28.11.2012 Views

directed evolution.pdf - Department of Chemistry – Colorado State ...

directed evolution.pdf - Department of Chemistry – Colorado State ...

directed evolution.pdf - Department of Chemistry – Colorado State ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Bocola, M. et al. Adv. Synth. Catal. 2005, 347, 979.<br />

“Directed Evolution” in Enantioselective<br />

Enzymatic Catalysis<br />

Todd K. Hyster<br />

Third Year Seminar<br />

November 22, 2010


Enzyme Catalysis<br />

Enzyme Starting Material Product/<br />

Starting Material/<br />

Enzyme Product<br />

Enzyme Complex<br />

Enzyme Complex<br />

- Benefits<br />

- “Green” Alternative<br />

- High Selectivity<br />

H 2N<br />

O<br />

R 1 Ph<br />

OEt<br />

Pig Liver Esterase<br />

H 3N<br />

- Drawbacks<br />

- Solvent Variability<br />

- Thermal Stability<br />

- High Selectivity<br />

R = Allyl, Bu = >95% ee, 31% conv.<br />

All Others


How to Solve Selectivity Problems?<br />

Transition Metal<br />

Catalysis<br />

Ligand<br />

Development<br />

Bio-Catalysis<br />

Organocatalysis<br />

Catalyst<br />

Development


Basic Biochemistry - Gene and Enzyme<br />

Gene - DNA which codes for a specific polypeptide<br />

O O<br />

P<br />

O<br />

O<br />

H<br />

O<br />

O<br />

N<br />

NH 2<br />

N<br />

Cytosine<br />

O<br />

HN<br />

O<br />

N<br />

Thymine<br />

H 2N<br />

N<br />

O<br />

N<br />

Guanine<br />

Enzyme - A complex polypeptide with a unique structure<br />

Alanine<br />

Aspartic Acid<br />

Cysteine<br />

Glutamic Acid<br />

Phenylalanine<br />

Glycine<br />

Histidine<br />

Isoleucine<br />

Lysine<br />

Leucine<br />

O<br />

Base<br />

Methionine<br />

Asparagine<br />

Proline<br />

Glutamine<br />

Arginine<br />

Serine<br />

Threonine<br />

Valine<br />

Tryptophan<br />

Tyrosine<br />

Me<br />

Ala<br />

Gln<br />

Asn<br />

Ile<br />

Val<br />

Glu<br />

Arg<br />

Gly<br />

His<br />

N<br />

N<br />

N<br />

NH 2<br />

N<br />

Adenine<br />

Bocola, M. et al. Adv. Synth. Catal. 2005, 347, 979. Berg, J. M.; Tymoczko, J. L.; Stryer, L. Enzymes: Basic Concepts and Kinetics. Biochemistry, 5th<br />

Ed.; W H Freeman, New York, 2002.<br />

N<br />

N


Basic Biochemistry - Transcription and Translation<br />

• Transcription and Translation - The process <strong>of</strong> transforming DNA into<br />

Enzymes<br />

DNA RNA Protein<br />

Use RNA<br />

polymerase<br />

Bocola, M. et al. Adv. Synth. Catal. 2005, 347, 979. Berg, J. M.; Tymoczko, J. L.; Stryer, L. Enzymes: Basic Concepts and Kinetics. Biochemistry, 5th<br />

Ed.; W H Freeman, New York, 2002.<br />

Codon


Reetz, M. T. J. Org. Chem. 2009, 74, 5767.<br />

Repeat<br />

Directed Evolution<br />

gene (DNA) wild-type enzyme<br />

random<br />

mutagenesis<br />

library <strong>of</strong> mutated genes<br />

expression<br />

library <strong>of</strong> mutated enzymes<br />

screening for<br />

the desired trait<br />

positive mutant


Directed Evolution v. Rational Design<br />

Repeat<br />

gene (DNA) wild-type enzyme<br />

random<br />

mutagenesis<br />

library <strong>of</strong> mutated genes<br />

expression<br />

library <strong>of</strong> mutated enzymes<br />

screening for<br />

the desired trait<br />

positive mutant<br />

Important Site for<br />

Structure<br />

Ala<br />

Gln<br />

Asn<br />

Ile<br />

Val<br />

Glu<br />

Arg<br />

Gly<br />

His<br />

Ala<br />

Gln<br />

Asn<br />

Met<br />

Val<br />

Glu<br />

Arg<br />

Gly<br />

His<br />

- structural knowledge not necessary<br />

Reetz, M. T. J. Org. Chem. 2009, 74, 5767. Arnold, F. H.; Acc. Chem. Res. 1998, 31, 125. Cedrone, F. et al. Curr. Opin. Struct. Biol. 2000, 10, 405.


Timeline <strong>of</strong> Directed Evolution<br />

1960 2000<br />

Spiegelman preformed an<br />

extracelluar <strong>evolution</strong>ary<br />

experiment with a selfduplicating<br />

nucleic acid”<br />

(Mills, D. R.; Peterson, R. L.;<br />

Spiegelman, S. PNAS 1967,<br />

58, 217.)<br />

Hansche coined the term<br />

“Directed Evolution”<br />

(Francis, J. C.; Hansche, P.<br />

E. Genetics 1972, 70,<br />

59.)<br />

Eigen suggests a<br />

mechanism for<br />

molecular<br />

<strong>evolution</strong>.<br />

(Eigen, M.;<br />

Gardiner W. PNAS<br />

1984, 56, 967.)<br />

A team from<br />

Synergen used<br />

iterative rational<br />

mutagenesis<br />

(Liao, H.;<br />

McKenzie, T.;<br />

Hageman, R. PNAS<br />

1986, 83, 576.)<br />

Arnold reports the first<br />

iterative mutagenesis to<br />

tune enzyme activity.<br />

(Chen, K.; Arnold, F. H.<br />

PNAS 1993, 90, 5618.)<br />

Reetz reports the first<br />

iterative mutagenesis to<br />

tune enzyme<br />

enantioselectivity.<br />

(Reetz, M. T. et al. ACIE<br />

1997, 36, 2830.)


Mutagenesis<br />

- Error Prone Polymerase Chain Reaction (epPCR)<br />

- Saturation Mutagenesis<br />

- Cassette Mutagenesis<br />

- DNA Shuffling<br />

Reetz, M. T. Directed Evolution <strong>of</strong> Enantioselective Enzymes as Catalysts for Organic Synthesis In Advances in Catalysis 2006, pp. 1-69.


Mutating Enzymes<br />

- Error Prone Polymerase Chain Reaction (epPCR)<br />

- Polymerase Chain Reaction<br />

- epPCR<br />

- Modify the concentration <strong>of</strong> MgCl2, MnCl2, or<br />

nucleotides to induce mutations.<br />

N<br />

- Mutations throughout the enzyme<br />

- Some amino acids favored over others<br />

N N H N<br />

N<br />

HN H O<br />

Guanine<br />

Berg, J. M.; Tymoczko, J. L.; Stryer, L. Enzymes: Basic Concepts and Kinetics. Biochemistry, 5th Ed.; W H Freeman, New York, 2002. Cadwell,<br />

R. C.; Joyce, G. F. Genome Res. 1992, 2, 28.<br />

O<br />

H<br />

NH<br />

N<br />

Me<br />

Cytosine<br />

N<br />

HN<br />

N N H<br />

N<br />

N<br />

O<br />

Adenine<br />

H<br />

O<br />

N<br />

Me<br />

Thymine


Codon Degeneracy<br />

- Error Prone Polymerase Chain Reaction (epPCR)<br />

Second Nucleotide T C A G<br />

First Nucleotide<br />

T TTT Phenylalanine TCT Serine TAT Tyrosine TGT Cysteine<br />

TTC Phenylalanine TCC Serine TAC Tyrosine TGC Cysteine<br />

TTA Leucine TCA Serine TAA Stop TGA Stop<br />

TTG Leucine TCG Serine TAG Stop TGG Tryptophan<br />

C CTT Leucine CCT Proline CAT Histidine CGT Arginine<br />

CTC Leucine CCC Proline CAC Histidine CGC Arginine<br />

CTA Leucine CCA Proline CAA Glutamine CGA Arginine<br />

CTG Leucine CCG Proline CAG Glutamine CGG Arginine<br />

A ATT Isoleucine ACT Threonine AAT Asparagine AGT Serine<br />

ATC Isoleucine ACC Threonine AAC Asparagine AGC Serine<br />

ATA Isoleucine ACA Threonine AAA Lysine AGA Arginine<br />

ATG Methionine ACG Threonine AAG Lysine AGG Arginine<br />

G GTT Valine GCT Alanine GAT Aspartic Acid GGT Gylcine<br />

GTC Valine GCC Alanine GAC Aspartic Acid GGC Gylcine<br />

GTA Valine GCA Alanine GAA Glutamic Acid GGA Gylcine<br />

GTG Valine GCG Alanine GAG Glutamic Acid GGG Gylcine<br />

Berg, J. M.; Tymoczko, J. L.; Stryer, L. Enzymes: Basic Concepts and Kinetics. Biochemistry, 5th Ed.; W H Freeman, New York, 2002.


