Theory of image reconstruction in DOT

Theory of image reconstruction in DOT Theory of image reconstruction in DOT

<strong>DOT</strong> - Lecture 2<strong>Theory</strong> <strong>of</strong> Image ReconstructionDiffuse Optical TomographyBrian W. Pogue, Ph.D.Thayer School <strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>gDartmouth Collegehttp://www.thayer.dartmouth.edu/~bpogue/


Inverse Problem - x-rays versus light(Beer’s Law vs. Diffusion) (l<strong>in</strong>ear vs. PDE)L<strong>in</strong>ear Image <strong>reconstruction</strong>(eg. x-ray computedtomography)Non-L<strong>in</strong>ear Image <strong>reconstruction</strong>(eg. SPECT, Optical Tomo, )x-rayspatientfan beamdetectorslaser360 0detectors“guess” the <strong>image</strong> and calculate projections[measurements] = [attenuation op.] [object ][<strong>image</strong>] = [attenuation op.] T [filter] [measurements][Error ] = [measurements] - [calculated]must be solved through Taylor’s expansion


Inverse Problem - x-raysy idetectory i = x 1 µ 1 + x 2 µ 2 + …x M µ My=ln(I o /I)wherey i = ∑x ij µ jy = J µ (matrix equation)


Inverse Problem - <strong>reconstruction</strong>from projection measurementsy idetectorµ = J -1 y (or µ = [J T J] -1 J T y)J is matrix describ<strong>in</strong>g the projection geometry <strong>in</strong> (x,y)µ is the <strong>image</strong> <strong>of</strong> attenuation coefficients to be calculated


L<strong>in</strong>ear <strong>image</strong> Reconstruction –concept <strong>of</strong> backprojectionRef: Bushberg


Image Reconstruction –Algebraic Reconstruction technique (ART)1 1 0 01 0 1 01 0 0 10 1 1 00 1 0 10 0 1 1ABCD=765987Over-determ<strong>in</strong>ed non-square matrix J•Multiply by J T first•Invert square matrixLarger problems must be solved iterativelyus<strong>in</strong>g standard methods for solv<strong>in</strong>g largematrix operation problems.J µ = bJ T J µ = J T bµ = [J T J] -1 J T bRef: Bushberg


Non-l<strong>in</strong>ear Inverse Problem<strong>reconstruction</strong> from projection measurementsy idetectory = Φ(µ) + rΦ(µ) is the solution to the diffusion equationµ is the <strong>image</strong> <strong>of</strong> attenuation coefficients to be calculatedr is the residual due to measurement error


Interrogat<strong>in</strong>g Tissue withFrequency-doma<strong>in</strong> tomographicProjectionsDiffuse light fieldas source rotatesProjections from sourceto each detector⎛ iω⎞∇⋅D( r)∇Φ(r,ω)−⎜µa(r)+ ⎟Φ(r,ω)= −So(ω)δ(r −ro)⎝ c ⎠r d∫ ⎡Φ(, r ω )( ∆µ a) Γ(, r ω)⎤drr ⎣⎦s


Inverse Problem - <strong>reconstruction</strong> fromprojection measurements2χ=NMC M 2∑( Φ −Φ)i ii=1Taylor’s seriesexpansion <strong>of</strong> derivative2∂χ∂µ=2∂χ∂µ2d ⎛ ∂χdµ⎜⎝ ∂µ⎞⎟ +⎠( µ ) + ( µ − µ ) ⎜ ( µ ) ⎟ ...000Rearrange for Newton’siterative method solutionµi+1⎡= µi+ ⎢⎣d ⎛dµ⎜⎝2∂χ∂µ( µ ) ⎟ ( µ )i⎞⎤⎟⎥⎠⎦−12∂χ∂µiWhat is the derivative?What is the2 nd derivative?2⎛ ∂χµ⎜⎝ ∂µ∂∂2∂χ∂µC⎛ ∂Φ⎞C M( µ ) = 2⎜⎟ ( Φ −Φ)i⎜⎝∂µ⎟⎠TTCC 2 C⎞ ⎛ ∂Φ⎞ ∂Φ⎛ ∂ Φ ⎞C M( µ ) ⎟ = 2⎜⎟ + 2⎜⎟ ( Φ −Φ)i⎟⎠⎜⎝∂µ⎟⎠∂µ⎜⎝2∂µ⎟⎠TCTCCT⎡⎛∂Φ⎞ ⎛ ∂Φ⎞⎤⎛ ∂Φ⎞µiµi⎢⎜⎥−µ⎟⎜µ⎟⎜µ⎟+ 1= +⎢⎥ ⎝ ∂⎣⎝∂ ⎠ ⎝ ∂ ⎠⎦⎠−1C M( Φ Φ )


