inextensible flows of timelike curves with sabban frame in s2

inextensible flows of timelike curves with sabban frame in s2 inextensible flows of timelike curves with sabban frame in s2

siauliaims.su.lt
from siauliaims.su.lt More from this publisher
12.07.2015 Views

8 V. Asil, T. Körpinar, S. Ba³Lemma 3.2. Let ∂α∂t = fS 1 α + fS 2 t + fS 3 s be a smooth ow of the timelike curveα. The ow is inextensible if and only if∂v∂t + ∂fS 2∂u = −fS 1 v − f S 3 vκ g . (3.3)Proof. Suppose that ∂α be a smooth ow of the timelike curve α. Using∂tdenition of α, we have⟨ ∂αv 2 =∂u , ∂α ⟩. (3.4)∂uBy dierentiating of the formula (??), we get2v ∂v∂t = ∂ ⟨ ∂α∂t ∂u , ∂α ⟩.∂uOn the other hand, changing ∂∂u and ∂ , we have∂tv ∂v ⟨ ⟩∂α∂t = ∂u , ∂∂u (∂α ∂t ) .From (3.1), we obtainv ∂v ⟨ ∂α∂t = ∂u , ∂ (fS∂u 1 α + f S 2 t + f S 3 s )⟩ .By the Sabban formula, we have⟨ ( ) () ( ) ⟩∂v ∂fS∂t = t, 1∂u + fS 2 v α + f S 1 v + ∂fS 2∂fS∂u + fS 3 vκ g t + 3∂u + fS 2 vκ g s .Making necessary calculations, from above equation we obtain (3.3) whichproves the lemma.Theorem 3.3. Let ∂α∂t = fS 1 α + fS 2 t + fS 3 s be a smooth ow of the timelikecurve α. The ow is inextensible if and only if∂f S 2∂u = −fS 3 vκ g − f S 1 v.

Inextensible ows of timelike curves... 9Proof. Assume that ∂α∂t∂∂t σ(u, t) = u ∂v0∂t du = u 0is inextensible. From (3.2), we have(−f S 1 v − ∂fS 2∂u − fS 3 vκ g)du = 0. (3.5)Substituting (3.3) in (3.5) completes the proof of the theorem.Now we restrict ourselves to arc length parametrized curves. That is,v = 1 and the local coordinate u corresponds to the curve arc length σ. Werequire the following lemma.Lemma 3.4. The following relations hold( )∂t ∂fS= 1∂t ∂σ + fS 2 α +(∂α ∂fS= 1∂t ∂σ + fS 2where ψ =∂s∂t⟨ ⟩ ∂α∂t , s .=)t + ψs,( ∂fS3∂σ + fS 2 κ g)t − ψα,Proof. Using denition of α, we have∂t∂t = ( ∂fS1∂σ + fS 2( ∂fS3∂σ + fS 2 κ g)s,∂t∂t = ∂ ∂α∂t ∂σ = ∂∂σ (fS 1 α + f S 2 t + f S 3 s).Using the Sabban equations, we nd that)α +Substituting (3.3) in (3.6), we get∂t∂t = ( ∂fS1∂σ + fS 2(f S 1 + ∂fS 2∂σ + fS 3 κ g)t +)α +( ∂fS3∂σ + fS 2 κ g)s.Now dierentiate the Sabban frame by t:∂f S ⟨1∂σ + fS 2 + t, ∂α ⟩= 0,∂t∂f S ⟨3∂σ + fS 2 κ g + t, ∂s ⟩= 0,∂t⟨ψ + α, ∂s ⟩= 0.∂t( ∂fS3∂σ + fS 2 κ g)s. (3.6)

8 V. Asil, T. Körp<strong>in</strong>ar, S. Ba³Lemma 3.2. Let ∂α∂t = fS 1 α + fS 2 t + fS 3 s be a smooth ow <strong>of</strong> the <strong>timelike</strong> curveα. The ow is <strong><strong>in</strong>extensible</strong> if and only if∂v∂t + ∂fS 2∂u = −fS 1 v − f S 3 vκ g . (3.3)Pro<strong>of</strong>. Suppose that ∂α be a smooth ow <strong>of</strong> the <strong>timelike</strong> curve α. Us<strong>in</strong>g∂tdenition <strong>of</strong> α, we have⟨ ∂αv 2 =∂u , ∂α ⟩. (3.4)∂uBy dierentiat<strong>in</strong>g <strong>of</strong> the formula (??), we get2v ∂v∂t = ∂ ⟨ ∂α∂t ∂u , ∂α ⟩.∂uOn the other hand, chang<strong>in</strong>g ∂∂u and ∂ , we have∂tv ∂v ⟨ ⟩∂α∂t = ∂u , ∂∂u (∂α ∂t ) .From (3.1), we obta<strong>in</strong>v ∂v ⟨ ∂α∂t = ∂u , ∂ (fS∂u 1 α + f S 2 t + f S 3 s )⟩ .By the Sabban formula, we have⟨ ( ) () ( ) ⟩∂v ∂fS∂t = t, 1∂u + fS 2 v α + f S 1 v + ∂fS 2∂fS∂u + fS 3 vκ g t + 3∂u + fS 2 vκ g s .Mak<strong>in</strong>g necessary calculations, from above equation we obta<strong>in</strong> (3.3) whichproves the lemma.Theorem 3.3. Let ∂α∂t = fS 1 α + fS 2 t + fS 3 s be a smooth ow <strong>of</strong> the <strong>timelike</strong>curve α. The ow is <strong><strong>in</strong>extensible</strong> if and only if∂f S 2∂u = −fS 3 vκ g − f S 1 v.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!