12.07.2015 Views

Hadronic production of a Higgs boson in association with two jets at ...

Hadronic production of a Higgs boson in association with two jets at ...

Hadronic production of a Higgs boson in association with two jets at ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

2.1. Unitarity 32<strong>of</strong> <strong>two</strong> tree level amplitudes to the discont<strong>in</strong>uity <strong>of</strong> a one-loop <strong>in</strong>tegral function. Thediscont<strong>in</strong>uity <strong>of</strong> a one-loop <strong>in</strong>tegral associ<strong>at</strong>ed <strong>with</strong> a k<strong>in</strong>em<strong>at</strong>ic scale s = P 2 can bedeterm<strong>in</strong>ed by replac<strong>in</strong>g (or cutt<strong>in</strong>g) the follow<strong>in</strong>g propag<strong>at</strong>ors,1l 2 + iǫ → −2πiδ(l2 ),1(l + P) 2 + iǫ → −2πiδ((l + P)2 ). (2.1)In the mid-90’s Bern, Dixon, Dunbar and Kosower used these rel<strong>at</strong>ions to calcul<strong>at</strong>ea series <strong>of</strong> one-loop amplitudes [110,111]. The method <strong>in</strong>volves tak<strong>in</strong>g a cut <strong>in</strong> acerta<strong>in</strong> k<strong>in</strong>em<strong>at</strong>ic scale and then us<strong>in</strong>g the simplify<strong>in</strong>g k<strong>in</strong>em<strong>at</strong>ics <strong>of</strong> the cut (e.g. afour dimensional on-shell loop momenta) to reduce the complexity <strong>of</strong> the coefficients<strong>of</strong> the cut loop functions. The cut propag<strong>at</strong>ors are then re<strong>in</strong>st<strong>at</strong>ed so th<strong>at</strong> the <strong>in</strong>tegrandreturns to be<strong>in</strong>g a one-loop <strong>in</strong>tegral. This approach successfully determ<strong>in</strong>esthe coefficients <strong>of</strong> all basis <strong>in</strong>tegrals which conta<strong>in</strong> a cut <strong>in</strong> the k<strong>in</strong>em<strong>at</strong>ic scale. Integralswhich do not conta<strong>in</strong> a cut propag<strong>at</strong>or, but can arise <strong>in</strong> the reduction process,must be dropped and recovered <strong>in</strong> the appropri<strong>at</strong>e cuts.A major simplific<strong>at</strong>ion occurs when four-dimensional tree amplitudes are used<strong>in</strong> the cuts. This is because one can use the sp<strong>in</strong>or helicity formalism (which isdescribed <strong>in</strong> Appendix A) to produce compact helicity amplitudes. However, theprice <strong>of</strong> us<strong>in</strong>g four-dimensional cuts is the <strong>in</strong>ability to determ<strong>in</strong>e pieces <strong>of</strong> the amplitudewhich do not conta<strong>in</strong> discont<strong>in</strong>uities <strong>in</strong> the k<strong>in</strong>em<strong>at</strong>ic <strong>in</strong>variants. These pieces,lack<strong>in</strong>g such discont<strong>in</strong>uities, are referred to as the r<strong>at</strong>ional pieces [110,111]. Theirorig<strong>in</strong>, and elusiveness <strong>in</strong> four-dimensions can be thought <strong>of</strong> as follows, a generalterm <strong>in</strong> a one-loop amplitude has the follow<strong>in</strong>g structure,(C i · I i = (c 0 + c 1 ǫ + c 2 ǫ 2 I−2+ . . .) ·ǫ + I )−1+ I 2 0 · log({s, t, . . . }) + . . . . (2.2)ǫHere C i · I i represents a basis <strong>in</strong>tegral I i <strong>with</strong> a coefficient C i . In general I i canconta<strong>in</strong> poles <strong>of</strong> up to second order <strong>in</strong> the dimensionally regul<strong>at</strong><strong>in</strong>g parameter ǫ.The term log({s, t, . . . }) represents a generic piece <strong>of</strong> the <strong>in</strong>tegral which conta<strong>in</strong>slogarithms (these could also be di-logarithms or ln 2 ). It is these pieces which conta<strong>in</strong>a discont<strong>in</strong>uity <strong>in</strong> a k<strong>in</strong>em<strong>at</strong>ic <strong>in</strong>variant and hence enter the optical theorem.However when one uses four-dimensional trees, one loses all sensitivity to the higherorder pieces <strong>in</strong> ǫ which enter the coefficient multiply<strong>in</strong>g the discont<strong>in</strong>uity. Hence,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!