Inverse Problem - <strong>reconstruction</strong> fromprojection measurementsInverse Problem - <strong>reconstruction</strong> fromprojection measurementsµ i µ iµ∆−= +1µ i µ iµ∆−= +1[ ] ( )MCTTJIJJΦΦλµ∆−+=−1⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=aNNNMaNMaNMaNNNMaNMaNMNNNMNMNMNNNMNMNMaNNaaaNNaaaNNaaaNNaaNNNNNNNNIIIDDDDIDIDIIIIIIIDDDDIDIDIDDDDIDIDIJδµδθδµδθδµδθδµδδµδδµδδδθδδθδδθδδδδδδδµδθδµδθδµδθδµδδµδδµδδµδθδµδθδµδθδµδδµδδµδδδθδδθδδθδδδδδδδδθδδθδδθδδδδδδ212121212221222212121111211122212222121211112111lnlnln;;lnlnlnlnlnlnlnlnln;;lnlnln;;lnlnlnCJµ∂Φ= ∂


NIRFAST package - ShareWareAuthor: Hamid Dehghani, Dartmouthhamid@dartmouth.eduhttp://biolight.thayer.dartmouth.edu


F<strong>in</strong>ite Element Mesh<strong>in</strong>g ToolsNETGET – Shareware!by Joachim Schoberl, Univercity L<strong>in</strong>tz, Austria,http://www.hpfem.iku.at/netgen/Many Many 2-D mesh<strong>in</strong>g programs on the webCommercial Solutions:MATLAB – PDE Toolbox - 2D meshes ($$)FEMLAB – PDE Solver – 2D/3D ($$$)ANSYS – High end PDE Solver ($$$$)FLUENT – Pr<strong>of</strong>essional PDE Solver ($$$$$)


F<strong>in</strong>ite Element Mesh<strong>in</strong>gLow resolution High resolutionMRISegmented Tissue MeshRat Cranium Mesh


3D F<strong>in</strong>ite Element Mesh<strong>in</strong>gPartial volume meshDeformed breast mesh from MRIFull volume meshDeformation Volume mesh


Inverse Problem - <strong>reconstruction</strong> fromprojection measurementsCalculated by:1)PerturbationMethod2)Direct AnalyticJacobian3) Adjo<strong>in</strong>t method


Inclusion <strong>of</strong> Prior Information: Hard Prior Info~J =JK~J =JKJ⎡1 ......... NN ⎤⎢2 ........ NN⎥⎢⎥⎢ .⎥= ⎢ ⎥⎢ .⎥⎢ .⎥⎢⎣NM .... NN ⎥⎦KR1R2 Rn⎡ k1,1k1,2 k1,n ⎤⎢⎥⎢k2,1k2,2 k2,n⎥⎢ ⎥⎢⎥⎢ kj,1kj,2 kj,n=⎥⎢− − − − − − − − − − − −⎥⎢ k1,1k1,2 k1,n ⎥⎢⎥⎢k2,1~ k2,2 k2,nJ = JK ⎥⎢ ⎥⎢⎥⎢ kj,1kj,2 kj,n⎣⎥⎦kζ , η⎧1,= ⎨⎩0,ζ ∈ Rηζ ∉ Rη⎫⎬⎭∆µ=⎡1.........NN ⎤⎢2........ NN⎥⎢ ⎥⎢.⎥J = ⎢ ⎥⎢.⎥⎢.⎥⎢⎣NM....NN ⎥⎦~ ~ 1[ ]T T(C MJ J J Φ −Φ)− ~⎡1 .........2 2 1⎤⎢2 ........2 2 1⎥⎢⎥⎢ .⎥J = ⎢ ⎥⎢ .⎥⎢ .⎥⎢⎣2 4 0 ....2 2 1 ⎥⎦J⎡1, 2 ⎤⎢2, 2⎥⎢ ⎥⎢ 3 ⎥= ⎢ ⎥⎢ . ⎥⎢ . ⎥⎢⎣240,2⎥⎦


