Calculation Sheets

Calculation Sheets Calculation Sheets

newport.gov.uk
from newport.gov.uk More from this publisher
28.11.2012 Views

S^ STEVE MORGAN ASSOCIATES CONSULTING ENGINEERS ftdvl. I t "V v^ CALCULATION SHEET "v; Project Number loe^S97 '"^^'='^ PdUxvro\ Oove Subject Q^ ^JX CU^ - ^ nzcr /^ 0 O f5) W ^ £ O Prepared By MK Sheet No Date Made 4l1&\0 ^ OUTPUT ^ - ^

S^<br />

STEVE MORGAN ASSOCIATES<br />

CONSULTING ENGINEERS<br />

ftdvl.<br />

I t<br />

"V<br />

v^<br />

CALCULATION SHEET "v;<br />

Project Number<br />

loe^S97<br />

'"^^'='^ PdUxvro\ Oove<br />

Subject Q^ ^JX CU^<br />

- ^<br />

nzcr<br />

/^ 0 O f5)<br />

W ^ £ O<br />

Prepared By<br />

MK<br />

Sheet No<br />

Date Made<br />

4l1&\0<br />

^ OUTPUT ^<br />

- ^


300^<br />

STEVE MORGAN ASSOCIATES<br />

CONSULTING ENGINEERS<br />

)r<br />

2A00<br />

"V<br />

CALCULATION SHEET "V^<br />

Project Number<br />

Project Tttle<br />

lotz?^i<br />

\o\K^A CllD'^<br />

Subject Kef W(2^ des<br />

\G0 2^0 \.oo<br />

\ '''\^^ t"^^^^ ^oU.<br />

4-<br />

45D<br />

-t~<br />

^VO<br />

^<br />

35+5^ 4?<br />

40 it^ch^ 75 'f^/m' 4-*- \<br />

I'tYl<br />

OU'f N<br />

/<br />

4SO<br />

-^ - - - — - ^<br />

/<br />

Prepared By<br />

MK<br />

J<br />

Sheet No<br />

1<br />

Date Made<br />

4{lOVO<br />

^ OUTPUT ]<br />

-A.<br />

V^rr\<br />

^cr^<br />

m<br />

c20J


^f^-O<br />

'StO<br />

STEVE MORGAN ASSOCIATES<br />

CONSULTING ENGINEERS<br />

7-<br />

7-<br />

> ^<br />

miL (^<br />

V>,^4\tr^ ^<br />

[ho a<br />

/<br />

"V<br />

^<br />

CALCULATION SHEET "YP<br />

Project Number<br />

(ti'^a^fl<br />

ProjectTrtle p^^^^{ ^ ^<br />

-A.<br />

Subject 1 ^ Wv^ d^J<br />

-^tt?<br />

K_<br />

I<br />

/<br />

/<br />

(h7er<br />

i^?8r<br />

'repared By<br />

MK<br />

Sheet No<br />

f<br />

Date Made<br />

--6s. OUTPUT >


^<br />

STEVE MORGAN ASSOCIATES<br />

CONSULTING ENGINEERS<br />

a^c^<br />

v^<br />

^<br />

CALCULATION SHEET "V?<br />

Project Number 1.^ '^/'*?


c{ Vu^<br />

Subject R^^ 1/1/^ (pU)<br />

lioci<br />

: ^<br />

PUjftV^<br />

\?o<br />

/<br />

4TO<br />

|(^pC> UPI ^-S^<br />

—^Kr^r<br />

C f c ^<br />

axioo<br />

^^O^lPOciQ<br />

!mo<br />

\ /-^<br />

ASo VsO<br />

c<br />

4rc)<br />

?)5«:^<br />

K^ ^5 SO-.,<br />

:—UQ hi^UK-<br />

Sheet No<br />

z<br />

Date Made<br />

^ OUTPUT ]<br />

-A.<br />

inn^<br />

im<br />

f^ia^f K:?^ IJ-


CSC•T€DDS<br />

Steva Moi^n Associates<br />

Consulting Engineers<br />

Project<br />

Section<br />

Gate, by<br />

M<br />

RETAINING WALL ANALYSIS (BS 8002 1994)<br />

Wall details<br />

Retaining wall type<br />

Height of retaining wall stem<br />

Thickness of wall stem<br />

Length of toe<br />

Length of heel<br />

Overall length of base<br />

Thickness of l)ase<br />

Depth of downstand<br />

Positon of downstand<br />

Thickness of downstand<br />

Height of retaining wall<br />

Depth of cover in front of wall<br />

•^5^"<br />

Depth of unplanned excavation<br />

Height of ground water behind wall<br />

Height of saturated fill above base<br />

Density of vi/all construction<br />

Density of base construction<br />

Angle of rear face of wall<br />

/\ngle of soil surtece behind wall<br />

k-<br />

Effective height at virtual back of wall<br />

Retained matenal details<br />

Mobilt^bon factor<br />

»»* KfeBa%.<br />

Pollard Close<br />

/Plqt;;lftRW hstem=3000mm^<br />

Date<br />

22/04/2010<br />

-2450-<br />

-2400-<br />

-3200-<br />

Chkdby<br />

—>|«45eH350|^<br />

53kN/m<br />

II<br />

1%<br />

Unpropped cantitever<br />

hstem == 3000 mm<br />

trail = 450 mm<br />

Itoa = 2400 mm<br />

Iheai = 350 mm<br />

^ ^ ^<br />

Ibass = Itoe + Iheal + twoll = 3200 mm<br />

tbasa = 350 mm<br />

dds = 0 mm<br />

Ids = 1300 mm<br />

tds = 350 mm<br />

hwan = hstem + tbase + dds = 3350 mm<br />

dcover = 450 mm<br />

daxc = 450 mm<br />

hwater — 0 mm<br />

Job Ref<br />

Sheet no/rev<br />

1082997<br />

Date Appdby Date<br />

SkN/nf<br />

hsat = max(hwater tbase - dds 0 mm) = 0 mm<br />

•yvvai = 23 6 kN/m^<br />

Ybasa = 23 6 kN/m^<br />

a = 90 0 deg<br />

P = 0 0 deg<br />

heff = hvrai + Iheal X tanO) = 3350 mm<br />

M = 15<br />

TEDDS calculation version 1 2.01 00


CSC•TEDDS<br />

Steve Morgan Associates<br />

Consulting Engineers<br />

Project<br />

Section<br />

Gate, by<br />

M<br />

Pollard Close<br />

Ploti RW hslem=3000mm<br />

Date<br />

22/04^010<br />

Moist density of retained material > = 18 0 klM/m^<br />

Saturated density of retained matenal ^s = 21 0 klM/m^<br />

Design shear strength ^ = 24 2 deg<br />

Angle of wall fhcton 5 = 18 6 deg<br />

Base material details<br />

Moist density<br />

Design shear strength<br />

Design base fhction<br />

Allowable beanng pressure<br />

Using Coulomb ttieory<br />

Active pressure coefficient for retained matenal<br />

Ymb = 18 0 mirrP<br />

i|ib = 24.2 deg<br />

5b = 18 6 deg<br />

Pbaaibig = 75 kN/m^<br />

ChKdby Date<br />

Job Ref<br />

Sheet no Jrev<br />

1082997<br />

2<br />

Ai^dby Date<br />

Ka = sin(a + ^f/ (sin{a)2 x sin(a 5) x [1 + V{sln{(|> + 5) x sin(^ - P)/ (sin(a 5) x sin{a + P)))F) = 0 369<br />

