12.07.2015 Views

Analog IC Analysis and Design

Analog IC Analysis and Design

Analog IC Analysis and Design

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Analog</strong> Integrated Circuits<strong>Analysis</strong> <strong>and</strong> <strong>Design</strong>EE32352010: 5th edition2003<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh1


Lecturer & TA• EE3235 <strong>Analog</strong> Integrated Circuits <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong>• Class room: 資 電 館 206, T7T8R7• Instructor: 謝 志 成 老 師– Office hours: Thur. 4:10pm ~ 5:00pm, or by reservation.– Office : 資 電 館 524B, 03-5162174– Email : cchsieh@ee.nthu.edu.tw– Website: http://www.ee.nthu.edu.tw/cchsieh• Teaching Assistant : 李 其 霖 、 殷 勤 、 邱 衍 智 、 周 韋 帆– Office hours: TBD– Email : 李 其 霖 殷 勤 邱 衍 智 周 韋 帆 <strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh2


Course Description• Course description:– This is a fundamental course for analysis <strong>and</strong> design analogintegrated circuits. It covers quantitative analyses, designconsiderations <strong>and</strong> system applications from circuit <strong>and</strong>physical viewpoints.• Topics:– Modern VLSI technologies, device operations <strong>and</strong> models.– Elementary gain stages.– Current sources.– Frequency responses.– Feedback, stability <strong>and</strong> compensation.– Operational amplifiers.– B<strong>and</strong>gap references.– Switched-Capacitor Circuits.<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh3


Syllabus– Week 1 Introduction, CMOS <strong>and</strong> BJT technologies– Week 2 BJT / MOS Device <strong>and</strong> modeling– Week 3-5 Single-stage amplifier, Multi-stage amplifier– Week 6 Differential configuration– Week 7 Current mirrors– Week 8 Output stage– Week 9-10 Feedback2011.04.21 Midterm (Thur, 6:30 pm)– Week 11-12 Frequency response & Stability <strong>and</strong>compensation– Week 13 Introduction of op-amp– Week 14 Two-stage op-amp, Differential op-amp– Week 15-16 <strong>Design</strong> techniques for op-amp– Week 17 Voltage <strong>and</strong> current source2011.06.21 Final Exam (Tue, 6:30 pm)<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh4


P.R. Gray, 5 th Edition1. Models for <strong>IC</strong> Active Devices2. Bipolar, MOS, <strong>and</strong> BiCMOS <strong>IC</strong> Technology3. Single-Transistor <strong>and</strong> Multiple-TransistorAmplifiers4. Current Mirrors, Active Loads, <strong>and</strong> References5. Output Stages6. Operational Amplifiers with Single-EndedOutputs7. Frequency Response of Integrated Circuits8. Feedback9. Frequency Response <strong>and</strong> Stability of FeedbackAmplifiers10. Nonlinear <strong>Analog</strong> Circuits11. Noise in Integrated Circuits12. Fully Differential Operational AmplifiersSyllabus<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- 5Chih-Cheng Hsieh


B. Razavi1. Introduction to <strong>Analog</strong> <strong>Design</strong>2. Basic MOS Device Physics3. Single-Stage Amplifiers4. Differential Amplifiers5. Passive <strong>and</strong> Active Current Mirrors6. Frequency Response7. Noise8. Feedback9. Operational Amplifiers10. Stability <strong>and</strong> Frequency Compensation11. B<strong>and</strong>gap References12. Introduction to Switched-Capacitor Circuits13. Nonlinearity <strong>and</strong> Mismatch14. Oscillators15. Phase-Locked Loops16. Short-Channel Effects <strong>and</strong> Device Models17. CMOS Processing Technology18. Layout <strong>and</strong> PackagingSyllabus<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- 6Chih-Cheng Hsieh


• Homework 20%Grading– The homework will be assigned at every Thur. class, <strong>and</strong> itshould be finished <strong>and</strong> h<strong>and</strong>-in at the following Thur.’s class.Schedule delay is not allowed except it’s with instructor’sapproval.– CAD tools are required for homework.– CAD introduction will be arranged in proper time.• Midterm 20% @ week 9 : 2.5hrs (2011/4/21)• Final Exam 30% @ week 18 : 3hrs (2011/6/21)• Final Project 20% @ week 19 : 10mins / team (2students)• In-Class performance<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh7


