared box means no records in the folder are selected.<br />

A filled box means some records in the folder are selected.)<br />

(Note: The ‘Selection attributes’ setting defines what properties will be available in<br />

graph and limit selection stages)<br />

The bubble chart updates.<br />

© <strong>Granta</strong> <strong>Design</strong>, October 2009<br />

Browse Search Select<br />

1. Selection Data<br />

Custom: Define your own subset...<br />

Custom Subset<br />

Selection table: MaterialUniverse<br />

Initial subset: All bulk materials<br />

Selection attributes: All bulk materials<br />

MaterialUniverse<br />

�<br />

Ceramics and glasses<br />

Fibers and particulates<br />

Hybrids: composites, foams, etc.<br />

Metals and alloys<br />

�<br />

Ferrous<br />

Non-ferrous<br />

...<br />

Aluminum<br />

Beryllium<br />

...<br />

Polymers: plastics, elastomers<br />

Elastomers<br />

Plastics<br />

<strong>Getting</strong> <strong>Started</strong> <strong>with</strong> <strong>CES</strong> <strong>Selector</strong> 14


Exercise 17 Record Coloring<br />

The <strong>CES</strong> <strong>Selector</strong> databases use a standardized color scheme for displaying records<br />

(e.g. dark blue for plastics). These default colors can be changed so that particular<br />

records can be highlighted.<br />

• Browse to the POLYPROPYLENE folder<br />

• Change the folder color to YELLOW<br />

(Right click on Polypropylene and select “Change Color > Yellow”)<br />

(Note: Record colors can also be changed by right-clicking on a record in a graph<br />

stage or the selection results list)<br />

(If the stage from Exercise 16 is still present, the bubble chart updates)<br />

DELETE THE STAGE<br />

Exercise 18 Plotting a Combined Property<br />

Many engineering applications require combined properties to be optimized. For<br />

example, specific stiffness (Young’s modulus / density) in aerospace, and thermal<br />

diffusivity (thermal conductivity/(density . specific heat)) in thermal applications.<br />

These types of properties can be plotted using the advanced property feature.<br />

• Make a BAR CHART of the combined property DENSITY/(YOUNG’S<br />

MODULUS^(1/2))<br />

(To set the y-axis, click “Advanced”. In the Set Axis dialog, select an attribute, then<br />

click “Insert” to create the expression)<br />

(Leave x-axis at )<br />

DELETE THE STAGE<br />

© <strong>Granta</strong> <strong>Design</strong>, October 2009<br />

Table:<br />

Subset:<br />

Browse Search Select<br />

MaterialUniverse<br />

<br />

MaterialUniverse<br />

Metals and alloys<br />

Polymers: plastics, elastomers<br />

Thermoplastics<br />

PP (Polypropylene)<br />

Browse Search Select<br />

1. Selection Data<br />

MaterialUniverse: All bulk materials<br />

2. Selection Stages<br />

Graph/Index Limit Tree<br />

<strong>Getting</strong> <strong>Started</strong> <strong>with</strong> <strong>CES</strong> <strong>Selector</strong> 15<br />

Change Color<br />

X-axis Y-axis<br />

Advanced...<br />

Density /<br />

(Young's Modulus^(1/2))<br />

Red<br />

Lime<br />

Blue<br />

Yellow<br />

...<br />

Restore Default


Performance Indices<br />

One of the main components of the rational material selection technique is the use of performance indices. These are combined<br />

properties (e.g. Young’s modulus / density) that allow the function of a design to be optimized for a particular application. The<br />

performance index finder enables users to quickly identify (and plot) the performance indices that are applicable to their design.<br />

Exercise 19 Performance Index Finder<br />

• Make a BAR CHART of the performance index for minimizing the mass of a stiffnesslimited<br />

beam, loaded in bending<br />

(Set y-axis Function to Beam in bending, Fixed Variables to length and section<br />

shape, Limiting Constraint to stiffness, Optimize to mass)<br />

(Leave x-axis at )<br />

© <strong>Granta</strong> <strong>Design</strong>, October 2009<br />

Browse Search Select<br />

1. Selection Data<br />

MaterialUniverse: All bulk materials<br />

2. Selection Stages<br />

Graph/Index Limit Tree<br />

<strong>Getting</strong> <strong>Started</strong> <strong>with</strong> <strong>CES</strong> <strong>Selector</strong> 16<br />

X-axis Y-axis<br />

Performance Index Finder<br />

Function: Beam in bending<br />

Limiting Constraint: stiffness<br />

Optimize: mass


Exercise 20 Selection <strong>with</strong> a Trade-off Plot<br />

Many designs require a comprise to be made between competing objectives, for<br />

example, maximize performance and minimize cost. The influence of this ‘trade-off’<br />

on material choice can be studied by generating a trade-off plot, where candidate<br />

materials lie along a hypothetical curve or trade-off surface (see picture). Optimal<br />

materials, for a particular application, are identified by making a judgment on the<br />

relative importance of the two objectives (e.g. in aerospace, high performance is<br />

more important than low cost).<br />

• Make a BUBBLE CHART of the performance index<br />

BEAM IN BENDING, limited by STIFFNESS<br />

(Set y-axis to Optimize mass; set x-axis to Optimize cost)<br />

(The materials on or near the trade-off surface offer the best compromise for<br />

minimizing mass and cost)<br />

(Note: The trade off surface cannot be plotted on a chart by <strong>CES</strong>)<br />