Mutagenesis<br />

- Saturation Mutagenesis and Cassette Mutagenesis<br />

- Saturation Mutagenesis<br />

replaces one amino<br />

acid with the other 19 amino<br />

acids to form 19 new<br />

mutants<br />

CTGGCCCACGGCATTATTGGCTT<br />

CTGGCCCACGGCGCTATTGGCTT<br />

- Cassette Mutagenesis<br />

replaced a short segment<br />

new amino acids, essentially<br />

saturation mutagenesis over<br />

multiple positions<br />

CTGGCCCACGGCATTATTGGCTT<br />

CTGGCCCATGGCGCTATTGGCTT<br />

Berg, J. M.; Tymoczko, J. L.; Stryer, L. Enzymes: Basic Concepts and Kinetics. Biochemistry, 5th Ed.; W H Freeman, New York, 2002.<br />

Kegler-Ebo, D. M.; Docktor, C. M.; DiMaio, D. Nucleic Acids Res. 1994, 11, 1593.


TTC<br />

AAG<br />

TTC<br />

AAG<br />

Plasmid<br />

Methylated<br />

PCR Site Mutagenesis<br />

TTA<br />

AAT<br />

i) Denature<br />

ii) Anneal<br />

Mutated Primers<br />

Dpn1<br />

for<br />

purification<br />

AAT<br />

TTC<br />

TTC<br />

AAG<br />

Mutated Primers<br />

TTA<br />

AAG<br />

Multiple Rounds<br />

<strong>of</strong> PCR<br />

TTA<br />

AAT<br />

Zheng, L.; Baumann, U.; Reymond, J.-L. Nucl. Acids Res. 2004, 32, 115. Hutschison, C. A.; Philipps, S.; Edgell, M. H.; Gillham, S.; Jahnke, P.;<br />

Smith, M. J. Biol. Chem. 1978, 253, 6551.


Cassette Formation<br />

Berg, J. M.; Tymoczko, J. L.; Stryer, L. Enzymes: Basic Concepts and Kinetics. Biochemistry, 5th Ed.; W H Freeman, New York, 2002.


- DNA Shuffling<br />

Mutagenesis<br />

mutation<br />

fragmentation<br />

recombination<br />

wild-type<br />

Berg, J. M.; Tymoczko, J. L.; Stryer, L. Enzymes: Basic Concepts and Kinetics. Biochemistry, 5th Ed.; W H Freeman, New York, 2002.<br />

Cohen, J. Science, 2001, 237, 5528.


Reetz, M. T. Angew. Chem. Int. Ed. 2010, Early View.<br />

Directed Evolution Challenges<br />

Maximum Degree <strong>of</strong> Diversity<br />

N=19 M X!/(X-M)!M!<br />

where:<br />

N = number <strong>of</strong> mutants<br />

X = number <strong>of</strong> amino acids in the enzyme<br />

M = number <strong>of</strong> amino acids substitutions<br />

so in a 300 amino acid enzyme...<br />

If M=1, N=5700 mutants<br />

If M=2, N=16,190,850<br />

If M=3, N=30,557,530,900


C 8H 17<br />

Me<br />

O<br />

O<br />

NO 2<br />

Lipase / E Values<br />

H 2O<br />

Pseudimonas aeruginosa Lipase<br />

285 Amino Acids so...<br />

WT Enzyme Selectivity Factor<br />

one mutation = 5415 mutants<br />

E = 1.1<br />

Starting Material ee% Product ee%<br />

E Values<br />

ln [1-c(1+ee(P))]<br />

ln [1-c(1-ee(P))]<br />

c = conversion<br />

P = product<br />

= E<br />

rate <strong>of</strong> fast enant.<br />

= E<br />

rate <strong>of</strong> slow enant.<br />

Reetz, M. T.: Zonta, A.; Schimossek, K.; Liebeton, K.; Jaeger, K.-E. Angew. Chem. Int. Ed. 1997, 36, 2830. C.-S Chen, Y Fujimoto, G<br />

Girdaukas and C.J Sih, J. Am. Chem. Soc. 1982, 104, 7294<strong>–</strong>7299<br />

C 8H 17<br />

Me<br />

O<br />

OH<br />

C 8H 17<br />

For product and starting material with 90% ee @ 50% conversion E = 59<br />

Me<br />

O<br />

O<br />

NO 2


Absorbance<br />

Absorbance<br />

C 8H 17<br />

Me<br />

O<br />

O<br />

t(s)<br />

Lipase / p-Nitrophenol Screen<br />

NO 2<br />

Low E Value<br />

C 8H 17<br />

High E Value<br />

C 8H 17<br />

H 2O<br />

Pseudimonas aeruginosa Lipase<br />

Me<br />

(S)-enantiomer<br />

C 8H 17<br />

(R)-enantiomer<br />

O<br />

O<br />

OH<br />

OH<br />

Me<br />

(S)-enantiomer<br />

(R)-enantiomer<br />

C 8H 17<br />

t(s)<br />

Reetz, M. T.: Zonta, A.; Schimossek, K.; Liebeton, K.; Jaeger, K.-E. Angew. Chem. Int. Ed. 1997, 36, 2830.<br />

Me<br />

C 8H 17<br />

O<br />

Me<br />

OH<br />

O<br />

OH<br />

Mutant A<br />

Mutant B<br />

Mutant C<br />

Mutant D<br />

Mutant E<br />

Mutant F<br />

Mutant G<br />

Me<br />

O<br />

OH<br />

C 8H 17<br />

Me<br />

O<br />

O<br />

NO 2<br />

O NO 2 UV = 405 nm<br />

S<br />

S<br />

R<br />

S R<br />

S<br />

S<br />

S<br />

S<br />

R<br />

R<br />

R<br />

R<br />

R<br />

S<br />

S<br />

R<br />

S R<br />

S<br />

S<br />

S<br />

S<br />

R<br />

R<br />

R<br />

R<br />

R<br />

Mutant H<br />

Mutant I<br />

Mutant J<br />

Mutant K<br />

Mutant L<br />

Mutant M<br />

Mutant N


C 8H 17<br />

desired gene<br />

Me<br />

O<br />

epPCR<br />

O<br />

NO 2<br />

desired mutant DNA<br />

Lipase / epPCR<br />

H 2O<br />

Pseudimonas aeruginosa Lipase<br />

express in<br />

lipase deficient<br />

E. coli<br />

1000 - 2400 mutants/generation<br />

desired mutant enzyme<br />

C 8H 17<br />

Screen for<br />

enantioselectivity<br />

repeat x 4<br />

Reetz, M. T.: Zonta, A.; Schimossek, K.; Liebeton, K.; Jaeger, K.-E. Angew. Chem. Int. Ed. 1997, 36, 2830. Reetz, M. T. “Directed Evolution <strong>of</strong><br />

Enantioselective Enzymes as Catalysts for Organic Synthesis” Advances in Catalysis; Elsevier, 2006.<br />

Me<br />

O<br />

OH<br />

C 8H 17<br />

Me<br />

Run on Chiral<br />

GC/MS<br />

O<br />

O<br />

best mutant enzyme<br />

NO 2<br />

best mutant DNA


C 8H 17<br />

E<br />

Me<br />

O<br />

O<br />

1.1<br />

Lipase Gen. 1 Directed Evolution<br />

2.1<br />

NO 2<br />

4.4<br />

H 2O<br />

Pseudimonas aeruginosa Lipase<br />

9.4<br />

11.3<br />

0 1 2 3 4 5<br />

mutant generation<br />

Reetz, M. T.: Zonta, A.; Schimossek, K.; Liebeton, K.; Jaeger, K.-E. Angew. Chem. Int. Ed. 1997, 36, 2830.<br />