<strong>Design</strong> <strong>and</strong> <strong>Analysis</strong>• A circuit analysis <strong>and</strong> design is not "black magic“ !• Circuit analysis– The technique to decompose a large circuit into manageablepieces.– The analysis is based on the simplest, but sufficiently accuratemodels.– Each circuit has one solution.• Circuit design– The art to synthesize circuits that is based on manyexperience of extensive analysis.– One set of specifications has many solutions.– <strong>Design</strong> skills are best acquired through "learning by doing“.• So, we have many practical homework <strong>and</strong> one designproject !!<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh8


Goal & Vision• Touch, Explore, <strong>and</strong> Study <strong>Analog</strong> circuit ….• Then Think, Act <strong>and</strong> like to Be an analog designer. Or…NOT to be an analog designer.• Know how <strong>and</strong> where to dig Knowledge & Skill insidewhen necessary.• Homework & Project are the vehicles to train yourlogistic thinking, design skill <strong>and</strong> team work altitude.• You can study hard by yourself… however…! Interact with me as more as you canis the best way to learn !<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh9


Course Part IWeek Date Descriptions Chapter1 2011.02.22 Introduction, CMOS <strong>and</strong> BJT technologies2 2011.03.01 BJT / MOS Device <strong>and</strong> modeling3 2011.03.08 Single-stage amplifier4 2011.03.15 Single-stage, Multi-stage amplifier5 2011.03.22 Multi-stage amplifier6 2011.03.29 Differential configuration7 2011.04.05 Current mirrors8 2011.04.12 Output stage9 2011.04.19 Feedback I2011.04.21 Midterm (Thur. 6:30 pm) -<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh10


Course Part IIWeek Date Descriptions Chapter10 2011.04.26 Feedback II11 2011.05.03 Frequency response12 2011.05.10 Stability <strong>and</strong> compensation13 2011.05.17 Introduction of op-amp14 2011.05.23 Two-stage op-amp, Differential op-amp15 2011.05.30 <strong>Design</strong> techniques for op-amp I16 2011.06.07 <strong>Design</strong> techniques for op-amp II17 2011.06.14 Voltage <strong>and</strong> current source18 2011.06.21 Final Exam (Tue. 6:30pm)19 2011.06.30 Term Project<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh11


CHAPTER 1Introduction, CMOS TechnologiesSome of the following materials are referred to the course slides of Prof.Huang Po-Chiun @ NTHU<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh12


Outline1. Introduction2. MOS Technologies<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh13


This is <strong>Analog</strong> ??Op-741<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh14


What the $@# is this?<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh15


Find the components you need<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh16


You can make it!<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh17


What is <strong>Analog</strong> ?- Always continuous in amplitude- Either continuous in time (s-domain)or discrete in time (z-domain)<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh18


Where is <strong>Analog</strong> ?Transmissionmediasupplyphysicalinterface Amplification FiltrationDSP Supply Conversion (A/D, D/A)storageaudiovideo Translation(freq, time, volt …)<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh19


Advantages of Digital VLSI• Noise immunity, robustness• Unlimited precision or accuracy• Flexibility, programmability, <strong>and</strong> scalability• Electronic design automation (EDA) tools widelyavailable <strong>and</strong> successful• Benefiting from Moore’s law – “The number oftransistors on a chip doubles every 18 months,”IEDM, 1975– Cost/function drops 29% every year– That’s 30X in 10 yearsRef: Advanced <strong>Analog</strong> <strong>IC</strong> <strong>Design</strong>, Fall 2009, by Prof. Y. Chiu<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh20


Why Need <strong>Analog</strong>?Paul Gray’s eggshell diagramPhone Lines, Cables(DSL, Cable Modem)E&M Waves(Cellphone, Radio,GPS)<strong>Analog</strong> World(CT, CA)Digital World(DT, DA)Audio( MP3, Hearing Aid)Video(Dig. Camera, LCD TV,TFT Display)Mechanical Transducers(Car/Airplane Sensors,MEMS, Nanopore)Digital Storage(DVD, Hard Disk, Flash)Biochemical Sensors(Hazard detection, DrugDelivery, Lab-on-a-Chip)Ref: Advanced <strong>Analog</strong> <strong>IC</strong> <strong>Design</strong>, Fall 2009, by Prof. Y. Chiu<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh– 21 –


