12.07.2015 Views

BD09 Abstract book - 6th Bone Diagenesis Meeting in Bonn, Germany

BD09 Abstract book - 6th Bone Diagenesis Meeting in Bonn, Germany

BD09 Abstract book - 6th Bone Diagenesis Meeting in Bonn, Germany

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgContentsWelcome 2Conference organizer and scientific committee 3Scientific and social program 4Map of <strong>Bonn</strong> with conference venue 10<strong>Abstract</strong>s – Oral presentations 11<strong>Abstract</strong>s – Poster presentations 48List or BD <strong>Meet<strong>in</strong>g</strong> participants 671


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.org6 th International <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong>18 to 21 September 2009 <strong>in</strong> <strong>Bonn</strong>, <strong>Germany</strong>Welcome to <strong>Bonn</strong>!The <strong>Bone</strong> <strong>Diagenesis</strong> (BD) meet<strong>in</strong>g looks back on a successful history of more thantwo decades. The meet<strong>in</strong>g was orig<strong>in</strong>ally <strong>in</strong>itiated by professor Robert Hedges fromthe Department of Archaeology of the University of Oxford. The first BD meet<strong>in</strong>g tookplace <strong>in</strong> 1988 and about every four years thereafter. Because Robert Hedges isretir<strong>in</strong>g <strong>in</strong> September 2009, it is a great pleasure to devote this 6 th BD meet<strong>in</strong>g to itsfounder.The BD meet<strong>in</strong>g will take place <strong>in</strong> the city of <strong>Bonn</strong> situated <strong>in</strong> North-Rh<strong>in</strong>eWestphalia, <strong>Germany</strong>. <strong>Bonn</strong> was founded at the Rh<strong>in</strong>e River by the Romans morethan 2000 years ago and is thus one of the oldest cities <strong>in</strong> <strong>Germany</strong>. <strong>Bonn</strong> is thehometown of Beethoven, the most famous son of the city. After the Second WorldWar, <strong>Bonn</strong> became the capital of the Federal Republic of <strong>Germany</strong> until the Germanreunification <strong>in</strong> 1990 when Berl<strong>in</strong> became the capital city once aga<strong>in</strong>. Today <strong>Bonn</strong> isstill federal city and the home of many m<strong>in</strong>istries as well as UN adm<strong>in</strong>istrations. TheUniversity of <strong>Bonn</strong>, founded <strong>in</strong> 1818, is well known and has more than 27.000national and <strong>in</strong>ternational students.The BD meet<strong>in</strong>g will be held <strong>in</strong> the lovely baroque summer palace „PoppelsdorferSchloss“ situated with<strong>in</strong> the Botanical Gardens of the University of <strong>Bonn</strong> and with<strong>in</strong>walk<strong>in</strong>g distance of the city centre. The conference will be held <strong>in</strong> the former d<strong>in</strong><strong>in</strong>groom, the so called „Stuck Saal“, of the Elector Clemens August. This baroque-styleroom was built <strong>in</strong> 1753 and has been subsequently restored to preserve its orig<strong>in</strong>alfeatures.This venue will give the conference a special flair and ambience. So I warmlywelcome you to <strong>Bonn</strong> and <strong>in</strong> the Poppelsdofer Schloss!After a lot of organizational work I look forward to an exit<strong>in</strong>g meet<strong>in</strong>g with <strong>in</strong>terest<strong>in</strong>gand diverse presentations as well as fruitful scientific and personal exchange!2


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgConference ChairThomas Tütken, University of <strong>Bonn</strong>Organiz<strong>in</strong>g CommitteeThomas TütkenNad<strong>in</strong>e PajorInternational Scientific Advisory CommitteeHervé Bocherens University of Tüb<strong>in</strong>genJulia Lee-Thorp University of BradfordBruce MacFadden University of FloridaHans-Ulrich Pfretzschner University of Tüb<strong>in</strong>genNoreen Tuross Harvard UniversityTorsten Vennemann University of LausanneSponsorsI am greatful to the German National Science Foundation (DFG) for fund<strong>in</strong>g me <strong>in</strong> theframework of the Emmy Noether-Program as well as sponsor<strong>in</strong>g the 6 th <strong>Bone</strong><strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> itself with grant TU 148/3-1. The Rhe<strong>in</strong>ische LandesMuseum<strong>Bonn</strong> is acknowledged for access to their conference room for the public even<strong>in</strong>glecture.3


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgScientific ProgramThe conference will be organized <strong>in</strong> several thematic sessions with <strong>in</strong>vited keynotespeakers. The list of proposed sessions is given below. Please note that due to thescientific content of the submitted abstracts the number of sessions has beenreduced and their number<strong>in</strong>g has partially changed.Scientific sessionsSession 1: Tim<strong>in</strong>g and quantification of diagenetic processesSession 2: Experimental and model<strong>in</strong>g approaches to diagenesisSession 3: <strong>Bone</strong> histology an archive of life history and taphonomySession 4: Preservation and application of ancient prote<strong>in</strong>sSession 5: Fossil skeletal rema<strong>in</strong>s as archives for lifetime signalsSession 6: New chemical proxies <strong>in</strong> ancient bones and teethKeynote lectures:Invited speakersProf. Dr. Thure Cerl<strong>in</strong>g, University of Utah, USAProf. Dr. Anusuya Ch<strong>in</strong>samy-Turan, University of Cape Town, South AfricaProf. Dr. Matthew Coll<strong>in</strong>s, University of York, UKProf. Dr. Robert Hedges, University of Oxford UKProf. Dr. Paul Koch, University of California, USAPublic even<strong>in</strong>g lecture (19 September 19:30, Rhe<strong>in</strong>isches Landesmuseum <strong>Bonn</strong>):Dr. Johannes Krause, MPI for Evolutionary Anthropology, <strong>Germany</strong>“What makes us human: Insights from sequenc<strong>in</strong>g the Neandertal genome”4


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgProgram 6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong>Friday 18 September 200918:30-22:00Registration &Ice breaker„Gartensaal“, Poppelsdorfer Schloss. A buffet and dr<strong>in</strong>ks will be providedSaturday 19 September 200908:00 Registration08:45 Welcome09:00 Laudatio for Prof. Dr. Robert Hedges, the founder of the <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong>Session 1Tim<strong>in</strong>g and quantification of diagenetic processes09:10 keynote Robert Hedges Progress, problems, and prospects, <strong>in</strong>bone diagenesis09:50 T1 Ina Reiche and Cél<strong>in</strong>e Chadefaux From Neolithic up to today. Evolution ofanimal bones from differentarchaeological sites and environmentswith a special emphasis of nanoscalemodifications10:10 T2 S.L. Votyakov, N.G. Smirnov, Daria V.Kiseleva, Yu.V. Shchapova and N.O.SadykovaPhysical and chemical characteristics ofmammal fossil bone rema<strong>in</strong>s and theirrelative age evaluation problem10:30 Coffee break11:00 T3 Gordon Turner-Walker The mechanical properties of artificiallyaged bone: prob<strong>in</strong>g the nature of thecollagen-m<strong>in</strong>eral bond11:20 T4 Nadja Hoke and Michaela Harbeck Comparison of different screen<strong>in</strong>gmethods to asses the preservationdegree of bone tissue11:40 T5 Gerhard Brügmann, Thomas C.Brachert, Ottmar Kullmer, Dieter F.Mertz and Friedemann Schrenk12:00 T6 Julia Lee-Thorp, Sandi Copeland,Matt Sponheimer, Darryl De Ruiter, andPetrus Le Roux12:20 Lunch breakTrace element concentrations and Srisotope compositions of fossilHippopotamidae teeth from Lake Albert(Uganda): Dist<strong>in</strong>guish<strong>in</strong>g f<strong>in</strong>gerpr<strong>in</strong>ts<strong>in</strong>duced by diagenetic overpr<strong>in</strong>t ornutrition uptakeA consideration of diagenesis <strong>in</strong> teethfrom the South African fossil hom<strong>in</strong><strong>in</strong>sites based on strontium isotopesSession 1Tim<strong>in</strong>g and quantification of diagenetic processes (cont<strong>in</strong>ued)13:40 T7 Dennis O. Terry, Jr., David E. Rare earth element discrim<strong>in</strong>ation ofGrandstaff, William E. Lukens, Amanda vertebrate bone beds: An example fromE. Drewicz and Barbara A. Beasley the Late Eocene Chadron Formation ofNebraska and South Dakota, USA14:00 T8 László Kocsis, Clive N. Trueman, andMart<strong>in</strong> R. Palmer14:20 T9 Daniel Herwartz, T. Tütken,C. Münker and Mart<strong>in</strong> P. SanderDat<strong>in</strong>g of fossil bones with Lu-Hf isotopicsystem: revisit<strong>in</strong>g an old idea with newapproachesThe timescales of REE uptake <strong>in</strong> fossilbone: Implications for Lu-Hfgeochronology5


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgSession 2Experimental and model<strong>in</strong>g approaches to diagenesis14:40 T10 Maura Pellegr<strong>in</strong>i, Julia A. Lee-Thorp,Carolyn A. Chenery andRandolph E. DonahueThe comparison of oxygen isotopes <strong>in</strong>phosphate and carbonate of bioapatite: isit always a reliable check for diageneticalteration? An <strong>in</strong>tra-tooth isotope studyfrom prehistoric ungulate teeth15:00 T11 Matthias Huels, Pieter M. Grootes,Marie-Josée Nadeau, HelmutErlenkeuser and Nils AndersenThe orig<strong>in</strong> of cremated bone apatitecarbon15:20 T12 Anto<strong>in</strong>e Zazzo andJean-Francois SaliègeRadiocarbon dat<strong>in</strong>g of biological apatites- what's new?15:40 Poster session with beer, w<strong>in</strong>e and buffet19:00 Walk (15 m<strong>in</strong>s) to the "Rhe<strong>in</strong>isches Landesmuseum"19:30 Public even<strong>in</strong>g lecture about Neanderthal DNA by Dr. Johannes Krause20:30 Free even<strong>in</strong>gSunday 20 September 2009Session 3<strong>Bone</strong> histology an archive of life history and taphonomy09:00 keynote Anusuya Ch<strong>in</strong>samy Biological deductions from themicrostructure of fossil bone09:40 T13 Miranda M.E. Jans, Andrew J. Tyrrell,Odile Loreille and Henk KarsEarly bone diagenesis and DNApreservation10:00 T14 Maitena Dumont, A. Kostka, M. Sander, Comparison of apatite crystallite sizes <strong>in</strong>A. Borbely and A. Pyzallasauropod and mammal fossil bones10:20 T15 Koen Ste<strong>in</strong>, Mart<strong>in</strong> Sander andZoltan CsìkìMagyarosaurus dacus (Sauropoda:Titanosauria) bone histology suggestsdwarfism on a palaeo-island10:40 T16 Timothy P. Cleland, Michael B. Duncan,Ji Eun Lee, Leonid Zamdborg, Neil L.Kelleher, Raghu Kalluri and Mary H.Schweitzer11:00 Coffee breakPreservation of blood vessels fromcortical bone of Brachylophosauruscanadensis from the Judith RiverFormation, MTSession 4Preservation and application of ancient prote<strong>in</strong>s11:30 keynote Matthew Coll<strong>in</strong>s, Mike Buckley, Hannah <strong>Bone</strong> diagenesis, the preservation andKoon, Nienke van Doorn, Julie Wilsonand Jane Thomas-Oatesapplication of prote<strong>in</strong>s: it was the m<strong>in</strong>eralafter all….12:10 T17 Col<strong>in</strong> I. Smith, Alice Mora, Benjam<strong>in</strong>Fuller, Olaf Nehlich and Mike RichardsCollagen fractions and fractionation?Investigat<strong>in</strong>g collagen at the am<strong>in</strong>o acidlevel us<strong>in</strong>g liquid chromatography-isotoperatio mass spectrometry12:30 T18 Olaf Nehlich and Mike P. Richards Sulphur isotope analysis from bonecollagen:A new method for archaeologicalsciences12:50 T19 Hervé Bocherens, Dorothée G. Drucker Look<strong>in</strong>g for preservation criteria ofand He<strong>in</strong>rich Taubaldcollagen sulfur isotopic signatures13:10 T20 Albert Z<strong>in</strong>k, Marek Janko, EduardEgarter-Vigl and Robert Stark13:30 Lunch breakStructural preservation of collagen <strong>in</strong> the5300-year-old Tyrolean Iceman6


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgTouristic afternoon program14:50 <strong>Meet<strong>in</strong>g</strong> at the ferry term<strong>in</strong>al “<strong>Bonn</strong> Alter Zoll"15:00 Ferry ride on the Rh<strong>in</strong>e River to Königsw<strong>in</strong>ter (50 m<strong>in</strong>s)16:20 Ride with the Drachenfels-railway to the famous dragon rock viewpo<strong>in</strong>twith its spectecular view over the Rh<strong>in</strong>e River, <strong>Bonn</strong> and surround<strong>in</strong>g area.19:00 Conference D<strong>in</strong>ner <strong>in</strong> the Hotel Loreley <strong>in</strong> Königsw<strong>in</strong>terBuffet <strong>in</strong> the Emperor-room where Emperor Wilhem II is known to have d<strong>in</strong>edopen endReturn to <strong>Bonn</strong> by tram (l<strong>in</strong>e 66, Telekom Express) on your ownMonday 21 September 2009Session 5Fossil skeletal rema<strong>in</strong>s as archives for lifetime signals09:00 keynote Paul L. Koch The isotopic ecology of mar<strong>in</strong>evertebrates: major applications andanalytical considerations09:40 keynote Thure Cerl<strong>in</strong>g The isotope ecology and paleoecology ofterrestrial vertebrates: where have webeen and where are we go<strong>in</strong>g?10:30 Coffee break11:00 T21 Wolfgang Müller, Luca Bondioli andPaola F. RossiAchievable time resolution ofcompositional/ isotopic profiles <strong>in</strong> toothenamel: constra<strong>in</strong>ts from high-resolutionLA-ICPMS and histological analysis11:20 T22 Anne-France Maurer, A. Person,V. Zeitoun and M. RenardConservation of the biologicalgeochemicalsignals <strong>in</strong> archaeologicalhuman bones as assessed by<strong>in</strong>traskeletal studiesCarbon and oxygen isotope compositions11:40 T23 Laurel<strong>in</strong>e Scherler, Thomas Tütken,Damien Becker and Jean-Pierre Berger of Early Oligocene and Late Pleistocenevertebrate rema<strong>in</strong>s from NorthernSwitzerland - implications forpalaeoclimate and palaeoenvironment12:00 T24 V<strong>in</strong>cent Balter, Sandr<strong>in</strong>e le Houedec,Cather<strong>in</strong>e Girard and MichaelJoachimski12:30 Lunch breakSession 6Oxygen isotopes composition and shapeof 380 Ma conodontsNew chemical proxies <strong>in</strong> ancient bones and teeth14:00 T25 Noreen Tuross and Cynthia Kester Organic hydrogen and oxygen isotopes <strong>in</strong>bone collagen: migration, seasonality,hydrology and diagenesis14:20 T26 Katar<strong>in</strong>a Topalov, ArndtSchimmelmann, David Polly, Peter E.Sauer and Mark Lowry14:40 T27 L<strong>in</strong>da M. Reynard, G.M. Henderson,and R.E.M. Hedges15:00 T28 Alexander Heuser, Thomas Tütken,and Stephen J.G. Galer15:20 T29 Alexander Gehler, Marja Kröger,Thomas Tütken and Andreas Pack15:40 Coffee break16:10 F<strong>in</strong>al discussion, publication plans, next meet<strong>in</strong>g17:30 Close of meet<strong>in</strong>gStable hydrogen isotopes <strong>in</strong> bonecollagen as a paleoenvironmental<strong>in</strong>dicatorCalcium isotopes (δ 44/42 Ca) <strong>in</strong>archaeological bones and teethCalcium isotopes (δ 44/40 Ca) of fossilbones and teeth - biogenic versusdiagenetic orig<strong>in</strong>Oxygen triple isotope composition as anew tracer for tooth and bone diagenesisof fossil vertebrates7


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.org18:30 D<strong>in</strong>ner “Em Höttche”, local german food <strong>in</strong> the traditional <strong>Bonn</strong> restaurantlocated next to <strong>Bonn</strong>’s town hall <strong>in</strong> the city center. This is an optional part of theprogram. Participants have to pay for their own meal and dr<strong>in</strong>ks.Saturday 19 September 2009 – Poster session (16:00-19:00)Session 1Session 2Session 3P1P2P3P4Tim<strong>in</strong>g and quantification of diagenetic processesCél<strong>in</strong>e Chadefaux, Aurélien Gourier and Heat-<strong>in</strong>duced modifications of bone atIna Reichelow temperatures. Study by TEM andSAXS on bone ultrath<strong>in</strong> and th<strong>in</strong> sectionsHege Hollund, Miranda Jans, MatthewColl<strong>in</strong>s and Henk Kars<strong>Bone</strong> preservation: diagenetic screen<strong>in</strong>gand post-excavation <strong>in</strong>fluencesMart<strong>in</strong>a Kaserer, Michaela Harbeck and Taphonomic and archaeometric analysesGisela Grupeof the rema<strong>in</strong>s of Emperor Lothar III andhis familyKathar<strong>in</strong>a Müller, Gwenaëlle Le Bras-Goude, Fanny Buscaglia and InaReicheHuman rema<strong>in</strong>s from La Pollera: a studyof the preservation state, of theconsolidant and its effect on stableisotope analysisP5 William R. Wahl Analysis of suspected rott<strong>in</strong>g bonematerial from the d<strong>in</strong>osaur quarries,Warm Spr<strong>in</strong>gs Ranch, Hot Spr<strong>in</strong>gsCounty, Wyom<strong>in</strong>gExperimental and model<strong>in</strong>g approaches to diagenesisP6 Mathieu Boud<strong>in</strong>, Mark Van Strydonckand Guy De Mulder.The carbon orig<strong>in</strong> of structural carbonate<strong>in</strong> bone apatite of cremated bonesP7 Clive Trueman, Chris Dewdney,Mart<strong>in</strong> Palmer and Laszlo KocsisExtend<strong>in</strong>g diffusion-adsorption models oftrace element uptakeP8 Hanna E.C. Koon and Matthew J.Coll<strong>in</strong>sAn 'all or noth<strong>in</strong>g' theory to expla<strong>in</strong> thesurvival of ancient bone collagen<strong>Bone</strong> histology an archive of life history and taphonomyP9 Jennifer Anné, Allison Tumark<strong>in</strong>-Deratzian, Dennis O. Terry, Jr. AndDavid GrandstaffHistological and geochemical propertiesof pathological bone <strong>in</strong> Allosaurus fragilisand modern birdsP10 Katja Waskow and Mart<strong>in</strong> P. Sander Growth marks <strong>in</strong> sauropod ribs from theUpper Jurassic Morrison Formation,Tendaguru and Lower Cretaceous ofNigerSession 4P11Preservation and application of ancient prote<strong>in</strong>sNienke L. van Doorn, M. Buckley, Zooarchaeology by Mass SpectrometryO.E. Craig and M.J. Coll<strong>in</strong>s(ZooMS)8


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgSession 5Session 5Fossil skeletal rema<strong>in</strong>s as archives for lifetime signalsP12 Elissavet Dotsika and S. Lykoudis Distribution of isotopic composition, 13 Cand 15 N, of human bones <strong>in</strong> GreeceP13Hervé Bocherens, Diana Pushk<strong>in</strong>a,Patrick Vignaud and Michel BrunetHow to measure carbon and oxygenisotopic signatures of fossil tooth enamelheavily contam<strong>in</strong>ated by oxides?P14 Pennilyn Higg<strong>in</strong>s Taphonomic implications of uranium oredeposits on vertebrate rema<strong>in</strong>sFossil skeletal rema<strong>in</strong>s as archives for lifetime signals (cont<strong>in</strong>ued)P15 Karola Kirsanow and Noreen Tuross Measur<strong>in</strong>g and assess<strong>in</strong>g organic and<strong>in</strong>organic oxygen isotope values <strong>in</strong>vertebrate calcified tissueP16P17Damien Roche, Loïc Ségalen,Etienne Balan and Simon DelattreChrist<strong>in</strong>e Schuh, C. Gerl<strong>in</strong>g, V. Heyd,A.W.G. Pike, E. Kaiser and W. SchierP18 Krsystof Szostek, B. Stepanczak, M.Kepa, H. Glab, G. Tylko, O. Woznickaand Cz. PaluszkiewiczPreservation assessment of Miocene-Pliocene tooth enamel from Tugen Hills(Kenyan Rift Valley): an <strong>in</strong>frared,elementary and stable-isotope analysisMobility <strong>in</strong> the prehistoric westernEurasian Steppe - an <strong>in</strong>terdiscipl<strong>in</strong>aryapproachChemical signals from ancient humanteeth and bones - variability ofdiagenetical changesP19 Thomas Tütken and Henry Poppe Palaeoecology and habitat of the LateMiocene mammals from Höwenegg, SW<strong>Germany</strong>: Implications of isotope (O, C,Sr) compositions of fossil teethSession 6P20New chemical proxies <strong>in</strong> ancient bones and teethAlessandro Zanazzi, Matthew Kohn and Us<strong>in</strong>g 'clumped isotopes' <strong>in</strong> fossil bonesHagit P.J. Affekas a proxy for Eocene-Oligocene climate<strong>in</strong> the North American mid-cont<strong>in</strong>ent9


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgMap of <strong>Bonn</strong> with places of <strong>in</strong>terest10


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.org<strong>Abstract</strong>sOral presentations<strong>in</strong> alphabetical order11


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgOxygen isotopes composition and shape of 380 Ma conodontsVINCENT BALTER* 1 , SANDRINE LE HOUEDEC 2 , CATHERINE GIRARD 3 ANDMICHAEL JOACHIMSKI 41 Laboratoire de Sciences de la Terre. Ecole Normale Supérieure de Lyon. 46, Alléed'Italie. 69364 Lyon Cedex 07, France(*V<strong>in</strong>cent.Balter@ens-lyon.fr)2 IPGP, Boite 89, 4 place Jussieu, 75252 Paris Cedex 05, France3 Institut des Sciences de l’Evolution, Université Montpellier II, Place EugèneBataillon, 34095 Montpellier Cedex 05, France4 Institute of Geology and M<strong>in</strong>eralogy, University of Erlangen, Schlossgarten 5, 91054Erlangen, <strong>Germany</strong>The Lower and Upper Kellwasser horizons represent two anoxic events that mark themass ext<strong>in</strong>ction at the Frasnian-Famennian (F-F) boundary. Here the f<strong>in</strong>emorphological variations of conodonts and the sea surface temperature evolution arequantified <strong>in</strong> two F-F boundary sections us<strong>in</strong>g morphometrics and oxygen isotopiccomposition of apatite, respectively. In accordance with other F-F sections, theisotope records show two positive excursions of ~1‰ dur<strong>in</strong>g the Lower and UpperKellwasser anoxic events.The conodont shape and the oxygen isotopic composition of the genus Palmatolepisare significantly correlated with<strong>in</strong> the Frasnian and Famennian Stages. This rules outthe possibility that the oxygen isotope record is totally overpr<strong>in</strong>ted by diagenesis. Theresults are further discussed <strong>in</strong> the light of the oxygen isotope composition ofPaleozoic oceans.12