Passive pressure coefficient for base material<br />

At rest pressure<br />

At rest pressure for retained material Ko = 1 - sin{(t>) = 0 590<br />

Loading details<br />

Surcharge load on plan<br />

Applied vertical dead load on wall<br />

Applied vertical live load on wall<br />

Position of applied vertcal load on wall<br />

Applied honzontal dead load on wall<br />

Applied honzontal live load on wall<br />

Height of applied honzontal load on wall<br />

.^ yA<br />

25 0<br />

Kp = sin(90 i|i bf I {sln{90 8b) x [1 - V(sin(it> b + &) x sin(i|> b) / (sin(90 + 8b)))F) = 4187<br />

Surcharge = 7^ kN/m^<br />

Wdaad = 45 0 kN/m<br />

Wov9 = 75kN/m<br />

Lad = 2450 mm<br />

Fdaad = 0_0 kN/m<br />

Fiivs = 0^ kN/m<br />

hioad = 0 mm<br />

"'fnnfflnnnu;'<br />

53<br />

P4 4<br />

2 6 21 1<br />

Loads shown In kN/m pressures shown In kN/m*


CSC•TGDDS<br />

Steve Morgan Assodates<br />

Consulting Engineers<br />

Vertical forces on wall<br />

Wall stem<br />

Wall base<br />

Surcharge<br />

Moist backfill to top of wall<br />

Soil in front of wall<br />

Applied vertical load<br />

Total verflcal load<br />

Horizontal forces on wall<br />

Surcharge<br />

Moist backfill above water teble<br />

Total horizontal load<br />

Project<br />

Section<br />

Calculate stability against sliding<br />

Cal&by<br />

M<br />

Passrve resistance of soil in front of wall<br />

Resistance to sliding<br />

Overturning moments<br />

Surcharge<br />

Moist backfill above water table<br />

Total overturning moment<br />

Restoring moments<br />

Wall stem<br />

Wall base '<br />

Moist backfill<br />

Design vertical dead load<br />

Total restonng moment<br />

Check stability against overturning<br />

Total overtuming moment<br />

Total restoring momeirt<br />

Check beanng pressure<br />

Surcharge<br />

Soil in front of wall<br />

Design vertical live load<br />

Total moment for bearing<br />

Total vertical reaction<br />

Distance to reaction<br />

Eccentricity of reaction<br />

Beanng pressure at toe<br />

Beanng pressure at heel<br />

I<br />

PoUard Close<br />

Ploti RWhstem=3000mm<br />

Date<br />

22/04/2010<br />

Chkdby Data<br />

Wiran = hstein X tvoD X Yviaa = 31 9 kN/m<br />

VWbasa = Ibasa X tbase X Ybase = 26 4 kN/m<br />

vfeur = Surcharge x iheai = 26 kN/m<br />

Win_w = Ihasl X (hstam hsal) x ym = 18 9 kN/m<br />

Wp = hooX dcover X ymb = 194 kN/m<br />

Wv = Wdaad + Wnva = 525 kN/m<br />

Job Ref<br />

Sheet no^rev<br />

1082997<br />

3<br />

Appdby Data<br />

Wtotal = Wvaa + Wbass + Wsur + Wnuw + Wp + Wv = 151 8 kN/m<br />

Fsur = Ka X cos(90 a + 5) x Surcharge x hag = 8 8 klM/m<br />

Fin.a = 0 5 X Ka X cos(90 - a + 5) X Ym X (hoH hwatei)? = 353 kN/m<br />

Ftolal = Fsur + Fni_a = 441 kN/m<br />

Fp = 0 5 X Kp X C0S(5b) X (deovar + tbasa + dds - dgasf x ymb = 4^ kN/m<br />

Fres = Fp + (Wtotal - Wsur - Wp - Wave) X tan(5b) = 455 kN/m<br />

PASS ' Resistance force te greater than sliding force<br />

Msur=Fsurx{h89 - 2 X dds) / 2 = 14.7 kNm/m<br />

Mm_a = Fm_a x (half + 2 x hvtatar - 3 x dds) / 3 =» 39J5 kNm/m<br />

Mot = Msur + Mm_a = 54.2 kNm/m<br />

MwaD = Wivaa X (hoa + twan / 2) = 836 kNm/m<br />

Mbasa = Wbasa X kasa / 2 = « 3 kNm/m<br />

Mni_r = (Whuw X (base - Iheal / 2) + Wtn_3 x (base Iheal / 3)) = 57 2 kNm/m<br />

Mdead = Wdead x Wd ^110 3 kNm/m<br />

Mresl = MwaO + Mbase + MITLT + Mdaad = 293.3 kNm/m<br />

Mot = 54.2 kNm/m<br />

Mfest = 293 3kNm/m<br />

PASS Restoring moment is greater than overtuming moment<br />

Msur_r = Vfeur X (base Iheel / 2) = 7 9 kNm/m<br />

Mpj-= wk) X Itoe / 2 = 233 kNm/m<br />

Move = Wiive X lioad = 18 4 kNm/m<br />

Mtoiai = Mrest Mot + Msur_r + Mp_r + Mnva = 288.8 kNnr/m<br />

R = W,otai = 1518 kN/m<br />

Xbar = Mtotal / R = 1903 mm<br />

e = abs({lbase/2) Xbar) = 303 mm<br />

Ptoe = (R/lbas9) (6xRxe/lbas8^) = 205kN/m2<br />

Phsel = (R/ Ibasa) + (6 X R X e / Ibase^ = 744 kN/m^<br />

Reaction acts withm middle third of base<br />

PASS Maximum bearing pressure Is less than allowable beanng pressure


CSC • TEDD5<br />

Steve Morgan Associates<br />

Consulting Hn^eers<br />

Project<br />

Section<br />

Cal&by<br />

M<br />

RETAINING WALL DESIGN (BS 8002 1994)<br />

Ultimate limit state load Actors<br />

Dead load factor<br />

Live load liactor<br />

Earth and water pressure factor<br />

Factored vertical forces on wail<br />

Wall stem<br />

Wall base<br />

Surcharge<br />

Moist backfill to top of wall<br />

Soil in front of wall<br />

Applied vertical load<br />

Total vertical load<br />

Factored horizontal at-rest forces on wall<br />

Surcharge<br />

Moist backfill above water table<br />

Total horizontal load<br />

Passive resistance of soil in front of wall<br />

kN/m<br />

Factored overtuming moments<br />

Surcharge<br />

Moist backfill above water table<br />

Total overtuming moment<br />

Restoring moments<br />

Waflstem<br />

Wall base<br />

Surcharge<br />

Moist backfill<br />

Soil in front of wall<br />

Design vertical load<br />

Total restonng momerrt<br />

Check stability against overturning<br />

Total overtuming moment<br />

Total restonng moment<br />

Factored bearing pressure<br />

Total moment for beanng<br />

Total vertical reaction<br />

Distance to reaction<br />

Eccentncity of reaction<br />

Beanng pressure at toe<br />

Beanng pressure at heel<br />

Pollard Close<br />

Ploll RW hstem=3000mm<br />

Date<br />

22/04/2010<br />

yiji = 1.4<br />

YLi = 1 6<br />

VLe = 1.4<br />

Chkdby Date<br />

WwalJ = YL«I X hstam X twan x ywaD = 44 6 klM/m<br />

WbaseJ = yi.


