12.07.2015 Views

Hadronic production of a Higgs boson in association with two jets at ...

Hadronic production of a Higgs boson in association with two jets at ...

Hadronic production of a Higgs boson in association with two jets at ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3.2. The cut-constructible parts 87We will presently show th<strong>at</strong> A φG,3−cut is helicity bl<strong>in</strong>d and as such A φG,3−cutn;1 (2, n) =A φ,G,3−cutn;1 (m, n) = A φ,G,3−cutn;1 (n). It was also shown <strong>in</strong> [108] th<strong>at</strong> the comb<strong>in</strong><strong>at</strong>ion<strong>of</strong> A φG,3−cut and A φG,4−cut correctly gener<strong>at</strong>es the pole structure <strong>of</strong> eq. (3.54). Thegeneral structure <strong>of</strong> one- and <strong>two</strong>-mass triangles are shown <strong>in</strong> Fig. 3.9 <strong>of</strong> these (a)(c) − (f) and (h) represent pieces which only contribute to A φG . As an example weconsider (a) <strong>in</strong> detail and show th<strong>at</strong> the dependence on p m factors <strong>in</strong>to the tree-levelprefactor. The product <strong>of</strong> tree amplitudes has the follow<strong>in</strong>g form,D (a) = A (03 (φ, l − 1 , l − 2 )A (0) (l + 2 , i + , l − 3 )A (0) (l − 3 , (i + 1) + , 1 − , . . ., m − , (i − 1) + , l + 1 )= −〈l 1 l 2 〉 2 [l 2 i] 3〈1m〉 4[il 3 ][l 3 l 2 ] 〈l 3 (i + 1)〉 ∏ i−2α=i+1 〈α(α + 1)〉〈(i − 1)l 1〉〈l 1 l 3 〉= −A (0 〈l 1 l 2 〉 2 [l 2 i] 3 〈i(i + 1)〉〈(i − 1)i〉n[l 3 l 2 ][il 3 ]〈l 3 (i + 1)〉〈(i − 1)l 1 〉〈l 1 l 3 〉 . (3.58)It is trivial to show th<strong>at</strong> diagrams (c) − (f) and (h) factorise <strong>in</strong> the same manner.As such we know th<strong>at</strong> these <strong>in</strong>tegrals will be identical to the adjacent m<strong>in</strong>us φ-MHVcase [108]. This leaves us <strong>with</strong> the task <strong>of</strong> determ<strong>in</strong><strong>in</strong>g the coefficients representedby Fig. 3.9(b) which allow both fermions and gluons to propag<strong>at</strong>e <strong>in</strong> the loops.We follow the same procedure as we did for the box diagrams and decompose thediagram <strong>in</strong>to constituent pieces,(D (b) = G 2,1m (a, i, j) + 4 1 − N )(fF 2,1m (a, i, j) + 2 1 − N )fS 2,1m (a, i, j)4N c N c(3.59)As before a ∈ {1, m} <strong>in</strong>dic<strong>at</strong>es which <strong>of</strong> the neg<strong>at</strong>ive helicity gluons is not paired<strong>with</strong> φ <strong>at</strong> a vertex. Here we do not dist<strong>in</strong>guish explicitly between one- and <strong>two</strong>-masstriangles (i.e. we consider (b) know<strong>in</strong>g we can obta<strong>in</strong> (g) <strong>in</strong> the s<strong>of</strong>t limit), <strong>in</strong> theapproach we will use [122] we choose <strong>two</strong> momenta K 1 and K 2 (which are externalmomenta) and parameterise the loop momentum <strong>in</strong> terms <strong>of</strong> massless projections<strong>of</strong> these vectors. In these calcul<strong>at</strong>ions we can always set K 2 1 = 0 K2 2 ≠ 0 regardless<strong>of</strong> whether the triangle has one or <strong>two</strong> massive legs. A schem<strong>at</strong>ic represent<strong>at</strong>ion <strong>of</strong>the k<strong>in</strong>em<strong>at</strong>ics we will use for the calcul<strong>at</strong>ion is shown <strong>in</strong> Fig. 3.8. The masslessprojections <strong>of</strong> K 1 and K 2 which we will use to construct our basis <strong>in</strong> which the loopmomentum is decomposed have the follow<strong>in</strong>g form,K ♭,µ1 = p µ i , (3.60)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!