12.07.2015 Views

Hadronic production of a Higgs boson in association with two jets at ...

Hadronic production of a Higgs boson in association with two jets at ...

Hadronic production of a Higgs boson in association with two jets at ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2.6. The unitarity-bootstrap 62r<strong>at</strong>ional pieces which arise recursively and those which are def<strong>in</strong>ed as completionterms. Therefore to avoid double count<strong>in</strong>g we must remove the overlapp<strong>in</strong>g residuesR D n = − ∑poles αRes z=zαĈR n (z)z− ∑poles α̂Rn (z)Res z=zα . (2.114)zSo th<strong>at</strong> the f<strong>in</strong>al amplitude is given byA n (0) = c Γ[Ĉ n (0) + R D n + ∑poles α]ĈR n (z)Res z=zαz(2.115)This is the unitarity-bootstrap method. One first calcul<strong>at</strong>es C n us<strong>in</strong>g unitaritymethods, then after complet<strong>in</strong>g the L i functions one calcul<strong>at</strong>es the residues <strong>of</strong> ĈRassoci<strong>at</strong>ed <strong>with</strong> the shift parameter z. F<strong>in</strong>ally from the knowledge <strong>of</strong> lower po<strong>in</strong>tamplitudes one calcul<strong>at</strong>es the r<strong>at</strong>ional piece R D .2.6.3 Techniques for general helicity amplitudesIn the previous section we described the unitarity-bootstrap technique <strong>in</strong> the optimumcase (where A(z) → 0 as z → ∞ and the recursive pieces conta<strong>in</strong>ed onlysimple poles). In this section we discuss the general approach when these conditionsfail [124,165].We beg<strong>in</strong> the discussion <strong>with</strong> the more serious problem associ<strong>at</strong>ed <strong>with</strong> the appearance<strong>of</strong> double poles. We consider a three vertex A µ (ε a , ε b ) for which a and bare external on-shell gluons and µ is the Lorentz <strong>in</strong>dex for the <strong>in</strong>termedi<strong>at</strong>e gluonwhich is go<strong>in</strong>g on-shell <strong>in</strong> a particular way (either 〈ab〉 or [ab] is zero). The generaltensor structure can be written as [124,166–169],) ()A µ k a · η 13(ε a , ε b ) = g 1(s ab ,ε µ ε b · k a − ε µ b(k a + k b ) · η s ε a · k b + k µ b ε a · ε bab) (k a · η kµ+g 2(s ab ,aε a · ε b − ε )a · k b ε b · k a. (2.116)(k a + k b ) · η s ab k a · k bHere the dependence on the reference vector η describes how the form factors dependon the way <strong>in</strong> which a and b go on-shell. The first tensor structure is th<strong>at</strong> whichappears <strong>at</strong> tree-level,A tree,µ3 (ε a , ε b ) = 1s ab(ε µ ε b · k a − ε µ b ε a · k b + k µ b ε a · ε b). (2.117)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!