CSC•TEDDS<br />

Steve Morgan Associates<br />

Consulting Englneeis<br />

Rate of change of base reaction<br />

Beanng pressure at stem / toe<br />

Beanng pressure at mid stem<br />

Beanng pressure at stem / heel<br />

Project<br />

Sectton<br />

Caicby<br />

M<br />

Pollard Close<br />

Plotl RW hstem=3000mm<br />

Date<br />

22A)4/2010<br />

Design of reinforced concrete retaining wall toe (BS 8002 1994)<br />

Material properties<br />

Charactenstic strength of concrete<br />

Charactenstic strengUi of reinforcement<br />

Base details<br />

Minimum area of reinforcement<br />

Cover to reinforcement in toe<br />

Calculate shear for toe design<br />

Shear from beanng pressure<br />

Shear from weight of base<br />

Total shear for toe design<br />

Calculate moment for toe design<br />

Moment from beanng pressure<br />

Moment from weight of liase<br />

Total moment for toe design<br />

k<br />

Check toe in bending<br />

Widtii of toe<br />

Depth of reinforcement<br />

Constant<br />

Lever arm<br />

o<br />

Area of tension reinforcement required<br />

Minimum area of tension reinforcement<br />

Area of tension reinforcement required<br />

Reinforcement provided<br />

Area of reinforcement provided<br />

200-<br />

Chkdby Date<br />

rate = (Ptoe_f Pheel f) / Ibase = -3 43 kN/m'/m<br />

JobRsf<br />

Sheet no7rev<br />

1082997<br />

5<br />

AppVJby Date<br />

Pstsm_toe_f = max(pheai.f + (rateX (ihaai + t«ran)) 0kN/m*) = 698klM/m*<br />

Pstem_mid_t = max(pheei_f + (rate X (beai + twaB / 2)) 0 klM/m*) = 70 5 kN/m*<br />

Pstem_haei_f = max(phae(.t + (rate x Iheel) 0 kN/m*) = 71 3 kN/m*<br />

feu = 35 N/mm*<br />

fy = 500N/mm*<br />

k = 013%<br />

CtoB = 30 mm<br />

Vtoe_bear = (ptoej + PstBra_toa_f) x Itoa / 2 = 157 6 kN/m<br />

Vtoe_wt_base = yf_d X ybase x Itoe X tbase = 27 8 kN/m<br />

Vtoe = Vtoejjear Vine_wt.basa = 129 8 kN/m<br />

Mtoejjear = (2 x ptoej + Pstam_mld_f) X (hoe + t««aD / 2)^ / 6 = 222 4 kNm/m<br />

MiDe_vA.i>asB = (y»_d x ybasa x tbase x (W + twai / 2)^ / 2) = 39 8 kNm/m<br />

Mtoe = Mtoe_b8ar - MtoB_vit.base = 18Z5 kNm/m<br />

b = 1000mm/m<br />

dtoe = tbase - Ctoe - (l|>toe/ 2) = 310 0 mm<br />

Ktoe = Mtoe / (b X dtoe* x feu) = 0 054<br />

Compression reinforcement Is not required<br />

ztoe = min(0 5 + V(0 25 (min(Kto6 0 225) / 0 9)) 0 95) x dioe<br />

zioa = 290 mm<br />

As_toa_da3 = Mtoa / (0 87 X fy X Ztoe) = 1447 mm*/m<br />

As_toe_min = k X b X tbase = 455 mm*/m<br />

As_toB_req = Max(As_toe_das As_toe_min) = 1447 mm*/m<br />

20 mm dia bars @ 200 mm centres<br />

As_toe_prov = 1571 mm*/m<br />

PASS - Reinforcement provided at the retelning wall toe Is adequate


CSC • TEDDS<br />

Steve Morgan Associates<br />

Consulting Engirteers<br />

Check shear resistance at toe<br />

Design shear stress<br />

Allowable shear stress<br />

Project<br />

Sectton<br />

Calaljy<br />

M<br />

From BS8110 Part 1 1997-Table 3 8<br />

Design concrete shear stress<br />

Pollard Close<br />

Ploti RWhstBm=3000mm<br />

Data<br />

22A)4/2010<br />

Design of reinforced concrete retaining wall heel (BS 8002 1994)<br />

Material properties<br />

Charactensbc strengtii of concrete<br />

Charactenstic strength of reinforcement<br />

Base detcdls<br />

Minimum area of reinforcement<br />

Cover to reinforcement m heel<br />

Calculate shear for heel design<br />

Shear from beanng pressure<br />

Shear firom weight of base<br />

Shear from weight of moist backfill<br />

Shear from surcharge<br />

Total shear for heel design<br />

Calculate moment for heel design<br />

Moment from bearing pressure<br />

Moment from weight of base<br />

Moment from weight of moist backfill<br />

Moment from surcharge<br />

Total moment for heel design<br />

JL±.<br />

Check heel in bending<br />

Width of heel<br />

Depth of reinforcement<br />

Constarrt<br />

Lever arm<br />

1+100-H<br />

Chkdby Data<br />

vioe = Vtoe / (b X dtoa) = 0 419 N/mm*<br />

Job Ref<br />

Sheet noTrev<br />

1082997<br />

6<br />

App-d by Data<br />

vadm = min(0 8 x V(feu /1 N/mm*) 5) x 1 N/mm* = 4 733 N/mm*<br />

PASS - Design shear stress is less than maximum shear stress<br />

vojoe = 0 601 N/mm*<br />

feu = 35 N/mm*<br />

fy = 500 N/mm*<br />

k = 013%<br />

Cheei = 30 mm<br />

Vfoe < vc foe - Wo Shear reinforcement required<br />

Vhaeljjaar = ((>heeU + Pstamjieeu) X Ihaal / 2 = 25.2 kN/m<br />

Vheslj«l.base = yf_d x ybasa X Iheal X tbase = 4 kN/m<br />

Vheel_wt_m = WmjivJ = 26 5 kN/m<br />

Vheel_sur = WfeurJ = 4^ kN/m<br />

Vhaal = VheeLbeai' + VheeLwtJiasa + VheeUvUn. •*" Vheel_sur = 9_5 kN/m<br />

Mheel_baar = (2 x phaeU + PstBm_irtd_f) ^ (Ihsd + tifcail / 2)* / 6 = 119 kNm/m<br />

Mheel_v»t_base = (yf_d X ybase X tbase X (beei + twall / 2)* / 2) = ^9^ kNm/m<br />