Liebeton, K.; Zonta, A.; Schimossek, K.; Nardini, M.; Lang, D.; Dijkstra, B. K.; Reetz, M. T.; Jaeger, K.-E. ChemBiol 2000, 7, 709.<br />

WT<br />

S149G<br />

C 8H 17<br />

Me<br />

O<br />

S155L + S149G<br />

OH<br />

C 8H 17<br />

Me<br />

O<br />

O<br />

NO 2<br />

F259L + V47G + S155L + S149G<br />

V47G + S155L + S149G<br />

20 - 30 % conversion


Pseudimonas Aeruginosa Lipase<br />

Reetz, M. T.: Zonta, A.; Schimossek, K.; Liebeton, K.; Jaeger, K.-E. Angew. Chem. Int. Ed. 1997, 36, 2830.<br />

Liebeton, K.; Zonta, A.; Schimossek, K.; Nardini, M.; Lang, D.; Dijkstra, B. W.; Reetz, M. T.; Jaeger, K.-E. Chem. Biol. 2000, 7, 3591.


Koshland Induced Fit Theory<br />

-Emil Fischer initially proposed that substrates and enzymes fit together in a lock and key fashion.<br />

-Daniel Koshland later modified this theory with the argument that enzymes were not rigid<br />

Berg, J. M.; Tymoczko, J. L.; Stryer, L. Enzymes: Basic Concepts and Kinetics. Biochemistry, 5th Ed.; W H Freeman, New York, 2002.<br />

Koshland, D. E. Angew. Chem. Int. Ed. 1994, 33, 2375.


C 8H 17<br />

E<br />

Me<br />

Lipase Gen. II - Saturation Mutagenesis<br />

O<br />

O<br />

WT 1.1<br />

149G 2.1<br />

NO 2<br />

155L 4.4<br />

H 2O<br />

Pseudimonas aeruginosa Lipase<br />

47G 9.4<br />

11.3 259L<br />

0 1 2 3 4 5<br />

mutant generation<br />

Reetz, M. T.: Zonta, A.; Schimossek, K.; Liebeton, K.; Jaeger, K.-E. Angew. Chem. Int. Ed. 1997, 36, 2830.<br />

Liebeton, K.; Zonta, A.; Schimossek, K.; Nardini, M.; Lang, D.; Dijkstra, B. K.; Reetz, M. T.; Jaeger, K.-E. ChemBiol 2000, 7, 709.<br />

WT<br />

S149G<br />

C 8H 17<br />

Me<br />

O<br />

S155L + S149G<br />

OH<br />

C 8H 17<br />

Me<br />

O<br />

O<br />

NO 2<br />

S155L + S149G + V47G + F259L<br />

S155L + S149G + V47G


C 8H 17<br />

Me<br />

Lipase Gen. II - Saturation Mutagenesis<br />

O<br />

WT<br />

O<br />

149G<br />

NO 2<br />

155L<br />

H 2O<br />

Pseudimonas aeruginosa Lipase<br />

47G<br />

259L<br />

Reetz, M. T.: Zonta, A.; Schimossek, K.; Liebeton, K.; Jaeger, K.-E. Angew. Chem. Int. Ed. 1997, 36, 2830.<br />

Liebeton, K.; Zonta, A.; Schimossek, K.; Nardini, M.; Lang, D.; Dijkstra, B. K.; Reetz, M. T.; Jaeger, K.-E. ChemBiol 2000, 7, 709.<br />

C 8H 17<br />

Me<br />

O<br />

OH<br />

C 8H 17<br />

Me<br />

O<br />

O<br />

NO 2


C 8H 17<br />

Me<br />

Lipase Gen. II - Saturation Mutagenesis<br />

O<br />

O<br />

- Each mutation represents a<br />

“hot spot”<br />

- Saturation mutagenesis<br />

preformed at each “hot spot”<br />

E<br />

NO 2<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

1<br />

H 2O<br />

Pseudimonas aeruginosa Lipase<br />

259L<br />

47G<br />

155L<br />

149G<br />

WT<br />

epPCR sat. 155F epPCR<br />

Liebeton, K.; Zonta, A.; Schimossek, K.; Nardini, M.; Lang, D.; Dijkstra, B. K.; Reetz, M. T.; Jaeger, K.-E. ChemBiol 2000, 7, 709.<br />

Berg, J. M.; Tymoczko, J. L.; Stryer, L. Enzymes: Basic Concepts and Kinetics. Biochemistry, 5th Ed.; W H Freeman, New York, 2002.<br />

C 8H 17<br />

Me<br />

O<br />

OH<br />

164G<br />

55G<br />

C 8H 17<br />

Me<br />

O<br />

O<br />

NO 2


C 8H 17<br />

Me<br />

O<br />

Reversing Selectivity - DNA Shuffling<br />

O<br />

NO 2<br />

Can the natural selectivity be reversed?<br />

wild-type enzyme<br />

E=0.9<br />

Gene A<br />

E=1<br />

Zha, D.; Wilensek, S.; Hermes, M.; Jaeger, K.-E.; Reetz, M. T. Chem. Commun. 2001, 2664.<br />

H 2O<br />

Pseudimonas aeruginosa Lipase<br />

Gene B<br />

E=1.1<br />

epPCR 2-3 mutations<br />

Gene C<br />

E=2.0<br />

Gene D<br />

E=3.0<br />

epPCR 2-3 mutations<br />

Gene E<br />

E=3.7<br />

C 8H 17<br />

Me<br />

O<br />

OH<br />

C 8H 17<br />

epPCR 2-3 mutations<br />

Me<br />

O<br />

Gene F<br />

E=7.0<br />

O<br />

NO 2<br />

no further<br />

improvement


C 8H 17<br />

Me<br />

O<br />

Reversing Selectivity - DNA Shuffling<br />

O<br />

NO 2<br />

Can the natural selectivity be reversed?<br />

wild-type enzyme<br />

E=0.9<br />

Gene A<br />

E=1<br />

Zha, D.; Wilensek, S.; Hermes, M.; Jaeger, K.-E.; Reetz, M. T. Chem. Commun. 2001, 2664.<br />

H 2O<br />

Pseudimonas aeruginosa Lipase<br />

Gene B<br />

E=1.1<br />

epPCR 2-3 mutations<br />

Gene C<br />

E=2.0<br />

Gene D<br />

E=3.0<br />

epPCR 2-3 mutations<br />

Gene E<br />

E=3.7<br />

C 8H 17<br />

Me<br />

O<br />

OH<br />

C 8H 17<br />

epPCR 2-3 mutations<br />

Me<br />

O<br />

Gene F<br />

E=7.0<br />

O<br />

NO 2<br />

no further<br />

improvement


C 8H 17<br />

Me<br />

O<br />

Reversing Selectivity - DNA Shuffling<br />

O<br />

NO 2<br />

Can the natural selectivity be reversed?<br />

Gene A<br />

E=1<br />

Gene G<br />

E=6.5<br />

Gene B<br />

E=1.1<br />

Gene K<br />

E=30<br />

Zha, D.; Wilensek, S.; Hermes, M.; Jaeger, K.-E.; Reetz, M. T. Chem. Commun. 2001, 2664.<br />