© <strong>Granta</strong> <strong>Design</strong>, October 2009<br />

Browse Search Select<br />

1. Selection Data<br />

MaterialUniverse: All bulk materials<br />

2. Selection Stages<br />

Graph/Index Limit Tree<br />

<strong>Getting</strong> <strong>Started</strong> <strong>with</strong> <strong>CES</strong> <strong>Selector</strong> 17<br />

Performance Index<br />

P1 : mass, m<br />

Heavy<br />

Light<br />

Cheap<br />

Trade-off<br />

surface<br />

Performance Index<br />

P 1 : cost, c<br />

Expensive


Exercise 21 Viewing Functional Data<br />

• Find a record for STAINLESS STEEL<br />

• Display the functional data graphs<br />

Functional Data<br />

Some properties <strong>with</strong>in the databases are saved as functional data, meaning that data is available for a number of different<br />

conditions. This allows users to readily incorporate the conditions of their application into their selection project. For example,<br />

using the ‘Fatigue strength model’ the user can specify both the stress ratio and number of cycles for the fatigue strength.<br />

(Click the “Show/Hide” button to show all functional data graphs on the datasheet)<br />

(Alternatively, click on the , , or buttons to open the graph in a new<br />

window and view the equation or data points)<br />

Exercise 22 Setting Parameters for Functional Data<br />

The parameter values for functional data apply to all applicable functional data types<br />

<strong>with</strong>in the datasheet and to all datasheets in the selection project. The parameter<br />

values can be changed using the parameters hyperlink.<br />

• Find a record for STAINLESS STEEL<br />

The value for FATIGUE STRENGTH MODEL is calculated at the given parameter<br />

values for STRESS RATIO and NUMBER OF CYCLES.<br />

• Change the parameter value for NUMBER OF CYCLES<br />

(Click the Parameters link and set a new value in the dialog, then click OK. The<br />

value in the datasheet will updated.)<br />

(To view the updated project setting, go to the Select menu > Project Settings ><br />

Parameter Values)<br />

© <strong>Granta</strong> <strong>Design</strong>, October 2009<br />

Table:<br />

Subset:<br />

Table:<br />

Subset:<br />

Browse Search Select<br />

MaterialUniverse<br />

Metals<br />

Layout: All attributes<br />

Mechanical properties<br />

<strong>Getting</strong> <strong>Started</strong> <strong>with</strong> <strong>CES</strong> <strong>Selector</strong> 18<br />

Datasheet<br />

Fatigue strength at 10^7 cycles * 38.9 - 44.2 ksi<br />

Fatigue strength model (stress range)<br />

Parameters: Stress Ratio=-1, Number of Cycles=1e7<br />

Fatigue strength model<br />

(stress range) (ksi)<br />

100<br />

Browse Search Select<br />

MaterialUniverse<br />

Metals<br />

100 Number of Cycles<br />

Stress Ratio=-1<br />

1e8<br />

Mechanical properties<br />

Fatigue strength model<br />

Datasheet<br />

Fatigue strength at 10^7 cycles * 38.9 - 44.2 ksi<br />

* 34.1 - 49.7 ksi<br />

Parameters: Stress ratio=-1, Number of cycles=1e7<br />

Parameters<br />

Number of cycles 1e7<br />

Stress ratio -1<br />

* 34.1 - 49.7 ksi<br />

Show/Hide


The Eco Audit Tool – only available <strong>with</strong> the <strong>CES</strong> Eco <strong>Selector</strong> edition –<br />

calculates the energy used and CO2 produced during five key life phases of a<br />

product (material, manufacture, transport, use, and end of life) and identifies<br />

which is the dominant phase. This is the starting point for eco-aware product<br />

design, as it identifies which parameters need to be targeted to reduce the ecofootprint<br />

of the product.<br />

Exercise 23 Eco Audit Project<br />

A brand of bottled mineral water is sold in 1 liter PET bottles <strong>with</strong><br />

polypropylene caps. A bottle weighs 40 grams; the cap 1 gram. Bottles<br />

and caps are molded, filled, and transported 550 km from the French<br />

Alps to England by 14 tonne truck, refrigerated for 2 days and then<br />

sold. The overall life of the bottle is one year.<br />

An example product file for this case study is installed <strong>with</strong><br />

<strong>CES</strong> <strong>Selector</strong> in the ‘samples’ folder.<br />

File Edit View Select Tools Window<br />

Product Definition<br />

Eco Audit Project<br />

Product Definition New Open Save<br />

Product name: PET Bottle<br />

© <strong>Granta</strong> <strong>Design</strong>, October 2009<br />

Eco Audit<br />

Eco Audit<br />

1. Material, manufacture, and end of life<br />

Bill of materials, primary processing techniques, and end of life<br />

<strong>Getting</strong> <strong>Started</strong> <strong>with</strong> <strong>CES</strong> <strong>Selector</strong> 19<br />