MhBal_v«t_m = Wnjvf X (beel + twao) / 2 = JOS kNm/m<br />

Mheel_sur = WsurJ x (baal + twao) / 2 = 1_7 kNm/m<br />

Mhaal = Mheel_bear + MheeLwUtasa + Mheel_wUn + Mrieel_sur = ^^ kNm/m<br />

b = 1000 mm/m<br />

dhasi = tbase - Cheel — (ijlhEel/ 2) = 314 0 mm<br />

Kheel = Mheel / (b X dheel* X feu) = 0 001<br />

Compression reinforcement is not required<br />

Zheal = min(0 5 + V(0 26 (min(Kheal 0 225) / 0 9)) 0 95) X dhaal


CSC • TGDD5<br />

Steve Morgan Associates<br />

Consulting Engineers<br />

Project<br />

SecUon<br />

Calcby<br />

M<br />

/Vrea of tension reinforcement required<br />

Minimum area of tension reinforcement<br />

Area of tension reinforcement required<br />

Reinforcement provided<br />

Area of reinforcement provided<br />

Check shear resistance at heel<br />

Design shear stress<br />

Allowable shear stress<br />

FromBS8110 Part 1 1997-Table3,8<br />

Design concrete shear stress<br />

Pollani Close<br />

Ploti RWhstem=3000mm<br />

Date<br />

22/04/2010<br />

Zheei = 298 mm<br />

Chkdby Date<br />

As_heel_des = Mheal / (0 87 X fy X Zheal) = 18 mm*/m<br />

As_hael_mln = k X b X tbasa = 455 mm*/m<br />

Job Ref<br />

Sheet noJrev<br />

A3_hrat_req = Max(As_heel_das /^JiraUrtn) = 455 mm*/m<br />

B1131 mesh<br />

As_he^jMov = 1131 mm*/m<br />

1082997<br />

7<br />

Appdby Date<br />

PASS Reinforcement provided at tlie retaining vail heel Is adequate<br />

Vheel = Vheel / (b X dheel) = 0 030 N/mm*<br />

Vadm = min(0 8 x >/(feu /1 N/mm*) 5) x 1 N/mm* = 4.733 N/mm*<br />

PASS - Design shear stress Is /ess tftan maximum shear stress<br />

Vc heal = 0 534 N/mm*<br />

Design of cavity reinforced masonry retaining wall stem BS562&-2 2000<br />

Wall details<br />

Thickness of outer leaf of wall<br />

Thickness of inner leaf of wall<br />

Thickness of reinforced cavity<br />

Depth of stem reinforcement<br />

Masonry details<br />

Masonry type<br />

Compressive strengtti of units<br />

Mortar designation<br />

Category of manufactonng control of unite<br />

Partial safety factor for matenal strengtti<br />

-275-<br />

touter = 100mm<br />

timer = 100 mm<br />

tcavlly = twall touter tnnar = 250 mm<br />

dstem = 310 mm<br />

Aggregate concrete blocks no voids<br />

Puna = 10 0 N/mm*<br />

M<br />

Normal<br />

ynm = 2 3<br />

Characteristic compressive strength of masonry<br />

Least honzontal dimension of masonry units buna = 100 0 mm<br />

Height of masonry units<br />

huntt = 215 0mm<br />

Ratio of height to least horizontal dimension<br />

From BS5628 2 Table 3d mortar ii<br />

ratio = hunii / txjnit = 2.2<br />

Vheel < Vc_beei - No Shear reinforcement required


CSC•TEDDS<br />

Steve Morgan Associates<br />

Consufflng Engineers<br />

Project<br />

SecSon<br />

Characteristic compressive strength<br />

Calaby<br />

M<br />

Factored horizontal at rest forces on stem<br />

Surcharge<br />

Moist backfill above water table<br />

Calculate shear for stem design<br />

Shear at base of stem<br />

Calculate moment for stem design<br />

Surcharge<br />

Moist backfill above water table<br />

Total moment for stem design<br />

Check maximum design moment for wall stem<br />

Width of wall<br />

|y/la}dmum design moment<br />

Check wall stem in bending<br />

Moment of resistance factor<br />

Lever arm factor<br />

Lever annn<br />

Area of tension reinforcement required<br />

Minimum area of tension reinforcement<br />

Area of tensfon reinforcement required<br />

Reinforcement provided i<br />

Area of reinforcement provided<br />

Check shear resistance at wall stem<br />

Pollard Close<br />

Ploti RWhstem=3000mm<br />

Data<br />

22A)4/2010<br />

1k=ilN/mm*<br />

Chkdby Date<br />

Job Ref<br />

Sheet no^v<br />

1082997<br />

8<br />

AppMby Data<br />

Fs_surj = yuxKox Surcharge x (hen-tbaso dds) = 21 2 kN/m<br />

F3_m_a_f = 0 5 X yi_e X Ko X ym X (hair Ibase- dds - hsat)* = 66 9 kN/m<br />

Vstam = Fs_sur_f + Fs,m_^f = 882 kN/m<br />

Ms_sur = Fs_siirj x (hstem + tbase) / 2 = 35 6 kNm/m<br />

Wfc_m_a = Fs_in_a_tx (2x hsat + haff-dda + tbase/2)/3 = 786kNm/m<br />

Msiem = M3_sur + Ms_nua = 114J2 kNm/m<br />

b = 1000 mm/m<br />

Md_stero = 0 4 X lit X b X dstsm* / ymm = 1361 kNm/m<br />

PASS - Applied moment is less than maximum design moment<br />

Design shear stress Vstam = Vstam / (b x dstam) = 0 284 N/mm*<br />

Basic charactensbc shear sbrength of masonry fvbas = minIO 35 + (17 5 x As_stenu>rov / (b x dstam)) 0 7] x 1 N/mm*<br />