H 2O<br />

Pseudimonas aeruginosa Lipase<br />

DNA Shuffling<br />

Gene C<br />

E=2.0<br />

Gene H<br />

E=7<br />

epPCR<br />

high mutation rate<br />

Gene E<br />

E=3.7<br />

Gene J<br />

E=20<br />

C 8H 17<br />

Me<br />

Gene I<br />

E=6.7<br />

O<br />

OH<br />

Gene F<br />

E=7.0<br />

C 8H 17<br />

Me<br />

O<br />

O<br />

Gene D<br />

E=3.0<br />

Two mutations in “Gene I” are eliminated<br />

NO 2


C 8H 17<br />

Me<br />

Cohen, J. Science 2001, 237, 5528.<br />

O<br />

Reversing Selectivity - DNA Shuffling<br />

O<br />

NO 2<br />

H 2O<br />

Pseudimonas aeruginosa Lipase<br />

DNAse I<br />

digest<br />

C 8H 17<br />

Me<br />

DNA ligase<br />

PCR w/o<br />

primers<br />

O<br />

OH<br />

C 8H 17<br />

Me<br />

O<br />

O<br />

NO 2


C 8H 17<br />

Best Prior<br />

Mutant<br />

E=25<br />

Me<br />

O<br />

Lipase Gen. III - Cassette Mutagenesis<br />

O<br />

NO 2<br />

1 cycle <strong>of</strong> high<br />

mutation epPCR<br />

enzyme variants<br />

A with E=3<br />

B with E=6.5<br />

DNA Shuffling<br />

enzyme variant C<br />

E=32<br />

H 2O<br />

Pseudimonas aeruginosa Lipase<br />

wild-type<br />

E=1.1<br />

enzymes variant C<br />

E=30<br />

Reetz, M. T.; Wilensek, S.; Zha, D.; Jaeger, K.-E. Angew. Chem. Int. Ed. 2001, 40, 3589.<br />

C 8H 17<br />

CMCM<br />

Pos. 160 - 163<br />

DNA Shuffling<br />

enzymes variant H<br />

E>51<br />

Me<br />

O<br />

OH<br />

C 8H 17<br />

Me<br />

O<br />

O<br />

CMCM<br />

Pos. 155 + 162<br />

enzymes variants<br />

D with E=34<br />

E with E=30<br />

NO 2


Mutations in s-selective mutatant E=51:<br />

20, 53, 155, 162, 180, 234<br />

Location <strong>of</strong> Mutations<br />

Catalytic Triad:<br />

82, 229, 251<br />

Mutations in r-selective mutatant E=30:<br />

16, 34, 86, 87, 94, 113, 147, 150, 208, 232, 237<br />

Bocola, M.; Otte, N.; Jaeger, K.-E.; Reetz, M. T.; Theil, W. ChemBioChem 2004, 5, 214. Reetz, M. T.et al. ChemBioChem 2007, 8, 106.


C 8H 17<br />

Me<br />

O<br />

O<br />

NO 2<br />

Catalytic Triad<br />

H 2O<br />

Pseudimonas aeruginosa Lipase<br />

PAL Enzyme Catalytic Triad PAL Enzyme Catalytic Triad with Inhibitor<br />

Bocola, M.; Otte, N.; Jaeger, K.-E.; Reetz, M. T.; Theil, W. ChemBioChem 2004, 5, 214. Reetz, M. T.et al. ChemBioChem 2007, 8, 106.<br />

C 8H 17<br />

Me<br />

O<br />

OH<br />

C 8H 17<br />

Me<br />

O<br />

O<br />

NO 2


O<br />

N<br />

H<br />

R<br />

O<br />

Me<br />

N<br />

H<br />

O<br />

O<br />

Ser 82<br />

R<br />

Me<br />

OR'<br />

O<br />

N<br />

H<br />

H N N<br />

O<br />

O<br />

Ser 82<br />

OH<br />

His 251<br />

O<br />

N<br />

H<br />

H N N<br />

His 251<br />

H O<br />

H O<br />

Mechanism<br />

Bocola, M.; Otte, N.; Jaeger, K.-E.; Reetz, M. T.; Theil, W. ChemBioChem 2004, 5, 214.<br />

Reetz, M. T.et al. ChemBioChem 2007, 8, 106.<br />

O<br />

Asp 229<br />

O<br />

Stereoselective Step<br />

Asp 229<br />

O<br />

N<br />

H<br />

O<br />

R<br />

Me<br />

N<br />

H<br />

R<br />

Me<br />

O<br />

O<br />

Ser 82<br />

O<br />

O<br />

OR'<br />

- HOR<br />

+ H 2O<br />

O<br />

Ser 82<br />

H<br />

O<br />

N<br />

H<br />

N N<br />

His 251<br />

N<br />

H<br />

O H<br />

H<br />

N N<br />

His 251<br />

H<br />

H<br />

O<br />

O<br />

O<br />

Asp 229<br />

O<br />

Asp 229


Origin <strong>of</strong> Selectivity<br />

Bocola, M.; Otte, N.; Jaeger, K.-E.; Reetz, M. T.; Theil, W. ChemBioChem 2004, 5, 214.<br />

R-enantiomer interacts with 162Leu favoring S-enantiomer


Combinatorial Active-Site Saturation Test (CAST)<br />

-Libraries contain 1-3 amino acids<br />

- Marriage <strong>of</strong> saturation mutagenesis, random<br />

mutagenesis, and rational design<br />

-High probability <strong>of</strong> success because the mutants<br />

are near the binding pocket.<br />

Reetz, M. T. J. Org. Chem. 2009, 74, 5767. Reetz, M. T.; Bocola, M.; Carballeira, J. D.; Zha, D.; Vogel, A. Angew. Chem. Int. Ed. 2005, 44, 4192.


Lib. B<br />

Combinatorial Active-Site Saturation Test (CAST)<br />

Lib. D<br />

Lib. C<br />

Lib. E<br />

Lib. A<br />

Mutants at lib. A and lib. D have greatest<br />

effect<br />

C 8H 17<br />

Reetz, M. T.; Bocola, M.; Carballeira, J. D.; Zha, D.; Vogel, A. Angew. Chem. Int. Ed. 2005, 44, 4192.<br />

Reetz, M. T.; Carballeira, J. D.; Peyralans, J.; Höbenreich, H.; Maichele, A.; Vogel, A. Chem. Eur. J. 2006, 12, 6031.<br />

Me<br />

O<br />

O<br />

Me<br />

OR<br />

OR<br />

O<br />

OR<br />

i-Bu<br />

n-Bu<br />

Et<br />

O<br />

O<br />

Me<br />

OR<br />

OR<br />

O<br />

OR<br />

Et<br />

O<br />

O<br />

O<br />

OR<br />

OR<br />

OR<br />

Leu162Val E = 20<br />

Met16Ala, Leu17Phe E = 25


Reetz, M. T. J. Org. Chem. 2009, 74, 5767.<br />

Iterative Saturation Mutagenesis (ISM)<br />

B C D A C D A B D A B C<br />

A B C D<br />

WT<br />

- The marriage <strong>of</strong> CASTing and <strong>directed</strong> <strong>evolution</strong><br />

- One <strong>of</strong> the fastest ways to develop a catalyst


RO<br />

O<br />

Me<br />

RO<br />

Iterative Saturation Mutagenesis<br />

O<br />

Et<br />

RO<br />

Me<br />

E = 31 E = 106 E = 55<br />

O<br />

Reetz, M. T.; Prasad, S.; Carballeira, J. D.; Gumulya, Y.; Bocola, M. J. Am. Chem. Soc. 2010, 132, 9144.<br />

i-Bu<br />

RO<br />

O<br />

Me<br />

E = 594<br />

C 8H 17<br />

Met16Ala/Leu17Phe/Leu162Asn E = 594<br />

Met16Ala/Leu17Phe E = 2.6<br />

Met16Ala/Leu162Asn E = 2.2<br />

Leu17Phe/Leu162Asn E = 1.1


The Best <strong>of</strong> Both Worlds<br />

Mutations at 162 and 16 open the active pocket increasing activity<br />

Reetz, M. T.; Prasad, S.; Carballeira, J. D.; Gumulya, Y.; Bocola, M. J. Am. Chem. Soc. 2010, 132, 9144.


Asp 192<br />

O<br />

His 374<br />

O<br />

N<br />

NH<br />

O<br />

O<br />

H<br />

O<br />

O<br />

Tyr 314<br />

H<br />

O<br />

NO 2<br />

Asp 348<br />

Isotopic Screening<br />

O<br />

(S)<br />

PhO H2O C 6D 5O<br />

O<br />

Tyr 251<br />

Asp 192<br />

His 374<br />

O<br />

OH<br />

H<br />

N<br />

NH<br />

Reetz, M. T. et al. Org. Lett. 2004, 6, 177. Zou, J. Y. et al. Structure 2000, 8, 111.<br />

(R)<br />

Aspergillus niger PhO<br />

O<br />

O<br />

O<br />

O H H<br />

O<br />

Tyr 314<br />

O<br />

NO 2<br />

Asp 348<br />

HO<br />

OH<br />

WT E = 4.6<br />

Mutant E = 10.8<br />

Tyr 251<br />

Asp 192<br />

His 374<br />

O<br />

(S) C 6D 5O (R)<br />

OH<br />

O<br />

O<br />

H<br />

HN<br />

N<br />

O<br />

O<br />

O H H<br />

OH<br />

Tyr 314<br />

O<br />

NO 2<br />

Asp 348<br />

Tyr 251


Epoxide Hydrolase<br />

Reetz, M. T. et al. Org. Lett. 2004, 6, 177. Zou, J. Y. et al. Structure 2000, 8, 111.