Challenges for <strong>Analog</strong>• Sensitive to noise – SNR (signal-to-noise ratio)• Subject to device nonlinearities – THD (total harmonicdistortion)• Sensitive to device mismatch <strong>and</strong> process variations• Difficult to design, simulate, layout, test, <strong>and</strong> debug• Inevitable, often limits the overall systemperformance• Scaling scenario outlook– High-speed, low-resolution applications keep benefiting– High SNR design difficult to scale with low supply voltagesRef: Advanced <strong>Analog</strong> <strong>IC</strong> <strong>Design</strong>, Fall 2009, by Prof. Y. Chiu<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh22


<strong>Analog</strong> Skills• Operation point bias voltage, current ….• Large signal analysis settling, slew rate, distortion ….• Small signal model gain, b<strong>and</strong>width, stability ….• Practical issue in VLSI variation, noise, temperature ….• Cost estimation technology, power, size, yield, package ….Ref: Advanced <strong>Analog</strong> <strong>IC</strong> <strong>Design</strong>, Fall 2009, by Prof. Y. Chiu<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh23


Example 1 – Mixed-Signal Hearing AidΣΔA/DDSPΣΔD/AH-BridgeDriverAGCDecimationFilter0-50[dB]-100-1500.0010.010.10.5Normalized frequencyRef: Advanced <strong>Analog</strong> <strong>IC</strong> <strong>Design</strong>, Fall 2009, by Prof. Y. Chiu<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh24


Example 2 – RF TransceiverBCAA/DLNAILOQAAFSCF, G m COP-RCDSPD/APAILOQADesiredchannelBCRF IF or BB BBRef: Advanced <strong>Analog</strong> <strong>IC</strong> <strong>Design</strong>, Fall 2009, by Prof. Y. Chiu<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh25


SoC – RF Transceiver• Small form factor, high integration, low power, low cost• Economy is the ultimate driving forceRadioDSPADEricsson CH388(Hybrid, 1995)Ericsson Bluetooth(CMOS, 2001)Berkäna GSM/GPRS(CMOS, 2005)Nano-CMOS?Nanotube?Past Present Future<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh– 26 –


System-on-a-ChipSystem integration is the way for the future <strong>IC</strong> development.You need multi-domain knowledge to survive in the SOC era.<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh27


<strong>Analog</strong> in VLSI- from ISSCC ‘92<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh28


For Future Nanometer TechnologyIntegration !– Digital has to be treated as <strong>Analog</strong>.– <strong>Analog</strong> needs the help from Digital.– Parasitic effects become dominant.<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh29


CoursesMicroelectronicsCommunication / Control / Logic / …VLSI <strong>Design</strong><strong>Analog</strong> <strong>IC</strong>sDigital <strong>IC</strong>sDigital Signal ProcessingSemiconductor DevicesRF/MW Integrated CircuitsCommunication Systems<strong>Design</strong> AutomationSpecial Topics on VLSIsAdvanced <strong>Analog</strong> <strong>IC</strong>sMixed Signal <strong>IC</strong>sCommunication VLSIsVLSI Testing<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh30


<strong>IC</strong> <strong>Design</strong> Related Course Plan31建 議時 程類 別課 名 課 號大 一入 門 課 程邏 輯 設 計EE2280邏 設 實 驗EE2230計 算 機 程 式 語 言EE2310大 二大 三核 心 課 程電 子 學EE2250積 體 電 路 設 計 導 論EE4290類 比 電 路 分 析 與 設 計EE3235實 作 專 題EE3900電 路 學EE2210數 位 電 路 分 析 與 設 計EE3230積 體 電 路 設 計 實 習EE4249訊 號 與 系 統EE3610計 算 機 結 構EE3450電 子 電 路 實 驗EE2270嵌 入 式 系 統 與 實 驗EE2405資 料 結 構EE2410核 心 課 程超 大 型 積 體 電 路 設 計EE5250*超 大 型 積 體 電 路 測 試EE6250積 體 電 路 設 計 自 動 化EE5265* 若 無 修 過 EE4290則 需 修 EE5250大 四 /研 究 所進 階 課 程有 線 通 訊 <strong>IC</strong> 設 計EE5285電 源 管 理 <strong>IC</strong> 設 計EE5275類 比 電 路 設 計ENE5210通 訊 基 頻 <strong>IC</strong> 設 計EE5250內 嵌 式 記 憶 體 電 路EE5220仿 神 經 <strong>IC</strong> 設 計 I,IIEE6260,6261計 算 機 算 數EE5410系 統 晶 片 實 體 設 計EE5253<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh


Outline1. Introduction2. MOS Technlogies<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh32


Content• CMOS Device Background• CMOS Process Key Step• CMOS Process Flow• CMOS Passive Devices<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh33


Generic CMOS This course concentrates on CMOS technology, as it isthe mainstream of modern VLSI.<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh34


What is Semi-Conductor Device ?<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh35


First <strong>IC</strong>1952, Royal Radar Establishment of the British Ministry of Defense,Geoffrey W.A. Dummer, No successful implementation !!1958,Jack Kilby,(2000 Nobile prize)Texas Instruments&Robert Noyce,Fairchild Semiconductorhttp://en.wikipedia.org/wiki/Integrated_circuit<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh36


First Planar <strong>IC</strong>• Planar Technology Invented– Made by Robert Noyce of Fairchild in 1959History of VLSI development is reviewed at http://smithsonianchips.si.edu/augarten/index.htm<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh37


Scaling !R. H. Dennard, et. al., IEDM. Dec. 1972.<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh38


Mooers’ Law• Intel’s co-founder Gordon Moore notices in 1964– # of transistors per chip doubled every 12 months– Slow down in the 1980s to every 18 monthshttp://video.intel.com/?fr_story=c11efd497dce83c4ca94278fb30c7dfeb01aef16&rf=bm<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh39


Moore’s Prospect<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh40


CPU Transistor # vs. Feature SizeMark Bohr, “The New Era of Scaling in an SoC World”, Plenary session, ISSCC 2009<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh41


Moore’s Law“If GM had kept up with technology like the computerindustry has, we would all be driving $25 cars thatgot 1,000 miles to the gallon…”– Bill Gates, COMDEX keynoteRef: Advanced <strong>Analog</strong> <strong>IC</strong> <strong>Design</strong>, Fall 2009, by Prof. Y. Chiu<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh42


Physical Dimension<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh43


• Profile of <strong>IC</strong>What We can do in <strong>IC</strong> ?– 9 metal layers – over the past 30 yearsCuVia 2Via 1Contact(W)M6Via 5M5Via 4M4Via 3M3M2M132nm CMOSSilicon<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh44


CMOS Device Speed<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh45


Integration !GSM/GPRSTI 2006.<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh46


Outline• CMOS Device Background• CMOS Process Key Step• CMOS Process Flow• CMOS Passive Devices<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh47


Cleaning• Prior to any high temperature or deposition step– To remove particle, organic films, metals <strong>and</strong> any preexisting“native” oxide films<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh48


Clean Room• US FED STD 209E Cleanroom St<strong>and</strong>ards<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh49


Photolithography• Lithography– Transfer the circuit layout to the wafer– The heart of fabrication technologies• Defines the patterns through mask– Chromium on a transparent glass– With etching processing» Deposited» Ion implantation – change theproperty of silicon• Create patterns in photoresist– A liquid photosensitive chemical thatresists etching processes– Owing to the necessary precision• A slow <strong>and</strong> expensive task<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh50


Photoresist• Photoresist Coating Process– A small amount of photoresist• is dispensed onto the center of the wafer• Is spun to produce the uniform thin film<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh51


Photoresist• Positively Photoresist– Developer dissolves the areas exposed to light quickly• Negative Photoresist– Developer dissolves the areas not exposed to light quickly<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh52


Exposure• Light Sources– ultraviolet (UV) light– Deep ultraviolet (DUV) light– Ion beam– Minimum linewidth <strong>and</strong> exposure wavelength<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh53


Develop• Wash away the photoresist– Whenever light exposed a pattern into the photoresist• Leave the photoresist– Whenever the light was blacked<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh54


Layout• Top View & Profile of MOS Devices<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh55


Mask Layer• Layers<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh56


Etching• Isotropic– Etches in all directions at the same rate• Anisotropic– Achieve the faster etching in one direction than in otherdirections<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh57


Wet Etching• Place the wafer in a chemical liquid– Isotropic• Low precision<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh58


Dry Etching• Plasma Etching– bombarding the wafer with a plasma gas– Anisotropic• High precision<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh59


Oxidation• Object– Gate dielectric– Protective coating in many steps of fabrication<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh60


Oxidation• Silicon Dioxide (SiO2)– Place the silicon in an oxygen gas at 1000°C<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh61