Shearspan<br />

Cfiaractenstic shear sb^ngtii of masonry<br />

Allowable shear stress<br />

Check limiting dimensions<br />

Limiting span/effecbve depth ratio<br />

Actual span/effocbve depth ratio<br />

Axial load check<br />

Factored a^dal load on wall<br />

Limiting axial load<br />

Q = Mstem / dstam* = 1J88 N/mm*<br />

Q = 2xcx(1 C)xfk/ymm<br />

0 = 0787<br />

zstem = min(0 95 c) x dstem = 243.8 mm<br />

As.stenudes = Mstem X yms / (^ x Zstertr) = 1077 mm*/m<br />

As_stam_min = k x b-x twai = 585 mm*/m<br />

As_stBm_req = Max(As_stBm_


CSC > TEDDS<br />

Stevs Morgan Associates<br />

Consulflng Engineers<br />

Prefect<br />

Sectfon<br />

Cal&by<br />

M<br />

Indicabve retaining wall reinforcement diagram<br />

Too relnforcement-<br />

Pollard Close<br />

Ploti RWhstem=3000mm<br />

Date<br />

22/04/2010<br />

Toe bars 20 mm dia @ 200 mm centres - (1571 mm*/m)<br />

Heel mesh - B1131 (1131 mm*/m)<br />

Stem bars 20 mm dia @ 275 mm centres C1142mm*/m)<br />

Chkdby Date<br />

=•, #<br />

•4-<br />

^ -<br />

Job Ref<br />

Sheet noTrev<br />

Stem rebiforcein eirt<br />

1082997<br />

9<br />

Appdby Data<br />

-Heel reinforcement


CSC >TEDDS<br />

Steve Morgan Associates<br />

ConsuWng Engineers<br />

Project<br />

Section<br />

Cate.by<br />

M<br />

RETAINING WALL ANALYSIS (BS 8002 1994)<br />

Wail details<br />

Retaining wall type<br />

Height of retaining wall stem<br />

Thickness of wall stem<br />

Length of toe<br />

Length of heel<br />

Overall lengtti of base<br />

Thickness of base<br />

Depth of downstand<br />

Position of downstand<br />

Thickness of downstand<br />

Height of retaining wall<br />

Depth of cover in front of wall<br />

Depth of unplanned excavation<br />

Height of ground water behind wall<br />

Height of satijrated fill above base<br />

Density of wall construction<br />

Density of base construction<br />

/Xngle of rear face of wall<br />

/\ngle of soil surface behind wall<br />

Effective height at virtual back of wall<br />

Retained material details<br />

Mobilisation factor<br />

Pollard Close<br />

Plori"'RWhs=300 0mm no point loaa<br />

Date<br />

22/04/2010<br />

H 1400 >|^460 >+*35'>H<br />

-2200-<br />

Chkdby Date<br />

Unpropped cantilever<br />

hstem = 3000 mm<br />

twag = 450 mm<br />

Itoe = 1400 mm<br />

Inaei = 350 mm<br />

base = Itoe + Iheel + turaU = 2200 mm<br />

tbasa = 350 mm<br />

dds = 0 mm<br />

Ids = 1350 mm<br />

tds = 350 mm<br />

hviaii = hstem + tbase + dds = 3350 mm<br />

dcovar = 450 mm<br />

daxc = 450 mm<br />

hv»ater = ^ mm<br />

hsat = max(hv«atBr tbase dds 0 mm) = 0 mm<br />

ywafl = 23 6 mjrrP<br />

ybasa = 23 6 kN/m^<br />

a = 90 0 deg<br />

P = 0 0 deg<br />

heff = hwaD + baei X tan(P) = 3350 mm<br />

M = 15<br />

Job Ref<br />

Sheet noTrev<br />

1082997<br />

10<br />

Appdby Date<br />

TEDDS calculation veiston 1J2.01 00


CSC•TEDDS<br />

Steve Morgan Associates<br />

Consulting Engineers<br />

Moist density of retained matenal<br />

Project<br />

Secflon<br />

Calcby<br />

M<br />

Saturated density of retained matenal<br />

Design shear strength<br />

Angle of wall miction<br />

Base matenal details<br />

Moist density<br />

Design shear strengtti<br />

Design base friction<br />

Allowable bearing pressure<br />

Using Coulomb theory<br />

Active pressure coefficient for retained matenal<br />

Pollard Close<br />

Ploti RWhs=3000mm no point load<br />

Data<br />

22/04/2010<br />

Chk-dby Date<br />

Job Ref<br />

Sheet no7rev<br />

1082997<br />

11<br />

Appdby Date<br />

Ka = sin(a + ^fl (sln(o)* x sin(a 5) x [1 + V(sin(i|) + 8) x sin( - p) / (sin(a 5) x sin(a + p)))]*) = 0 369<br />

Passive pressure coefficient for base matenal<br />

At rest pressure<br />

At rest pressure for retained matenal Ko = 1 - s\n[if) = 0 590<br />

Loading details<br />

Surcharge load on plan<br />

Applied vertical dead load on wall<br />

Applied vertical live load on wall<br />

Position of applied vertical load on wall<br />

Applied horizontal dead load on wall<br />

Applied honzontal live load on wall<br />

Height of applied honzontal load on wall<br />

ym = 180kN/m3<br />

ys = 210kN/m3<br />

(j) = 242 deg<br />

5 = 186 deg<br />

ymb = 18 0kN/m3<br />

^6 = 242 deg<br />

8b = 18 6 deg<br />

Pbearlng = 75kN/m*<br />

Kp = sin(90 if bf I (sin(90 6b) x [1 - >/(sin((^ b + 8b) x sln(ifr b) / (sin(90 + 8b)))F) = 4.187<br />

$«?RS;<br />

Surcharge = 75 kN/m*<br />

Wdead = 00 kN/m<br />

Wiive = OOW^'n<br />

lioad = 0 mm<br />

Fdead = 00 kN/m<br />

Fnve = 0 0 kN/m<br />

hioad = 0 mm<br />

!!^"4lKk- T<br />

k.^;!^<br />

IJJJIJJlllJJ^^<br />

^5555"<br />

2 6 21 1<br />

Loads shown In kN/m pressures shovm in kN/m'