Epoxide Hydrolase<br />

Reetz, M. T. et al. Org. Lett. 2004, 6, 177. Zou, J. Y. et al. Structure 2000, 8, 111.


Epoxide Hydrolase - ISM<br />

Reetz, M. T. et al. Angew. Chem. Int. Ed. 2006, 45, 1236. Zou, J. Y. et al. Structure 2000, 8, 111.<br />

B C D A C D A B D A B C<br />

A B C D<br />

WT


Library A<br />

193/195/196<br />

PhO<br />

Library B<br />

215/217/219<br />

Reetz, M. T. et al. J. Am. Chem. Soc. 2009, 131, 7334.<br />

Reetz, M. T. et al. Angew. Chem. Int. Ed. 2006, 45, 1236.<br />

Epoxide Hydrolase - ISM<br />

O<br />

H 2O<br />

Epoxide Hydrolase<br />

Library C<br />

329/330<br />

WT E = 4.6<br />

Library D<br />

349/350<br />

Library E<br />

317/318<br />

Library F<br />

244/245/249<br />

no enhancement E = 14 no enhancement not tested not tested not tested<br />

PhO<br />

O<br />

PhO<br />

HO<br />

OH


no enhancement<br />

Library A<br />

193/195/196<br />

Library F<br />

244/245/249<br />

PhO<br />

Reetz, M. T. et al. J. Am. Chem. Soc. 2009, 131, 7334.<br />

Reetz, M. T. et al. Angew. Chem. Int. Ed. 2006, 45, 1236.<br />

Epoxide Hydrolase - ISM<br />

O<br />

WT E = 4.6<br />

Library E<br />

317/318<br />

H 2O<br />

Epoxide Hydrolase<br />

Library B<br />

215/217/219<br />

E = 49<br />

PhO<br />

Library C<br />

329/330<br />

Library D<br />

349/350<br />

E = 35<br />

O<br />

E = 14<br />

E = 21<br />

E = 24<br />

PhO<br />

HO<br />

Library F<br />

244/245/249<br />

OH<br />

Library E<br />

317/318<br />

E = 115


Asp 192<br />

O<br />

O<br />

d<br />

O<br />

H<br />

O<br />

Tyr 314<br />

H<br />

O<br />

Tyr 251<br />

Epoxide Hydrolase<br />

mutant d R d S !d R-S E<br />

WT 4.3 3.5 0.8 4.6<br />

mA 4.8 4.0 0.8 14<br />

mB<br />

4.9 4.0 0.9 21<br />

mC 5.1 4.0 1.1 24<br />

mD<br />

Reetz, M. T. et al. J. Am. Chem. Soc. 2009, 131, 7334.<br />

5.1 3.9 1.2 35<br />

mE 5.4 3.8 1.6 115


only substrate tolerated<br />

Phenylacetone Monooxygenase<br />

Reetz, M. T.; Wu, S. J. Am. Chem. Soc. 2009, 131, 15424.<br />

Reetz, M. T.; Wu, S. Chem. Commun. 2008, 5499.<br />

O<br />

Ph<br />

O 2<br />

PAMO, NADPH<br />

O<br />

O Ph


H 2O<br />

Me<br />

Understanding Selectivity - Mechanism<br />

R<br />

N<br />

Me N<br />

Me<br />

NADPH<br />

N O<br />

O<br />

NH<br />

NADP<br />

R<br />

N<br />

Me N<br />

H<br />

O<br />

Reetz, M. T. et al. Angew. Chem. Int. Ed. 2006, 71, 8431.<br />

O<br />

O<br />

N O<br />

O<br />

NH<br />

Me<br />

R<br />

N<br />

Me N H<br />

N O<br />

O<br />

NADP<br />

NH<br />

Me<br />

O 2<br />

Me<br />

Me N<br />

H O<br />

O O<br />

R<br />

N<br />

Me N<br />

H O<br />

NADP O<br />

NADP<br />

R<br />

N<br />

N O<br />

O<br />

NH<br />

Criegee Intermediate<br />

N O<br />

O<br />

NH<br />

O


only substrate tolerated<br />

Phenylacetone Monooxygenase<br />

Reetz, M. T.; Wu, S. J. Am. Chem. Soc. 2009, 131, 15424.<br />

Reetz, M. T.; Wu, S. Chem. Commun. 2008, 5499.<br />

O<br />

Ph<br />

O 2<br />

PAMO, NADPH<br />

O<br />

O Ph


Parent Sequence at the Bulge:<br />

Ser/Ala/Leu/Ser<br />

Mutant Sequence at the Bulge:<br />

Ala/Trp/Tyr/Thr<br />

when Ar = Ph E = 70<br />

when Ar = C6H4Cl E > 200<br />

Phenylacetone Monooxygenase<br />

Reetz, M. T.; Wu, S. J. Am. Chem. Soc. 2009, 131, 15424.<br />

Reetz, M. T.; Wu, S. Chem. Commun. 2008, 5499.<br />

O<br />

Ar<br />

O 2<br />

PAMO, NADPH<br />

O<br />

O<br />

Ar<br />

O<br />

Ar


Reetz, M. T.; Wu, S. J. Am. Chem. Soc. 2009, 131, 15424.<br />

Only the Bulge<br />

Only residues on the “bulge” increased ee and substrate tolerance<br />

proline is thought it impart rigidity


Reetz, M. T.; Wu, S. J. Am. Chem. Soc. 2009, 131, 15424.<br />

O<br />

Et Mutant, NADPH<br />

Position 440<br />

O 2<br />

mutant E-value Km (mM) kcat (s -1 ) kcat/Km<br />

Phe 26 0.89 1.2 1300<br />

Leu >200 1.6 0.72 450<br />

Ile >200 2.7 0.66 240<br />

Asn >200 2.2 1.5 680<br />

His 34 1.0 0.83 830<br />

Trp >200 1.3 1.3 1000<br />

Tyr 95 1.9 1.1 580<br />

O<br />

O<br />

Et<br />

O<br />

Et


O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

Ph<br />

C 6H 4Cl<br />

C 6H 4Me<br />

Me<br />

Et<br />

n-Pr<br />

Reetz, M. T.; Wu, S. J. Am. Chem. Soc. 2009, 131, 15424.<br />

Scope and Selectivity<br />

E-value E-value<br />

12<br />

7<br />

117<br />

95<br />

26<br />

145<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

n-Bu<br />

Me<br />

Cy<br />

Bn<br />

Me<br />

CN<br />

39<br />

102<br />

>200<br />

145<br />

48<br />

91


Mutations distant from the active site<br />

No Activity with WT<br />

400 mutants screened<br />

Allosteric Effects<br />

Wu, S.; Acevedo, J. P.; Reetz, M. T. P. Natl. Acad. Sci. USA 2010, 107, 2775.<br />

Gln93Asn/Pro94Asp best mutant<br />

O<br />

O<br />

O<br />

O<br />

Ph<br />

n-Pr<br />

Me<br />

Bn<br />

Me<br />

conv. (%) E-value<br />

45 92<br />

37 68<br />

15 >200<br />

43 >200


Mutations distant from the active site<br />

No Activity with WT<br />

400 mutants screened<br />

Allosteric Effects<br />

Wu, S.; Acevedo, J. P.; Reetz, M. T. P. Natl. Acad. Sci. USA 2010, 107, 2775.<br />