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgLook<strong>in</strong>g for preservation of criteria of collagen sulfur isotopicsignaturesHERVÉ BOCHERENS* 1 , DOROTHÉE G. DRUCKER 1 AND HEINRICH TAUBALD 1Institut für Geowissenschaften, Universität Tüb<strong>in</strong>gen, Sigwartstrasse 10,72076 Tüb<strong>in</strong>gen, <strong>Germany</strong>(*herve.bocherens@uni-tueb<strong>in</strong>gen.de, dorothee.drucker@ifg.uni-tueb<strong>in</strong>gen.de,taubald@uni-tueb<strong>in</strong>gen.de)Collagen sulfur isotopic signatures (δ 34 S) are <strong>in</strong>creas<strong>in</strong>gly used for palaeodietaryreconstruction and mobility assessment of prehistoric human populations, usually <strong>in</strong>conjunction with δ 13 C and δ 15 N values. Internationally accepted criteria exist toassess the reliability of δ 13 C and δ 15 N values <strong>in</strong> ancient bone collagen. In contrast, nosuch consensus has yet been established for δ 34 S values. Comparisons of the sulfurcontent from ancient collagen with the known range of modern collagen are currentlyused but these ranges allow wide variations and possibly <strong>in</strong>clude altered orcontam<strong>in</strong>ated samples.In the present study we focused on mammalian and reptilian bones from a MesolithicFrench site (Noyen-sur-Se<strong>in</strong>e, Se<strong>in</strong>e-et-Marne, ca. 8000 yrs BP) with terrestrial andfreshwater feeders exhibit<strong>in</strong>g vary<strong>in</strong>g stages of collagen preservation, based on %N<strong>in</strong> whole bone and %C and %N <strong>in</strong> extracted collagen. By <strong>in</strong>vestigat<strong>in</strong>g the possiblecovariations between sulfur isotopic abundances and different chemical criteria with<strong>in</strong>a species or with<strong>in</strong> a well-def<strong>in</strong>ed trophic group, we attempt to set acceptable limitsfor the chemical composition of reliable collagen and to ref<strong>in</strong>e the exist<strong>in</strong>g criteria forcollagen reliability for sulfur isotopic analysis.13


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgThe carbon orig<strong>in</strong> of structural carbonate <strong>in</strong> bone apatiteof cremated bonesMATHIEU BOUDIN* 1 , MARK VAN STRYDONCK 1 AND GUY DE MULDER 21 Royal Institute for Cultural Heritage, Jubelpark 1, 1000 Brussels, Belgium2 Department of Archaeology, Ghent University, Blandijnberg 2, 9000 Ghent, Belgium(*mathieu.boud<strong>in</strong>@kikirpa.be)Recent comparative studies have proven the validity of 14 C-dates of cremated bones.The issue of sample contam<strong>in</strong>ation has however been overlooked <strong>in</strong> most studies.Analyses of cremated bone samples has shown that <strong>in</strong> some cases cremated bonesare contam<strong>in</strong>ated.In order to reveal a possible carbon exchange dur<strong>in</strong>g the cremation process betweenthe carbon dioxide of the fuel and the bone apatite a cremation experiment was setup us<strong>in</strong>g fossil fuel. Two experimental set-ups were constructed, one us<strong>in</strong>g naturalgas and one us<strong>in</strong>g coal. In both experiments a carbon substitution <strong>in</strong> the apatite wasrevealed.14


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgTrace element concentrations and Sr isotope compositions of fossilHippopotamidae teeth from Lake Albert (Uganda):Dist<strong>in</strong>guish<strong>in</strong>g f<strong>in</strong>gerpr<strong>in</strong>ts <strong>in</strong>duced by diagenetic overpr<strong>in</strong>t ornutrition uptakeGERHARD BRÜGMANN* 1 , THOMAS C. BRACHERT 2 , OTTMAR KULLMER 3 , DIETER F. MERTZ 4AND FRIEDEMANN SCHRENK 31 Institut für Geowissenschaften, Johannes Gutenberg-Universität Ma<strong>in</strong>z,55099 Ma<strong>in</strong>z, <strong>Germany</strong> (*bruegmag@uni-ma<strong>in</strong>z.de)2 Institut für Geophysik und Geologie, Talstr. 35, 04103 Leipzig, <strong>Germany</strong>3 Forschungs<strong>in</strong>stitut und Naturmuseum Senckenberg, Senckenberganlage 25,60325 Frankfurt, <strong>Germany</strong>Bioapatite form<strong>in</strong>g teeth and bones is a preferred archive for trac<strong>in</strong>g palaeodietaryand palaeoenvironmental changes. Tooth enamel is believed to be resistant tochemical alteration due to its dense crystall<strong>in</strong>e structure. Based on proxy data (traceelement and Sr isotope ratios) from recent to Late Neogene Hippopotamidae molarteeth from Lake Albert, Uganda, we assess the impact of diagenetic overpr<strong>in</strong>t on theenamel composition <strong>in</strong> order to reveal the primary nutritional f<strong>in</strong>gerpr<strong>in</strong>t.Laser ablation ICPMS profiles <strong>in</strong> enamel measured from the outside rim towards thedent<strong>in</strong> show an asymmetric trace element distribution. Concentrations cont<strong>in</strong>uouslydecrease by up to 5 orders of magnitude with<strong>in</strong> a distance of about 1 mm from therim until a m<strong>in</strong>imum is reached (


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgThe isotope ecology and paleoecology of terrestrial vertebrates:where have we been and where are we go<strong>in</strong>g?THURE CERLING*Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah84112, USA (*thure.cerl<strong>in</strong>g@utah.edu)After a ragged beg<strong>in</strong>n<strong>in</strong>g, the use of stable isotopes to understand ancient diets <strong>in</strong>mammals has become widely accepted. Many important biological questions <strong>in</strong> anisotope context were first asked by paleontologists and anthropologists; this has ledto some important biological <strong>in</strong>sights. Along the way, many lessons have beenlearned – and some forgotten. In this talk I will explore some of the physiological<strong>in</strong>sights afforded by stable isotope analysis for paleoecology, <strong>in</strong>clud<strong>in</strong>g tissueturnover, maturation processes, and both forward and <strong>in</strong>verse model<strong>in</strong>g. Togetherthese play an important role <strong>in</strong> the cycle start<strong>in</strong>g with the local environment,proceed<strong>in</strong>g through physiology to tissue formation which often results <strong>in</strong> signaldamp<strong>in</strong>g, and <strong>in</strong> model<strong>in</strong>g the environment. Understand<strong>in</strong>g physiology, isotopeturnover, and maturation issues can lead to models whereby a robust reconstructionof the environmental conditions can be made. In addition, advances <strong>in</strong> sampl<strong>in</strong>gdesign and <strong>in</strong> analytical method development is lead<strong>in</strong>g to new <strong>in</strong>sights <strong>in</strong>paleoecology.16


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgBiological deductions from the microstructure of fossil boneANUSUYA CHINSAMY*Zoology Department, University of Cape Town, Rondebosch 7701, South Africa(*anusuya.ch<strong>in</strong>samy-turan@uct.ac.za)<strong>Bone</strong> is a plastic tissue that is highly responsive to its environment. The microscopicstructure of bone reflects a variety of factors such as the actual rate at which it forms,the biomechanical function<strong>in</strong>g of the particular element with<strong>in</strong> the skeleton, theontogenetic age of the <strong>in</strong>dividual, as well as other factors such as disease, etc. It istherefore fortunate that after millions of years of fossilization, the microscopicstructure of fossilized bone generally rema<strong>in</strong>s unaltered. As such, comparisons of thepreserved bone microstructure of various ext<strong>in</strong>ct animals with that of bones of extantanimals provides unparalleled <strong>in</strong>sight <strong>in</strong>to various aspects of their biology and lifehistory. Highlights of some of these studies will be presented.Several histological studies have been conducted on different developmental stagesof various d<strong>in</strong>osaurs to deduce ontogenetic growth patterns, and with the applicationof skeletochronology growth curves have also been deduced. The histology ofMesozoic bird bones has revealed differences <strong>in</strong> growth patterns betweennonornithur<strong>in</strong>e and ornithur<strong>in</strong>e birds. More recently, skeletochronological studieshave been applied to a unique growth series of the filter-feed<strong>in</strong>g pterosaur,Pterodaustro gu<strong>in</strong>azui, and allowed the deduction of their developmental trajectory.Studies of bone microstructure have also been <strong>in</strong>tensively applied to a wide range ofnonmammalian therapsids with<strong>in</strong> constra<strong>in</strong>ed phylogenetic and ontogenetic brackets,to assess developmental patterns and changes associated with the transition fromnonmammalian therapsids to mammals. Recent histological studies of bones of earlymammals (multituberculates and eutherians) from the Mesozoic have permitted novel<strong>in</strong>sight <strong>in</strong>to their biology and radiation.Research on bone tissues of a wide range of extant and ext<strong>in</strong>ct animals have<strong>in</strong>dicated that biomechanical adaptations are also reflected <strong>in</strong> the microscopicstructure of bones. For example, studies of various Mesozoic bird taxa with differ<strong>in</strong>glifestyles (e.g., fly<strong>in</strong>g, div<strong>in</strong>g, flightless), and also of nonmammalian therapsids (withburrow<strong>in</strong>g or amphibious lifestyles). Recent work on Pterodaustro has also showndist<strong>in</strong>ct adaptations for their aerial lifestyle, as well as for their egg-lay<strong>in</strong>greproductive behavior. Current research us<strong>in</strong>g F<strong>in</strong>ite Element Analysis is underway toassess the stresses and stra<strong>in</strong>s caused by mastication <strong>in</strong> representative dicynodontand cynodont skulls and to ascerta<strong>in</strong> whether these forces are reflected <strong>in</strong> themicroscopic structure of the bones.Diseased bone is well known <strong>in</strong> the fossil record. Recent work on modern birds andnonavian d<strong>in</strong>osaurs has allowed the identification of similar pathological bone tissues<strong>in</strong> these taxa. This research has further suggested that the recently described radialfibrolamellar bone and some medullary bone tissues <strong>in</strong> nonavian d<strong>in</strong>osaurs may havehad pathologic orig<strong>in</strong>s.S<strong>in</strong>ce <strong>in</strong>terpretations of the nature of fossil bone microstructure rely on extrapolationsfrom the bones of liv<strong>in</strong>g animals, it has become <strong>in</strong>creas<strong>in</strong>gly recognized that to betterunderstand and <strong>in</strong>terpret the nature of bone tissues preserved <strong>in</strong> fossil vertebrates, itis imperative that more research is conducted on modern taxa to better understandthe factors that affect bone growth and development.17


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgPreservation of blood vessels from cortical bone ofBrachylophosaurus canadensis from the Judith River Formation,MontanaTIMOTHY P. CLELAND* 1 , MICHAEL B. DUNCAN 2 , JI EUN LEE 3 , LEONID ZAMDBORG 3 , NEIL L.KELLEHER 3 , RAGHU KALLURI 2 AND MARY H. SCHWEITZER 1,41 North Carol<strong>in</strong>a State University, Raleigh, NC 27695, USA,2 Division of Matrix Biology, Beth Israel Deaconess Medical Center, Boston, MA02115, USA,3 University of Ill<strong>in</strong>ois, Urbana-Champaign, Urbana, Il 61801, USA,4 North Carol<strong>in</strong>a Museum of Natural Sciences, Raleigh, NC 27601, USA(*tpclelan@ncsu.edu)Soft tissues, <strong>in</strong>clud<strong>in</strong>g vessels-like structures, cells, and extracellular matrix similar tothose previously reported (Schweitzer et al., 2005, 2007a, b, 2009) have beenrecovered after dem<strong>in</strong>eralization of juvenile Brachylophosaurus canadensis (MOR2967-B2-1) cortical bone collected from Judith River Formation (Campanian)sandstone of Montana, USA <strong>in</strong> 2008. <strong>Bone</strong> fragments were collected us<strong>in</strong>g aseptictechniques and recovered soft tissues were analyzed to identify the molecularcomposition and mode of preservation. Multiple immunochemistry techniques (i.e.Western blott<strong>in</strong>g, <strong>in</strong> situ immunofluorescence, and enzyme-l<strong>in</strong>ked immunosorbentassay) were applied to the vessel structures, and were positive for b<strong>in</strong>d<strong>in</strong>g to elast<strong>in</strong>,lam<strong>in</strong><strong>in</strong>, and hemoglob<strong>in</strong> antibodies, support<strong>in</strong>g the preservation of epitopes for theseconserved prote<strong>in</strong>s. Antibody b<strong>in</strong>d<strong>in</strong>g to B. canadensis material is consistent withextant ostrich vessels similarly prepared, and we hypothesize that these structuresare endogenous. Extracts of d<strong>in</strong>osaur vessels were then exam<strong>in</strong>ed us<strong>in</strong>g tandemmass spectrometry to obta<strong>in</strong> peptide sequences of residual prote<strong>in</strong>s where possible.The resultant spectra were used to search prote<strong>in</strong> databases or to assemble peptidesequences de novo. Analysis of these vessels under transmission electronmicroscopy <strong>in</strong>dicates a close relationship between an electron dense substance andorganic matrix suggest<strong>in</strong>g this substance may be responsible for preserv<strong>in</strong>g vessellikestructures over geologic time. Future work will exam<strong>in</strong>e mechanisms ofpreservation.References:Schweitzer, M.H., Wittmeyer, J.L., Horner, J.R., and Toporski, J.K. (2005): Soft-tissue vessels andcellular preservation <strong>in</strong> Tyrannosaurus rex. Science 307: 1952-1955.Schweitzer, M.H., Wittmeyer, J.L., and Horner, J.R. (2007a): Soft tissue and cellular preservation <strong>in</strong>vertebrate skeletal elements from the Cretaceous to the present. Proceed<strong>in</strong>gs of the RoyalSociety B 274: 183-197.Schweitzer, M.H., Suo, Z., Avci, R., Asara, J.M., Allen, M.A., Arce, F.T., and Horner, J.R. (2007b):Analyses of soft tissue from Tyrannosaurus rex suggest the presence of prote<strong>in</strong>. Science 316:277-280.Schweitzer, M.H., Zheng, W., Organ, C.L., Avci, R., Suo, Z., Freimark, L.M., Lebleu, V.S., Duncan,M.B., Vander Heiden, M.G., Neveu, J.M., Lane, W.S., Cottrell, J.S., Horner, J.R., Cantley, L.C.,Kalluri, R., and Asara, J.M. (2009): Biomolecular characterization and prote<strong>in</strong> sequences ofthe Campanian hadrosaur B. canadensis. Science 324: 626-631.18


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.org<strong>Bone</strong> diagenesis, the preservation and application of prote<strong>in</strong>s:it was the m<strong>in</strong>eral after all…MATTHEW COLLINS*, MIKE BUCKLEY, HANNAH KOON, NIENKE VAN DOORN, JULIE WILSONAND JANE THOMAS-OATESBioArCh, Departments of Biology, Archaeology and Chemistry, Biology, S BlockUniversity of York, PO Box 373, York YO10 5YW, United K<strong>in</strong>gdom(*mc80@york.ac.uk)Not chicken or egg, but rather collagen or m<strong>in</strong>eral? The debate regard<strong>in</strong>g which ofthe two components ultimately controls the diagenetic pathway of bone has longplayedout <strong>in</strong> the past five meet<strong>in</strong>gs of <strong>Bone</strong> <strong>Diagenesis</strong>. Indeed there has been areal debate regard<strong>in</strong>g whether we have collagen or ‘collagen’ <strong>in</strong> bone; <strong>in</strong> other wordshow fundamentally different is the material extracted from bone (for isotopic orradiocarbon analysis) from modern prote<strong>in</strong>. We proposed <strong>in</strong> 1996 a model to expla<strong>in</strong>the unusual pattern of collagen rate loss, which suggested random cha<strong>in</strong> cleavage.Such a model would have implied the degrad<strong>in</strong>g collagen would have impacted uponchemical analysis of the ‘collagen’ fraction (such as stable isotope analyses). Suchan observation has recently been demonstrated <strong>in</strong> a paper by Harbeck and Grupe(2009). However a paper we authored <strong>in</strong> the same volume (Dobberste<strong>in</strong> et al., 2009)came to oppos<strong>in</strong>g conclusion, and was <strong>in</strong>compatible with our own 1996 model.In this presentation we will consider the fate of collagen <strong>in</strong> ancient bone, and <strong>in</strong>particular the role played by mass spectrometry <strong>in</strong> uncover<strong>in</strong>g the story of its’ decay.With the exception of the loss of telopeptides, which appears to occur relativelyrapidly, we have been surprised by the overall stability of the collagen molecule. Wesee no strong evidence for selective deterioration of archaeological ‘collagen’, it isessentially biochemical collagen. If prote<strong>in</strong> is preserved almost unaltered <strong>in</strong> ancientbone, what does this mean for our understand<strong>in</strong>g of bone diagenesis and how canwe exploit preserved prote<strong>in</strong>s <strong>in</strong> ancient bone? In the latter case we describe thedevelopment of ZooMS (short for Zooarchaeology by Mass Spectrometry) a methodto identify bone particles us<strong>in</strong>g an approach similar way to DNA ‘f<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>g’ us<strong>in</strong>gthe characteristic pattern of mass spectrometrically-measured tryptic peptide massesto identify samples.References:Harbeck, M. and Grupe, G. (2009): Experimental chemical degradation compared to natural diageneticalteration of collagen: implications for collagen quality <strong>in</strong>dicators for stable isotope analysis.Archaeological and Anthropological Sciences 1: 43-57.Dobberste<strong>in</strong>, R.C., Coll<strong>in</strong>s, M.J., Craig, O.E., Taylor, G., Penkman, K.E.H., and Ritz-Timme, S. (2009):Archaeological collagen: Why worry about collagen diagenesis? Archaeological andAnthropological Sciences 1: 31-42.19


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgComparison of apatite crystallite sizes <strong>in</strong> sauropod and mammalfossil bonesMAÏTENA DUMONT* 1 , A. KOSTKA 1 , M. SANDER 2 , A. BORBELY 1 AND A. PYZALLA 31 Max-Planck-Institut für Eisenforschung, Max-Planck-Strasse 1, 40237 Düsseldorf,<strong>Germany</strong> (*m.dumont@mpie.de)2 Ste<strong>in</strong>mann Institute for Geology, M<strong>in</strong>eralogy and Palaeontology, University of <strong>Bonn</strong>,Nussallee 8, 53115 <strong>Bonn</strong>, <strong>Germany</strong>3 Helmholtz–Zentrum Berl<strong>in</strong>, Glienicker Strasse 100, 14109 Berl<strong>in</strong>, <strong>Germany</strong><strong>Bone</strong> has a hierarchical structure show<strong>in</strong>g specific arrangements of collagen fibrebundles at different length scales. At the lower nanostructural level, it consists of acollagen matrix re<strong>in</strong>forced with apatite particles. In a first approximation it is possibleto consider the bone as a particle re<strong>in</strong>forced composite structure, when a simpleanalysis suggests that the geometrical aspect ratio (length/width) of the apatiteparticles should control its mechanical properties; particles with higher aspect ratiobe<strong>in</strong>g more efficient <strong>in</strong> transferr<strong>in</strong>g the load from the matrix. In order to understandgigantism of sauropods a comparison between apatite particles of sauropod andmammal fossil bones is presented.We have studied the size and shape of apatite crystals <strong>in</strong> sauropod bones andcompared to different mammal fossil bones, us<strong>in</strong>g two different methods: X-raydiffraction (XRD) and transmission electron microscopy (TEM). Us<strong>in</strong>g the Scherrerequation the crystallite size <strong>in</strong> different crystallographic directions of the apatitecrystals was evaluated. These data were completed by TEM observations, whichpermit to <strong>in</strong>fer the three dimensional shape and size of the crystallites.20


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgOxygen triple isotope composition as a new tracer for tooth andbone diagenesis of fossil vertebratesALEXANDER GEHLER* 1 , MARJA KRÖGER 1 , THOMAS TÜTKEN 2 AND ANDREAS PACK 11 Department of Isotope Geology, Geoscience Center, Georg-August-UniversitätGött<strong>in</strong>gen, Goldschmidtstr. 3, D-37077 Gött<strong>in</strong>gen, <strong>Germany</strong>(*agehler@gwdg.de)2 Ste<strong>in</strong>mann Institut für Geologie, M<strong>in</strong>eralogie und Paläontologie,Rhe<strong>in</strong>ische Friedrich-Wilhelms-Universität <strong>Bonn</strong>, Poppelsdorfer Schloss,D-53115 <strong>Bonn</strong>, <strong>Germany</strong>We have begun a study of the oxygen triple isotope composition (δ 17 O, δ 18 O) ofmammal tooth and bone apatite. The external reproducibility is ±0.05‰ <strong>in</strong> ∆ 17 O (1sigma, s<strong>in</strong>gle analysis). Unaltered skeletal apatite from recent mammals showsdepletion <strong>in</strong> 17 O between 0 and –0.2‰ (expressed as ∆ 17 O which is the verticaldeparture from the terrestrial fractionation l<strong>in</strong>e with a slope of ~0.52 <strong>in</strong> a (δ 17 O vs.δ 18 O plot). The ∆ 17 O value decreases with decreas<strong>in</strong>g body size. The reason is ahigher proportion of oxygen derived from air O 2 <strong>in</strong> body water of small mammals.Large mammals obta<strong>in</strong> a proportionally higher amount of oxygen from dr<strong>in</strong>k<strong>in</strong>g waterand free H 2 O <strong>in</strong> food. Air O 2 has an oxygen triple isotope anomaly of ∆ 17 O = –0.35‰(e. g. Pack et al., 2007). Dr<strong>in</strong>k<strong>in</strong>g and food water have a ∆ 17 O value close to 0‰. Adetailed oxygen mass balance calculation agrees with the observed data.It is expected that diagenesis reduces the oxygen triple isotope anomaly of bioapatiteand eventually leads to a ∆ 17 O value of 0‰. Therefore, the ∆ 17 O value of smallmammal teeth and bones (with ∆ 17 O < 0) can, <strong>in</strong> pr<strong>in</strong>ciple, be used as direct proxy forthe degree of diagenetic alteration of the phosphate bound oxygen. Comparison of∆ 17 O values between skeletal tissues with different susceptibility to diageneticalteration such as tooth enamel, dent<strong>in</strong>e, and bone apatite may reveal effects ofdiagenesis on the bioapatite oxygen isotope composition.In this contribution we will present oxygen triple isotope data from fossil enamel,dent<strong>in</strong>e and bone material of an Upper Oligocene Archaeomys sp. (fissure fill<strong>in</strong>g <strong>in</strong>the Herrl<strong>in</strong>gen quarry, Baden-Wuerttemberg, <strong>Germany</strong>) and a Middle EoceneMasillamys sp. (Messel pit, Hesse, <strong>Germany</strong>) along with data from extant rodents.Implications of the oxygen triple isotope data for the diagenetic alteration of skeletalapatite and the potential of ∆ 17 O values as new diagenetic proxy will be discussed.Furthermore the ∆ 17 O value of bioapatite can be used as a proxy for the globalbiosphere productivity rate and changes <strong>in</strong> CO 2 concentrations of the atmosphere.References:Pack, A., Toulouse, C., and Przybilla, R. (2007): Determ<strong>in</strong>ation of oxygen triple isotope ratios ofsilicates without cryogenic separation of NF 3 - technique with application to analyses oftechnical O 2 gas and meteorite classification. Rapid Communications <strong>in</strong> Mass Spectometry21: 3721-3728.21


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgProgress, problems, and prospects <strong>in</strong> bone diagenesisROBERT HEDGES*Research Laboratory for Archaeology, University of Oxford, United K<strong>in</strong>gdom(*robert.hedges@rlaha.ox.ac.uk)This seems a good opportunity to give a personal overview of the changes toquestions, understand<strong>in</strong>g, and applications of bone diagenesis s<strong>in</strong>ce the firstworkshop.I shall discuss various selected po<strong>in</strong>ts under the categories of processes,compartments, isotopes, trace elements and biomolecules.22