CSC > TGDDS<br />

Steve Morgan Associates<br />

Consutang Engineers<br />

Vertical forces on wall<br />

Wall stem<br />

Wall base<br />

Surcharge<br />

Moist backfill to top of wall<br />

Soil in front of wall<br />

Total vertical load<br />

Horizontal forc^ on wall<br />

Surcharge<br />

Moist backfill above water table<br />

Total horizontal load<br />

Project<br />

Section<br />

Calculate stability against sliding<br />

Gate, by<br />

M<br />

Passive resistance of soil in front of wrall<br />

Resistance to sliding<br />

Overtuming momente<br />

Surcharge<br />

Moist backfill above water table<br />

Total overtoming moment<br />

Restoring momente<br />

Wall stem<br />

Wall base<br />

Moist backfill<br />

Total restonng moment<br />

Check stability against overtuming<br />

Total overtoming moment<br />

Total restonng moment<br />

Check bearing pressure<br />

Surcharge<br />

Soli in front of wall<br />

Total moment for beanng<br />

Total vertical reaction<br />

Distance to reaction<br />

Eccentricity of reaction<br />

Beanng pressure at toe<br />

Beanng pressure at heel<br />

Pollard Close<br />

Plan RWhs=3000mm no point load<br />

Date<br />

22/04/2010<br />

Chk-dby Date<br />

WwaB = hstem X twan X ywaD = 31 9 kN/m<br />

Wbase = base X tbasa X ybase =18.2 kN/m<br />

wsur = Surcharge x beei = 2^ kN/m<br />

Wm_w = beel X (hstem - hsat) X ym = 189 klM/m<br />

Vlflp = Itoe X deover X ymb = 11 3 kN/m<br />

Job Ref<br />

Sheet no/rev<br />

Wtotal = Wwall + Wbase + Visa + Wm_w + Vlf, = 82.9 kN/m<br />

1082997<br />

12<br />

Appdby Date<br />

Fsur = Ka X cos(90 - a + 8) x Surcharge x heir = 8^ kN/m<br />

Fm_a = 05xKaxCOS(90-a + 6)xymx(haff hwater)* = 35 3 kN/m<br />

Ftotai = Fsur + Fm_a = 44.1 kN/m<br />

Fp = 0 5 X Kp X C0S(8b) X (dcover + tbase + dds dexc)* x ymb = 4^ kN/m<br />

Fres = Fp +(Wtotal-Wsur Wp)Xtan(6b) = 27 6 kN/m<br />

gffl£ - Sliding force fe graater than resisting force<br />

Msur = FsurX(heff-2Xdds)/2 = 147kNmAn ^Uc£.-»^ y)ei^c(s<br />

Mnua = Fm_9x(heff + 2xhwatar 3xdds)/3 = 395kNm/m<br />

Mot = Msur + Mm_a = 54^ kNm/m<br />

MTOO = WAran X (k» + Wa / 2) = 51_8 kNm/m<br />

Mbase = Wbasa X base/ 2 = 20 kNlTl/m<br />

Mm_r = (Wm_w X (base beal / 2) + Wm_s x (Ibasa<br />

Mrast = Mwal + Mbasa + Mmj' = 110 kNm/m<br />

Mot = 54.2 kNm/m<br />

Mre3t= 110 0 kNm/m<br />

fo \ Ch<br />

beel/3)) = 383 kNm/m<br />

PASS R^ionng moment is greater than overtuming moment<br />

Msw_r = Wsur x (base Ihaal / 2) = 53 kNm/m<br />

Mp_r = WpxltDe/2 = 79 kNm/m<br />

Mtntal = Mrest Mot + Msur_r + Mp_r = 69 1 kNm/m<br />

R = Wtotal = 829 kN/m<br />

Xbar = Mtotal / R = 834 mm<br />

e = abs((lbasa / 2) - Xbar) = 266 mm<br />

Ptoa = (R/ base) + (6 X R X 0/ base*) = 65 1 kN/m*<br />

Pheel = (R/base) (6 X R X e / Ibase*) =10 3 kN/m*<br />

Reaction acts within middle third of base<br />

PASS Maximum beanng pressure is less than allowable bearing pressure<br />

•Cie^


CSC • TEDDS<br />

Steve Morgan Associates<br />

Coieutting Engineers<br />

Project<br />

Section<br />

Calaby<br />

M<br />

RETAINING WALL DESIGN (BS 8002 1994)<br />

Ultimate limit state load factors<br />

Dead load factor<br />

Live load factor<br />

Eartti and water pressure factor<br />

Factored verti^I forces on wall<br />

Wall stem<br />

Wall base<br />

Surcharge<br />

Moist backfill to top of wall<br />

Soil in front of wall<br />

Total vertical load<br />

Factored horizontal at rest forces on wall<br />

Surcharge<br />

Moist backfill above water table<br />

Total honzontal load<br />

Passive resistance of soil in firont of wall<br />

kN/m<br />

Factored overtuming momente<br />

Surcharge<br />

Moist backfill above water table<br />

Total overtuming moment<br />

Restoring momenta<br />

Wall stem<br />

Wall base<br />

Surcharge<br />

Moist backfill<br />

Soilinfirontofwali<br />

Total restonng moment<br />

Check stability against overtuming<br />

Total overtuming moment<br />

Total restonng moment<br />

Factored bearing pressure<br />

Total moment for beanng<br />

Total vertcal reaction<br />

Distance to reaction<br />

Eccentncity of reaction<br />

Beanng pressure at toe<br />

Beanng pressure at heel<br />

Rate of change of base reaction<br />

Beanng pressure at stem /toe<br />

Pollard Close<br />

Ploti RWhs=3000mm no point load<br />

Data<br />

22/04^010<br />

yr_d = 14<br />

yu = 16<br />

yr_e = 1 4<br />

Chk-dby Data<br />

Wwai_f = yf_dxhstBmxtvranxy«aa =44.6 kN/m<br />

Wbasej = yf d X Ibasa X tbasa X ybasB = 25.4 kN/m<br />

Wsurj = yu X Surcharge x baei = 4^ kN/m<br />

Job Ref<br />

Wm_w_f = yr_d X beal X (hsiem - hsat) x ym = 26.5 kN/m<br />

Wp_f = yf_d X Ime X dcouer X ymb =15 9 kN/m<br />

Sh^noi/rev<br />

1082997<br />

13<br />

Appdby Data<br />

I'hUDS calculation version 1 2 01 00<br />

WtotaU = W*aD f + Wbase f + WsurJ + Wm w_f + Wp f = 116 6 kN/m<br />

Fsurj = yu X Ko X Surcharge x hen = 23 7 klM/m<br />

Pm_K) = yf_a X 0 5 X Ko X ym X (heff hwater)* = 83.4 kN/m<br />

FtotaU = FsurJ + Fm_aJ = 107 2 kN/m<br />

FpJ= yr_e X 0 5 X K(xX C0S(8b) X (dcover + Ibasa + dds daxc)* x yna = 61<br />

Msur_f = Fsur_fx(heff -2xdds)/2 = 397kNm/m<br />

Mm.O^' Pm_UX (heff + 2 X hwatar- 3 X dds)/ 3 =


CSC • TEDDS'<br />

Steve Morgan Associates<br />

Consulting Engin^rs<br />

Bearing pressure at mid stem<br />

Beanng pressure at stem / heel<br />

Project<br />

Section<br />

Cate.by<br />

M<br />

Pollard Close<br />

Ploti RWhs?=3000mm no point load<br />

Date<br />

22/04/2010<br />

Design of reinforced concrete retaining wall toe (BS 8002 1994)<br />

Matenal properties<br />

Charactensbc strength of concrete<br />

Charactensbc strengtti of reinforcement<br />

Base details<br />

Minimum area of reinforcement<br />

Cover to reinforcement in toe<br />

Calculate shear for toe design<br />

Shear from beanng pressure<br />

Shear from weight of base<br />

Total shear for toe design<br />

Calculate moment for toe design<br />

Moment fixim bearing pressure<br />

Moment from weight of base<br />

Total moment for toe design<br />

%• T<br />

8 CO<br />

Check toe in bending<br />

Widtti of toe<br />

Deptti of reinforcement<br />

Constant<br />

Lever arm<br />

|*100-H<br />

Area of tension reinforcement required<br />

Minimum area of tension reinforcement<br />

Area of tension reinforcement required<br />

Reinforcement provided<br />

Area of reinforcement provided<br />

Check shear resistance at toe<br />

Design shear sfress<br />

Chk-dby Date<br />

Job Ref<br />

Sheet noJrev<br />

1082997<br />

14<br />

Appdby Data<br />

Pstemjrtd_f=max(ptoB_f (ratex(liB8 + t«aD/2)) 0 kN/m*) = 0 kN/m*<br />

PstBnuheeij = max(ptoej (rate x (U + trail)) 0 kN/m*) = 0 kN/m*<br />

feu = 35 N/mm*<br />

^ = 500 N/mm*<br />

k = 013%<br />

CtDe = 30mm<br />

VtoB bear = 3 X Ptoe f X Xbar f / 2 = 116 6 kN/m<br />

Vtoa_wt.base = yf_d x ybasa x Itoe X tbasa = 16 2 kN/m<br />

Vtoa = VtDa_baar Vtoe.wUbase = 100 4 kN/m<br />

Mtoe_bear = 3 X ptoeJ X XbarJ x (itoe - XbarJ + twaD / 2) / 2 = 148 7 kNm/m<br />