Gln93Asn/Pro94Asp best mutant<br />

O<br />

Me<br />

O<br />

Et<br />

O<br />

n-Bu<br />

ee%<br />

98<br />

98<br />

97


X<br />

X<br />

O<br />

X<br />

X<br />

R<br />

O<br />

H<br />

O<br />

Y<br />

H<br />

Y<br />

Y<br />

O<br />

O<br />

Y<br />

Nitrilase<br />

Baeyer-Villigerase<br />

Aminotransferase<br />

Aldolase<br />

Enoate Reductase<br />

X<br />

X<br />

O<br />

O<br />

O<br />

NH 2<br />

Y<br />

X Y<br />

R<br />

X<br />

OH<br />

O<br />

Y<br />

Conclusion<br />

Y<br />

OH<br />

R<br />

X<br />

X<br />

X<br />

HN<br />

H<br />

O<br />

O<br />

O<br />

Y<br />

O<br />

Y<br />

OR<br />

NH<br />

O<br />

P<br />

RO OR<br />

OR<br />

P450 Oxidase<br />

Lipase<br />

X<br />

Hydantoinase<br />

Epoxide Hydrolase<br />

Kinase<br />

O<br />

OH<br />

R<br />

HN NH 2<br />

X<br />

X<br />

O<br />

O<br />

OH<br />

OH<br />

O<br />

OH<br />

R<br />

Y<br />

Y<br />

OH<br />

OH<br />

P<br />

RO OH<br />

OR


C 8H 17<br />

PhO<br />

O<br />

Me<br />

O<br />

O<br />

O<br />

NO 2<br />

H 2O<br />

Epoxide Hydrolase<br />

Et Mutant, NADPH<br />

O 2<br />

Conclusion<br />

H 2O<br />

Pseudimonas aeruginosa Lipase<br />

PhO<br />

O<br />

PhO<br />

HO<br />

WT E = 4.3<br />

Mutant E = 115<br />

O<br />

O<br />

Et<br />

WT E = 12.8<br />

Mutant E = 200<br />

OH<br />

C 8H 17<br />

References include more <strong>of</strong> <strong>directed</strong> <strong>evolution</strong> in enzyme catalysis<br />

O<br />

Et<br />

Me<br />

O<br />

OH<br />

C 8H 17<br />

WT E = 1.1<br />

Mutant E = 594<br />

Me<br />

O<br />

O<br />

NO 2<br />

- Directed <strong>evolution</strong> can increase<br />

the enantioselectivity and<br />

substrate selectivity <strong>of</strong> enzyme<br />

catalysis<br />

- CASTing and ISM represent<br />

new method to rapidly develop<br />

enzymatic catalysis


Acknowledgements<br />

Rovis Group<br />

Tomislav Rovis


E + S<br />

k1<br />

k-1<br />

Enzyme Kinetics<br />

kcat<br />

E:S E:P<br />

Steady <strong>State</strong> Kinetics<br />

kcat = turnover number<br />

Km = Michaelis Constant (kcat + k-1)/k1<br />

if k-1 >> kcat then Km = Kd = k-1/k1<br />

if kcat >> k-1 then Km = kcat/k1<br />

kcat/Km = Specificity Constant<br />

Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic <strong>Chemistry</strong>, 1st ed.; University Science Books: Sausalito, 2006.<br />

P


N<br />

NH 2<br />

N<br />

N<br />

O<br />

P O<br />

OH<br />

O<br />

N<br />

O<br />

OH<br />

NADP<br />

O O<br />

O O P<br />

O P O<br />

O<br />

H<br />

HO<br />

O<br />

N<br />

OH<br />

O<br />

NH 2<br />

NADPH<br />

N<br />

NH 2<br />

N<br />

N<br />

O<br />

P O<br />

OH<br />

O<br />

N<br />

O<br />

OH<br />

NADPH<br />

O O<br />

O O P<br />

O P O<br />

O<br />

H<br />

HO<br />

O<br />

N<br />

OH<br />

H H<br />

O<br />

NH 2


NC<br />

OH<br />

CN<br />

WT = 94.5 %ee @ 100 mM<br />

87.8 %ee @ 2.25 M<br />

Nitrilase<br />

A190H<br />

Is this really <strong>directed</strong> <strong>evolution</strong>...?<br />

HO 2C<br />

OH<br />

m/z = 130<br />

CN 15<br />

NC<br />

Nitrilases<br />

OH<br />

Using Gene Site<br />

Saturation<br />

Mutagenesis<br />

(GSSM):<br />

S-selective<br />

Nitrilase<br />

NC<br />

DeSantis, G. et al. J. Am. Chem. Soc. 2003, 125, 11476. DeSantis, G. et al. J. Am. Chem. Soc. 2002, 124, 9024.<br />

CO 2H<br />

PhHN<br />

Ala190His 97.9 %ee @ 100 mM<br />

OH<br />

CN 15<br />

98.1 %ee @ 2.25 M<br />

R-selective<br />

Nitrilase<br />

Ph<br />

O<br />

NC<br />

N<br />

i-Pr<br />

F<br />

Lipitor<br />

OH<br />

m/z = 129<br />

CO 2H<br />

OH<br />

OH CO2H


O<br />

Ph<br />

Eliminate Residues<br />

441+442<br />

Rational Design - Remove the Bulge<br />

O<br />

Ph<br />

O O<br />

Bocola, M.; Schulz, F.; Leca, F.; Vogel, A.; Fraaije, M. W.; Reetz, M. T. Adv. Synth. Catal. 2005, 347, 979.<br />

Ph<br />

O<br />

Ph<br />

O<br />

O


Epimerizable<br />

D-Hydantionase<br />

ee = 40%<br />

MeS<br />

R H<br />

HN NH<br />

Hydantoinase<br />

May, O.; Nguyen, P. T.; Arnold, F. H. Nature Biotechnology 2000, 18, 317.<br />

O<br />

O<br />

2 round <strong>of</strong> epPCR<br />

HN NH<br />

O<br />

O<br />

Hydantoinase<br />

Mutant Hydantoinase 100 mM<br />

Wild Hydantoinase 100 mM<br />

R H<br />

O<br />

OH<br />

+ H 2O HN NH 2<br />

O<br />

Lower D-Selectivity<br />

Higher Activity<br />

hydantoinase<br />

racemace<br />

L-carbamoylase<br />

MeS<br />

Carbamoylase<br />

R H<br />

O<br />

+ H 2O NH 2<br />

91 mM<br />

66 mM<br />

OH<br />

saturation mutagenesis<br />

O<br />

NH 2<br />

AA95<br />

OH<br />

L-Hydantionase<br />

ee = -20%


O<br />

OH<br />

O 2<br />

CHMO Mutants<br />

Baeyer-Villiger Monooxygenase<br />

O<br />

O<br />

HO<br />

OMe<br />

O<br />

(R)<br />

O<br />

OH<br />

O<br />

(S)<br />

O 2<br />

CHMO Mutant<br />

F432S<br />

O O<br />

(R)<br />

9% ee (R)<br />

O O<br />

(S)<br />

Reetz, M. T.; Brunner, B.; Schneider, T.; Schulz, F.; Clouthier. C. M.; Kayser, M. M. Angew. Chem. Int. Ed. 2004, 43, 4075/<br />

O<br />

H<br />

O<br />

MeO (S)<br />

H<br />

99% ee (S)<br />

OH<br />

OH<br />

Round 1<br />

epPCR<br />

F342L<br />

49% ee<br />

F342S<br />

79% ee<br />

Round 2<br />

epPCR<br />

90% ee


O<br />

O<br />

OH<br />

OMe<br />

O 2<br />

CHMO Mutants<br />

O 2<br />

CHMO Mutant<br />

F432S<br />

Baeyer-Villiger Monooxygenase<br />

O<br />

O<br />

MeO (S)<br />

99% ee (S)<br />

O<br />

HO<br />

O<br />

(R)<br />

O<br />

OH<br />

O<br />

(S)<br />

O O<br />

(R)<br />

9% ee (R)<br />

O O<br />

(S)<br />

Reetz, M. T.; Brunner, B.; Schneider, T.; Schulz, F.; Clouthier. C. M.; Kayser, M. M. Angew. Chem. Int. Ed. 2004, 43, 4075.<br />

Mihovilovic, M. D.; Rudr<strong>of</strong>f, F.; Winninger, A.; Schneider, T.; Schulz, F.; Reetz, M. T. Org. Lett. 2006, 8, 1221.<br />