Inclusion <strong>of</strong> Prior Information: S<strong>of</strong>t Prior Info~J =JK~J =JK⎡ l1,⎢⎢⎢lNN⎢L = ⎢ −⎢⎢⎢⎢⎣1, 1−0ll1,NNNN , NN−|||−|||ll−1,1NN , 10−ll−1,NNNN , NN⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Prior MR Info⎡1.........NN ⎤⎢2........ NN⎥⎢ ⎥⎢.⎥J = ⎢ ⎥⎢.⎥⎢.⎥⎢⎣NM....NN ⎥⎦Structured mesh Hard Prior S<strong>of</strong>t Priorli,j=⎧⎪⎨−⎪⎩110NRRiii==≠jRRjj⎫⎪⎬⎪⎭


MR/NIR Patient imag<strong>in</strong>g3D SPGR T1 MRI: approximately 50 coronal slices (1.5 mm thickness, s, nogap)Six NIR wavelengths measuredExam time Patient position<strong>in</strong>g: 5 m<strong>in</strong>utes Data acquisition: 10 m<strong>in</strong>utesPost process<strong>in</strong>g time: 30 m<strong>in</strong>utes (2D mesh<strong>in</strong>g and <strong>image</strong> <strong>reconstruction</strong>)ction)


Indirect <strong>reconstruction</strong> examplei. No priors ii. Spatial priors2D FEM mesh<strong>in</strong>dicat<strong>in</strong>g adipose andfibroglandular tissuelocations, and opticalfiber positionsi.ii.


Apply<strong>in</strong>g multiple priors <strong>in</strong> patient imag<strong>in</strong>gT1 axial and oblique coronal MRINopriorsSpatialpriors2D FEM mesh def<strong>in</strong>es imag<strong>in</strong>ggeometry and spatial priorSpectralpriorsSpectralandspatialpriorsBrooksby, Sr<strong>in</strong>ivasan, et al. Optics Letters. 2005, <strong>in</strong> press


Representative patient <strong>image</strong>sAxial Oblique coronal FEM meshesReconstructed NIR parameters show MR-like resolution andquantify tissue properties unavailable via conventional imag<strong>in</strong>gtechniques


Summary <strong>of</strong> component breast tissue propertiesestimated for (N=11) subjects10080604020Adipose tissueGlandular tissue32.521.510.5Adipose tissueGlandular tissue0[HbT](µM)StO2(%)Water(%)[HbT](µM)StO2(%)Water(%)0Scatter<strong>in</strong>gamplitudeScatter<strong>in</strong>gpowerScatter<strong>in</strong>gamplitudeScatter<strong>in</strong>gpowerGlandular tissue shows significantly elevated [HbT], water, and b, andreduced A, relative to adipose tissue (p-values


Imag<strong>in</strong>g Geometry AnalysisPogue et al., Opt. Express. 4, 270-86 (1999)


Imag<strong>in</strong>g Geometry AnalysisCompressed slab - high noise- accurate shape and optical propertiesCircular tomography - low noise- accurate shape and optical propertiesDepth pr<strong>of</strong>il<strong>in</strong>g - irregular shaped <strong>image</strong>s- high noise- <strong>in</strong>accurate optical properties