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgThe timescales of REE uptake <strong>in</strong> fossil bone:Implications for Lu-Hf geochronologyDANIEL HERWARTZ* 1 , T. TÜTKEN 1 , C. MÜNKER 2 AND P.M. SANDER 11 Ste<strong>in</strong>mann Institut, Universität <strong>Bonn</strong>, Poppelsdorfer Schloss, 53115 <strong>Bonn</strong>, <strong>Germany</strong>2 Institut für Geologie und M<strong>in</strong>eralogie, Universität zu Köln, Zülpicher Str. 49 a/b,50674 Köln, <strong>Germany</strong>(*danielherwartz@gmx.de)Fossil bones <strong>in</strong>corporate rare earth elements (REE) from pore waters <strong>in</strong> the course oftheir fossilization. The tim<strong>in</strong>g of this process is crucial for various studies address<strong>in</strong>gprovenance, taphonomy, palaeoenvironment and age of fossil bone. Modell<strong>in</strong>g ofREE-uptake <strong>in</strong> fossil bioapatite of tooth dent<strong>in</strong>e (Toyoda and Tokanami, 1990), toothenamel (Kohn, 2008) and bone (Koenig et al., 2009) have led to controversial results,however, most authors argue, that late diagenetic REE uptake after ca. 30 ka is notsignificant for most samples.To <strong>in</strong>vestigate weather or not fossil bones behave as closed system over time, and ifLu-Hf systematics can be applied to date this material, we have analysed profiles of49 bones from 25 fossil sites from different diagenetic sett<strong>in</strong>gs by LA-ICP-MS andapplied Lu-Hf isotope analyses on selected samples.Compared to modern bone, REE <strong>in</strong> fossil bones are enriched by up to 4 orders ofmagnitude at the bone rim. Interest<strong>in</strong>gly, the <strong>in</strong>ner part of fossil bones is <strong>in</strong>creas<strong>in</strong>glyenriched <strong>in</strong> REE from Quaternary over Tertiary to Mesozoic specimens, the latterdisplay<strong>in</strong>g the highest contents. This suggests open system behaviour of fossil bonewith respect to REE.Lutetium-Hf isotope analyses further support this observation, as the Lu-Hf isochronages calculated from fossil bones found <strong>in</strong> river sediments, estuaries and carbonatesare significantly younger, than their known stratigraphic ages. Consequently,radiometric Lu-Hf dat<strong>in</strong>g of fossil bone can only be successful, if the embedd<strong>in</strong>gsediment <strong>in</strong>hibits diffusion processes, e.g. <strong>in</strong> clay sediments (Barfod et al., 2003) orearly diagenetic concretions, which are currently be<strong>in</strong>g <strong>in</strong>vestigated.References:Toyoda, K. and Tokanami, M. (1990): Diffusion of rare-earth elements <strong>in</strong> fish teeth from deep-seasediments. Nature 345: 607-609.Kohn, M.J. (2008): Models of diffusion-limited uptake of trace elements <strong>in</strong> fossils and rates offossilization. Geochimica et Cosmochimica Acta 72: 3758-3770.Koenig, A.E., Rogers, R.R., and Trueman, C.N. (2009): Visualiz<strong>in</strong>g fossilization us<strong>in</strong>g laser ablation<strong>in</strong>ductively-coupled plasma-mass spectrometry maps of trace elements <strong>in</strong> Late Cretaceousbones. Geology 37: 511-514.Barfod, G.H., Otero, O., and Albarède, F. (2003): Phosphate Lu-Hf geochronology. Chemical Geology200: 241-253.23


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgCalcium isotopes (δ 44/40 Ca) of fossil bones and teeth –biogenic versus diagenetic orig<strong>in</strong>ALEXANDER HEUSER* 1 , THOMAS TÜTKEN 1 AND STEPHEN J.G. GALER 21 Ste<strong>in</strong>mann Institut, Abt. Endogene Prozesse, Universität <strong>Bonn</strong>, <strong>Germany</strong>2 Max-Planck-Institut f. Chemie, Abt. Geochemie, Ma<strong>in</strong>z, <strong>Germany</strong>(*aheuser@uni-bonn.de)We present Ca isotope (δ 44/40 Ca) data of Late Triassic to Late Cretaceous d<strong>in</strong>osaurbones and teeth from different sympatric sauropods and theropods as well as fromthe embedd<strong>in</strong>g sediments. The Ca isotopic composition of fossil skeletal tissues canbe used to reconstruct ancient food cha<strong>in</strong>s and/or type of food <strong>in</strong>gested by theanimal. To study the potential <strong>in</strong>fluence of diagenetic alteration processes on theorig<strong>in</strong>al Ca isotopic composition we also analyzed skeletal tissues from extantreptiles and mammals.δ 44/40 Ca values of fossil tooth enamel range from –1.6 to +0.5‰ (relative to SRM915a) while most correspond<strong>in</strong>g dent<strong>in</strong> values are enriched <strong>in</strong> 44 Ca by about 0.2 to0.5‰. There are two possible explanations for this difference <strong>in</strong> δ 44/40 Ca betweendent<strong>in</strong> and enamel (∆ dent<strong>in</strong>-enamel ): (1) it reflects the orig<strong>in</strong>al <strong>in</strong> vivo difference betweenenamel and dent<strong>in</strong> caused by different biom<strong>in</strong>eralization processes dur<strong>in</strong>g dentaltissue formation which are preserved; (2) it is caused by chemical changes dur<strong>in</strong>gfossilisation. Dent<strong>in</strong> is known to be more susceptible for diagenetic changes thanenamel and thus the <strong>in</strong>crease of dent<strong>in</strong> δ 44/40 Ca values relative to enamel could<strong>in</strong>dicate a diagenetic alteration. However, as Ca is a major element <strong>in</strong> apatite(~40wt.%), such an alteration would imply a significant post mortem Ca exchangewith the environment. Because similar ∆ dent<strong>in</strong>-enamel values were found <strong>in</strong> extant andfossil reptile teeth a preservation of orig<strong>in</strong>al biogenic values seems likely. Thus the∆ dent<strong>in</strong>-enamel of fossil teeth may be used as an <strong>in</strong>dicator for diagenetic alteration of theCa isotopic composition.No systematic differences of δ 44/40 Ca values of bone apatite do exist betweenherbivorous and carnivorous d<strong>in</strong>osaurs as would be expected due the trophic leveldifference (Skulan and DePaolo, 1999). As no Ca isotope fractionation between dietand soft tissue occurs (Skulan and DePaolo, 1999) the lack of a trophic level offsetbetween herbivores and carnivores can be expla<strong>in</strong>ed if the <strong>in</strong>vestigated carnivorousd<strong>in</strong>osaurs only fed on soft tissue from herbivores. This would result <strong>in</strong> very similarδ 44/40 Ca of the diet of herbivores and non-bone-<strong>in</strong>gest<strong>in</strong>g carnivores and thus <strong>in</strong> verysimilar δ 44/40 Ca ratios of the m<strong>in</strong>eralized tissues.In contrast, the δ 44/40 Ca of a T-Rex enamel sample is ~1‰ lower than those of allother herbivorous and carnivorous d<strong>in</strong>osaurs analyzed. As T-Rex was capable tocrush and <strong>in</strong>gest bone (Ch<strong>in</strong> et al., 1998) we hypothesize that T-Rex <strong>in</strong>gestedsignificant amounts of bone tissue with low δ 44/40 Ca values. This would expla<strong>in</strong> thelower δ 44/40 Ca value than for presumably non-bone-<strong>in</strong>gest<strong>in</strong>g carnivorous d<strong>in</strong>osaurs.References:Skulan, J. and DePaolo, D. (1999): Calcium isotope fractionation between soft and m<strong>in</strong>eralized tissuesas a monitor of calcium use <strong>in</strong> vertebrates. Proceed<strong>in</strong>gs of the National Academy of Sciences96: 13709-13713.Ch<strong>in</strong>, K., Tokaryk, T.T., Erickson M., and Calk, L.C. (1998): A k<strong>in</strong>g-sized theropod coprolite. Nature393: 680-682.24


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgComparison of different screen<strong>in</strong>g methods to asses thepreservation degree of bone tissueNADJA HOKE* AND MICHAELA HARBECKDepartment Biology I, Anthropology, Ludwig-Maximilians-University Munich,Großhaderner Straße 2, 82152 Mart<strong>in</strong>sried, <strong>Germany</strong>(*nadjahoke@gmail.com, M.Harbeck@lrz.uni-muenchen.de)<strong>Bone</strong> analyses based on archaeological sample material always hold the risk ofgenerat<strong>in</strong>g <strong>in</strong>valid data, s<strong>in</strong>ce the bones might have undergone severedecomposition processes dur<strong>in</strong>g their <strong>in</strong>humation period. A too advanced degree ofdiagenetic alteration reduces the success rate of usable archaeometrical results.Especially with respect to avoid<strong>in</strong>g time- and cost-<strong>in</strong>tensive analyses, an ex antesample screen<strong>in</strong>g to estimate the chance of success of further analyses would beexpedient <strong>in</strong> practice.There have been several approaches so far to pre-assess the potential of retriev<strong>in</strong>gbiomolecular target signals from bone. In many cases, studies focus on def<strong>in</strong><strong>in</strong>g an<strong>in</strong>dicator which could be used to <strong>in</strong>crease the likelihood for recover<strong>in</strong>g amplifiableDNA effectively (e.g. Haynes et al., 2002). With regard to the prediction ofmicrostructural preservation, there is no recent study that offers a reliable samplescreen<strong>in</strong>g method.Our study aimed at compar<strong>in</strong>g several sample screen<strong>in</strong>g methods to assess their<strong>in</strong>formative value and applicability <strong>in</strong> practice. Furthermore, the use of the <strong>in</strong>dividualUV-fluorescence properties of bone was tested as a novel and easy to applyscreen<strong>in</strong>g method, compar<strong>in</strong>g its effectiveness with the already exist<strong>in</strong>g approaches.For this question we used two sets of archaeological bone samples (n=100),consist<strong>in</strong>g of human and horse bones with <strong>in</strong>humation times rang<strong>in</strong>g from 400 to15,000 years. All samples were analyzed for their microstructural and biomolecular(collagen and DNA) preservation degree. The screen<strong>in</strong>g methods tested to assessthe preservation status as reliable as possible were UV-fluorescence, histologicalpreservation, Ca/P mass ratio and asparag<strong>in</strong>e-acid-racemization.References:Haynes, S., Searle, J.B., Bretman, A., and Dobney, K.M. (2002): <strong>Bone</strong> preservation and ancient DNA:The application of screen<strong>in</strong>g methods for predict<strong>in</strong>g DNA survival. Journal of ArchaeologicalScience 29: 585-592.25


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgThe orig<strong>in</strong> of cremated bone apatite carbonMATTHIAS HUELS*, PIETER M. GROOTES , MARIE-JOSÉE NADEAU, HELMUT ERLENKEUSERAND NILS ANDERSENLeibniz Laboratory for Radiometric Dat<strong>in</strong>g and Isotope Research, Christian AlbrechtUniversity, Kiel, <strong>Germany</strong> (*mhuels@leibniz.uni-kiel.de)<strong>Bone</strong>s which underwent burn<strong>in</strong>g at high temperatures, i.e. cremation, do not conta<strong>in</strong>organic carbon anymore. Lant<strong>in</strong>g et al (2001) proposed that some of the orig<strong>in</strong>alstructural carbonate, formed dur<strong>in</strong>g bio-apatite formation, survived. Parallelradiocarbon dat<strong>in</strong>g of cremated bone apatite and contemporary charcoal presented <strong>in</strong>their study seems to confirm this assumption. However, stable carbon isotopecomposition of carbonate <strong>in</strong> cremated bones is consistently lighter than <strong>in</strong>uncremated material and is closer to the δ 13 C values seen <strong>in</strong> C 3 plant material. Thisraises the question of the orig<strong>in</strong> of carbonate <strong>in</strong> cremated bone apatite, i.e. is theisotope signal caused by isotopic fractionation dur<strong>in</strong>g cremation or by an exhange ofcarbon with the local cremation atmosphere and thus carbon from the burn<strong>in</strong>g fuel.To study the changes <strong>in</strong> carbon isotopes ( 14 C, 13 C) of bone apatite dur<strong>in</strong>g burn<strong>in</strong>g upto 800°C a modern bov<strong>in</strong>e bone ( 14 C col : 106.2 pMC, δ 13 C col : -13.4‰, δ 13 C ap : -5.0‰)was exposed to a cont<strong>in</strong>uous flow of an artificial atmosphere (basically a high purityO 2 /N 2 gas mix) under def<strong>in</strong>ed conditions (temperature, gas composition). To simulatethe <strong>in</strong>fluence of the fuel carbon available under real cremation conditions, fossil CO 2( 14 C: 0.18 pMC, δ 13 C: -32.64 ‰) was added at different concentration. Infraredvibrational spectra and X-Ray diffractrometry revealed details on the crystalconfiguration of the burned apatite. To get cremated bone apatite material similar toarchaeological cremated bone apatite, accord<strong>in</strong>g to crystallographical criteria, it wasnecessary to add water vapor (ultra pure) to the atmosphere with<strong>in</strong> the oven. Resultson the isotopic composition <strong>in</strong>dicate an effective exchange of carbon between boneapatite and atmosphere depend<strong>in</strong>g on temperature and CO 2 concentration, leav<strong>in</strong>gonly a fraction of orig<strong>in</strong>al bone apatite carbon.References:Lant<strong>in</strong>g, J.N., Aerts-Bijma A., and van der Plicht, H. (2001): Dat<strong>in</strong>g of cremated bones. Radiocarbon43: 249-254.26


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgPhysical and chemical characteristics of mammal fossil bonerema<strong>in</strong>s and their relative age evaluation problemS. L. VOTYAKOV 1 *, N. G. SMIRNOV 2 , DARIA V. KISELEVA* 1 , YU. V. SHCHAPOVA 1 ANDN. O. SADYKOVA 21 Institute of Geology and Geochemistry UB RAS, Ekater<strong>in</strong>burg, Russia,(*Votyakov@igg.uran.ru)2 Institute of Plant and Animal Ecology UB RAS, Ekater<strong>in</strong>burg, Russia,(N_Smirnov@ipae.uran.ru)The ma<strong>in</strong> goal of present work was a multidiscipl<strong>in</strong>ary study of modern and fossilsmall mammal bone and teeth rema<strong>in</strong>s <strong>in</strong>clud<strong>in</strong>g chemical composition (by means ofICP-MS and EPMA), structure (TA, IR and ESR spectroscopy) and surface (SEM andAFM) <strong>in</strong>vestigations <strong>in</strong> order to reconstruct bone fossilization conditions and revealchronological and space heterogeneity.Investigated Late Quaternary material (180 samples) from different locations of Uralsregion consisted of various rodents bone rema<strong>in</strong>s (jaws and teeth) from differentdepth and age sites (from modern to ancient with tens of thousands years old) fromzoogenic deposits <strong>in</strong> karstic cavities.<strong>Bone</strong> <strong>in</strong>organic phase conversion upon fossilization was exam<strong>in</strong>ed: bone apatitecrystall<strong>in</strong>ity, degree of apatite P-O bond ionicity - covalency, carbonate-ion relativeconcentration and its <strong>in</strong>ter-positional distribution; alterations <strong>in</strong> bone surface microandnanostructure took place. Dynamics of bone element composition were<strong>in</strong>vestigated; geochemical <strong>in</strong>dices were calculated; rare earth elements and otherhigh field strength elements seemed to be promis<strong>in</strong>g for relative age estimation bytissue accumulation degree.Obta<strong>in</strong>ed by thermal analysis estimates of organic content <strong>in</strong> bone rema<strong>in</strong>s series ofthe same type and location or similar <strong>in</strong> taphonomic nature locations were used forrevelation of different age admixtures and for chronological rank<strong>in</strong>g <strong>in</strong>side largesample selections. ESR-signal provided by ion-radicals <strong>in</strong>duced by thermo-chemicaltransformations of organic constituent was discovered <strong>in</strong> modern and ancient bone(tooth) tissues; ion-radical l<strong>in</strong>e shape and width parameters were analyzed and theirage variations exam<strong>in</strong>ed.A number of diagrams connect<strong>in</strong>g the results of different experimental methods wereproposed as the basis for relative age and burial environment comparison andrevelation of fossil bones chronological and space heterogeneity. Obta<strong>in</strong>ed resultswere applied to solv<strong>in</strong>g the problem about synchronization degree of Quaternaryrodent bone rema<strong>in</strong>s from different subfossil and fossil burials of Urals region ofRussia.Present work is supported by RFBR (grants № 07-05-00097-а, № 08-04-00663-а), RAS program«Orig<strong>in</strong> and Evolution of Biosphere», and <strong>in</strong>tegration project of UB and FEB RAS «Application of C, Oand N stable isotope analysis <strong>in</strong> bone rema<strong>in</strong>s of terrestrial mammals for Quaternary paleo-ecologicaland paleo-climatic reconstructions».27


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgThe isotopic ecology of mar<strong>in</strong>e vertebrates:Major applications and analytical considerationsPAUL L. KOCH*Earth and Planetary Sciences Department, University of California, Santa Cruz, CA95064, USA (*pkoch@pmc.ucsc.edu)Stable isotope values of carbon, nitrogen, hydrogen, and oxygen are rout<strong>in</strong>ely usedto study vertebrate ecology and paleoecology. Isotopes of other elements, such assulfur, lead, strontium, and calcium, are used as well, but less extensively. Theisotopic composition of an animal is primarily determ<strong>in</strong>ed by the isotopic compositionof the food, water, and gas that enter its body and from which it makes tissues andm<strong>in</strong>erals, offset by isotopic fractionations associated with metabolism, tissue orm<strong>in</strong>eral synthesis, waste production, and outgo<strong>in</strong>g fluxes. I will offer an overview ofthe major isotopic gradients <strong>in</strong> mar<strong>in</strong>e and marg<strong>in</strong>al mar<strong>in</strong>e environments, and thenconsider three types of study that use stable isotope analysis (SIA) to <strong>in</strong>vestigatemar<strong>in</strong>e vertebrate ecology. SIA is most often used to study diet and trophic levelamong and with<strong>in</strong> <strong>in</strong>dividuals of species. As mar<strong>in</strong>e vertebrates can be extraord<strong>in</strong>arilymobile, and some can move between environments of vary<strong>in</strong>g sal<strong>in</strong>ity, SIA is<strong>in</strong>creas<strong>in</strong>gly used to study habitat use, migratory patterns, and mar<strong>in</strong>e-freshwaterconnections. F<strong>in</strong>ally, I’ll consider physiological issues, such as the effects of diet,body condition, or reproductive status on isotopic fractionation.In addition to these major applications of SIA to mar<strong>in</strong>e ecology, I will consider threeanalytical issues. First, I’ll explore recent advances <strong>in</strong> the quantitative treatment ofisotopic mix<strong>in</strong>g <strong>in</strong> ecological research. Second, I’ll present ongo<strong>in</strong>g debates about thebest ways to treat specimens prior to SIA, and whether or not bone and dent<strong>in</strong>m<strong>in</strong>eral are reliable substrates. F<strong>in</strong>ally, I’ll briefly consider recent advances <strong>in</strong> isotopicanalysis of <strong>in</strong>dividual am<strong>in</strong>o acids.28


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgDat<strong>in</strong>g of fossil bones with Lu-Hf isotopic system:revisit<strong>in</strong>g an old idea with new approachesLÁSZLÓ KOCSIS*, CLIVE N. TRUEMAN AND MARTIN R. PALMERSchool of Ocean and Earth Science, University of Southampton, NationalOceanography Centre, Southampton, SO14 3ZH, United K<strong>in</strong>gdom(*laszlo.kocsis@noc.soton.ac.uk)Trace element uptake of biogenic phosphate from the surround<strong>in</strong>g pore fluid dur<strong>in</strong>gfossilization is a well-known phenomenon (Trueman and Tuross, 2002). Dur<strong>in</strong>g thisprocess rare earth element (REE) concentrations can reach 3 to 4 orders ofmagnitude higher than <strong>in</strong> modern bones (≤ 1 ppm) which makes the Lu/Hf isotopicsystem a promis<strong>in</strong>g tool for dat<strong>in</strong>g bone beds.In their pioneer works, Barfod and her co-authors (Barfod et al., 2002; 2003) appliedthe method first on sedimentary apatite and fossils. The bones yielded a falselyyoung age based on scattered Lu-Hf data, but no attempt was made to characterizebone fragments, separate dense cortical from cancellous bone or <strong>in</strong>vestigate thepotential <strong>in</strong>fluence of detrital clays. Another problematic question is whether thesystem rema<strong>in</strong>ed closed after the <strong>in</strong>itial re-crystallization. Generally the REE uptakecont<strong>in</strong>ues until the <strong>in</strong>ter-crystallite spaces are filled by grow<strong>in</strong>g apatite crystals and/orby secondary m<strong>in</strong>erals, stabiliz<strong>in</strong>g the biogenic apatite, prevent<strong>in</strong>g diffusion andlimit<strong>in</strong>g or even completely block<strong>in</strong>g further uptake of trace elements. Estimates ofthe rate of this re-crystallization <strong>in</strong> fossil bones range from 10 2 –10 5 years (Truemanand Tuross, 2002; Trueman et al., 2008; Kohn, 2008). Therefore, <strong>in</strong> case of a closedsystem the potential of the Lu/Hf dat<strong>in</strong>g method can still provide mean<strong>in</strong>gful ages.To further test the prospective of the Lu/Hf system on biogenic apatite, well-preservedfossils have been chosen from bone beds from the Triassic and Cretaceous periodsthat are well dated through K-Ar and/or U-Pb dat<strong>in</strong>g of associated fresh volcaniccrystals. REE profiles have been measured to estimate uptake dynamics, andanalytical protocols ref<strong>in</strong>ed for accurate and precise measurement of Lu and Hfisotope ratios. Here we present the <strong>in</strong>itial results of attempts to date these fossilbones us<strong>in</strong>g Lu-Hf geochronology.References:Barfod, G.H, Albarède, F., Knoll, A.H., Xiao, S., Télouk, P., Frei, R., and Baker, J. (2002): New Lu-Hfand Pb-Pb age constra<strong>in</strong>ts on the earliest animal fossils. Earth and Planetary Science Letters201: 203-212.Barfod, G.H, Otero, O., and Albarède, F. (2003): Phosphate Lu–Hf geochronology. Chemical Geology200: 241-253.Kohn, J.M. (2008): Models of diffusion-limited uptake of trace elements <strong>in</strong> fossils and rates offossilization. Geochimica et Cosmochimica Acta 72: 3758-3770Trueman, N.C., and Tuross, N. (2002): Trace Elements <strong>in</strong> Recent and Fossil <strong>Bone</strong> Apatite. In: Kohn, J.M., Rakovan, J., Hughes, J.M. (Eds.), Review <strong>in</strong> M<strong>in</strong>eralogy and Geochemistry 48, 489-521.Trueman, C.N., Palmer, M.R., Field, J., Privat, K., Ludgate, N., Chavagnac, V., Eberth, D.A., Cifelli, R.,Rogers, R.R. (2008): Compar<strong>in</strong>g rates of recrystallisation and the potential for preservation ofbiomolecules from the distribution of trace elements <strong>in</strong> fossil bones. C. R. Palevol 7: 145-158.29


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.org- Public even<strong>in</strong>g lecture Saturday 19 September 2009, 19:30 -What makes us human:Insights from sequenc<strong>in</strong>g the Neandertal genomeJOHANNES KRAUSE* 1 , R. E. GREEN 1 , A. W. BRIGGS 1 , U. STENZEL 1 , K. PRUEFER 1 , T.MARICIC 1 , M. KIRCHNER 1 , J. KELSO 1 , D. REICH 2,3 , J. C. MULLIKIN 4 , M. EGHOLM 5 ANDS. PÄÄBO 11 Max-Planck Institute for Evolutionary Anthropology, Leipzig, <strong>Germany</strong>(*krause@eva.mpg.de)2 Department of Genetics, Harvard Medical School, Cambridge, USA3 Broad Institute of Harvard and MIT, Cambridge, USA4 Genome Technology Branch, National Human Genome Research Institute,Bethesda, USA5 454 Life Sciences, Branford, USANeandertals, a hom<strong>in</strong>id group that appeared <strong>in</strong> the European fossil recordaround 400,000 years ago and disappeared around 30.000 years ago, arebelieved to be our closest ext<strong>in</strong>ct relatives. Although Neandertals and modernhumans overlapped <strong>in</strong> certa<strong>in</strong> regions <strong>in</strong> time and space, the relationshipbetween us and them is unclear and contentious. A genetic comparisonbetween modern humans and Neandertals could both address the relationshipbetween us and them and offer the possibility to identify genetic changes thathappened specifically on the human l<strong>in</strong>eage. Furthermore it may allowidentify<strong>in</strong>g and understand<strong>in</strong>g the evolutionary history of genes and positions<strong>in</strong> the modern human genome that experienced recent positive selection afterNeandertals and humans separated and that might play an important role <strong>in</strong>human evolution, such as the FOXP2 gene.Us<strong>in</strong>g a comb<strong>in</strong>ation of high-throughput DNA sequenc<strong>in</strong>g technologies andmultiple improvements <strong>in</strong> ancient DNA retrieval and library construction, wehave determ<strong>in</strong>ed the sequences of over one billion DNA fragments fromNeandertal bones from V<strong>in</strong>dija Cave, Croatia. From these DNA sequences,about 4,5 Gb of Neandertal DNA has been identified. Estimates of modernhuman contam<strong>in</strong>ation range from 0.3% for mtDNA and 0.5% for Ychromosomal DNA. The average divergence of Neandertal and modernhuman DNA sequences is over 800,000 years.To learn more about the size and potential structure of the Neandertalpopulation we furthermore applied various targeted methods to sequencespecific parts of the Neandertal genome, such as complete mitochondrialgenome sequences, <strong>in</strong> Neandertals from various sites <strong>in</strong> Europe suggest<strong>in</strong>g asmall effective population size <strong>in</strong> Neandertals similar to modern Europeans.30