O<br />

H<br />

H<br />

WT 89% ee (S)<br />

S 94% ee (S)<br />

R 17% ee (R)<br />

O<br />

Me Me<br />

WT 92% ee (S)<br />

S 99% ee (S)<br />

R 99% ee (R)<br />

OH<br />

OH<br />

Round 1<br />

epPCR<br />

54% ee<br />

79% ee<br />

Ph<br />

Round 2<br />

epPCR<br />

90% ee<br />

O<br />

WT 62% ee (S)<br />

S 96% ee (S)<br />

R 8% ee (R)<br />

O<br />

WT No Conv.<br />

S 92% ee (S)<br />

R 12% ee (R)


O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

H<br />

H<br />

H<br />

H<br />

OH<br />

OH<br />

OH<br />

OMe<br />

Me<br />

i-Pr<br />

Et<br />

Understanding Selectivity - Mechanism<br />

WT (ee%) F432S (ee%)<br />

9 R<br />

78 S<br />

95 S<br />

92 S<br />

94 R<br />

27 R<br />

79 S<br />

99 S<br />

99 S<br />

99 S<br />

97 R<br />

97 R<br />

Kayser, M. M.; Clouthier, C. M. J. Org. Chem. 2006, 71, 8424.<br />

Stolow, R. D.; Groom, T. Tetrahedron Lett. 1968, 9, 5781.<br />

Standard Rational for Stereochemistry<br />

O<br />

H<br />

FlaO<br />

OH<br />

O<br />

O<br />

R S<br />

R L<br />

4-hydroxyl cyclohexanone<br />

44 56<br />

FlaO<br />

O<br />

O<br />

O<br />

H<br />

O<br />

O<br />

H<br />

OH<br />

H<br />

Serine 432


O<br />

Me<br />

O<br />

OAc<br />

New Approach to Baeyer-Villiger CASTing<br />

Clouthier, C. M.; Kayser, M. M.; Reetz, M. T. J. Org. Chem. 2006, 71, 8431.<br />

O<br />

R<br />

O 2<br />

CPMO<br />

CHMO CPMO<br />

143 + 432 156 + 450<br />

WT GlyPhe-SerTyr GlyPhe-GlyIle GlyPhe-GlyCys<br />

100 (46R)<br />

27 (65R) 74 (92R) 37 (68R)<br />

81 (5S) 20 (59R) 100 (8R) 89 (13S)<br />

R<br />

O<br />

O<br />

(S)


O<br />

Me<br />

O<br />

OAc<br />

New Approach to Baeyer-Villiger CASTing<br />

Clouthier, C. M.; Kayser, M. M.; Reetz, M. T. J. Org. Chem. 2006, 71, 8431.<br />

O<br />

R<br />

O 2<br />

CPMO<br />

CHMO CPMO<br />

143 + 432 156 + 450<br />

WT PheGly-LeuPhe PheGly-AsnTyr PheGly-HisLeu<br />

100 (46R)<br />

89 (91R) 67 (88R) 69 (80R)<br />

81 (5S) 10 (ND) 19 (90R) 55 (74R)<br />

R<br />

O<br />

O<br />

(S)


Me<br />

Mutant<br />

Me<br />

Oxidation <strong>of</strong> Thioethers<br />

S Me<br />

O 2, CHMO<br />

Reetz, M. T.; Daligault, F.; Brunner, B.; Hinrichs, H.; Deege, A. Angew. Chem. Int. Ed. 2004, 43, 4078.<br />

Me<br />

Me<br />

O O<br />

S Me<br />

S Me<br />

Amino Acid<br />

Exchanges Yield (%) Configuration ee% Sulfone (%)<br />

WT - 75 R<br />

14


In Cells:<br />

O<br />

N<br />

(S,S) 82% ee, 96% de<br />

(S,S) 79% ee, 96% de<br />

Using Purified Enyzmes:<br />

O<br />

N<br />

OH<br />

OH<br />

(S,S) 87% ee, 96% de, 90% yield<br />

(S,S) 86% ee, 96% de, 85% yield<br />

Cytochrome P450<br />

O<br />

B, 139-3 1-12G<br />

Münzer, D. F.; Meinhold, P.; Peters, M. W.; Feichtenh<strong>of</strong>er, S.; Griengl, H.; Arnold, F. H. Chem. Commun. 2005, 2597.<br />

Background:<br />

Farinas, E. T.; Schwaneberg, U.; Glieder, A.; Arnold. F. H. Adv. Synth. Catal. 2001, 343, 601.<br />

Glieder, A.; Farinas, E. T.; Arnold, F. H. Nat. Biotechnol. 2002, 20, 1135.<br />

Peters, M. W.; Meinhold, P.; Glieder, A.; Arnold. F. H. J. Am. Chem. Soc. 2003, 125, 13442.<br />

N<br />

Low Conversion 1-15%<br />

O<br />

B, 139-3 1-12G<br />

N<br />

O<br />

N<br />

OH<br />

(R,R) 89% ee, 94% de<br />

O<br />

N<br />

OH<br />

(R,R) 89% ee, 95% de, 97% yield


H<br />

N<br />

O OH<br />

Fe II<br />

N N<br />

S<br />

N<br />

O<br />

Fe V<br />

N N<br />

N<br />

S<br />

H<br />

N<br />

H N<br />

O OH<br />

Fe II<br />

N N<br />

S<br />

N<br />

N<br />

Cytochrome P450<br />

N N<br />

Meunier, B.; de Visser, S. E.; Shaik, S. Chem. Rev. 2004, 104, 3947.<br />

H<br />

N<br />

O O<br />

Fe II<br />

N N<br />

S<br />

N<br />

O<br />

Fe V<br />

S<br />

OH<br />

H<br />

Fe IV<br />

N N<br />

N<br />

S<br />

N<br />

N<br />

H<br />

N<br />

Fe II<br />

N N<br />

S<br />

N<br />

N<br />

H<br />

N N<br />

N<br />

Fe III<br />

N N<br />

Fe III<br />

S<br />

S<br />

N<br />

OH<br />

N<br />

N<br />

Fe III<br />

N N<br />

S<br />

H<br />

N


- Quick-E-Test<br />

C 8H 17<br />

C 13H 27<br />

Me<br />

O<br />

O<br />

O<br />

O<br />

- pH Indicator<br />

C 8H 17<br />

NO 2<br />

O O<br />

N<br />

Me<br />

O<br />

O R<br />

HO NO 2<br />

H 2O<br />

Lipase Mutants<br />

H 2O, Buffer<br />

Lipase<br />

Screening<br />

C 8H 17<br />

Me<br />

C 13H 27<br />

C 8H 17<br />

O<br />

O<br />

Me<br />

OH<br />

O<br />

O<br />

O<br />

C 8H 17<br />

Me<br />

O<br />

O<br />

O N<br />

NO 2<br />

O O<br />

UV Absorptions:<br />

570 nm<br />

C 8H 17<br />

Me<br />

O<br />

O NO 2<br />

UV Absorptions:<br />

OH<br />

410 nm


C 5H 11<br />

Me<br />

O<br />

O<br />

Lipase <strong>of</strong> a Different Class<br />

NO 2<br />

H 2O<br />

Lipase Mutants<br />

Sandström, A. G.; Engström, K.; Nyhlén, J.; Kasrayan, A.; Bäckvall, J.-E. Protein Eng., Des. Sel. 2009, 22, 413.<br />

C 5H 11<br />

Me<br />

O<br />

OH<br />

C 5H 11<br />

Me<br />

Phe233Asn<br />

Gly237Leu<br />

Phe233Asn<br />

Gly237Leu<br />

Phe149Ser<br />

Lle150Asp<br />

O<br />

O<br />

WT<br />

NO 2<br />

S - 19 R - 27<br />

O<br />

NO 2<br />

S - 52 No Improvement<br />

Phe233Leu<br />

Gly237Tyr<br />

Asp95 is essential for stabilization <strong>of</strong> oxyanion<br />

tetrahedral intermediate


RO<br />

Phe233Gly<br />

Best Mutant = Phe149Tyr<br />

Lle150Asp<br />

S - Selective Variant<br />

RO<br />

O<br />

O<br />

Et<br />

Me<br />

E = 84<br />

Ph<br />

RO<br />

MeO<br />

O<br />

O<br />

Me<br />

Selectivity<br />

Me<br />

NonylO<br />

Sandström, A. G.; Engström, K.; Nyhlén, J.; Kasrayan, A.; Bäckvall, J.-E. Protein Eng., Des. Sel. 2009, 22, 413.<br />