Mtoa_wLbasa = (yr_d X ybase X tbase x (hoe + twaO / 2)* / 2) = 15.3 kNm/m<br />

Mtoe = Mtoe_bear - Mtoaj»Lbase = 133 4 kNm/m<br />

b = 1000 mm/m<br />

dtoe = tbase — Ctoe — ((jltoe/ 2) = 314 0 mm<br />

Ktoe = Mtoe / (b X dtoe* x feu) = 0 039<br />

Compression reinforcement is not required<br />

Ztoe = min(0 5 + V(0 25 (min(KtBe 0 225) / 0 9)) 0 95) x dtoe<br />

Ztoe = 298 mm<br />

/\s_toe_des = Mtoa / (0 87 X fy X zine) = 1028 mm*/m<br />

As_toe_min = k X b X tbase = 455 mm*/m<br />

Asjoejeq = Max(/^_toe_de3 As_toe_mln) = 1028 mm*/m<br />

B1131 mesh<br />

AsjoejKov = 1131 mm*/m<br />

PASS - Reinforcement provided af the retaining wall toe is adequate<br />

Vtoe = Vtoe / (b X dtoa) = 0 320 N/mm*


CSC • TEDDS-<br />

Steve Morgan Associates<br />

Consulting Engineers<br />

Allowable shear sti^ss<br />

Project<br />

Section<br />

Calaby<br />

M<br />

From BS8110 Part 1 1997 - Table 3 8<br />

Design concrete shear stress<br />

Pollard Close<br />

Ploll RWhs=3000mm no point load<br />

Date<br />

22/04^010<br />

Chk-dby Date<br />

Job Ref<br />

Sheet noJfev<br />

1082997<br />

15<br />

Appdby Data<br />

Vadm = min(0 8 x V(feu /1 N/mm*) 5) x 1 N/mm* = 4.733 N/mm*<br />

PASS Design shear stress is less than maximum shear stress<br />

Vctoe = 0 534 N/mm*<br />

Design of reinforced concrete retaining wall heel (BS 80021994)<br />

Material properties<br />

Characteristic strength of concrete<br />

Characteristic strengtti of reinforcement<br />

Base details<br />

Minimum area of reinforcement<br />

Cover to reinforcement in heel<br />

Calculate shear for heel design<br />

Shear from vireight of base<br />

Shear from weight of moist backfill<br />

Shear from surcharge<br />

Total shear for heel design<br />

Calculate moment for heel design<br />

Moment from weight of base<br />

Moment from weight of moist backfill<br />

Moment from surcharge<br />

Total moment for heel design<br />

o<br />

to<br />

Check heel in bending<br />

Widttiofheel<br />

Depth of reinforcement<br />

Constant<br />

Lever anm<br />

1+100-H<br />

Area of tension reinforcement required<br />

Minimum area of tension reinforcement<br />

Area of tension reinforcement required<br />

Reinforcement provided<br />

feu = 35 N/mm*<br />

fy = 500 N/mm*<br />

k = 013%<br />

Cheal = 30 mm<br />

Vhae!_vn_base = yf_d x ybase x Iheel x tbase = 4 klM/m<br />

Vheel_«l.m = Wm_w_f = 26.5 kN/m<br />

Vheel_sur = VkarJ = 42 kN/m<br />

Vfoe < Vc_foe - No Shear reinforcement required<br />

Vheel = Vheeljmjjase + VheeLyAjn * VhBeljsur = 34.7 kN/m<br />

Mheal_vA.base = (yr_dX ybase X tbsfee X (bael+twaD/2)*/2) = 1_9 kNm/m 1<br />

Mheei_wLm = Wm_w_fx(lhBBi + twan)/2 = 106 kNm/m 1<br />

Mheel.sur = VtsutJ X (beef + t»«all) / 2 = 1_7 kNm/m<br />

Mhaal = Mh«l_viH_l>ase + MfteeLwLm + MhaeUsur = 14.2 kNm/m<br />

b = 1000 mm/m<br />

dhaal = tbase — Chael — (l|)hael/ 2) = 314.0 mm<br />

Kheel = Mhael / (b X dheel* X feu) = 0 004<br />

Compression reinforcement is not required<br />

Zheei = min(0 5 + V(0.25 (min(Kheei 0 225) / 0 9)) 0 95) x dheei<br />

Zheei = 298 mm<br />

As_heel_des = Mhaal / (0 87 X fy X Zheei) = 109 mni*/m<br />

As_heeL.n4) = k X b X tbase = 455 mm*/m<br />

As_heBl_req = Max(As_heetdes As_heel_min) = 455 mm*/m<br />

B1131mesh


CSC • TgDDS<br />

Steve Morgan Associates<br />

Consulting Engineers<br />

Area of reinforcement provided<br />

Check shear resistance at heel<br />

Design shear stress<br />

Allowable shear stiress<br />

Project<br />

Section<br />

Cata.by<br />

M<br />

From BS8110 Part 1 1997 - Table 3 8<br />

Design concrete shear stress<br />

Pollard Close<br />

Ploti RWhs=3000mm no point load<br />

Data<br />

22/04/2010<br />

Chk-dby Date<br />

As_haei_prov = 1131 mm*/m<br />

Job Ref<br />

Sheet noTrev<br />

1082997<br />

16<br />

Appdby Data<br />

PASS Reinforcement provided at the retaining wall heel Is adequate<br />

Vheel = Vheel / (b X dheel) = 0111 N/mm*<br />

Vadm = min(0 8 x V(fcu /1 N/mm*) 5) x 1 N/mm* = 4 733 N/mm*<br />

PASS Design shear stress Is less than maximum shear stress<br />

Vc heel = 0 534 N/mm*<br />

Design of cavity reinforced masonry retaining wall stem BS5628-2 2000<br />

Wall details<br />

Thickness of outer leaf of wall<br />

Thickness of inner leaf of wall<br />

Thickness of reinforced cavity<br />

Depth of stem reinforcement<br />

Masonry details<br />

Masonry type<br />

Compressive sbBngth of units<br />

Mortar designation<br />

K 100*1<br />

Category of manufacloring control of units<br />

Partial safety factor for matenal sfrengtti<br />

toutar = 100 mm<br />

timer = 100 mm<br />

tcBvlty = twaB touter tjnner = 250 mm<br />

dstem = 310 mm<br />

Aggregate concrete blocks no voids<br />

Punlt = 100N/miTI*<br />

M<br />

Normal<br />

yiiim = 23<br />

Charactenstic compressive strength of masonry<br />

Least honzontal dimension of masonry unite bunR = 100 0 mm<br />

Height of masonry unite<br />

hunit = 215.0 mm<br />

Ratio of height to least honzontel dimension<br />

From BS5628 2 Table 3d mortar li<br />

ratio = hunR / IJunlt = 2^<br />

Charactenstic compressive sbBngtti<br />

ik = 8.1 N/mm*<br />

Factored horizontal at rest forces on stem<br />

Surcharge<br />

Moist backfill above water table<br />

Vheel < Vcheei - Afo Shear reinforcement required<br />

Fs_siir_f = yfj X Ko X Surcharge x (tieif - tbase dds) = 21.2 kN/m<br />

F3_m_e_f = 0 5 X yf_e X Ko X ym X (heff tbasa dds hsat)* = 66 9 kN/m


CSC•TEDDS<br />

Steve Morgan Assodales<br />

Consulting Engineers<br />

Calculate shear for stem d^ign<br />

Shear at base of stem<br />

Project<br />

SecBon<br />

Cata.by<br />

M<br />

Calculate moment for stem design<br />

Surcharge<br />

Moist backfill above water table<br />

Total moment for stem design<br />

Check maximum design moment for wall stem<br />

Widtti of wall<br />

Maximum design moment<br />

Check wall stem in bending<br />

Moment of resistance factor<br />

Lever arm factor<br />

Lever arm<br />

Area of tension reinforcement required<br />

Minimum area of tension reinforcement<br />

Area of tension reinforcement required<br />

Reinforcement provided<br />

Area of reinforcement provided |<br />

1<br />

Check shear resistance at wall stem<br />

Design shear sti^ss<br />

Basic characteristic shear strengtti of masonry<br />

Shear span<br />