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgA consideration of diagenesis <strong>in</strong> teeth from the South African fossilhom<strong>in</strong><strong>in</strong> sites based on strontium isotopesJULIA LEE-THORP* 1 , SANDI COPELAND 2 , MATT SPONHEIMER 3 , DARRYL DE RUITER 4AND PETRUS LE ROUX 51 Division of Archaeological, Geographical and Environmental Sciences, University ofBradford, UK (*j.a.lee-thorp@bradford.ac.uk)2 Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology,Leipzig, <strong>Germany</strong>3 Department of Anthropology, University of Colorado at Boulder, USA4 Department of Anthropology, Texas A&M University, USA5 AEON EarthLAB, University of Cape Town, South AfricaAlthough enamel is the preferred tissue for geochemical dietary and sourc<strong>in</strong>g studies,concerns rema<strong>in</strong> about alteration of trace element and isotopic composition. Thisconstitutes an important problem not only because trace elemental composition mayprovide unique perspectives on ancient diets, but also because strontium isotopebasedmethods are be<strong>in</strong>g developed to address residence and rang<strong>in</strong>g patterns of<strong>in</strong>dividuals <strong>in</strong> the Pleistocene-aged hom<strong>in</strong><strong>in</strong> sites <strong>in</strong> South Africa. These representmuch older material than the more prevalent studies on (fairly recent) archaeologicalmaterial. Earlier we showed that <strong>in</strong> our study area, variability <strong>in</strong> Sr/Ca and Ba/Cacomposition <strong>in</strong> fossils resembles distributions <strong>in</strong> modern systems accord<strong>in</strong>g togeological substrate, but high levels of variation mean that concentrations alone areunreliable predictors of alteration (or not).Here we apply strontium isotope ( 87 Sr/ 86 Sr) distributions <strong>in</strong> modern and fossil enameland dent<strong>in</strong>e. The range of patterned bio-available strontium isotope variation <strong>in</strong> theSterkfonte<strong>in</strong> Valley is very high, and thus can provide a sensitive means to assessnatural variability due to location, versus diagenesis. Our results show that thedistribution of 87 Sr/ 86 Sr <strong>in</strong> fossils closely tracks that <strong>in</strong> the modern system. Inparticular the data clearly dist<strong>in</strong>guish rodents from local dolomite substrates fromthose from other more radiogenic geological zones <strong>in</strong> both modern and fossil owlroosts. The diagenetic endmember for the deposits <strong>in</strong> which the teeth are found is0.729. We found no evidence for alteration of enamel values, and vary<strong>in</strong>g degrees ofequilibration for dent<strong>in</strong>e. Dent<strong>in</strong>e however, clearly cannot be assumed to have beencompletely “reset” to the diagenetic endmember <strong>in</strong> all cases, and we urge caution <strong>in</strong>apply<strong>in</strong>g this assumption as a tool to establish local bioavailable strontium isotopevalues.31


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgConservation of the biological-geochemical signals <strong>in</strong>archaeological human bones as assessed by <strong>in</strong>traskeletal studiesANNE-FRANCE MAURER* 1 , A. PERSON 2 , V. ZEITOUN 3 AND M. RENARD 21 Institute of Geosciences, University of Ma<strong>in</strong>z, Johann-Joachim-Becher-Weg 21,55128 Ma<strong>in</strong>z, <strong>Germany</strong> (*annefrance.maurer@gmail.com)2 Laboratory Biom<strong>in</strong>eralizations & Palaeoenvironments (ala<strong>in</strong>.person@upmc.fr)3 Guimet Museum (valery.zeitoun@udr1.cnrs.fr)Modern vertebrate bone geochemistry is directly related to the food and waterconsumed dur<strong>in</strong>g life. The geochemical composition of these <strong>in</strong>gested products is afunction of their nature and location. However, the archaeological bone geochemistrycan be modified after death. Dur<strong>in</strong>g burial taphonomic processes will affect both theorganic and m<strong>in</strong>eral constituents of the skeleton. The different processes that takeplace can alter the primary signal registered by the skeleton. This occurs from theearly organic decomposition of the body until complete fossilization. Teeth are usuallypreferred to bones for geochemical studies because they are believed to be moreresistant to post-mortem modifications. However, they register <strong>in</strong>formation dur<strong>in</strong>gchildhood whereas bones yield an adult signal. It is therefore essential, whenpossible, to access liv<strong>in</strong>g bone geochemistry to reconstruct the diet of archaeologicalpopulations and to avoid a potential bias related to ontogenetic dietary changes.To test the reliability of the geochemical signal recorded <strong>in</strong> archaeological bones, am<strong>in</strong>eralogical, geochemical and histological approach, based on an <strong>in</strong>tra <strong>in</strong>dividualsampl<strong>in</strong>g strategy, was undertaken. The <strong>in</strong>tra skeletal variability of trace elementcomposition was compared to bone physico-chemical alteration parameters(cristall<strong>in</strong>ity <strong>in</strong>dex, organic matter content, secondary calcite content, etc.). This wasdone <strong>in</strong> order to determ<strong>in</strong>e bone post mortem modification modalities. This methodwas applied to archaeological populations from two dist<strong>in</strong>ct, specialized environments(Chupicuaro population, Mexico, 2500-2000 BP, from a hydrothermal region;Neolithic populations of the Mauritanian dhars, Africa, 4000-2000 BP, from a saharosahelianrefuge zone). The results show a different modality of the alteration <strong>in</strong> bothenvironments but despite this, a signal can still be extracted. Investigation of theirbiological signals enables a better understand<strong>in</strong>g of the relationship between thearchaeological populations and their environment.32


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgAchievable time resolution of compositional/ isotopic profiles <strong>in</strong>tooth enamel: constra<strong>in</strong>ts from high-resolution LA-ICPMS andhistological analysisWOLFGANG MÜLLER* 1 , LUCA BONDIOLI 2 AND PAOLA F. ROSSI 21 Department of Earth Sciences, Royal Holloway University of London,Egham, TW20 0EX, UK (*w.muller@es.rhul.ac.uk)2 Museo Nazionale Preistorico Etnografico ‘L.Pigor<strong>in</strong>i’, I-00144 Rome, ItalyThe sequential m<strong>in</strong>eralization process of mammalian tooth enamel formationpotentially stores time-series <strong>in</strong>formation of various environmental proxies <strong>in</strong>clud<strong>in</strong>gmobility, palaeodiet or heavy-metal exposure. For <strong>in</strong>stance, approximately 15 years ofchronology is accessible if multiple human teeth of one <strong>in</strong>dividual are utilized. Enamelis characterized by cont<strong>in</strong>uous growth amount<strong>in</strong>g to a few micrometer (µm) per day,so <strong>in</strong> pr<strong>in</strong>ciple almost daily resolution of palaeoenvironmental <strong>in</strong>formation could bepossible us<strong>in</strong>g state-of-the-art microanalytical techniques such as laser-ablation<strong>in</strong>ductively-coupled-plasma mass spectrometry (LA-ICPMS). However, the protractedm<strong>in</strong>eralization process, where <strong>in</strong>itial enamel segregation is followed by a latermaturation process, may potentially lead to dampen<strong>in</strong>g or even eradication of any<strong>in</strong>itially vary<strong>in</strong>g palaeoenvironmetal <strong>in</strong>put signals <strong>in</strong> fully m<strong>in</strong>eralized enamel.Understand<strong>in</strong>g segregation vs. maturation is paramount for the reconstruction of subseasonalenvironmental variables, which has become very important <strong>in</strong> the past fewyears.We will present highly-resolved cont<strong>in</strong>uous compositional and isotopic profiles ofhuman teeth us<strong>in</strong>g a new custom-built excimer LA-(MC)ICPMS system (Müller et al.,2009). Such chemical data are comb<strong>in</strong>ed with detailed enamel histological analyses,which facilitate <strong>in</strong>ter-tooth correlation and detailed <strong>in</strong>tra-tooth chronology. The latter ispossible due to both identification of the Neonatal L<strong>in</strong>e (NNL) and time-equivalentenamel doma<strong>in</strong>s across several teeth with overlapp<strong>in</strong>g m<strong>in</strong>eralization <strong>in</strong>tervals thatare identified us<strong>in</strong>g stress events expressed as Wilson bands.Time-equivalent profiles <strong>in</strong> enamel are analyzed 1) parallel (and close to) the enameldent<strong>in</strong>ejunction (EDJ) and 2) parallel to enamel prisms (<strong>in</strong>ner to outer enamel), <strong>in</strong>turn connected by profiles along isogrowth l<strong>in</strong>es such as the NNL or other Retziusl<strong>in</strong>es. This approach facilitates a direct evaluation of the extent of later maturationaffect<strong>in</strong>g the fidelity by which <strong>in</strong>itially vary<strong>in</strong>g environmental signals are stored <strong>in</strong> andcan be retrieved from different enamel doma<strong>in</strong>s. The examples to be presented<strong>in</strong>clude both modern as well as archaeological human tooth samples. Initial datasuggest that different (trace) elements, most notably Pb and Zn, show very differentresponses to secondary enamel maturation. Enamel closest to the EDJ appears toescape some (most?) of the secondary enamel maturation process and maypreserve at least some of <strong>in</strong>itially variable environmental <strong>in</strong>put signals.References:Müller, W., Shelley, M., Miller, P., and Broude, S. (2009): Initial performance metrics of a new customdesignedArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell. JournalAnalytical Atomic Spectrometry 24: 209-214.33


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgSulphur isotope analysis from bone collagen:A new method for archaeological sciencesOLAF NEHLICH* 1 AND MIKE P. RICHARDS 1,21 Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology,Deutscher Platz 6, Leipzig, <strong>Germany</strong>2 Department of Archaeology, University of Durham, South Road, Durham, UK(*nehlich@eva.mpg.de)Increas<strong>in</strong>g research <strong>in</strong>terest <strong>in</strong> the analysis of sulphur isotopes of archaeologicalbone collagen has brought up the question of reliability. In bone collagen methion<strong>in</strong>eis the only sulphur-conta<strong>in</strong><strong>in</strong>g am<strong>in</strong>o acid, which is essential for animals. As essentialam<strong>in</strong>o acids derive directly from the diet, the sulphur isotopic ratio of bone collagenwill represent the average ratio of the diet; however, the low amount of sulphur <strong>in</strong>bone collagen is problematic for isotopic analysis.Here we present arguments for reliable quality markers, like the amount of sulphur,C:S and N:S ratios. These results were obta<strong>in</strong>ed from numerous repeated analysesof several modern and ancient species <strong>in</strong>clud<strong>in</strong>g fish, birds and a broad variety ofmammals.These f<strong>in</strong>d<strong>in</strong>gs will then be used to explore the quality of the data <strong>in</strong> a presentedarchaeological case study where sulphur isotopes have been utilised to solve theissue of freshwater fish consumption from the Iron Gates <strong>in</strong> Serbia. Freshwater fishfrom the Danube was arguably the most important source <strong>in</strong> the Mesolithic, but wasnot heavily exploited <strong>in</strong> the Neolithic. Here we demonstrate the effect of two differentdietary sources on sulphur isotope values and the implications for our understand<strong>in</strong>gof ancient diets.34


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgThe comparison of oxygen isotopes <strong>in</strong> phosphate and carbonate ofbioapatite: is it always a reliable check for diagenetic alteration?An <strong>in</strong>tra-tooth isotope study from prehistoric ungulate teethMAURA PELLEGRINI* 1 , JULIA A. LEE-THORP 1 , CAROLYN A. CHENERY 2 ANDRANDOLPH E. DONAHUE 11 Division of Archaeological, Geographical and Environmental Sciences, University ofBradford, Bradford, UK2 NERC Isotope Geosciences Laboratory, Keyworth, Nott<strong>in</strong>gham, UK(*m.pellegr<strong>in</strong>i@Bradford.ac.uk)We report on a detailed sequential phosphate and carbonate oxygen (O) isotopesmeasurement of tooth enamel <strong>in</strong> prehistoric ungulate specimens.Comparisons between δ 18 O of the phosphate and carbonate phases <strong>in</strong> biogenicapatite of tooth enamel have been suggested, and applied, as a tool to addressissues of diagenesis <strong>in</strong> fossil samples (Iacum<strong>in</strong> et al., 1996; Bryant et al., 1996). Aplot of δ 18 O of the phosphate and carbonate for samples that were not subject todiagenesis should fall along a straight l<strong>in</strong>e, direct relationship. However, thesestudies also showed variation and uncerta<strong>in</strong>ty about the relationship, and recent highresolution comparisons <strong>in</strong> s<strong>in</strong>gle tooth crowns by Mart<strong>in</strong> et al (2008) suggested thatthe relationship might be more complex than previously thought. One underly<strong>in</strong>gassumption of this approach is that the two m<strong>in</strong>eral fractions precipitate <strong>in</strong> equilibriumor quasi-equilibrium from the same pool of body water, and by implication, at thesame time. We performed high resolution, sequential <strong>in</strong>tra-tooth carbonate andphosphate oxygen isotope measurements along the grow<strong>in</strong>g direction of molarspecimens of Cervus elaphus and Equus hydrunt<strong>in</strong>us from archaeological sites <strong>in</strong>central Italy, <strong>in</strong> the course of a study <strong>in</strong>vestigat<strong>in</strong>g seasonal shifts. In these twospecies teeth m<strong>in</strong>eralise <strong>in</strong> a relatively straightforward pattern from the crown apex tol<strong>in</strong>gual junction, and the δ 18 O values of the two phases were expected to follow thesame pattern, although offset, follow<strong>in</strong>g the assumption that precipitation iscontemporaneous for both phases.The results, however, suggest that the δ 18 O curve for carbonate is flattenedcompared to that for phosphate <strong>in</strong> almost all the samples analysed. These resultsmay suggest that the pool from which carbonate is precipitated has a longerresidence time than the pool from which phosphate is precipitated.References:Iacum<strong>in</strong>, P., Bocherens, H., Mariotti, A. & Long<strong>in</strong>elli, A. (1996): Oxygen isotope analyses of co-exist<strong>in</strong>gcarbonate and phosphate <strong>in</strong> biogenic apatite: a way to monitor diagenetic alteration of bonephosphate. Earth and Planetary Science Letters 142: 1-6.Bryant, J.D., Koch, P.L., Froelich, P.N., Showers W.J., and Genna, B.J. (1996): Oxygen isotopepartition<strong>in</strong>g between phosphate and carbonate <strong>in</strong> mammalian apatite. Geochimica etCosmochimica Acta 60: 5145-5148.Mart<strong>in</strong>, C., Bentaleb, I., Kaandorp, R., Iacum<strong>in</strong>, P., and Chatri, K. (2008): Intra-tooth study of modernrh<strong>in</strong>oceros enamel δ 18 O: Is the difference between phosphate and carbonate δ 18 O a sounddiagenetic test? Palaeogeography Palaeoclimatology, Palaeoecology 266: 183-189.35


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgFrom Neolithic up to today. Evolution of animal bones from differentarchaeological sites and environments with a special emphasis ofnanoscale modificationsINA REICHE* AND CELINE CHADEFAUXLaboratoire du Centre de recherche et de restauration des musées de France,UMR 171 CNRS, Palais du Louvre, 14 quai François Mitterrand, 75001 Paris, France(*<strong>in</strong>a.reiche@culture.gouv.fr)In the field of archaeology, the discovery and the conservation of archaeological bonematerials is of great importance. However, they often present altered states. It is thusimportant to understand the biogeochemical alteration phenomena of archaeologicalbone rema<strong>in</strong>s and then, to establish restoration and conservation methods for longterm preservation of these bone materials.In this aim, a new analytical strategy tak<strong>in</strong>g <strong>in</strong>to account the hierarchical structure ofthese nanocomposite biomaterials was developed. This methodology comb<strong>in</strong>eslaboratory based analytical techniques (IR microscopy, SEM, TEM) and othersrequir<strong>in</strong>g synchrotron radiation (SR-IR microscopy, X-Ray microtomography, SAXS).A key step of this methodology was a particular sample preparation procedure us<strong>in</strong>gmicrotomy for provid<strong>in</strong>g th<strong>in</strong> sections. A characterization of the state of preservationfrom the macro- to the nanoscale was thus possible (Reiche and Chadefaux, 2009).The state of preservation of archaeological bone material dat<strong>in</strong>g from differentperiods (from Neolithic to today) and com<strong>in</strong>g from different burial conditions (urban,metallurgical, rural, lake, mar<strong>in</strong>e environment and cave sites) has beencharacterized. This enables us follow<strong>in</strong>g detailed diagenetic modifications frommacro-to nanoscale as a function of time and burial context and determ<strong>in</strong><strong>in</strong>g keyfactors for conservation of bone material (Chadefaux, 2009).References:Reiche, I. and Chadefaux, C. (2009): Fluor<strong>in</strong>e uptake <strong>in</strong> archaeological bone – Study from macro- tonanoscale. Chemistry today. Focus on Fluor<strong>in</strong>e Chemistry 27 n° 3 (May/June 2009) 48-51.Chadefaux, C. (2009) : Etablissement d’une nouvelle stratégie analytique multi échelle decaractérisation de l’état de conservation de matériaux osseux archéologiques, PhD thesis,Université Pierre et Marie Curie Paris 6, 397 p.36


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgCalcium isotopes (δ 44/42 Ca) <strong>in</strong> archaeological bones and teethL. M. REYNARD* 1,2 , G. M. HENDERSON 2 AND R. E. M. HEDGES 11 Research Laboratory for Archaeology and the History of Art, University of Oxford,UK, OX1 3QY(*l<strong>in</strong>da.reynard@rlaha.ox.ac.uk, robert.hedges@rlaha.ox.ac.uk)2 Department of Earth Sciences, University of Oxford, UK, OX1 3PR(gideon.henderson@earth.ox.ac.uk)We have measured the calcium isotope ratio (δ 44/42 Ca) of bones and teeth from alarge number of archaeological samples. Given that dietary calcium is sourcedprimarily from plants and dairy products, which have dist<strong>in</strong>ct calcium isotope ratios,the bone δ 44/42 Ca of dairy consumers should be different to non-dairy consumers.This would provide a powerful tool for <strong>in</strong>vestigat<strong>in</strong>g the emergence of dairy<strong>in</strong>g bothtemporally and geographically. The sites studied here range <strong>in</strong> age from Palaeolithicto historic, from various locations <strong>in</strong> North Africa and Eurasia. Humans have lowerδ 44/42 Ca than local herbivorous fauna, with the magnitude of the offset chang<strong>in</strong>g fromsite to site. These results are complex and suggest that calcium isotopes are affectedby several different processes, so that untangl<strong>in</strong>g a simple dairy<strong>in</strong>g signal is not yetpossible.We expect that any diagenetic change <strong>in</strong> calcium will affect human and faunal boneequally, with<strong>in</strong> a s<strong>in</strong>gle site. Given that calcium is the major constituent of bone (40weight percent of hydroxyapatite), very substantial alteration would be needed tochange the calcium isotope ratios. The relative differences between humans andlocal fauna should be robust.Acid leaches of bone powders show that there is one easily leached fraction with aslightly higher isotope ratio than the bulk average, but this fraction is too small tochange the overall result, with<strong>in</strong> our experimental precision.Further work will expand the range of samples to other animal and human tissuetypes <strong>in</strong> an effort to understand the biological underp<strong>in</strong>n<strong>in</strong>gs of Ca isotopy.37


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgCarbon and oxygen isotope compositions of Early Oligocene andLate Pleistocene vertebrate rema<strong>in</strong>s from Northern Switzerland -implications for palaeoclimate and palaeoenvironmentLAURELINE SCHERLER* 1,2 , THOMAS TÜTKEN 3 , DAMIEN BECKER 2 AND JEAN-PIERRE BERGER 11 Department of Geosciences, Institute of Geology, University of Fribourg,ch. du Musée 6, CH-1700 Fribourg, Switzerland(*laurel<strong>in</strong>e.scherler@unifr.ch)2 Section d'archéologie et paléontologie, Hôtel des Halles, CP64, CH-2900Porrentruy, Switzerland3 Ste<strong>in</strong>mann Institut für Geologie, M<strong>in</strong>eralogie und Paläontologie, University of <strong>Bonn</strong>,Poppelsdorfer Schloss, D-53113 <strong>Bonn</strong>, <strong>Germany</strong>Vertebrate rema<strong>in</strong>s from two Early Oligocene (~30 Ma) localities (Beuchille andPoillat; Delémont bas<strong>in</strong>) and from eight Late Pleistocene (~35 ka and ~80 ka) dol<strong>in</strong>es(Ajoie region) have been excavated along the Transjurane highway (Canton Jura,Switzerland). Large mammal teeth and bones of aquatic reptiles have been analysedfor their isotope compositions (δ 18 O CO3 , δ 18 O PO4, δ 13 C) <strong>in</strong> order to reconstruct thepalaeoclimate and palaeoenvironment.The turtle and crocodile bones from the Early Oligocene have low δ 18 O PO4 values(from 13.6 to 17.8‰) <strong>in</strong>dicat<strong>in</strong>g freshwater environments (δ 18 O H2O =-6.2±1.0‰ (n=8))which are supported by the palaeontological identifications of the turtle rema<strong>in</strong>s(Trionyx and Testud<strong>in</strong>idae: freshwater and terrestrial turtles, respectively). A similarδ 18 O H2O value of -6.2±1.5‰ (n=4) is calculated from enamel δ 18 O PO4 values(18.3±1.3‰) of sympatric primitive rh<strong>in</strong>oceros teeth, which presumably reflects thecomposition of meteoric water. Us<strong>in</strong>g a modern-day mean air temperature (MAT)-δ 18 O H2O relation for Switzerland a MAT of 18±2.5°C for the Early Oligocene can becalculated, which is about 8-9°C warmer than today <strong>in</strong> the Canton Jura.Forty-six teeth of Late Pleistocene large mammals (Equus caballus, Mammuthusprimigenius, Coelodonta antiquitatis, Bison priscus) from seven dol<strong>in</strong>es of Vâ TcheTchâ (VTA, ~35 ka) and one dol<strong>in</strong>e of Boncourt-Grand'Combe (GC, ~80 ka) havealso been analysed. The enamel δ 18 O and δ 13 C values from GC and VTA dol<strong>in</strong>es aresimilar thus an analogous pattern <strong>in</strong> climate and dietary <strong>in</strong>take can be deduced.Accord<strong>in</strong>g to the δ 13 C values (from -14.5 to -9.2‰) the large mammals lived <strong>in</strong> a C 3plant-dom<strong>in</strong>ated environment. Some variations <strong>in</strong> the δ 18 O PO4 values are observed,particularly <strong>in</strong> the VTA dol<strong>in</strong>es: the equids show slightly lower δ 18 O PO4 values(13.1±0.8‰) than the bovids (14.6±1.1‰). The calculated MAT after specificcalibrations are then very different: Equus (4±2.5°C); Mammuthus (8±2°C); Bison(9.5±3°C); Coelodonta (12±2°C), which correspond either to a cooler (Equus,Mammuthus) or a warmer (Bison, Coelodonta) climate than today (~9°C). This couldbe expla<strong>in</strong>ed by the sampl<strong>in</strong>g method, the mammal physiology, or time averag<strong>in</strong>g.38