Engström, K.; Nyhlén, J.; Sandström, A. G.; Bäckvall, J.-E. J. Am. Chem. Soc. 2010, 132, 7038.<br />

PhO<br />

O<br />

O<br />

Me<br />

Me<br />

E = 79 E = 276 E = 650<br />

E = 211<br />

E = 657<br />

R - Selective Variant


Me<br />

O<br />

P. fluorescens<br />

Esterase<br />

Horsman, G. P.; Liu, A. M. F.; H, H.; Bornscheuer, U. T.; Kazlauskas, R. J. Chem. Eur. J. 2003, 9, 1933.<br />

Schmidt, M.; Hasenpusch, D.; Kähler, M.; Kirchner, U.; Wiggenhorn, K.; Langel, W.; Bornscheuer, U. T.<br />

ChemBioChem. 2006, 7, 805. Bornscheuer, U. T.; Altenbuchner, J.; Meyer, H. H. Biotechnol. Bioeng. 1998,<br />

58, 544. Henke, E.; Bornscheuer, U. T. Biol. Chem. 1999, 380, 1029.<br />

O<br />

P. fluorescens<br />

Ph OEt<br />

Me O<br />

Br OEt<br />

Me<br />

Ph OH<br />

Mutations near active site<br />

WT E = 3.8<br />

Mutant E = 12<br />

Mutation far from active site<br />

Ac<br />

O<br />

Me<br />

O<br />

Ph OEt<br />

P. fluorescens OH OAc<br />

WT E = 3<br />

2 mutation far from active site E = 96<br />

1 mutation near to active site E = 90<br />

Mutation close AND distal can have a significant affect on enantioselectivity<br />

O<br />

Br OEt<br />

Me<br />

O<br />

Br OH<br />

Me<br />

WT E = 12<br />

Mutant E = 19


Cy<br />

•<br />

Me<br />

O<br />

O<br />

NO 2<br />

Mutations for not necessarily smaller<br />

Expanding to Axial Chirality<br />

H 2O<br />

Lipase Mutants<br />

Carballeira, J. D.; Krumlinde, P.; Bocola, M.; Vogel, A.; Reetz, M. T.; Bäckvall, J.-E. Chem. Commun. 2007, 1913.<br />

Cy<br />

•<br />

Me<br />

O<br />

OH<br />

Cy<br />

WT E = 8.6<br />

Variant<br />

Leu162Phe<br />

Leu162Val<br />

Leu162Ile<br />

Leu162Ala<br />

Leu162Thr<br />

•<br />

Me<br />

O<br />

O<br />

NO 2<br />

Conversion (%)<br />

44<br />

40<br />

39<br />

29<br />

23<br />

O NO 2<br />

E-Value<br />

111<br />

39<br />

33<br />

13<br />

10


N<br />

N<br />

N N N<br />

Replacing Phe with Ala opens<br />

active site to more diverse<br />

substrates<br />

Cytochrome P450<br />

O<br />

O<br />

R<br />

R = Me, Et, n-Pr, n-Bu<br />

O<br />

O<br />

P450 Enzyme<br />

C450 Mutant<br />

Landwehr, M.; Hochrein, L.; Otey, C. R.; Alex Kasrayan, A.; Bäckvall, J.-E.; Arnold, F. H. J. Am. Chem. Soc. 2006, 128, 6058<br />

Background:<br />

Farinas, E. T.; Schwaneberg, U.; Glieder, A.; Arnold. F. H. Adv. Synth. Catal. 2001, 343, 601.<br />

Glieder, A.; Farinas, E. T.; Arnold, F. H. Nat. Biotechnol. 2002, 20, 1135.<br />

Peters, M. W.; Meinhold, P.; Glieder, A.; Arnold. F. H. J. Am. Chem. Soc. 2003, 125, 13442.<br />

N<br />

N<br />

OH<br />

O<br />

O<br />

R<br />

O<br />

N N N<br />

9-10A-F87A<br />

Et 57% ee<br />

Pr 89% ee<br />

Bu 94% ee<br />

O<br />

72% yield, 99% ee<br />

OH


TTT Phenylalanine<br />

TTC Phenylalanine<br />

TTA Leucine<br />

TTG Leucine<br />

CTT Leucine<br />

CTC Leucine<br />

CTA Leucine<br />

CTG Leucine<br />

ATT Isoleucine<br />

ATC Isoleucine<br />

ATA Isoleucine<br />

ATG Methionine<br />

GTT Valine<br />

GTC Valine<br />

GTA Valine<br />

GTG Valine<br />

Kayser, M. M.; Clouthier, C. M. J. Org. Chem. 2006, 71, 8424.<br />

Stolow, R. D.; Groom, T. Tetrahedron Lett. 1968, 9, 5781.<br />

Codon Degeneracy - NDK<br />

TCT Serine<br />

TCC Serine<br />

TCA Serine<br />

TCG Serine<br />

CCT Proline<br />

CCC Proline<br />

CCA Proline<br />

CCG Proline<br />

ACT Threonine<br />

ACC Threonine<br />

ACA Threonine<br />

ACG Threonine<br />

GCT Alanine<br />

GCC Alanine<br />

GCA Alanine<br />

GCG Alanine<br />

TAT Tyrosine<br />

TAC Tyrosine<br />

TAA Stop<br />

TAG Stop<br />

CAT Histidine<br />

CAC Histidine<br />

CAA Glutamine<br />

CAG Glutamine<br />

AAT Asparagine<br />

AAC Asparagine<br />

AAA Lysine<br />

AAG Lysine<br />

GAT Aspartic Acid<br />

GAC Aspartic Acid<br />

GAA Glutamic Acid<br />

GAG Glutamic Acid<br />

TGT Cysteine<br />

TGC Cysteine<br />

TGA Stop<br />

TGG Tryptophan<br />

CGT Arginine<br />

CGC Arginine<br />

CGA Arginine<br />

CGG Arginine<br />

AGT Serine<br />

AGC Serine<br />

AGA Arginine<br />

AGG Arginine<br />

GGT Gylcine<br />

GGC Gylcine<br />

GGA Gylcine<br />

GGG Gylcine


TTT Phenylalanine<br />

TTC Phenylalanine<br />

TTA Leucine<br />

TTG Leucine<br />

CTC Leucine<br />

CTA Leucine<br />

ATT Isoleucine<br />

ATC Isoleucine<br />

ATA Isoleucine<br />

GTT Valine<br />

GTC Valine<br />

GTA Valine<br />

Kayser, M. M.; Clouthier, C. M. J. Org. Chem. 2006, 71, 8424.<br />

Stolow, R. D.; Groom, T. Tetrahedron Lett. 1968, 9, 5781.<br />

Codon Degeneracy - DNT<br />

TCT Serine<br />

TCC Serine<br />

TCA Serine<br />

CCC Proline<br />

CCA Proline<br />

ACT Threonine<br />

ACC Threonine<br />

ACA Threonine<br />

GCT Alanine<br />

GCC Alanine<br />

GCA Alanine<br />

TAT Tyrosine<br />

TAC Tyrosine<br />

TAA Stop<br />

CAC Histidine<br />

CAA Glutamine<br />

AAT Asparagine<br />

AAC Asparagine<br />

AAA Lysine<br />

GAT Aspartic Acid<br />

GAC Aspartic Acid<br />

GAA Glutamic Acid<br />

TGT Cysteine<br />

TGC Cysteine<br />

TGA Stop<br />

CTT Leucine CCT Proline CAT Histidine CGT Arginine<br />

CTG Leucine<br />

ATG Methionine<br />

GTG Valine<br />

TCG Serine<br />

CCG Proline<br />

ACG Threonine<br />

GCG Alanine<br />

TAG Stop<br />

CAG Glutamine<br />

AAG Lysine<br />

GAG Glutamic Acid<br />

TGG Tryptophan<br />

CGC Arginine<br />

CGA Arginine<br />

CGG Arginine<br />

AGT Serine<br />

AGC Serine<br />

AGA Arginine<br />

AGG Arginine<br />

GGT Gylcine<br />

GGC Gylcine<br />

GGA Gylcine<br />

GGG Gylcine

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!