In a regularized situation, you canalways recover an <strong>image</strong>!2 Sources 2 Detectors86807570656055504540350.02200.02000.01500.01000.00803025201510500 10 20 30 40 50 60 70 8086


4 Sources 4 Detectors86807570656055504540350.02200.02000.01500.01000.00803025201510500 10 20 30 40 50 60 70 8086


8 Sources 8 Detectors86807570656055504540350.02200.02000.01500.01000.00803025201510500 10 20 30 40 50 60 70 8086


Images for different numbers <strong>of</strong> sources & detectors862 x 2864 x 4 8 x 8868075700.02200.02008075700.02200.02008075700.02200.020065656560550.015060550.015060550.0150504540350.01000.0080504540350.01000.0080504540350.01000.00803030302525252020201515151010105550000 10 20 30 40 50 60 70 80 860 10 20 30 40 50 60 70 80 860 10 20 30 40 50 60 70 80 8612 x 12 16 x 16 24 x 248686868075700.02200.02008075700.02200.02008075700.02200.020065656560550.015060550.015060550.0150504540350.01000.0080504540350.01000.0080504540350.01000.00803030302525252020201515151010105550000 10 20 30 40 50 60 70 80 8632 x 32860 10 20 30 40 50 60 70 80 860 10 20 30 40 50 60 70 80 868075700.02200.02006560550.0150504540350.01000.00803025201510500 10 20 30 40 50 60 70 80 86Pogue et al, Optics Exp. 1999


Fullreflectance &transmittancetissueFanbeamtissue100Circular tomography 16x16 imag<strong>in</strong>g10010010010090800.02200.020090800.02200.020090800.02200.020090800.02200.020090800.02200.0200700.0175700.0175700.0175700.0175700.0175605040300.01500.01250.01000.00750.0060605040300.01500.01250.01000.00750.0060605040300.01500.01250.01000.00750.0060605040300.01500.01250.01000.00750.0060605040300.01500.01250.01000.00750.00602020202020101010101000 10 20 30 40 50 60 70 80 90 10000 10 20 30 40 50 60 70 80 90 10000 10 20 30 40 50 60 70 80 90 10000 10 20 30 40 50 60 70 80 90 10000 10 20 30 40 50 60 70 80 90 1001008060402000 20 40 60 80 100Fan Beam tomography0.022 1000.020 800.0150.0100.00860402000 20 40 60 80 1000.0220.0200.0150.0100.0081008060402000 20 40 60 80 1000.0220.0200.0150.0100.0081008060402000 20 40 60 80 1000.0220.0200.0150.0100.008Pogue et al, Optics Exp. 1999


Sub-surfaceImag<strong>in</strong>gtissuetissue100Sub-surface tomography 8x8 imag<strong>in</strong>g10010010010090800.02200.020090800.02200.020090800.02200.020090800.02200.020090800.02200.0200700.0175700.0175700.0175700.0175700.0175605040300.01500.01250.01000.00750.0060605040300.01500.01250.01000.00750.0060605040300.01500.01250.01000.00750.0060605040300.01500.01250.01000.00750.0060605040300.01500.01250.01000.00750.00602020202020101010101000000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100Sub-surface tomography 4x4 imag<strong>in</strong>g10010010010000 10 20 30 40 50 60 70 80 90 10010090800.02200.020090800.02200.020090800.02200.020090800.02200.020090800.02200.0200700.0175700.0175700.0175700.0175700.0175605040300.01500.01250.01000.00750.0060605040300.01500.01250.01000.00750.0060605040300.01500.01250.01000.00750.0060605040300.01500.01250.01000.00750.0060605040300.01500.01250.01000.00750.00602020202020101010101000 10 20 30 40 50 60 70 80 90 10000 10 20 30 40 50 60 70 80 90 10000 10 20 30 40 50 60 70 80 90 10000 10 20 30 40 50 60 70 80 90 10000 10 20 30 40 50 60 70 80 90 100Pogue et al, Optics Exp. 1999