Quantity Component name Material Recycle content Primary process Mass (kg) End of life<br />

100 Bottle<br />

PET<br />

0% Molding 0.04 Recycle<br />

MaterialUniverse<br />

Ceramics and glasses<br />

Hybrids: composites etc<br />

Metals and alloys<br />

Polymers and elastomers<br />

Elastomers<br />

Polymers<br />

Thermoplastics<br />

Thermoplastics<br />

PET<br />

0%<br />

100%<br />

Molding<br />

Extrusion<br />

Landfill<br />

Combust<br />

Downcycle<br />

Recycle<br />

Re-engineer<br />

Reuse<br />

100 Cap<br />

PP<br />

0% Molding 0.001 Combust<br />

100 Water<br />

1<br />

2. Transport<br />

Transportation from site of manufacture to point of sale<br />

Stage name Transport type Distance (km)<br />

Bottling plant to point of sale 14 tonne truck 550<br />

Sea freight<br />

Rail freight<br />

14 tonne truck<br />

Air freight – long haul<br />

...


3. Use<br />

Product life and location of use<br />

Product Product life: life: 1 years<br />

Country electricity mix:<br />

Static mode<br />

United Kingdom<br />

France<br />

Germany<br />

United Kingdom<br />

...<br />

Energy used to refrigerate product at point of sale (average energy required to refrigerate<br />

100 bottles at 4°C = 0.12 kW)<br />

�� �� Product uses the following energy:<br />

Energy input and output:<br />

Power rating:<br />

Usage:<br />

Usage:<br />

Electric to mechanical (electric motors)<br />

0.12 kW<br />

2<br />

24<br />

days per year<br />

hours per day<br />

Fossil fuel to thermal, enclosed system<br />

Fossil fuel to electric<br />

Electric to thermal<br />

Electric to mechanical (electric motors)<br />

...<br />

© <strong>Granta</strong> <strong>Design</strong>, October 2009<br />

4. Report View Report<br />

Energy and CO2 Footprint Summary:<br />

Phase<br />

Material<br />

Manufacture<br />

Transport<br />

Use<br />

End of life<br />

Total<br />

Energy (MJ)<br />

344<br />

39.1<br />

48.7<br />

50.8<br />

-129<br />

353<br />

Energy (%)<br />

97.2<br />

11.1<br />

13.8<br />

14.4<br />

-36.5<br />

100<br />

<strong>Getting</strong> <strong>Started</strong> <strong>with</strong> <strong>CES</strong> <strong>Selector</strong> 20<br />

CO2 (kg)<br />

9.6<br />

3.13<br />

3.46<br />

3.05<br />

-2.68<br />

16.6<br />

CO2 (%)<br />

(Result: Material is the dominant life phase ⇒ Focus on minimizing embodied energy of<br />

bottle and/or mass of bottle to reduce eco-footprint of product)<br />

Change the “End of life” option for the bottle to “Combust” and note the different impacts<br />

on the end of life Energy & CO2<br />

58.0<br />

18.9<br />

20.9<br />

18.4<br />

-16.2<br />

100


Exercise 24 Saving Eco Audit Product Definition<br />

Eco audit projects do not form part of a selection project and need to be saved<br />

separately.<br />

• SAVE the product definition – (give it a filename and directory location;<br />

<strong>CES</strong> Eco Audit product files have the extension “.prd”)<br />

Exercise 25 Saving/Exporting Eco Audit Report<br />

• GENERATE the eco audit report<br />

• EXPORT the eco audit report as a PDF<br />

(Note: You will require Microsoft Excel or a PDF reader such as Adobe Reader to<br />

view the exported eco audit report)<br />

© <strong>Granta</strong> <strong>Design</strong>, October 2009<br />

Eco Audit Project<br />

Product Definition<br />

New Open Save<br />

4. Report<br />

View Report<br />

Save<br />

Save As<br />

Eco Audit Project<br />

Report<br />

Print Export<br />

Excel<br />

Acrobat (PDF) file<br />

<strong>Getting</strong> <strong>Started</strong> <strong>with</strong> <strong>CES</strong> <strong>Selector</strong> 21


www.grantadesign.com<br />

info@grantadesign.com<br />

Corporate Headquarters: <strong>Granta</strong> <strong>Design</strong> Limited, Rustat House, 62 Clifton Road, Cambridge CB1 7EG, UK<br />

UK/Int’l +44 (0)1223 518895<br />

Copyright © 2008 <strong>Granta</strong> <strong>Design</strong> Ltd.<br />

<strong>CES</strong> <strong>Selector</strong> is a trademark of <strong>Granta</strong> <strong>Design</strong> Ltd.<br />

USA (800) 241-1546<br />

France 08 00 76 12 90<br />

Germany 0800 182 5026

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!