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgCollagen fractions and fractionation? Investigat<strong>in</strong>g collagen at theam<strong>in</strong>o acid level us<strong>in</strong>g liquid chromatography-isotope ratiomass spectrometryCOLIN I. SMITH* 1 , ALICE MORA 2,1 , BENJAMIN FULLER 1 , OLAF NEHLICH 1 AND MIKERICHARDS 11 Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology,Deutscher Platz 6, 04103 Leipzig, <strong>Germany</strong>(*col<strong>in</strong>.smith@eva.mpg.de)2 University of Parma, Via Università 12, 43100 Parma, Italy.Archaeological bone ‘collagen’ plays an important role <strong>in</strong> the field of archaeologicalscience as it is the substrate of choice for isotopic analysis for palaeodietary<strong>in</strong>vestigations and for radiocarbon dat<strong>in</strong>g of bone.Diagenetic factors (and methodological variations) have the potential to bias thenature of the ‘collagen’ extract and the <strong>in</strong>terpretations made from them. It is to beexpected that diagenesis will be evident as changes <strong>in</strong> the am<strong>in</strong>o acid content of the‘collagen’ extract and might cause isotopic fractionation.We will present results of a study where we have analysed collagen at the am<strong>in</strong>o acidlevel, extracted from bones with a range of diagenetic types (i.e. vary<strong>in</strong>g levels ofcollagen preservation/with and without microbial attack). Hydrolysed collagenextracts were analysed us<strong>in</strong>g liquid chromatography-isotope ratio mass spectrometry(LC-IRMS), which provides quantification and carbon isotopic analysis of theconstituent am<strong>in</strong>o acid fractions of the collagen. Furthermore, each collagen extractwas ultrafiltered to produce a range of size fractions and each fraction was<strong>in</strong>vestigated. We will discuss the results and <strong>in</strong>terpret them <strong>in</strong> terms of collagenpreservation, methodological considerations and how they impact on isotopicanalysis of bone collagen.39


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgMagyarosaurus dacus (Sauropoda: Titanosauria) bone histologysuggests dwarfism on a palaeo-island.KOEN STEIN 1 *, MARTIN SANDER 1 AND ZOLTAN CSÌKÌ 21 Ste<strong>in</strong>mann Intitut für Geologie, M<strong>in</strong>eralogie und Paläontologie, Nussallee 8,53115 <strong>Bonn</strong>, <strong>Germany</strong>(*koen.ste<strong>in</strong>@uni-bonn.de, mart<strong>in</strong>.sander@uni-bonn.de)2 Laboratory of Paleontology, Faculty of Geology and Geophysics, BucharestUniversity, 1 N. Balcescu Blvd. 010041 Bucharest, Romania (nesiarh@yahoo.com)The dwarf status of the dim<strong>in</strong>utive sauropod d<strong>in</strong>osaur Magyarosaurus dacus(Sauropoda: Titanosauria) from the Late Cretaceous Hateg Bas<strong>in</strong> of Romania hasbeen controversial because of the difficulty of dist<strong>in</strong>guish<strong>in</strong>g between juveniles anddwarfed adults <strong>in</strong> d<strong>in</strong>osaurs (Nopcsa, 1914; Jianu and Weishampel, 1999; Le Loeuff,2005). Here we use long bone histology to prove that M. dacus <strong>in</strong>dividuals were fullygrown. Even <strong>in</strong> <strong>in</strong>dividuals of 45% maximum size, the long bone cortex is almostcompletely remodelled, with <strong>in</strong>terstitial lam<strong>in</strong>ar bone. The largest M. dacus <strong>in</strong>dividualsshow up to four successive generations of secondary osteons <strong>in</strong> the outermostcortex. In large sauropods, extensive remodell<strong>in</strong>g is only seen <strong>in</strong> extremely large andsenescent <strong>in</strong>dividuals (Kle<strong>in</strong> and Sander, 2008), suggest<strong>in</strong>g that M. dacus wasgrow<strong>in</strong>g extremely slowly at the time of its death. Possible orig<strong>in</strong>s of this dwarfismcan only be hypothesized, but resource limitation on an island was probably the ma<strong>in</strong>cause. We sampled an additional large humerus (900 mm estimated length)attributed to M. dacus (LeLoeuff, 2005). Analogous to the smallest M. dacus<strong>in</strong>dividuals, the specimen exhibits <strong>in</strong>tense secondary remodell<strong>in</strong>g with some<strong>in</strong>terstitial lam<strong>in</strong>ar bone. However, medium-sized M. dacus show a much densersecondary remodell<strong>in</strong>g than this large <strong>in</strong>dividual. Based on histological and sizedifferences, we suggest this larger specimen belongs to a different taxon than M.dacus. The palaeobiogeographical implications of the presence of this large taxon forthe Hateg Bas<strong>in</strong> fauna are not yet completely understood.References:Jianu, C.M. and Weishampel, D.B. (1999): The smallest of the largest: a new look at possibledwarf<strong>in</strong>g <strong>in</strong> sauropod d<strong>in</strong>osaurs. Geologie en Mijnbouw 78: 335-343.Kle<strong>in</strong>, N. and Sander, M. (2008): Ontogenetic stages <strong>in</strong> the long bone histology of sauropodd<strong>in</strong>osaurs. Paleobiology 34: 248-264.Le Loeuff, J. (2005): Romanian late cretaceous d<strong>in</strong>osaurs: big dwarfs or small giants? HistoricalBiology 17: 15-17.Nopcsa, F. (1914): Über das Vorkommen der D<strong>in</strong>osaurier <strong>in</strong> Siebenbürgen. Verhandlungender Zoologisch-Botanischen Gesellschaft 54: 12-14.40


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgRare earth element discrim<strong>in</strong>ation of vertebrate bone beds: Anexample from the Late Eocene Chadron Formation of Nebraska andSouth Dakota, USADENNIS O. TERRY, JR. * 1 , DAVID E. GRANDSTAFF 1 , WILLIAM E. LUKENS 1 , AMANDA E.DREWICZ 1 AND BARBARA A. BEASLEY 21 Department of Earth and Environmental Science, Temple University, Philadelphia,PA, 19122 USA,2 Nebraska National Forest, Chadron, NE, 69337, USA(*doterry@temple.edu, grand@temple.edu, geolukens@gmail.com,amanda.drewicz@temple.edu, babeasley@fs.fed.us)In an effort to provide law enforcement with a tool to mitigate fossil theft from federallands, we have been <strong>in</strong>vestigat<strong>in</strong>g the utility of rare earth element (REE) signatureswith<strong>in</strong> fossil bone as a means to establish fossil provenance. Representative samplesof brontotheres (large perissodactyls) from five dist<strong>in</strong>ct accumulations with<strong>in</strong> the LateEocene Chadron Formation were collected from lands adm<strong>in</strong>istered by the U.S.Forest Service and analyzed for REE signatures. Brontotheres are frequently thefocus of fossil theft, and commonly end up on the black market, or <strong>in</strong> local rockshops. Four of these accumulations are distributed across 15 km <strong>in</strong> northwestNebraska, whereas the other is located approximately 120 km to the northeast <strong>in</strong>South Dakota with<strong>in</strong> age-equivalent strata. The four sites <strong>in</strong> Nebraska are splitbetween a claystone-dom<strong>in</strong>ated unit and an overly<strong>in</strong>g coarser unit of <strong>in</strong>terbeddedmudstone, muddy siltstones, and sandstones. The samples from South Dakota arefrom coarse channel sandstones. Differences <strong>in</strong> lithology, paleoenvironments, andassociated paleosols between sites are reflected as variations <strong>in</strong> light, middle, andheavy REEs, which <strong>in</strong> turn generate dist<strong>in</strong>ct ratios of REEs for each location. REEsignatures from claystones are MREE-enriched, whereas those from coarsersediments are HREE-enriched. Fossils from channel sandstones of South Dakotapreserve variable signatures. Discrim<strong>in</strong>ant analysis of REE signatures from 65<strong>in</strong>dividual brontothere bones from these five sites correctly reassigned <strong>in</strong>dividualspecimens to their orig<strong>in</strong>al location > 90% of the time for the Nebraska samplesalone, and >80% of the time for all samples, <strong>in</strong> addition to reveal<strong>in</strong>g the relativedegree of time averag<strong>in</strong>g between sites. REE signatures of bones from f<strong>in</strong>e gra<strong>in</strong>edmaterials show little to no time averag<strong>in</strong>g, <strong>in</strong> contrast to bones from channelsandstones. When used <strong>in</strong> context with attendant m<strong>in</strong>eralogical and stratigraphicdata, the utility of REE analysis to establish fossil provenance is enhanced.41


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgStable hydrogen isotopes <strong>in</strong> bone collagen as a paleoenvironmental<strong>in</strong>dicatorKATARINA TOPALOV* 1 , ARNDT SCHIMMELMANN 1 , DAVID POLLY 1 ,PETER E. SAUER 1 AND MARK LOWRY 21 Dept. of Geological Sciences, Indiana University, Bloom<strong>in</strong>gton, IN, USA2 NOAA Fisheries Service, Southwest Fisheries Science Center, La Jolla, CA, USA(*topalovk@<strong>in</strong>diana.edu)Organic deuterium/hydrogen stable isotope ratios (i.e. D/H, expressed as δD value <strong>in</strong>‰) <strong>in</strong> tissues of an organism are related to the D/H of precursor hydrogen <strong>in</strong> its dietand <strong>in</strong>gested water. <strong>Bone</strong> collagen preserves the biochemical D/H isotopic signal <strong>in</strong>the δD n value of collagen’s non-exchangeable hydrogen. Therefore, δD n preserved <strong>in</strong>fossil bone collagen can potentially be used to constra<strong>in</strong> paleoenvironmental andtrophic conditions. Our data calibrate δD n values of modern collagen <strong>in</strong> terms ofenvironmental forc<strong>in</strong>g factors <strong>in</strong> preparation for future work on archeological andfossil specimens. Based on over 80 <strong>in</strong>dividuals from more than 30 mar<strong>in</strong>e andterrestrial vertebrate species, D/H of environmental water and the trophic level of an<strong>in</strong>dividual appear to be major factors <strong>in</strong>fluenc<strong>in</strong>g collagen δD n . M<strong>in</strong>or isotopicvariation occurs among <strong>in</strong>dividuals of a population, possibly even among differentbody parts of an <strong>in</strong>dividual, due to dietary and time differences associated withcollagen biosynthesis and bone m<strong>in</strong>eralization. δD n values of three specimens’collagens from arid Joshua Tree National Park are higher than expected, consistantwith evapotranspirative D-enrichment of physiological fluids relative to local spr<strong>in</strong>g(oasis) dr<strong>in</strong>k<strong>in</strong>g water. Collagen δD n values from terrestrial species collected <strong>in</strong> southcentral Indiana with local meteoric average δD water ~ -47‰ ranged from -100‰ to+100‰, much of which correlates with trophic differences; herbivores tend to havelower δD n values, omnivores rank <strong>in</strong>termediately, and carnivores express the highestδD n values. Body size and metabolic rate may be additional factors s<strong>in</strong>ce smalleranimals with typically faster metabolic rates and relatively high evapotranspirationtend to be D-enriched (e.g. white-footed mouse). California sea lions from SanNicolas Island, California, express a δD n variance of 20‰ <strong>in</strong>dicat<strong>in</strong>g <strong>in</strong>traspecificdiversity, that may arise from <strong>in</strong>dividual dietary differences (e.g. pre-weaned <strong>in</strong>fantsvs. adults). Although ocean water is relatively D-enriched, our prelim<strong>in</strong>ary datasuggest that mar<strong>in</strong>e carnivores have lower δD n values than many terrestrialcarnivores, possibly because the latter are more affected by evapotranspiration.42


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgThe mechanical properties of artificially aged bone:Prob<strong>in</strong>g the nature of the collagen-m<strong>in</strong>eral bondGORDON TURNER-WALKER*Graduate School of Cultural Heritage Conservation, National Yunl<strong>in</strong> University ofScience & Technology, 123 University Road Sector 3, 640 Douliou, Yunl<strong>in</strong>, Taiwan,Prov<strong>in</strong>ce of Ch<strong>in</strong>a (*gordontw@yuntech.edu.tw)The past two decades has seen enormous advances <strong>in</strong> our understand<strong>in</strong>g of thediagenetic changes that bones undergo <strong>in</strong> the archaeological record and the potentialfor survival of biochemical, isotopic and genetic trace evidence <strong>in</strong> excavated humanand animal rema<strong>in</strong>s. What rema<strong>in</strong> relatively poorly understood are the very earlychanges that take place follow<strong>in</strong>g skeletonisation because these changes areoverpr<strong>in</strong>ted by the slower but more dramatic modifications aris<strong>in</strong>g from microbialdegradation. These early changes are of <strong>in</strong>terest because of their potential impact onthe longer-term survival of biogenic evidence such as DNA.The mechanical properties of bones – tensile strength and Young’s modulus – are<strong>in</strong>terest<strong>in</strong>g because they are extremely sensitive to changes <strong>in</strong> the collagen fractionof bone tissues and the <strong>in</strong>tegrity of the prote<strong>in</strong> m<strong>in</strong>eral bond. Data is presented onstandard samples (N = 220) of modern bov<strong>in</strong>e metapodial bone artificially aged <strong>in</strong>water at 60 °C for up to ~200 days. Changes <strong>in</strong> tensile strength and modulus ofelasticity were evaluated us<strong>in</strong>g the <strong>in</strong>direct diametral compression test (Braziliantest). In the controls tensile strength was 74.14 (SD 12.9) MPa parallel to the longaxis of the bone and 57.52 (SD 6.7) MPa tangential to the mid-shaft. Both tensilestrength and modulus of elasticity show rapid reductions with artificial age<strong>in</strong>g, los<strong>in</strong>gover 20% and 45% respectively after 198 days compared to controls. Interest<strong>in</strong>gly,there was a rapid deterioration (>10%) <strong>in</strong> mechanical properties for the <strong>in</strong>itial fourdays, but this recovered at 8 days and then decl<strong>in</strong>ed more slowly. The reasonsbeh<strong>in</strong>d this behaviour are unclear but, if real, may represent changes <strong>in</strong> the “straightjacket<strong>in</strong>g”effects of HAP crystallites with<strong>in</strong> and around collagen fibrils. Highresolution SEM images of experimentally buried bov<strong>in</strong>e bone show that, onfractur<strong>in</strong>g, collagen fibrils can be seen to have pulled out from the fracture surface.43


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgPalaeoecology and habitat of the Late Miocene mammalsfrom Höwenegg, SW <strong>Germany</strong>:Implications of isotope (O, C, Sr) compositions of fossil teethTHOMAS TÜTKEN* AND HENRY POPPE1 Ste<strong>in</strong>mann-Institut für Geologie, M<strong>in</strong>eralogie und Paläontologie, Universität <strong>Bonn</strong>,Poppelsdorfer Schloss, 53115 <strong>Bonn</strong>, <strong>Germany</strong>(*tuetken@uni-bonn.de, lommi@geolo.de)At Höwenegg (also Hewenegg), the northern-most volcano of the Hegau volcanicfield, marly deposits of a shallow, late Miocene freshwater lake are <strong>in</strong>tercalatedbetween two tuff layers. This Höwenegg-Formation radiometrically dated to ~10.3 Mais famous for the preservation of complete mammal skeletons of MN 9 age and oneof the first occurences of the high-crowned equid Hippotherium primigenium <strong>in</strong>Europe (Hipparion datum).The climate and environmental conditions as well as the mobility of the Late Miocenemammals from Höwenegg were <strong>in</strong>vestigated by stable isotope (O, C, and Sr)analysis of fossil teeth.Enamel 87 Sr/ 86 Sr values of teeth from Hippotherium, Miotragocerus, Aceratheriumand one De<strong>in</strong>otherium milk molar were analyzed to constra<strong>in</strong> their habitat andmobility (e.g. feed<strong>in</strong>g on volcanic or non-volcanic bed rocks). For comparison87 Sr/ 86 Sr values of the bioavailable strontium were measured on wood from treesgrow<strong>in</strong>g on different geological units around Höwenegg (Malm limestone,Juranagelfluh, Höwenegg-Formation, Lower and Upper Tuff, Höwenegg basalt).Assum<strong>in</strong>g the enamel87 Sr/ 86 Sr ratios (0.7058-0.7068) are not significantdiagenetically altered by Sr exchange with the embedd<strong>in</strong>g sediment as suggested bythe the good preservation of the teeth as well as biogenic enamel δ 13 C values, thesevalues probably <strong>in</strong>dicate predom<strong>in</strong>ant feed<strong>in</strong>g of the mammals on the volcanic tuffsand not the Upper Jurassic Malm limestone and/or Miocene Juranagelfluh. As thelatter two rock units crop out close to the Höwenegg site today, the low enamel87 Sr/ 86 Sr ratios of the large mammals may suggest a larger extension of the tuff coverconnect<strong>in</strong>g Höwenegg with adjacent volcanic outcrops, e.g. Hohenhewen, dur<strong>in</strong>gLate Miocene times.The enamel carbon isotope composition (δ 13 C = -11.4±1.1‰, n = 23) <strong>in</strong>dicates that allmammals fed on C 3 plants. However, slight differences <strong>in</strong> habitat and/or diet existwith the bovid Miotragocerus hav<strong>in</strong>g higher δ 13 C and δ 18 O values than Hippotheriumand Aceratherium. Two <strong>in</strong>tra-tooth isotope profiles for H. primigenium display nomajor seasonal changes <strong>in</strong> the diet or habitat. Mammalian tooth enamel δ 18 O values<strong>in</strong>dicate a significant warmer climate than today. A mean annual air temperature(MAT) of 14.9±2°C can be deduced from enamel phosphate δ 18 O values.44


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgOrganic hydrogen and oxygen isotopes <strong>in</strong> bone collagen: Migration,seasonality, hydrology and diagenesisNOREEN TUROSS* AND CYNTHIA KESTERDepartment of Human Evolutionary Biology, Harvard University, 11 Div<strong>in</strong>ity Ave, 2138Cambridge, MA, USA(*tuross@fas.harvard.edu, ckester@fas.harvard.edu)Concomitant with the development of our understand<strong>in</strong>g of the isotopic systematicsof hydrogen and oxygen isotopes <strong>in</strong> organic matter, <strong>in</strong>clud<strong>in</strong>g bone collagen, we needto develop methods and <strong>in</strong>dicators of δD and δ 18 O biological authenticity <strong>in</strong> fossils. Ina series of experiments that <strong>in</strong>clude both the artificial ag<strong>in</strong>g of bone at hightemperature and the exam<strong>in</strong>ation of ancient collagens, we report a number ofconclusions. First, elemental carbon to nitrogen ratios are <strong>in</strong>sufficient proxies toensure reliable, unaltered δD and δ 18 O <strong>in</strong> bone collagen. Second, the reaction ofcollagen with the n<strong>in</strong>hydr<strong>in</strong> reagent provides a valuable and robust first order proxy ofδD and δ 18 O biological authenticity. Third, the amount of exchange of both hydrogenand oxygen <strong>in</strong> bone collagen of acceptable molecular <strong>in</strong>tegrity is small, but not zero.Fourth, the molecular <strong>in</strong>tegrity of this prote<strong>in</strong>, as opposed to the age of the specimen,is a much more important <strong>in</strong> determ<strong>in</strong><strong>in</strong>g δD and δ 18 O utility for <strong>in</strong>terpretive purposes.F<strong>in</strong>ally, we present the case for avoid<strong>in</strong>g the application of high temperature steam<strong>in</strong>gof fossil collagens <strong>in</strong> an attempt to def<strong>in</strong>e “nonexchangeable” hydrogen (and byextension, oxygen).The use of the natural abundance isotopic pairs of organic hydrogen and oxygen <strong>in</strong>archaeological and paleontological studies opens up many possibilities for f<strong>in</strong>e scaledresolution of migratory patterns, changes <strong>in</strong> seasonality as well as large scalechanges <strong>in</strong> hydrologic patterns. We demonstrate the need for the careful selection ofpreserved prote<strong>in</strong> substrates <strong>in</strong> order to provide accurate <strong>in</strong>terpretations based onorganic δD and δ 18 O.45


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgRadiocarbon dat<strong>in</strong>g of biological apatites – what’s new?ANTOINE ZAZZO* 1 AND JEAN-FRANCOIS SALIÈGE 1,21 CNRS, UMR 7209 Archéozoologie, Archéobotanique: Sociétés, Pratiques etEnvironnements, Muséum national d'Histoire naturelle, Paris cedex 05, France(*zazzo@mnhn.fr)2 UMR 7159 LOCEAN, UPMC, 4 Place Jussieu, Paris cedex 05, France(Jean-Francois.Saliege@locean-ipsl.upmc.fr)The reliability of 14 C dates obta<strong>in</strong>ed from the carbon present <strong>in</strong> the m<strong>in</strong>eral fraction ofskeletal tissues (carbonate apatite, or bioapatite), has always been questioned(Haynes, 1968; Hassan et al., 1977; Hedges et al., 1995). <strong>Bone</strong> apatite crystallitesare considered prone to diagenetic alteration due to their small size, which makesthem thermodynamically unstable and likely to <strong>in</strong>corporate dissolved carbonates fromthe environment dur<strong>in</strong>g recrystallization. In arid and semi-arid regions, collagen isoften not preserved and carbonate <strong>in</strong> bioapatite is the only source of carbonrema<strong>in</strong><strong>in</strong>g for radiocarbon dat<strong>in</strong>g. The possibility of us<strong>in</strong>g bone carbonate wasreconsidered <strong>in</strong> the mid-n<strong>in</strong>eties (Saliège et al., 1995). Their approach provedsuccessful <strong>in</strong> sites where bones were protected from chemical exchange with thesurround<strong>in</strong>g environment, as <strong>in</strong> the case of burials.Crucial for the validation of the approach, is the design of tests for the preservation ofthe geochemical signal <strong>in</strong> biological apatites that are relevant for 14 C dat<strong>in</strong>g. Here, wepropose two tests, based on the comparison of the 14 C age measured on (1) differentskeletal fractions (bone, dent<strong>in</strong>e, enamel) of the same specimen; (2) differentfractions of the same bone exposed at different temperatures (unburnt, charred,calc<strong>in</strong>ed). The underly<strong>in</strong>g assumption is that <strong>in</strong> the case of alteration, it is unlikely thatthe rate of isotopic exchange/recrystallization will be identical <strong>in</strong> skeletal tissues withdifferent physico-chemical properties. Therefore, any <strong>in</strong>tra-<strong>in</strong>dividual differencemeasured <strong>in</strong> 14 C age must result from differential diagenesis. This strategy wasapplied to different Holocene localities <strong>in</strong> the Mediterranean, Africa, and the ArabicPen<strong>in</strong>sula. The absence of <strong>in</strong>tra-<strong>in</strong>dividual differences <strong>in</strong> 14 C age <strong>in</strong> several localitiesfrom the Arabic Pen<strong>in</strong>sula attests the good preservation of bone apatite <strong>in</strong> this region.Large <strong>in</strong>tra-<strong>in</strong>dividual differences <strong>in</strong> 14 C age were found <strong>in</strong> the rema<strong>in</strong><strong>in</strong>g localities,show<strong>in</strong>g that bone apatite suffered from rejuvenation due to chemical exchangedur<strong>in</strong>g fossilization. These contrast<strong>in</strong>g situations <strong>in</strong>dicate that bone apatite can beused to date skeletal rema<strong>in</strong>s, and confirms that bone diagenesis must be treated ona site–by–site basis.References:Haynes, C.V. Jr. (1968): Radiocarbon: analysis of <strong>in</strong>organic carbon of fossil bone and enamel. Science161: 687-688.Hassan, A.A., Term<strong>in</strong>e, J.-D., and Haynes, C.V. Jr. (1977): M<strong>in</strong>eralogical studies on bone apatite andtheir implications for radiocarbon dat<strong>in</strong>g. Radiocarbon 19: 364-74.Hedges, R.E.M., Lee-Thorp, J.A., and Tuross, N.C. (1995): Is tooth enamel carbonate a suitablematerial for radiocarbon dat<strong>in</strong>g? Radiocarbon 37: 285-290.Saliège, J.-F., Person, A., and Paris, F. (1995): Preservation of 12 C/ 13 C orig<strong>in</strong>al ratio and 14 C dat<strong>in</strong>g ofthe m<strong>in</strong>eral fraction of human bones from Saharan tombs, Niger. Journal of ArchaeologicalScience 22: 301-312.46