Sub-surface tomography1100.020 1100.0201100.020756010 40 60 801100.0150.0100.006756010 40 60 801100.0150.0100.006756010 40 60 801100.0150.0100.0061100.0201100.020756010 40 60 801100.0150.0100.006756010 40 60 801100.0150.0100.006Pogue et al, Optics Exp. 1999


Full reflectance andtransmittance imag<strong>in</strong>g1201101009080700.02000.01800.01600.01400.01200.01000.00800.006060120500 10 20 30 40 50 60 70 80 90 100 1101201201101000.02000.01800.0160110100900.02000.01800.01600.01400.01209080700.01400.01200.01000.00800.00608070600.01000.00800.006060500 10 20 30 40 50 60 70 80 90 100 110120120500 10 20 30 40 50 60 70 80 90 100 1101201201101000.02000.01800.01601101009080700.02000.01800.01600.01400.01200.01000.00800.006090807060500 10 20 30 40 50 60 70 80 90 100 1101200.01400.01200.01000.00800.006060500 10 20 30 40 50 60 70 80 90 100 110120Pogue et al, Optics Exp. 1999


Slab Fan-beam geometry imag<strong>in</strong>g1100.0201100.020756010 40 60 801101100.0150.0100.0060.020756010 40 60 801101100.0150.0100.0060.020756010 40 60 801101100.0150.0100.0060.020756010 40 60 801101100.0150.0100.0060.020756010 40 60 801101100.0150.0100.0060.020756010 40 60 801100.0150.0100.006756010 40 60 801100.0150.0100.006Pogue et al, Optics Exp. 1999


Slab Fan-beam imag<strong>in</strong>g1100.0201100.020756010 40 60 801101100.0150.0100.0060.020756010 40 60 801101100.0150.0100.0060.02075601011040 60 801100.0150.0100.0060.020756010 40 60 801101100.0150.0100.0060.02075601011040 60 801100.0150.0100.0060.020756010 40 60 801101100.0150.0100.0060.020756010 40 60 801101100.0150.0100.0060.020756010 40 60 801101100.0150.0100.0060.020756010 40 60 801100.0150.0100.006756010 40 60 801100.0150.0100.006Pogue et al, Optics Exp. 1999


F<strong>in</strong>ite element mesh generationMRI scan FEM mesh Absorption coeff. mapFEM nodes 0.02560.050.040.030.020.010.00.0-10.0-20.0-30.0-40.0-50.0-60.0-50.0 -40.0 -20.0 0.0 20.0 40.0 50.011010080604020101020 40 60 801100.0200.0150.008Pogue et al, Optics Exp. 1999


Prelim<strong>in</strong>ary tests for cerebral imag<strong>in</strong>gTest field 1 iteration, <strong>in</strong>itial guess µ a =0.01120100806040200.0230.0200.0150.008120100806040200.0130.0120.0110.0100.00900 25 50 75 10012500 25 50 75 100125Pogue et al, Optics Exp. 1999


Cerebral imag<strong>in</strong>g- characterization <strong>of</strong> an <strong>in</strong>creased blood concentrationTest fieldReflectance & Transmittance110100Fan-beam0.0280.025Sub-surface imag<strong>in</strong>g800.020600.015400.00820101020 40 60 80110Pogue et al, Optics Exp. 1999


References:http://biolight.thayer.dartmouth.eduNIRFAST - MATLAB FEM Diffusion/Reconstruction packageAuthor: Hamid Dehghani, Dartmouthhamid@dartmouth.eduhttp://www-nml.thayer.dartmouth.edu/NIRA Priori Info Work: Ben Brooksby Ph.D. Thesis (2005, Dartmouth)A priori & spectral: Heng Xu, Ph.D. Thesis (2005, Dartmouth)Spectral Reconstr.: Subhadra Sr<strong>in</strong>ivasan, Ph.D. Thesis(2005, Dartmouth)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!