Ion Implementation• Introduce Impurities (Dopants)– To change the electrical properties of the silicon– The most common method for introducing impurities intosilicon wafers• Impurities with an electric charge are accelerated to high energy <strong>and</strong> shotinto the exposed area of the wafer surface<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh62


• AnnealingIon Implementation– Following the ion implementation• A high temperature furnace process is used to anneal out the damage<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh63


• ChannelingIon Implementation– The implant beam is aligned with the crystal axis• The ions penetrate the wafer to a greater depth– The implant beam is tilted by 7-9°<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh64


Chemical Vapor Deposition• A process of depositing films by reacting chemicalvapors to produce a film on a substrate– May be activated by• Heat• RF energy (plasma enhanced, PECVD)• Light (photon induced, PHCVD)– CVD process is used to deposit• Poly <strong>and</strong> single crystal silicon• Dielectric films• Metal films<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh65


Chemical Vapor Deposition• Atmospheric Pressure CVD (APCVD)• Low Pressure CVD (LPCVD)– The most commonly process– More uniformity<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh66


Chemical Vapor Deposition• Plasma Enhanced CVD (PECVD)– Induced by high frequency energy<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh67


Chemical Vapor Deposition• Photon Induced CVD (PHCVD)– Induced by light<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh68


• Sputter ProcessSputter Deposition– Metal films are used in <strong>IC</strong> fabrication• Argon gas is excited by a high energy fieldArgon ionsMetal<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh69


Outline• CMOS Device Background• CMOS Process Key Step• CMOS Process Flow• CMOS Passive Devices<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh70


CMOS Active Device Layout<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh71


An Inverter Example - 0<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh72


An Inverter Example - 1<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh73


An Inverter Example - 2<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh74


An Inverter Example - 3<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh75


An Inverter Example - 4<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh76


An Inverter Example - 5<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh77


An Inverter Example - 6<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh78


An Inverter Example - 7<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh79


An Inverter Example - 8<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh80


An Inverter Example - 9<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh81


Outline• CMOS Device Background• CMOS Process Key Step• CMOS Process Flow• CMOS Passive Devices<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh82


CMOS Active Device Parameter- an example from Boser, UC Berkeley<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh83


Capacitor• Charge storage device– Memory Devices, esp. DRAM– Two boards of semiconductor material as a capacitor• Capacitances– are proportional to the area– are inverse proportional to the distanceldhsymbolC = kε0hldk = dielectric constantε 0 = permittivity<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh84


CMOS Poly-Poly Capacitor‣ Usually for >0.35um or memory technology<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh85


CMOS Metal-Metal Capacitor‣ Usually for


MIM vs. MOM• Metal-Insulator-Metal— Need extra layer— More routing capability• Metal-Oxide-Metal— Free with modern process— More layers : higher density<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh87


CMOS Active Capacitor- from P. Andreani, IEEE JSSC. 2000<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh88


CMOS Passive Capacitor- an example from Boser, UC BerkeleyM-I-M 1000<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh89


Resistor• Polysilicon resistor– is doped on an <strong>IC</strong> chip– Linear• Resistance is determined by length, area, <strong>and</strong> the resistivity of the materialtypeSilicide BlockPolyFOXSilicided PolyP-substratesymbol<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh90


CMOS Resistor LayoutPoly Well Diffusion<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh91


CMOS Passive Resistor- an example from Boser, UC BerkeleyThe resistance of a uniform slab of conducting materialRρ l= =Aρ lt w= RSlwρ : resistivityt : thicknessl : conductor lengthw : conductor widthRS : sheet resistance<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh92


CMOS Passive Inductor<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh93


CMOS Parasitic BJTLateral bipolar pnp:emitter P+,base N-well,collector P-subtrate<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh94


Reference1. Hong-Yi Huang, Mixed Signal <strong>IC</strong> Layout course slides, FuJen CatholicUniversity, 2004.2. B. Boser, “Submicron CMOS Technology for <strong>Analog</strong> <strong>Design</strong>ers”, EECS dept,UC Berkeley, 2003.3. Advanced <strong>Analog</strong> <strong>IC</strong> <strong>Design</strong>, Fall 2009, by Prof. Y. Chiu4. NDL CMOS process introduction.http://www.ndl.org.tw/old/icfab/chinese1/index.htm.<strong>Analog</strong> <strong>IC</strong> <strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> 1- Chih-Cheng Hsieh95

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!