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgStructural preservation of collagen <strong>in</strong> the 5300-year-oldTyrolean IcemanALBERT ZINK* 1 , MAREK JANKO 2 , EDUARD EGARTER-VIGL 3 AND ROBERT STARK 21 European Academy, Institute for Mummies and the Iceman, Bolzano, Italy(*albert.z<strong>in</strong>k@eurac.edu)2 Department of Earth and Environmental Sciences, Ludwig-Maximilians-UniversitätMünchen, Munich, <strong>Germany</strong>3 Department of Pathological Anatomy and Histology, General Hospital Bolzano, ItalyThe Tyrolean Iceman also referred to as “Ötzi” after the region <strong>in</strong> which he wasfound, represents the oldest known glacier mummy who died c. 5300 years ago. Inorder to get <strong>in</strong>sight <strong>in</strong>to the mummification process and the preservation ofmummified human collagen, we <strong>in</strong>vestigated the structural <strong>in</strong>tegrity of the prote<strong>in</strong>.For this, we <strong>in</strong>vestigated tissue samples which were <strong>in</strong>itially prepared for histologicalanalysis by the use of a high resolution atomic force microscopy (AFM). Thenanotechnological <strong>in</strong>vestigation revealed very well preserved bundles and fibrils ofcollagen type I with characteristic band<strong>in</strong>g patterns of (69 ± 5) nm periodicity. Wefurther performed Raman spectroscopy that revealed m<strong>in</strong>or modifications <strong>in</strong> themolecular structure of the ancient collagen. The mechanical properties of the fibrilswere tested by nano<strong>in</strong>dentation measurements. These experiments also showed analteration of the elasticity parameters of the collagen bundles. Based on theseresults, it can be assumed that freeze-dry<strong>in</strong>g along with dehydration of the collagenhave been the lead<strong>in</strong>g mummification steps.In this study we were able to demonstrate that the AFM can be successfully appliedto ancient tissue samples. It allows the ultra-structural <strong>in</strong>vestigation of collagen andother biomolecules and could be used as a new method for the monitor<strong>in</strong>g of thestate of preservation of bone and mummified soft tissue. Elasticity measurementscould further allow an evaluation of degradation and diagenetic processes.47


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.org<strong>Abstract</strong>sPoster presentations<strong>in</strong> alphabetical order48


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgHistological and geochemical properties of pathological bone <strong>in</strong>Allosaurus fragilis and modern birdsJENNIFER ANNÉ*, ALLISON TUMARKIN-DERATZIAN, DENNIS O. TERRY, JR. AND DAVIDGRANDSTAFFDepartment of Earth and Environmental Sciences, Temple University, 6404 N <strong>6th</strong> St,19126 Philadelphia, USA (*jeanne.3817@yahoo.com, altd@temple.edu,doterry@temple.edu, grand@temple.edu)Paleopathologies, <strong>in</strong>clud<strong>in</strong>g healed and partially healed fractures, have beenrecorded <strong>in</strong> d<strong>in</strong>osaurs s<strong>in</strong>ce the early 20 th century (2, 4, 7). In modern organisms,differences <strong>in</strong> crystall<strong>in</strong>ity of the hydroxyapatite crystals <strong>in</strong> bone relate to the way thebody responds to stress around a fracture (1, 8). This is seen <strong>in</strong> the formation ofdifferent types of bone (mature or immature) <strong>in</strong> pathological versus normal bone (1,2, 4, 7). S<strong>in</strong>ce the basic physiological processes of fracture heal<strong>in</strong>g are universal <strong>in</strong>extant vertebrates, similar patterns may exist <strong>in</strong> the fossil record (1, 7, 8). Apatitecrystall<strong>in</strong>ity can be evaluated us<strong>in</strong>g techniques such as x-ray diffraction (XRD),Raman Spectroscopy, and Rare Earth Element (REE) analyses (3, 5, 6, 9). Bycompar<strong>in</strong>g fracture heal<strong>in</strong>g <strong>in</strong> ext<strong>in</strong>ct and extant archosaurs, <strong>in</strong>ference can be drawnregard<strong>in</strong>g the physiological processes <strong>in</strong> ext<strong>in</strong>ct species. In this study, fracturepathologies <strong>in</strong> pedal phalanges from the theropod d<strong>in</strong>osaur, Allosaurus fragilis, andtwo modern bird species, Branta canadensis (Canada goose) and Cathartes aura(turkey vulture) are exam<strong>in</strong>ed histologically and analyzed us<strong>in</strong>g XRD, and RamanSpectroscopy. In addition, REE analysis will be performed on fossil material to see ifdifferences <strong>in</strong> REE fractionation exist between pathological and normal bone.Differences between Allosaurus and extant birds could suggest an evolutionarychange <strong>in</strong> the physiological response to fracture heal<strong>in</strong>g. If similarities exist, thiscould suggest the physiological responses of fracture heal<strong>in</strong>g have rema<strong>in</strong>edconstant through the theropod branch of the Archosauria, provid<strong>in</strong>g additional supportfor endothermy <strong>in</strong> theropods and the hypothesis of a theropod ancestory for modernbirds. Future research on non-theropod d<strong>in</strong>osaurs or more distantly relatedarchosaurs would then be necessary to see if the physiological signal is universalamong archosaurs. These techniques could then be applied to analysis ofpathological bone <strong>in</strong> other vertebrate groups to further improve understand<strong>in</strong>g of thephysiological evolution of ext<strong>in</strong>ct vertebrates.References:[1] Ch<strong>in</strong>samy-Turan, A. (2005): The Microstructure of D<strong>in</strong>osaur <strong>Bone</strong>: Decipher<strong>in</strong>g Biology with F<strong>in</strong>e-Scale Techniques. The John Hopk<strong>in</strong>s University Press, Baltimore, MD. [2] Hanna, R. (2002): MultipleInjury and Infection <strong>in</strong> a Sub-Adult Theropod D<strong>in</strong>osaur Allosaurus fragilis with Comparison to AllosaurPathology <strong>in</strong> the Cleveland-Lloyd D<strong>in</strong>osaur Quarry Collection. Journal of Vertebrate Paleontology 22:76-90. [3] Kohn, M. (2008): Models of diffusion-limited uptake of trace elements <strong>in</strong> fossils and rates offossilization. Geochemica et Cosmachimica Acta 72: 3758-3770. [4] Madsen, J. (1976): Allosaurusfragilis: A Revised Osteology; Utah Geological Survey Bullet<strong>in</strong> 109. [5] Metzger, C., Terry, D. Jr., andGrandstaff, D. (2004): Effect of paleosol formation on rare earth element signatures <strong>in</strong> fossil boneGeology 32: 497-500. [6] Person, A. (1995): Early diagenetic evolution of bone phosphate: An x-raydiffractometry analysis. Journal of Archaeological Science 22: 211-221. [7] Rothschild, B. and Mart<strong>in</strong>,L. (2006): Skeletal impact of disease. Bullet<strong>in</strong>: New Mexico Museum of Natural History & Science 33.[8] Straight, W., Sk<strong>in</strong>ner, C, Haims, A., McClennan, B., Davis, G., and Patrick, D. (2006): Injury andrecovery <strong>in</strong> d<strong>in</strong>osaurs: Radiology and geochemistry of pathologies <strong>in</strong> hadrosaur bones. GeologicalSociety of America <strong>Abstract</strong>s with Programs 38: 22. [9] Trueman, C. and Tuross, N. (2002): Traceelements <strong>in</strong> recent and fossil bone apatite. Reviews <strong>in</strong> M<strong>in</strong>eralogy and Geochemistry 48: 489-521.49


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgHow to measure carbon and oxygen isotopic signatures of fossiltooth enamel heavily contam<strong>in</strong>ated by oxides?HERVÉ BOCHERENS* 1 , DIANA PUSHKINA 2 , PATRICK VIGNAUD 2 AND MICHEL BRUNET 2,31 Institut für Geowissenschaften, Universität Tüb<strong>in</strong>gen, <strong>Germany</strong>(*herve.bocherens@uni-tueb<strong>in</strong>gen.de)2 Institut de Paléoprimatologie et Paléontologie huma<strong>in</strong>e:Evolution et Paléoenvironnements, Université de Poitiers, France(Diana.pushk<strong>in</strong>a@gmail.com, patrick.vignaud@univ-poitiers.fr, michel.brunet@univpoitiers.fr)3 Collège de France, Chaire de Paléontologie huma<strong>in</strong>e, Paris(michel.brunet@college-de-france.fr)Isotopic <strong>in</strong>vestigations of the carbonate fraction of fossil tooth enamel from the LateMiocene and Early Pliocene from Chad po<strong>in</strong>ted to the possibility of unanticipated<strong>in</strong>terferences between CO 2 and other components <strong>in</strong> samples heavily contam<strong>in</strong>atedby iron and manganese oxides, lead<strong>in</strong>g to significant shifts <strong>in</strong> the δ 13 C and δ 18 Ovalues (Bocherens et al. 2009, Jacques et al. 2008). One way to circumvent thisproblem is to use a cont<strong>in</strong>uous flow purification system of CO 2 <strong>in</strong>stead of a dual <strong>in</strong>letsystem where CO 2 is purified cryogenetically. As the latter system is perfectlyadequate for most fossil tooth enamel and largely spread <strong>in</strong> the analyticallaboratories, it would be necessary to establish limits <strong>in</strong> oxide contam<strong>in</strong>ation beyondwhich the use of such system becomes problematic and us<strong>in</strong>g a cont<strong>in</strong>uous flowsystem should be necessary. It would also be useful to <strong>in</strong>vestigate whether steps <strong>in</strong>the preparation process could mitigate these negative effects. For this purpose, wesuggest to use fossil tooth enamel from Chad to <strong>in</strong>tercalibrate different analyticalsett<strong>in</strong>gs and provide general guidel<strong>in</strong>es to ref<strong>in</strong>e the isotopic analysis of carbon andoxygen <strong>in</strong> fossil tooth enamel.References:Bocherens, H., Jacques, L., Ogle, N., Moussa, I., Kal<strong>in</strong>, R., Vignaud, P., and Brunet, M. (2009): Replyto the comment by A. Zazzo, W.P Patterson and T.C. Prokopiuk on “Implications of diagenesisfor the isotopic analysis of Upper Miocene large mammalian herbivore tooth enamel fromChad” By Jacques et al. (2008). Palaeogeography, Palaeoclimatology, Palaeoecology 266,200-210.” Palaeogeography, Palaeoclimatology, Palaeoecology 277: 269-271.Jacques, L., Ogle, N., Moussa, I., Kal<strong>in</strong>, R., Vignaud, P., Brunet, M., and Bocherens, H. (2008):Implications of diagenesis for the isotopic analysis of Upper Miocene large mammalianherbivore tooth enamel from Chad. Palaeogeography, Palaeoclimatology, Palaeoecology 266:200-210.50


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgHeat-<strong>in</strong>duced modifications of bone at low temperatures.Study by TEM and SAXS on bone ultrath<strong>in</strong> and th<strong>in</strong> sectionsCELINE CHADEFAUX* 1 , AURELIEN GOURIER 2 AND INA REICHE 11 Laboratoire du Centre de recherche et de restauration des musées de France –UMR 171 CNRS, Palais du Louvre, 14 quai François Mitterrand, 75001 Paris, France(*cel<strong>in</strong>e.chadefaux@culture.gouv.fr, <strong>in</strong>a.reiche@culture.gouv.fr)2 Laboratoire de Physique des Solides - UMR 8502 CNRS, Department of BiologicalTissues and Fibres, Université Paris-Sud, Bât. 510, 91405 Orsay and MicrofocusBeaml<strong>in</strong>e (ID13), European Synchrotron Radiation Facility (ESRF), 6 rue JulesHorowitz, 38000 Grenoble, France (gourrier@esrf.fr)Structural modifications <strong>in</strong> modern bone material <strong>in</strong>duced by heat<strong>in</strong>g at lowtemperatures (between 90 and 230°C) were characterized from macro- to nanoscale.This is important when archaeological bone material is concerned because theirstructure and chemical composition may have been modified either by diagenesisand/or by anthropological action like heat<strong>in</strong>g processes. Thus, for archaeological<strong>in</strong>terpretations, it is important to determ<strong>in</strong>e the orig<strong>in</strong> of the modifications. Theobserved features were compared to archaeological material <strong>in</strong> order to f<strong>in</strong>d outcriteria to dist<strong>in</strong>guish diagenetic changes from heat-<strong>in</strong>duced modifications of bone.Changes occurr<strong>in</strong>g <strong>in</strong> the structure of the type I collagen and at the m<strong>in</strong>eral-organicstructural <strong>in</strong>terface are especially <strong>in</strong>vestigated. This precise characterization requiredthe comb<strong>in</strong>ation of many analytical techniques: Differential Scann<strong>in</strong>g Calorimetry(DSC) for global analysis of the collagen state of conservation, Scann<strong>in</strong>g ElectronMicroscopy coupled with an Energy Dispersive X-Ray system (SEM-EDX) andInfrared microspectroscopy <strong>in</strong> ATR (Attenuated Total Reflectance) mode comb<strong>in</strong>edwith curve-fitt<strong>in</strong>g (micro-ATR-FT-IR) for microscopic <strong>in</strong>vestigations as well asTransmission Electron Microscopy (TEM) on ultrath<strong>in</strong> sections and micro-SAXSanalyses to characterize the modifications <strong>in</strong> the m<strong>in</strong>eral/organic <strong>in</strong>terface atnanoscale (Chadeffaux and Reiche, <strong>in</strong> press)Thanks to this approach new criteria have been determ<strong>in</strong>ed characteriz<strong>in</strong>g the effectof a thermal treatment at low temperatures on the bone structure from themacroscopic to the nanoscale. Among them, a correlation was found between theshift of amide II IR band position and the heat<strong>in</strong>g temperature. These features wereconfirmed by a degradation of the m<strong>in</strong>eral/organic arrangement at the nanoscaleevidenced by TEM and SAXS that seems to exhibit dist<strong>in</strong>ctive signatures differentfrom other modifications such as diagenetic alterations of archaeological bone <strong>in</strong>soils.References:Chadefaux, C. and Reiche, I. (<strong>in</strong> press): Archaeological bone from macro- to nanoscale. Heat-<strong>in</strong>ducedmodifications at low temperatures, Journal of Nano Research.51


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgDistribution of isotopic composition, 13 C and 15 N, of human bones <strong>in</strong>GreeceELISSAVET DOTSIKA* 1 AND S. LYKOUDIS 21 National Centre for Scientific Research “Demokritos”, Institute of Materials Science,153 10 Agia Paraskevi, Attica, Greece(*edotsika@ims.demokritos.gr)2 National Observatory of Athens, Institute of Environmental Research andSusta<strong>in</strong>able Development,Metaxa &Pavlou, P. Pendeli, GR15236, Greece(slykoud@meteo.noa.gr)In this study, all available isotopic data ( 13 C and 15 N) of human bones from areasacross Greece (Greek ma<strong>in</strong>land and islands) were used <strong>in</strong> order to determ<strong>in</strong>ecorrelative trends between bones of different periods. The samples are groupedaccord<strong>in</strong>g to their age <strong>in</strong>to 5 periods (Neolithic, Bronze, Mycenaean, Geometric andClassical) or <strong>in</strong>to 6 chronological periods (6500-2300 yr BC, 2300-1850 yr BC, 1850-1100 yr BC, 1100-800 yr BC and 800-300 yr BC). Statistical process<strong>in</strong>g wasconducted (t-test and Mann-Whitney test) to exam<strong>in</strong>e if the mean isotopic valuesbetween 2 periods were correlated. Moreover, cluster analysis (K-means) <strong>in</strong>dicatedthe optimum group<strong>in</strong>g of samples from different periods. The above process<strong>in</strong>g led tothe conclusion that the group<strong>in</strong>g of periods seems to reach a very satisfactory level.Also, a general positive trend was highlighted <strong>in</strong> both isotopes from older to youngersamples. However, exceptions were spotted, as the carbon isotopic data of Neolithicsamples and the nitrogen isotopic values of bones from Mycenaean period showedlow level of compatibility. The results show that from Neolithic to Classical period,human bone collagen is ma<strong>in</strong>ly based on terrestrial diets. Nevertheless, isotopic data<strong>in</strong> general should be correlated not only with nutritional habits, but also with climaticfactors (ra<strong>in</strong>falls, temperature) as well as with spatial distribution (north-south).52


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgTaphonomic implications of uranium ore deposition vertebraterema<strong>in</strong>sPennilyn Higg<strong>in</strong>s*Department of Earth and Environmental Sciences, University of Rochester,Rochester, NY 14589, USA (*loligo@earth.rochester.edu)Wyom<strong>in</strong>g is famous for its deep structural bas<strong>in</strong>s that conta<strong>in</strong> abundant vertebratefossils. These bas<strong>in</strong>s are also known for uranium-ore deposits, <strong>in</strong> the form of rollfronts. The chemical changes that occur at the lead<strong>in</strong>g edge, or redox <strong>in</strong>terface, of apropagat<strong>in</strong>g roll front are capable of elim<strong>in</strong>at<strong>in</strong>g vertebrate rema<strong>in</strong>s.Overall, the reactions occurr<strong>in</strong>g at the redox <strong>in</strong>terface of roll fronts may besummarized as the conversion of pyrite and calcite, via oxidation of pyrite, <strong>in</strong>togypsum and siderite. Sulfuric acid is produced <strong>in</strong> this reaction(Granger and Warren, 1974; Higg<strong>in</strong>s, 2007):CaCO 3 + FeS 2 + 3.5 O 2 + 3 H 2 O → CaSO 4 •2 H 2 O↓ (gypsum) + FeCO 3 ↓ + H 2 SO 4(sulfuric acid)Apatite (as francolite) is commonly present <strong>in</strong> rocks used to make fertilizers.Phosphate typically is released from apatite <strong>in</strong>to a soluble form accessible to plants,by react<strong>in</strong>g the apatite with sulfuric acid. The simplified reaction from Toy and Walsh(1987, p. 79) is:2 Ca 5 (PO 4 ) 3 F + 7 H 2 SO 4 + 3 H 2 O → 7 CaSO 4 + 3 Ca(H 2 PO 4 )2•H 2 O + 2 HFWhen the two equations above are comb<strong>in</strong>ed, and bioapatite (as dahllite) is entered<strong>in</strong>to the above equation as a constituent of unaltered rocks, the hypothesizedreaction occurr<strong>in</strong>g <strong>in</strong> sediments due to the passage of roll fronts is (Higg<strong>in</strong>s, 2007):7 CaCO 3 + 12 FeS 2 + 2 Ca 10 (PO 4 ,CO 3 ) 6 (OH) 2 + 43.5 O 2 + 55 H 2 O →12 FeCO 3 + 24 CaSO 4 •2 H 2 O + 3 Ca(H 2 PO 4 ) 2 + CO 2Phosphate liberated from the dissolved bones and teeth provides a nutrient to plantsor lichens once the roll front is exposed on the ground surface. Thus, patterns of rollfront distribution, observed from both m<strong>in</strong>eral distributions and differ<strong>in</strong>g floralassemblages, might provide a useful prospect<strong>in</strong>g tool for paleontologists.References:Granger, H.C., and Warren, C.G. (1974): Zon<strong>in</strong>g <strong>in</strong> the altered tongue associated with roll-typeuranium deposits. In: International Atomic Energy Agency, Formation of uranium roll fronts:International Atomic Energy Agency, Vienna, p. 185-200.Higg<strong>in</strong>s, P. (2007): Fossils to fertilizer: taphonomic implications of uranium roll-fronts: Palaios 22: 577-582.Toy, A.D.F., and Walsh, E.N. (1987): Phosphorus Chemistry. In: Everyday Liv<strong>in</strong>g, 2nd ed.: AmericanChemical Society, Wash<strong>in</strong>gton, D.C., 362 p.53


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.org<strong>Bone</strong> preservation: Diagenetic screen<strong>in</strong>g and post-excavation<strong>in</strong>fluencesHEGE HOLLUND* 1 , MIRANDA JANS 1 , MATTHEW COLLINS 2 AND HENK KARS 11 Institute for Geo- and Bioarchaeology, Vrije University, De Boelelaan 1085, 1081HVAmsterdam, Netherlands(*hege.hollund@falw.vu.nl, miranda.jans@falw.vu.nl, henk.kars@falw.vu.nl)2 BioArCh, Department of Archaeology, University of York, Biology S Block, PO Box373, York YO10 5YW, United K<strong>in</strong>gdom(Mc80@york.ac.uk)<strong>Bone</strong> is the most common record of humans and animals <strong>in</strong> the archaeologicalrecord. Isotopic and genetic analyses of bone require selection of optimal samples <strong>in</strong>order to obta<strong>in</strong> reliable results. Alteration of the bone <strong>in</strong> its burial environment canlead to loss of biomolecules or contam<strong>in</strong>ation of the material, which seriouslycomplicates data <strong>in</strong>terpretation. Characterisation of bone preservation is essential tovalidate the results of chemical analyses and is (presumably) l<strong>in</strong>ked to the survival ofcollagen and DNA.This poster will present the project aims and methods of a PhD-project on bonepreservation, part of an EU early stage research tra<strong>in</strong><strong>in</strong>g network on the orig<strong>in</strong>s ofdairy<strong>in</strong>g <strong>in</strong> Europe. The objective is to evaluate different diagenetic parameters aspredictive tools for molecular and geochemical preservation. A comb<strong>in</strong>ation ofmicroscopic analysis (histology) with detailed analysis of bone chemistry will be usedto develop a bone sample preservation profile used <strong>in</strong> the evaluation of analyticalresults from other participants <strong>in</strong> the network. It is hoped that this project will developa predictive tool for sample selection.An additional research question is the effects of post-excavation procedures on bonepreservation. This important issue is rarely addressed. Museums provide the bulk ofthe archaeological bone material available for analyses. Alterations of the materialmay occur also after excavation. Ancient DNA is for example particularly sensitive tounsuitable storage environment and degradation has been found to accelerate afterexcavation (Pruvost et al., 2007; Burger et al., 1999). Similar studies have not beenconducted on collagen. Furthermore, conservation procedures which <strong>in</strong>volveclean<strong>in</strong>g and addition of preservatives/adhesives will <strong>in</strong>troduce contam<strong>in</strong>ation whichmay affect the results of stable isotope and radiocarbon analyses. Diageneticanalyses of museum specimen may throw light upon the relationship between bonepreservation and post-excavation processes. The poster will report on prelim<strong>in</strong>aryresults.References:Burger, J., Hummel, S., Herrmann, B. and Henke, W. (1999): DNA preservation: A microsatellite-DNAstudy on ancient skeletal rema<strong>in</strong>s. Electrophoresis 20: 1722-1728.Pruvost, M. Schwarz, R., Bessa Correia, V., Champlot, C., Braugier, S., Morel, N., Fernandez-Jalvo,Y., Grange, T. and Geigl, E. (2007): Freshly excavated fossil bones are best for amplification ofancient DNA. Proceed<strong>in</strong>gs of the National Academy of Sciences 104: 739-744.


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgTaphonomic and archaeometric analyses of the rema<strong>in</strong>s of EmperorLothar III and his familyMARTINA KASERER*, MICHAELA HARBECK AND GISELA GRUPEDepartment of Biology I, Anthropology, Ludwig-Maximilians-University Munich,Großhaderner Str. 2, 82152 Mart<strong>in</strong>sried, <strong>Germany</strong>(*mart<strong>in</strong>akaserer@yahoo.com)The German Emperor Lothar III (1075 – 1137), grandfather of Henry the Lion (HenryIII of Saxony), is buried <strong>in</strong> the crypt of the collegiate church at Königslutter <strong>in</strong> LowerSaxony. His wife Richenza, his son <strong>in</strong> law Henry the Proud (Duke of Bavaria andSaxony) and a historically unknown and not identified child are rest<strong>in</strong>g next to him.Lothar III died on 4 th december 1137 near Breitenwang/Tyrol which was locatedapproximately 600 km away from his designated burial site (Königslutter). Therefore,transportation of the corpse presumably took several weeks and beg<strong>in</strong>n<strong>in</strong>g decayand decomposition had to be avoided. One possibility to deal with thesecircumstances was a special treatment called More teutonico, which implies theboil<strong>in</strong>g of a human corpse <strong>in</strong> order to deflesh the bones. In 1989, Bada et al. claimedto have proven the boil<strong>in</strong>g of Lothar III by am<strong>in</strong>o acid racemisation analysis of his andhis families’ bones. They stated that their results reveal a cook<strong>in</strong>g process for five tosix hours. Nevertheless, there is eligible doubt about this hypothesis <strong>in</strong> the scientificcommunity (e.g. Grupe, <strong>in</strong> press), ma<strong>in</strong>ly because of black deposits found on variousbone surfaces of the Emperor. These deposits represent the basis of the taphonomic,histological analyses presented here to address the issue of More teutonico.The material will be removed from the bones, rehydrated and <strong>in</strong>vestigated viatransmission light microscopy. The aim is to identify structures that turn out to be sk<strong>in</strong>or muscle tissue.Furthermore, a possible k<strong>in</strong>ship between the unidentified child and the three peersshall be tested by aDNA-analyses. Therefore, aDNA will be extracted from teeth ofthe family members <strong>in</strong> order to identify maternal l<strong>in</strong>es via mitochondrial hypervariableregion I. Additionally, a multiplex-PCR will be conducted to <strong>in</strong>vestigate STRs of allpersons.References:Bada, J.L., Herrmann, B., Payan, I.L., and Man, E.H. (1989): Am<strong>in</strong>o acid racemisation <strong>in</strong> bone and theboil<strong>in</strong>g of the german emperor Lothar I. Applied Geochemistry 4: 325-327.Grupe, G. (<strong>in</strong> press): Die Ergebnisse der molekularbiologischen und histologischen Untersuchungender Skelettfunde aus der Stiftskirche. Proceed<strong>in</strong>gs des <strong>in</strong>terdiszipl<strong>in</strong>ären Symposiums„Kaiser Lothar III und der Kaiserdom <strong>in</strong> Köngislutter“. Braunschweig, August 2007.55


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgMeasur<strong>in</strong>g and assess<strong>in</strong>g organic and <strong>in</strong>organic oxygen isotopevalues <strong>in</strong> vertebrate calcified tissueKAROLA KIRSANOW* AND NOREEN TUROSSDepartment of Anthropology, Harvard University, Cambridge, MA 02138, USA(*kirsanow@fas.harvard.edu)The ability to assess differences <strong>in</strong> local hydrology and dr<strong>in</strong>k<strong>in</strong>g water δ 18 O us<strong>in</strong>gmodern and fossil tissue is limited by at least two factors: the compression of themeteoric water oxygen isotopic values <strong>in</strong> both <strong>in</strong>organic and organic animal tissues,and the <strong>in</strong>fluence of food δ 18 O values <strong>in</strong> consumer tissues. Diagenetic alteration oftissue values and fractionation effects <strong>in</strong>troduced dur<strong>in</strong>g sample preparation mayfurther obscure biogenic isotopic <strong>in</strong>formation.Here we report on the potential effects of isotopic fractionation on enamel phosphatesamples prepared us<strong>in</strong>g a micro-precipitation protocol, as well as variability <strong>in</strong> thephosphate oxygen-carbonate oxygen equilibrium observed <strong>in</strong> modern and fossilmaterial. We also present data from modern experimental rodent populations<strong>in</strong>dicat<strong>in</strong>g that apatite carbonate and phosphate, bone collagen, and hair kerat<strong>in</strong> aredifferentially sensitive to different δ 18 O <strong>in</strong>puts, and that values from both apatite andprote<strong>in</strong> can be affected by complex dietary <strong>in</strong>puts <strong>in</strong> ways that obscure dr<strong>in</strong>k<strong>in</strong>g wateroxygen isotopic values.56


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgAn ‘all or noth<strong>in</strong>g’ theory to expla<strong>in</strong> the survival ofancient bone collagenHANNA E. C. KOON* AND MATTHEW J. COLLINSBioArCh, Department of Archaeology, University of York, Biology S Block, PO Box373, York YO10 5YW, United K<strong>in</strong>gdom(*heck100@york.ac.uk)We present an ‘all or noth<strong>in</strong>g’ model to expla<strong>in</strong> bone collagen degradation whichsheds light on why collagen can rema<strong>in</strong> <strong>in</strong>tact far <strong>in</strong>to the archaeological record, whydiagenetically altered bone can yield undamaged collagen molecules and whycollagen is such a reliable material for isotopic dietary analysis and C 14 dat<strong>in</strong>g. Weargue that the mutual protection of the packed fibrils when disturbed (perhaps by onlya s<strong>in</strong>gle degradation event such as a side cha<strong>in</strong> modification), will <strong>in</strong>itiate localizedcatastrophic failure of a bundle of triple helices. This all-or-noth<strong>in</strong>g hypothesis arguesthat the denaturation temperature of <strong>in</strong>dividual collagen triple helices decl<strong>in</strong>esdramatically with <strong>in</strong>creas<strong>in</strong>g space <strong>in</strong>to which the <strong>in</strong>dividual cha<strong>in</strong>s can denature (socalled polymer-<strong>in</strong>-a-box stabilization). Partial unpack<strong>in</strong>g of the fibril, caused by (for<strong>in</strong>stance) deamidation of Asn and Gln side cha<strong>in</strong>s or hydrolysis of peptide bondsleads to catastrophic melt<strong>in</strong>g of all those helices with<strong>in</strong> a region bound by the fibril.This is because failure of one helix leads to the generation of soluble gelat<strong>in</strong>polymers, as these diffuse away from the fibril bundle they free up further space,promot<strong>in</strong>g the destabilisation of additional triple helices. Gelat<strong>in</strong> is more soluble,more prone to hydrolysis and biodegradation, and therefore <strong>in</strong> all but the most aridenvironments, has a much short life. If collagen does persist <strong>in</strong>to the archaeologicalrecord it will therefore consist predom<strong>in</strong>antly of <strong>in</strong>tact molecules. Processes whichresist fibril expansion, such as m<strong>in</strong>eral precipitates with<strong>in</strong> and between fibrils, willhave a much greater impact on collagen survival than cross-l<strong>in</strong>ks, which hold cha<strong>in</strong>stogether, but are much less effective at prevent<strong>in</strong>g local unpack<strong>in</strong>g of the helix. Thenet result is that non-m<strong>in</strong>eralised collagen (e.g. sk<strong>in</strong>, tendon or leather) will notpersist as long <strong>in</strong> the burial environments as m<strong>in</strong>eralized collagen (bone, teeth,antler).57


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgHuman rema<strong>in</strong>s from La Pollera: a study of the preservation state,of the consolidant and its effect on stable isotope analysisKATHARINA MÜLLER* 1 , GWENAËLLE LE BRAS-GOUDE 2 , FANNY BUSCAGLIA 1 AND INA REICHE 11 Laboratoire du Centre de Recherche et de Restauration des Musées de France,UMR 171 CNRS, Palais du Louvre, Porte des Lions, 14 Quai François Mitterand,75001 Paris, France(*kathar<strong>in</strong>a.mueller@culture.gouv.fr)2 Laboratoire d’Anthropologie des Populations du Passé, UMR CNRS 5199 PACEA,Université Bordeaux 1, Avenue des Facultés, 33405 Talence cedex, France(hygee2@wanadoo.fr)La Pollera cave is an archaeological site located <strong>in</strong> Liguria (Italy), ca. 5 km to theMediterranean Sea. Human and faunal rema<strong>in</strong>s sampled <strong>in</strong> this site belong to theSquare Mouthed Pottery culture, dat<strong>in</strong>g to the first half of the 5 th millennium cal. BC(i.e. Middle Neolithic period). In the 1920s or 1930s the human bones have beenconsolidated, but the applied procedure was not recorded.The aims of this study were the exam<strong>in</strong>ation of the preservation state of the LaPollera bone f<strong>in</strong>d<strong>in</strong>gs as well as the determ<strong>in</strong>ation of the consolidation material usedand its effect on the conservation of these bones and on stable isotope analysis. All<strong>in</strong> all four human rib bones (treated) and three animal rip bones (not treated) wereanalysed. Transmission <strong>in</strong>frared (IR) spectroscopy was applied to identify theconsolidant and to characterize the alteration of the bone collagen secondarystructure. The bones were also analysed by Scann<strong>in</strong>g Electron Microscopy (SEM)and Proton Induced X-Ray Emission to get further <strong>in</strong>formation about the bonediagenesis. Palaeodietary study was carried out us<strong>in</strong>g stable isotope analysis (δ 13 C,δ 15 N) on both human and animal bone collagen samples. This method provides<strong>in</strong>formation on the dietary prote<strong>in</strong> <strong>in</strong>take dur<strong>in</strong>g the last year of the <strong>in</strong>dividual’s life.The stable isotope and IR analyses provided evidences for the preservation of noncontam<strong>in</strong>ated orig<strong>in</strong>al bone collagen for all bones from La Pollera. However, themicroscopic exam<strong>in</strong>ation revealed that most of the human bones were extensivelyaltered. They showed clear <strong>in</strong>dications of microbiological attack. Obviously, an animalglue was used for the consolidation of the human bones. A beneficial effect of theconsolidant was not established.58


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgPreservation assessment of Miocene-Pliocene tooth enamel fromTugen Hills (Kenyan Rift Valley): an <strong>in</strong>frared, elementary andstable-isotope analysisDAMIEN ROCHE* 1 , LOÏC SEGALEN 1 , ETIENNE BALAN 2 AND SIMON DELATTRE 21 Université Pierre et Marie Curie-Paris06, ISTeP UMR 7193 Biom<strong>in</strong>éralisations etEnvironnements Sédimentaires, F-75005 Paris, France(*damienroche@wanadoo.fr)2 Université Pierre et Marie Curie-Paris06, IMPMC IRD UMR 206 & CNRS UMR7590, UDD, IPGP, F-75015 Paris, FranceThe m<strong>in</strong>eral fraction of mammal and crocodile tooth enamel was analyzed by <strong>in</strong>fraredspectroscopy and by chemical and isotopic measures. A series of 57 fossil samplesfrom two East-African Mio-Pliocene formations was compared with 15 modernsamples. Infrared spectra <strong>in</strong>dicate the presence of biogenic apatite (bioapatite) <strong>in</strong> thefossil material, without significant secondary carbonate contam<strong>in</strong>ations. However thehigh crystall<strong>in</strong>ity and fluor<strong>in</strong>e content, and the low carbonate content, of fossilsamples reveal the presence of secondary apatite, likely result<strong>in</strong>g fromdissolution/recrystallization processes of bioapatite. The carbonate content of thesamples also displays significant variations depend<strong>in</strong>g on the vertebrate group andthe taphonomic context. This content is lower for mammals than crocodiles, and forfossils from the Mabaget Fm compared to those from the Luke<strong>in</strong>o Fm. Neverthelessfluor<strong>in</strong>ation and decarbonatation of fossil apatite do not seem to be associated withsignificant exogenous substitutions <strong>in</strong> calcium and phosphate sites because thecalcium/phosphorus ratio is still with<strong>in</strong> the biological range. No correlation wasobserved between the carbonate and fluor<strong>in</strong>e contents and the stable-isotopecomposition of carbonate <strong>in</strong> fossil apatite. In fact, isotopic data suggest that thechemical modifications of tooth enamel dur<strong>in</strong>g diagenesis were m<strong>in</strong>imized, lead<strong>in</strong>g tothe preservation of palaeoenvironmental <strong>in</strong>formation.59


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgMobility <strong>in</strong> the prehistoric western Eurasian Steppe –an <strong>in</strong>terdiscipl<strong>in</strong>ary approachCHRISTINE SCHUH* 1 , C. GERLING 1 , V. HEYD 2 , A.W.G. PIKE 2 , E. KAISER 1 AND W. SCHIER 11 Institut für Prähistorische Archäologie, Freie Universität Berl<strong>in</strong>, Altenste<strong>in</strong>str. 15,14195 Berl<strong>in</strong>, <strong>Germany</strong> (*ch.schuh@fu-berl<strong>in</strong>.de)2 Department of Archaeology and Anthropology, University of Bristol, UKIn prehistoric times the western Eurasian Steppe was a contact zone which l<strong>in</strong>keddifferent cultural worlds. At the end of the 4th and dur<strong>in</strong>g the 3rd millennium BC thisarea played an important role <strong>in</strong> the distribution of <strong>in</strong>novations e.g. the <strong>in</strong>vention ofthe wagon or the domestication of the horse (Lev<strong>in</strong>e et al., 2003). The people of thistime were buried <strong>in</strong> mounds which are still cover<strong>in</strong>g vast areas of the Steppe(Bunjatjan et al., 2007). It is believed that these Eneolithic and Early Bronze Agecommunities lived a mobile way of life (Lev<strong>in</strong>e et al., 1999). Strong connections <strong>in</strong> thearchaeological rema<strong>in</strong>s (e.g. grave constructions, burial costumes, grave goods)between the Urals and the Great Hungarian Pla<strong>in</strong>, raises the possibility of migrationof <strong>in</strong>dividuals or <strong>in</strong>filtrat<strong>in</strong>g populations between these regions (Ecsedy, 1979).With<strong>in</strong> the BMBF-project “Palaeogenetic analyses of economic <strong>in</strong>novations andsocial mobility <strong>in</strong> the Eurasian Steppe 3500-300 BC” and the Research Area A2“Spatial effects of technological <strong>in</strong>novations and chang<strong>in</strong>g ways of life” of the clusterof Excellence TOPOI we aim to analyse prehistoric populations of differenttimescales <strong>in</strong> the Eurasian Steppe with respect to their way of life, their populationgeneticidentity, their connections to adjacent cultures and their role <strong>in</strong> the genesisand dissem<strong>in</strong>ation of <strong>in</strong>novations. In an <strong>in</strong>terdiscipl<strong>in</strong>ary approach, we make use ofarchaeological methods (Institut für Prähistorische Archäologie, Berl<strong>in</strong>), ofpalaeogenetics (Institut für Anthropologie, Ma<strong>in</strong>z), as well as isotope analyses(Department of Archaeology and Anthropology, Bristol; RLAHA, Oxford).Here we present the first results of the archaeological and demographic analysesbeside prelim<strong>in</strong>ary strontium isotope results from burials of the North Pontic and theCarpathian bas<strong>in</strong> regions regard<strong>in</strong>g the 4th and 3rd millennium BC.References:Bunjatjan, K.P., Kaiser, E., and Nikolova, A.V. (2007): Bronzezeitliche Bestattungen aus dem unterenDneprgebiet. Schriften des Zentrums für Archäologie und Kulturgeschichte desSchwarzmeerraumes 8 (Langenweißbach).Ecsedy, I. (1979): The People of the Pit-Grave Kurgans, <strong>in</strong>: Eastern Hungary. Fontes ArchaeologiaeHungaricae (Budapest).Lev<strong>in</strong>e M.A., Rassamak<strong>in</strong>, Y.Y., Kislenko, A.M., and Tatar<strong>in</strong>tseva, N.S. (1999): Late PrehistoricExploitation of the Eurasian Steppe. McDonald Institute Monograph (Cambridge).Lev<strong>in</strong>e, M.A., Renfrew, C., and Boyle, K. (2003): Prehistoric Steppe Adaption and the Horse.McDonald Institute Monographs (Cambridge).60


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgChemical signals from ancient human teeth and bones –variability of diagenetical changesKRSYSTOF SZOSTEK* 1 , B. STEPANCZAK 1 , M. KEPA 1 , H. GLAB 1 , G. TYLKO 2 , O. WOZNICKA 2AND CZ. PALUSZKIEWICZ 31 Department of Anthropology, Institute of Zoology, Jagiellonian University, Krakow,Poland2 Department of Cytology and Histology, Institute of Zoology, Jagiellonian University,Krakow, Poland3 Faculty of Materials Science and Ceramics, AGH—University of Science andTechnology, Krakow, Poland(*szosy@wp.pl)The qualification of potential diagenetic changes observed <strong>in</strong> historical, human bonematerial is currently the ma<strong>in</strong> trend <strong>in</strong> bioarchaeological research. Today, a highlyspecialised set of methods and research tools is used for verify<strong>in</strong>g whether bonerema<strong>in</strong>s unearthed at archaeological sites are suitable for use <strong>in</strong> isotope studies. It isa pivotal po<strong>in</strong>t of research, s<strong>in</strong>ce any attempts at reconstruct<strong>in</strong>g paleodiets ormigrations of our ancestors may only be based on material which has ma<strong>in</strong>ta<strong>in</strong>ed<strong>in</strong>tact post mortem proportions of <strong>in</strong>terest to bioarchaeologists.The present research was aimed at describ<strong>in</strong>g diagenetic processes <strong>in</strong> enamel,dent<strong>in</strong>e and various post-cranial skeletal sections from the same <strong>in</strong>dividual. Analyseswere carried out on various <strong>in</strong>terpretative levels, <strong>in</strong>tra-<strong>in</strong>dividual, <strong>in</strong>ter-<strong>in</strong>dividual and<strong>in</strong>ter-group variability with consideration to <strong>in</strong>dividual’s sex and age and pH of the soilfrom <strong>in</strong>vestigated graves. The material came from two spatially and temporarilydistant archaeological sites from southern Poland (Krakow – the Middle Ages,Malzyce – the Neolithic age). The verification of diagenetic processes was performedon the basis of Ca/P ratio (EDS – Energy Dispersive X-ray Spectroscopy), thecrystall<strong>in</strong>ity <strong>in</strong>dex CI (FTIR –Fourier Transform Infrared Spectrometry), the C/N ratio(determ<strong>in</strong><strong>in</strong>g percentage content of carbon and nitrogen <strong>in</strong> collagen samples bymeans of ThermoScientific Flash EA 1112 NC Analyzer). As a result of multi-layeredanalyses it was found that despite the lack of differences <strong>in</strong> soil acidity (6.6-6.9), notall skeletons on a given site had been equally exposed to diagenetic post mortemchanges. In addition, as far as the analysed skeletons are concerned, it was revealedthat not all of their fragments had been altered to the same extent. In a number ofcases, on FTIR absorbance diagrams there was a peak connected with silicates orexogenous carbonates <strong>in</strong> the vic<strong>in</strong>ity of phosphate groups. The fact that the CI <strong>in</strong>dexconforms to the standard is very important. Obviously, oxygen isotopes connectedwith exogenous m<strong>in</strong>erals may distort the f<strong>in</strong>al results of analyses. Thus, apart fromquantitative analyses (calculat<strong>in</strong>g the CI), qualitative analyses are recommended(observation of the absorbance l<strong>in</strong>e), as well as specify<strong>in</strong>g the extent to which asample is contam<strong>in</strong>ated on the basis of any additional, non-biogenic peaks.61


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgExtend<strong>in</strong>g diffusion-adsorption models of trace element uptakeCLIVE TRUEMAN* 1 , CHRIS DEWDNEY 2 , MARTIN PALMER 1 AND LÁSZLÓ KOCSIS 11 School of Ocean and Earth Science, University of Southampton, Southampton UK2 School of Earth and Environmental Science, University of Portsmouth,Portsmouth, United K<strong>in</strong>gdom(*trueman@noc.soton.ac.uk)The trace element composition of bone m<strong>in</strong>eral alters dramatically dur<strong>in</strong>g diagenesis.Increas<strong>in</strong>gly, elements added to bone dur<strong>in</strong>g diagenesis are be<strong>in</strong>g used to studytaphonomy, to aid palaeoenvironmental reconstruction and to provide dat<strong>in</strong>g tools.Central to all these applications is a detailed understand<strong>in</strong>g of the rate and nature ofelement uptake, and the subsequent distribution of trace elements with<strong>in</strong> bones.In a key paper, Millard and Hedges (1996) provided a model predict<strong>in</strong>g thedistribution of U with<strong>in</strong> bone as a function of time us<strong>in</strong>g estimated values of thediffusion coefficient for uranium species and the adsorption coefficient betweenuranium ions and bioapatite. The Millard and Hedges model has proven to be anextremely powerful description of the diagenetic process and has been usedsuccessfully to correct U-series dates and to estimate the rate of fossilisation ofbone. The distribution of trace elements <strong>in</strong> fossil bones often does not fit the U-shaped distributions predicted by the most basic application of the Millard andHedges model. One assumption of the model <strong>in</strong> its most basic form is that thereduced diffusion coefficient is constant throughout the bone and rema<strong>in</strong>s constantdur<strong>in</strong>g recrystallisation and space. This assumption is unlikely to be met <strong>in</strong> a bonethat is experienc<strong>in</strong>g progressive recrystallisation, as growth of crystals and closure of<strong>in</strong>tra-crystall<strong>in</strong>e porosity will change the reduced diffusion term.Here we present extensions of the orig<strong>in</strong>al Millard and Hedges model, allow<strong>in</strong>gprogressive changes <strong>in</strong> effective diffusion coefficient spatially and temporally with<strong>in</strong>bones dur<strong>in</strong>g recrystallisation. We show that allow<strong>in</strong>g recrystallisation to progressmore rapidly at external marg<strong>in</strong>s of the bone (a pattern commonly observed <strong>in</strong> recentand archaeological bones) replicates trace element distribution patterns commonlyseen <strong>in</strong> fossil bones. Allow<strong>in</strong>g diffusion terms to reduce with time (because ofprogressive recrystallisation) results <strong>in</strong> a greater estimated time needed to developany given element distribution. This potentially has implications for radiometric dat<strong>in</strong>gof bone, and for assessments of the rate of fossilisation of bone.References:Millard, A.R. and Hedges, R.E.M. (1996): A diffusion-adsorption model of uranium uptake byarchaeological bone. Geochimica et Cosmochimica Acta 60: 2139-2152.62


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgZooarchaeology by Mass Spectrometry (ZooMS)NIENKE L. VAN DOORN*, M. BUCKLEY, O. E. CRAIG AND M. J. COLLINSBioArCh, Department of Archaeology, University of York, Biology S Block, PO Box373, York YO10 5YW, United K<strong>in</strong>gdom(*nienke@palaeo.eu, mc80@york.ac.uk)From both the fossil and archaeological record, bones and teeth are valuedspecimen as they are often the only tissues that rema<strong>in</strong> over long periods of time thatstill reta<strong>in</strong> <strong>in</strong>formation that is directly relevant to palaeontology, (zoo)archaeology andbiology. Soft-ionization mass-spectrometry has opened up huge advances for theanalysis of prote<strong>in</strong>s, both modern and archaeological. Although DNA is best knownfor conta<strong>in</strong><strong>in</strong>g <strong>in</strong>formation on species for identification, prote<strong>in</strong>s conta<strong>in</strong> very similar<strong>in</strong>formation. Analogue to how DNA f<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>g can be used to dist<strong>in</strong>guish up to the<strong>in</strong>dividual level, prote<strong>in</strong> f<strong>in</strong>gerpr<strong>in</strong>ts can potentially dist<strong>in</strong>guish between animalspecies, even though dist<strong>in</strong>ction between genera cannot yet be made. The projectcurrently aims to produce a method to dist<strong>in</strong>guish between species(bov<strong>in</strong>e/porc<strong>in</strong>e/avian) with modern samples that can easily be scaled up. The futureobjective is to also provide a solution for species identification for archaeologicalsamples that are morphologically <strong>in</strong>dist<strong>in</strong>guishable and DNA has been fullydegraded, with a method that demands no more than a small (diameter 2mm) bonefragment that can be reclaimed after analysis.63


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgAnalysis of suspected rott<strong>in</strong>g bone material from the d<strong>in</strong>osaurquarries, Warm Spr<strong>in</strong>gs Ranch, Hot Spr<strong>in</strong>gs County, Wyom<strong>in</strong>gWILLIAM R. WAHL*Wyom<strong>in</strong>g D<strong>in</strong>osaur Center, BigHorn Bas<strong>in</strong> Foundation, 110 Carter Ranch Road,Thermopolis, WY, 82443, USA(*wwahl2@aol.com)In the course of preparation of d<strong>in</strong>osaur material skeletal elements have been notedwith bone material mixed <strong>in</strong>to matrix <strong>in</strong> the bone/matrix contact. Material from the<strong>in</strong>terior of large limb bones of WDC-BS quarry appears to have been “squirted” out ofthe bone matrix contact. The potential “rott<strong>in</strong>g” <strong>in</strong> a sub-aqueous organic-rich alkal<strong>in</strong>epaleoenvironment has been suggested to describe both microbial and geochemicalprocesses that occurred <strong>in</strong> the destruction of both the cancellous and surficial bone.Several specimens of WDC-BS were not prepared <strong>in</strong>stead leav<strong>in</strong>g the bone-matrixcontact <strong>in</strong>tact to illustrate the breakdown of bone. Studies of localized bonetaphonomy may suggest the microbial elevation of the cancellous bone throughcortical bone. Also the presence of barite rich nodules may suggest the breakdown ofbone by geochemical processes that damage <strong>in</strong>ternal structure of skeletal elementsto the deference of surficial material.References:Jenn<strong>in</strong>gs, D.S. and Hasiotis, S.T. (2006): Taphonomic analysis of a d<strong>in</strong>osaur feed<strong>in</strong>g site us<strong>in</strong>ggeographic <strong>in</strong>formation systems (GIS), Morrison Formation, southern Bighorn Bas<strong>in</strong>,Wyom<strong>in</strong>g, USA. Palaios 21: 480-492.Kolo, K., Keppens, E., Préat, A., and Claeys, P. (2007): Experimental observations on fungaldiagenesis of carbonate substrates. Journal of Geophysical Research 112.Turner-Walker, G. and Jans, M.M.E. (2008): Reconstruct<strong>in</strong>g taphonomic histories us<strong>in</strong>g histologicalanalysis. Palaeogeography, Palaeoclimatology, Palaeoecology 266: 227-235.64


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgGrowth marks <strong>in</strong> sauropod ribs from the Upper Jurassic MorrisonFormation, Tendaguru and Lower Cretaceous of NigerKATJA WASKOW* AND MARTIN P. SANDERSte<strong>in</strong>mann Institute for Geology, M<strong>in</strong>eralogy, and Palaeontology, University of <strong>Bonn</strong>,Nussallee 8, 53115 <strong>Bonn</strong>, <strong>Germany</strong>(*waskow@uni-bonn.de)In most cases growth marks are not preserved <strong>in</strong> sauropod long bones like tibia,fibula, radius and ulna. Therefore several ribs of different sauropod taxa weresampled by cross section<strong>in</strong>g and core drill<strong>in</strong>g for paleohistological study. Thesamples are from three different localities. Most of them are basal macronarianCamarasaurus ribs from one almost complete <strong>in</strong>dividual, named E.T., found <strong>in</strong> theHowe Stephens Quarry (Morrison Formation). Three of the right side ribs ofCamarasaurus E.T. were sampled <strong>in</strong> 6-9 different parts (from proximal to distal). Afew LAGs are preserved <strong>in</strong> nearly all of these samples. In all cases the upperproximal end near the head of the rib is the part where most of the growth record ispreserved. Some of the samples show up to 80% of growth record which means 30-40 LAGs. This longevity is approximately consistent with what has been suggestedby the growth curve analyses of Lehman & Woodward (2008). Additional sampledtaxa from this locality are Brachiosaurus, Apatosaurus and one other unidentifieddiplodocoid, which are currently be<strong>in</strong>g studied. Also a few undeterm<strong>in</strong>ed ribfragments with a clearly preserved growth record from Niger were sampled. Becauseof their size and shape, they were considered to belong to a new sauropod taxon.While all samples from the Morrison Formation and Niger are cross sections, the ribsfrom the third locality, Tendaguru, were sampled by core drill<strong>in</strong>g. Some of thesesamples, (two Brachiosaurus-, two diplodocoid-, and one Dicraeosaurus rib)especially those from Brachiosaurus show growth marks too. All these resultsdemonstrate that it is possible to f<strong>in</strong>d evidence of growth <strong>in</strong> sauropod ribs. This couldbe the start<strong>in</strong>g po<strong>in</strong>t for more histological research <strong>in</strong> other parts of the skeleton.References:Lehman, T.M and Woodward, H.N. (2008): Model<strong>in</strong>g growth rates for sauropod d<strong>in</strong>osaurs.Paleobiology 34: 264-281.65


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgUs<strong>in</strong>g ‘clumped isotopes’ <strong>in</strong> fossil bones as a proxy for Eocene-Oligocene climate <strong>in</strong> the North American mid-cont<strong>in</strong>entALESSANDRO ZANAZZI* 1 , MATTHEW J. KOHN 2 AND HAGIT P. AFFEK 31 Department of Geology & Geophysics, Yale University2 Department of Geosciences, Boise State University, USA(mattkohn@boisestate.edu)3 Department of Geology & Geophysics, Yale University(*alessandro.zanazzi@yale.edu, hagit.affek@yale.edu)Carbonate ‘clumped isotopes’ thermometry is a new technique that allows for thereconstruction of the temperature of crystallization of carbonate m<strong>in</strong>erals. It is basedon the abundance of 13 C- 18 O bonds <strong>in</strong> the carbonate lattice, measured as ∆ 47 <strong>in</strong> CO 2produced by phosphoric acid digestion of the m<strong>in</strong>erals. Unlike the traditional δ 18 Othermometer, temperature estimates <strong>in</strong> this technique are <strong>in</strong>dependent of the isotopiccomposition of the water from which the m<strong>in</strong>eral precipitates.We explored the applicability of this technique for the carbonate component ofbiogenic apatites, <strong>in</strong> an effort to reconstruct past environmental temperatures on landus<strong>in</strong>g fossil bones. The underly<strong>in</strong>g assumption is that as bones recrystallize dur<strong>in</strong>gearly diagenesis the <strong>in</strong>ternal order of the carbonate component is completely reset,so that their ∆ 47 value reflects soil temperature.The technique was tested by analyz<strong>in</strong>g tooth enamel samples from five modernmammals with known body temperatures. We first explored the effect of differentsample treatments on the ‘clumped isotopes’ composition of tooth enamel. Asystematic, ~0.03‰ <strong>in</strong>crease <strong>in</strong> hippo tooth enamel ∆ 47 was observed follow<strong>in</strong>gtreatment with either H 2 O 2 or NaOCl, and H 2 O 2 or NaOCl plus acetate-buffered aceticacid. No such offset was observed <strong>in</strong> hippo enamel treated only with acetate-bufferedacetic acid. Average (±1 SE) ∆ 47 for hippo, cow, horse, elephant, and deer untreatedtooth enamel are 0.606±0.008, 0.595±0.009, 0.586±0.008, 0.580±0.023, and0.591±0.021‰, respectively, reflect<strong>in</strong>g ‘clumped isotopes’ temperatures that areclose to the animal body temperatures, and suggest<strong>in</strong>g that biogenic apatite exhibitsthe same ∆ 47 vs. temperature relationship as calcite.We subsequently applied this technique to fossil bones collected <strong>in</strong> the northernGreat Pla<strong>in</strong>s of the US <strong>in</strong> order to <strong>in</strong>vestigate the climatic change that occurredacross the Eocene-Oligocene transition <strong>in</strong> this area.Prelim<strong>in</strong>ary measurements suggest a mean annual temperature drop across thetransition of ~9±2°C, from 31°C to 22°C.66


6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong> 18 - 21 September 2009, University of <strong>Bonn</strong> / www.bone-diagenesis.orgList of participants<strong>in</strong> alphabetical order67


Participants of the 6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong>, 18 - 21 September <strong>in</strong> <strong>Bonn</strong>Last Name First Name University Department Street Address Zip City Country EmailAltKurtJohannes-Gutenberg-Universität Ma<strong>in</strong>zAnthropology Saarstrasse 1 55099 Ma<strong>in</strong>z <strong>Germany</strong> altkw@uni-ma<strong>in</strong>z.deAnne Jennifer Temple UniversityEarth and EnvironmentalSciences6404 N <strong>6th</strong> St 19126 Philadelphia United States jeanne.3817@yahoo.comBalter V<strong>in</strong>centCentre national de la École Normale Supérieure46 Allée d'Italierecherche scientifique de Lyon69364 Lyon France V<strong>in</strong>cent.Balter@ens-lyon.frBocherens Herve Universität Tüb<strong>in</strong>gen Geowissenschaften Sigwartstrasse 10 72076 Tüb<strong>in</strong>gen <strong>Germany</strong> herve.bocherens@uni-tueb<strong>in</strong>gen.deBoud<strong>in</strong> MathieuRoyal Institute for CulturalHeritageRadiocarbon Laboratory Jubelpark 1 1000 Brussels Belgium mathieu.boud<strong>in</strong>@kikirpa.beBrügmann GerhardJohannes Gutenberg- Institut fürUniversität Ma<strong>in</strong>z GeowissenschaftenJ.J.-Becher-Weg 21 55131 Ma<strong>in</strong>z <strong>Germany</strong> bruegmag@uni-ma<strong>in</strong>z.deCerl<strong>in</strong>g Thure University of Utah Geology and Geophysics 1460 East 115 South 84112 Salt Lake City United States thure.cerl<strong>in</strong>g@utah.eduCh<strong>in</strong>samy-Turan Anusuya University of Cape Town Zoology Deptartment Private Bag 7700 Cape Town South Africa anusuya.ch<strong>in</strong>samy-turan@uct.ac.zaDepartment of Mar<strong>in</strong>e,North Carol<strong>in</strong>a State2800 Faucette Drive, Rm.Cleland TimothyEarth, and Atmospheric27695 Raleigh United States tpclelan@ncsu.eduUniversity1125 Jordan HallSciencesColl<strong>in</strong>s Matthew University of YorkDotsika Elissavet NCSR DemokritosDumontMaitenaMax-Planck-Institut fürEisenforschungBioArCh, Departments ofBiology, Archaeology andChemistryInstitute of MaterialsScienceAbteilungWerkstoffdiagnostik undTechnologie der StähleBiology, S Block PO Box373YO10 5YW York United K<strong>in</strong>gdom mc80@york.ac.ukNeapoleos & P. Grigoriou 15310 Agia ParaskevGreece edotsika@ims.demokritos.grMax-Planck-Strasse 1 40237 Düsseldorf <strong>Germany</strong> m.dumont@mpie.deElster Hartwig none none Aumunder Heerweg 90 28757 Bremen <strong>Germany</strong> hartwig.elster@arcor.deFernandez-Jalvo YolandaFullerGehlerGeiglBenjam<strong>in</strong>AlexanderEva-MariaMuseo Nacional deCiencias Naturales (CSIC)Max Planck Institute forEvolutionary AnthropologyGeorg-August-UniversitätGött<strong>in</strong>genCentre national de larecherche scientifiqueGlab Henryk Jagiellonian UniversityHarbeckMichaelaLudwig-Maximilians-University MunichHedges Robert Oxford UnviersityPalaeobiology Jose Gutierrez Abascal 2 28045 Madrid Spa<strong>in</strong> yfj@mncn.csci.esHuman Evolution Deutscher Platz 6 04103 Leipzig <strong>Germany</strong> ben_fuller@eva.mpg.deGZG, Deptartmen ofIsotope GeologyGoldschmidtstrasse 3 37077 Gött<strong>in</strong>gen <strong>Germany</strong> agehler@gwdg.deInstitut Jacques Monod 15 rue Hélène Brion 75013 Paris France geigl.eva-maria@ijm.univ-paris-diderot.frDept. of Anthropology,Institute of ZoologyDepartment BiologyI/Anthropology, AG Prof.Dr. GrupeResearch Lab forArchaeologyul. Ingardena 6 30-060 Krakow Poland henryg@wp.plGrosshaderner Strasse 2 82152 Mart<strong>in</strong>sried <strong>Germany</strong> michaelaharbeck@gmx.deDyson Perr<strong>in</strong>s Build<strong>in</strong>g,South Parks RoadOX1 3QY Oxford United K<strong>in</strong>gdom robert.hedges@rlaha.ox.ac.uk


Participants of the 6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong>, 18 - 21 September <strong>in</strong> <strong>Bonn</strong> (cont<strong>in</strong>ued)Last Name First Name University Department Street Address Zip City Country EmailHeld PetraJohannes Gutenberg-Universität Ma<strong>in</strong>zInstitut für Anthropology Colonel Kle<strong>in</strong>mann Weg 2 55099 Ma<strong>in</strong>z <strong>Germany</strong> held.petra@gmx.netHeran Marie-Anne Université de Franche- UFR ST - UMR 6249ComtéChrono-Environnement16 route de Gray 25030 Besancon France marie-anne.heran@univ-fcomte.frSte<strong>in</strong>mann Institut fürHerwartz Daniel Universität <strong>Bonn</strong> Geologie, M<strong>in</strong>eralogie und Poppelsdorfer Allee 53115 <strong>Bonn</strong> <strong>Germany</strong> danielherwartz@gmx.dePaläontologieHeuser Alexander Universität <strong>Bonn</strong> Ste<strong>in</strong>mann Institut fürGeologie, M<strong>in</strong>eralogie und Poppelsdorfer Schloss 53115 <strong>Bonn</strong> <strong>Germany</strong> aheuser@uni-bonn.dePaläontologieHigg<strong>in</strong>s Pennilyn University of RochesterDepartment of Earth andEnvironmental Sciences227 Hutchison Hall 14627 Rochester United States loligo@earth.rochester.eduHoke NadjaDepartment BiologyLudwig-Maximilians-I/Anthropology, AG Prof. University MunichDr. GrupeGrosshaderner Strasse 2 82152 Mart<strong>in</strong>sried <strong>Germany</strong> nadjahoke@gmail.comHollund Hege Institute for Geo- andVrije University, Amsterdam BioarchaeologyDe Boelelaan 1085 1081HV Amsterdam Netherlands hege.hollund@falw.vu.nlHoogewerff-School of ChemicalAna University of East AngliaGergeljSciencesUniversity Drive NR4 7TJ Norwich United K<strong>in</strong>gdom ana.hoogewerff-gergelj@uea.ac.ukHowcroft Rachel Stockholm UniversityArchaeological Research Stockholms Universitet,LaboratoryWallenberglaboratorietSE-106 91 Stockholm Sweden rachel.howcroft@arklab.su.seHuels Matthias Universität Kiel Leibniz Labor Max-Eyth-Strasse 11-13 24149 Kiel <strong>Germany</strong> mhuels@leibniz.uni-kiel.deJans MirandaVrije Universiteit Institute for Geo andAmsterdamBioarchaeologyDe Boelelaan 1085 1081 HV Amsterdam Netherlands miranda.jans@falw.vu.nlKaserer Mart<strong>in</strong>aLudwig-Maximilians-University MunichKepa Malgorzata Jagiellonian UniversityKirsanow Karola Harvard UniversityKiseleva DariaKnipper Cor<strong>in</strong>aKoch PaulInstitute of geology andgeochemistryJohannes-Gutenberg-Universität Ma<strong>in</strong>zUniv. of California SantaCruzKocsis Laszlo University of SouthamptonKoon Hannah University of YorkDepartment BiologyI/Anthropology, AG Prof.Dr. GrupeDepartment ofAnthropology, Institut ofZoologyHuman EvolutionaryBiologyUrals branch of RussianAcademy of SciencesGroßhaderner Strasse 2 82152 Munich <strong>Germany</strong> mart<strong>in</strong>akaserer@yahoo.comIngardena 6 30-061 Cracow Poland malgorzata.kepa@uj.edu.pl11 Div<strong>in</strong>ity Ave. 2138 Cambridge United States kirsanow@fas.harvard.eduPochtovy per. 7 620075 Ekater<strong>in</strong>burg Russian Federatiopodarenka@mail.ruInstitut für Anthropologie Colonel-Kle<strong>in</strong>mann-Weg 2 55099 Ma<strong>in</strong>z <strong>Germany</strong> knipper@uni-ma<strong>in</strong>z.deDeptartment of Earth &1156 High Street 95064 Santa Cruz United States pkoch@pmc.ucsc.eduPlanetary SciencesSchool of Ocean and Earth National OceanographySO14 3ZH Southampton United K<strong>in</strong>gdom laszlo.kocsis@noc.soton.ac.ukScienceCentre, European WayBioArCh, Departments ofBiology, S Block PO BoxBiology, Archaeology andYO10 5YW York United K<strong>in</strong>gdom heck100@york.ac.uk373Chemistry


Participants of the 6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong>, 18 - 21 September <strong>in</strong> <strong>Bonn</strong> (cont<strong>in</strong>ued)Last Name First Name University Department Street Address Zip City Country EmailKrauseJohannesMax Planck Institute forEvolutionary AnthropologyLee-Thorp Julia University of BradfordDepartment ofEvolutionary GeneticsDivision of Archaeological,Geographic andEnvironmental SciencesMaurer Anne-France University of Ma<strong>in</strong>z GeosciencesMüllerMüllerNehlichKathar<strong>in</strong>aWolfgangOlafLaboratoire du Centre deRecherche et deRestauration des Museesde FranceRoyal Holloway Universityof LondonMax-Planck Institute forEvolutionary AnthropologyUMR 171 CNRSDeutscher Platz 6 4109 Leipzig <strong>Germany</strong> krause@eva.mpg.deRichmond Rd BD7 1DP Bradford United K<strong>in</strong>gdom j.a.lee-thorp@bradford.ac.ukJohann-Joachim-Becher-Weg 21Palais du Louvre Porte desLions, 14 quai F. Mitterrand55128 Ma<strong>in</strong>z <strong>Germany</strong> annefrance.maurer@gmail.com75001 Paris France kathar<strong>in</strong>a.mueller@culture.gouv.frEarth Sciences Egham Hill TW20 0EX Egham United K<strong>in</strong>gdom w.muller@es.rhul.ac.ukDepartment of HumanEvolutionDeutscher Platz 6 4103 Leipzig <strong>Germany</strong> nehlich@eva.mpg.dePellegr<strong>in</strong>i Maura University of BradfordDivision of Archaeological,Geographical andEnvironmental SciencesRichmond Rd BD7 1DP Bradford United K<strong>in</strong>gdom m.pellegr<strong>in</strong>i@bradford.ac.ukPfretzschner Hans-Ulrich Universität Tüb<strong>in</strong>genInstitut fürGeowissenschaftenSigwartstrasse 10 72076 Tüb<strong>in</strong>gen <strong>Germany</strong> hans-ulrich.pfretzschner@uni-tueb<strong>in</strong>gen.deInstitut International dePushk<strong>in</strong>a Diana Université de PoitiersPaléoprimatologie 40 avenue du RecteurPaléontologie Huma<strong>in</strong>e - P<strong>in</strong>eau86022 Poitiers France diana.pushk<strong>in</strong>a@mail.comUMR CNRS 6046Reiche Ina C2RMF UMR 171 CNRS research department 14 quai F. Mitterrand 75001 Paris France <strong>in</strong>a.reiche@culture.gouv.frReynard L<strong>in</strong>da University of OxfordResearch Laboratory forArchaeology and the South Parks Road OX1 3QY Oxford United K<strong>in</strong>gdom l<strong>in</strong>da.reynard@rlaha.ox.ac.ukHistory of ArtLaboratoireRoche DamiensédimentairesUniversity Pierre & Marie Biom<strong>in</strong>éralisations etCurieEnvironnements4, Place Jussieu CP 116 75252 Paris France damienroche@wanadoo.frSaliègeScheeresMusée nationale d´HistoireJean-FrancoisnaturelleMirjamJohannes GutenbergUniversitScherler Laurel<strong>in</strong>e Université de FribourgSchuh Christ<strong>in</strong>e FU Berl<strong>in</strong>Archaeozooloy andArchaeobotany55 rue Buffon 75005 Paris France Jean-Francois.Saliege@locean-ipsl.upmc.frInstitut für Anthropologie Johann-J.-Becherweg 21 55128 Ma<strong>in</strong>z <strong>Germany</strong> scheeres@uni-ma<strong>in</strong>z.deDépartement desgéosciencesInstitut für PrähistorischeArchäologiech. du Musée 6, Pérolles 1700 Fribourg Switzerland laurel<strong>in</strong>e.scherler@unifr.chAltenste<strong>in</strong>str. 15 14195 Berl<strong>in</strong> <strong>Germany</strong> t<strong>in</strong>eschuh@gmx.de


Wahl William Wyom<strong>in</strong>g D<strong>in</strong>osaur Center BigHorn Bas<strong>in</strong> Foundation 110 Carter Ranch Road 82443 Thermopolis United States wwahl2@aol.comParticipants of the 6 th <strong>Bone</strong> <strong>Diagenesis</strong> <strong>Meet<strong>in</strong>g</strong>, 18 - 21 September <strong>in</strong> <strong>Bonn</strong> (cont<strong>in</strong>ued)Last Name First Name University Department Street Address Zip City Country EmailLaboratoire Biom<strong>in</strong>éralisationet Environ-CP116, 4 place Jussieu 75252 Paris France loic.segalen@upmc.frUniversité Pierre et MarieSegalen LoicCurienements sédimentairesSmith Col<strong>in</strong>Max Planck Institute forEvolutionary AnthropologySte<strong>in</strong> Koen Universität <strong>Bonn</strong>Stepanczak Beata Jagiellonian UniversitySzostek Krzysztof Jagiellonian UniversityTerry Dennis Temple UniversityTopalov Katar<strong>in</strong>a Indiana UniversityTurner-Walker GordonNational Yunl<strong>in</strong> Universityof Science & TechnologyTuross Noreen Harvard UniversityTütken Thomas Universität <strong>Bonn</strong>van Doorn Nienke University of YorkVennemann Torsten Université de LausanneVika Efross<strong>in</strong>iMax Planck Institute forEvolutionary AnthropologyHuman Evolution 6 Deutscher Platz 4103 Leipzig United K<strong>in</strong>gdom col<strong>in</strong>.smith@eva.mpg.deSte<strong>in</strong>mann Institut fürGeologie, M<strong>in</strong>eralogie und Nussallee 8 53129 <strong>Bonn</strong> <strong>Germany</strong> koen.ste<strong>in</strong>@uni-bonn.dePaläontologieDepartment ofAnthropology, Institut Ingardena 6 30-061 Cracow Poland b.stepanczak@uj.edu.plZoologyDeptartment ofAnthropology, Institute of ul. Ingardena 6 30-060 Krakow Poland szosy@wp.plZoologyEarth and EnvironmentalScience1901 North 13th Street 19114 Philadelphia United States doterry@temple.eduDepartment of GeologicalSciences1001 East 10th Street 47405 Bloom<strong>in</strong>gton United States topalovk@<strong>in</strong>diana.eduGraduate School ofTaiwan,123 University Road SectorCultural Heritage640 Douliou Prov<strong>in</strong>ce of 3ConservationCh<strong>in</strong>aHuman EvolutionaryBiology11 Div<strong>in</strong>ity Ave 2138 Cambridge United States tuross@fas.harvard.eduSte<strong>in</strong>mann Institut fürGeologie, M<strong>in</strong>eralogie und Poppelsdorfer Schloss 53115 <strong>Bonn</strong> <strong>Germany</strong> tuetken@uni-bonn.dePaläontologieBioArCh, Departments ofBiology, Archaeology andChemistryInstitut de M<strong>in</strong>éralogie etGéochimieDepartment of HumanEvolutionBiology, S Block PO Box373YO10 5YW York United K<strong>in</strong>gdom nienke@palaeo.euAnthropole 1015 Lausanne Switzerland torsten.vennemann@unil.chDeutscher Platz 6 4103 Leipzig <strong>Germany</strong> vikeri@hotmail.comWaskow Katja Universität <strong>Bonn</strong> Ste<strong>in</strong>mann Institut fürGeologie, M<strong>in</strong>eralogie und Nussalle 8 53115 <strong>Bonn</strong> <strong>Germany</strong> waskow@uni-bonn.dePaläontologieZanazzi Alessandro Yale University Geology & Geophysics PO BOX 208109 6520 New Haven United States alessandro.zanazzi@yale.eduZazzo Anto<strong>in</strong>eMusée nationale d´Histoire Archaeology andnaturelleArchaeobotany55 rue Buffon 75005 Paris France zazzo@mnhn.frZ<strong>in</strong>k Albert European AcademyInstitute for Mummies andthe IcemanViale Druso 1 39100 Bolzano Italy albert.z<strong>in</strong>k@eurac.edu

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!