Characteristic shear sb^ngtti of masonry<br />

Allowable shear sbBss<br />

Check limiting dimensions<br />

Limiting span/effective depth ratio<br />

Actoal span/effective deptti ratio<br />

Axial load check<br />

Factored axial load on wall<br />

Limiting axial load<br />

Pollard Close<br />

Ploti RWhs=3000mm no point load<br />

Date<br />

22/04/2010<br />

Chkdby Data<br />

Vstem = Fs_sur. f + Fs_m_a_f = 88 Ji kN/m<br />

Ms.sur = Fs sur f X (hstam + Ibasa) / 2 = 35 6 kNm/m<br />

Job Ref<br />

Sheet noJrev<br />

1082997<br />

17<br />

Appdtjy Data<br />

Msma = Fsmajx{2xhsat + heff dds + We/2)/3 = 786kNm/m<br />

Mstem = Mssur+Msm_a = 114 2 kNm/m<br />

b = 1000 mm/m<br />

Md_stam = 04xlkxbx dstem* /ymm = 136 1 kNm/m<br />

PASS - Applied moment is less than maximum design moment<br />

Q = Mstem / dsiem* = 1188 N/mm*<br />

Q = 2xcx(1-c)xlit/ymm<br />

c = 0787<br />

Zstem = min(0 95 c) x dsiem = 243 8 mm<br />

A3_stBm_des = Mstem X yms / (fy X Zstem) = 1077 mm*/m<br />

As stenunln = k X b V: twall = 585 mm*/m<br />

A3_slBm_req = Max(A3_stem_de3 Asj^emjnln) = 1077 mm*/m<br />

B1131 mesh<br />

As_stam_o«w = 1131 mm*/m<br />

PASS Reinforcement provided at the retaining wail stem is adeqaiite<br />

Vstem = Vstem / (b X dstem) = 0 284 N/mm*<br />

fvbas = mmtO 35 + (17 5 X As.stemjnw / (b X cfetem)) 0 7] X 1 N/mm*<br />

fvbas = 0 414 N/mm*<br />

a = Mstem / Vstam = 1295,5 mm<br />

fy = Min(fybas X max(2 5 0J25 x (a / dstem) 1) 1 75 N/mm*)<br />

fv = 0 602 N/mm*<br />

Vadm = fv / ymv = 0 301 N/mm*<br />

PASS - Design shear stress is less than maximum shear stress<br />

ratiOmax = 18 00<br />

rabOael = (hstem + dstem / 2) / dstam = 10 18<br />

PASS ' Span to depth raVo is acceptebie<br />

Nwan = (Itrall X hstran X ywaB + Wdead] X yf_d) + (Wove X yfj) = 44.6 kN/m<br />

IMM = 0 1 X ft X t«aD = 366 4 kN/m<br />

AppFied axial load may be ignored • calcuiattons valid


CSC • TEDDS<br />

Steva Morgan Associates<br />

ConsuWng Englneeis<br />

Project<br />

Section<br />

Calcby<br />

M<br />

Indicative retaining wall reinforcement diagram<br />

Too relnfbrcement-<br />

Toe mesh B1131 (1131 mm*/m)<br />

Heel mesh B1131 (1131 mm*/m)<br />

Stem mesh - B1131 (1131 mm*/m)<br />

Pollard Close<br />

Ploti RWhs=3000mm no point load<br />

'• n<br />

Date<br />

22/04/2010<br />

•51<br />

Chkdby Date<br />

PW&.-<br />

i-if-<br />

- stem reinforcement<br />

Stem relnfbrcement<br />

Job Ref<br />

Heel reinfbrcement<br />

Sheet noTrev<br />

1082997<br />

18<br />

Appdby Date


CSC >TEDDS<br />

Steve Morgan Associates<br />

Consulting Engneers<br />

Prcjject<br />

Calcby<br />

M<br />

RETAINING WALL AIMALYSIS (BS 8002 1994)<br />

Wall details<br />

Retaining wall type<br />

1<br />

Height of retaining wall stem<br />

Thickness of wall stem<br />

Length of toe<br />

Length of heel<br />

Overall length of base<br />

Thickness of base<br />

Deptti of downstand<br />

Position of downstend<br />

Thickness of downstand<br />

Height of retaining wall<br />

Deptti of cover m front of wall<br />

" ^ ^ "<br />

Depth of unplanned excavation<br />

Height of ground water behind wall<br />

Height of satorated fill above base<br />

Density of wall construction<br />

Density of base construction<br />

Angle of rear face of wall<br />

/\ngle of soil surface behind wall<br />

Effective height at virtoal back of wall<br />

Retained material details<br />

Mobilisation factor<br />

VCSS33Sf[}^m^-^5r>~-^£t^!^^<br />

P*<br />

Date<br />

22/04^010<br />

-2000-<br />

Chkdby Data<br />

-2000- ->}«45e>| 350 !•-<br />

Fff7<br />

-2300-<br />

Unpropped cantilever<br />

hstam = 2550 mm<br />

twall = 450 mm<br />

Itoe = 2000 mm<br />

Iheel = 350 mm<br />

Ibase = Itoe + Iheel + twaB = 2800 mm<br />

tbase = 350 mm<br />

dds = 0 mm<br />

Ids = 1300 mm<br />

tds = 350 mm<br />

hv»al = flstem + tbase + dds = 2900 mm<br />

dcover = 450 mm<br />

doic = 450 mm<br />

hwater = 0 mm<br />

SkN/mf<br />

hsat = max(hv»ater tbase dds 0 mm) = 0 mm<br />

ywan = 23 6 kN/m^<br />

ybase = 236 kN/m^<br />

a = 90 0 deg<br />

P = 0 0 deg<br />

hefr= hwaD + Iheel X tan(8) = 2900 mm<br />

M = 15<br />

Job Ref<br />

Sheet noVrev<br />

1<br />

Appdby Date<br />

TEDDS calculation version 1 2 01 00


CSC >TEDDS<br />

steva Morgan Associates<br />

Consulting Engineers<br />

Prefect<br />

Caicby<br />

M<br />

Indicative retaining wall reinforcement diagram<br />

TOG lehrforcement<br />

Toe mesh B1131 - (1131 mm*/m)<br />

Heel mesh B1131 (1131 mm*/m)<br />

Stem mesh - B785 (785mm*/m)<br />

Wdl, h'>\e^^ma. ^^^""^<br />

Data<br />

22/04/2010<br />

Chkdby Date<br />

f<br />

Job Ref<br />

Sheet noTrev<br />

-Stem reinfoiceTnent<br />

Stem reinforcement<br />

9<br />

Appdby Data<br />

— Heel rebifbrcemeiit


CSC • TEDDS<br />

Stave Morgan Associates<br />

ConsuKng Engineers<br />

Project<br />

^ ^2aE32teS«S£.coj^S^<br />

Calfcby<br />

M<br />

RETAINING WALL ANALYSIS (BS 8002 1994)<br />

Wall details<br />

Retaining wail type<br />

Height of retaining wall stem<br />

Thickness of wall stem<br />

Length of toe<br />

Length of heel<br />

Overall lengtti of base<br />

Thickness of base<br />

Depth of downstend<br />

Position of downstend<br />

Thickness of downstand<br />

Height of retaining wall<br />

Depth of cover in front of wrall<br />

Depth of unplanned excavation<br />

Height of ground water behind wail<br />

Height of satorated fill above base<br />

Density of wall constiucbon<br />

Density of base construction<br />

Angle of rear face of wall<br />

Angle of soil surface behind wall<br />

Effective height at virtoal back of wall<br />

Retained matenal details<br />

Mobilisation factor<br />

Date<br />

22/04/2010<br />

-1600-<br />

Chkdby Date<br />

-1600- -»|«50^f«-450-H<br />

-2400-<br />

Unpropped cantilever<br />

hstem = 2100 mm<br />

twaD = 350 mm<br />

Itoe = 1600 mm<br />

Iheal = 450 mm<br />

Ibase = Itoa + Iheel + twall = 2400 mm<br />

tbase = 350 mm<br />

dds = 0 mm<br />

Ids = 1300 mm<br />

tds = 350 mm<br />

flwall = hstem + tbase + dds = 2450 mm<br />

deover = 450 mm<br />

deotc = 450 mm<br />

hv»aier = 0 mm<br />

hsat = max(hv«ater tbase dds 0 mm) = 0 mm<br />

yven = 23 6 kN/m^<br />

ybaaa = 236kN/m3<br />

a = 900 deg<br />

P = 00 deg<br />

heff = hwaii + beel X ten(p) = 2450 mm<br />

M = 15<br />

Job Ref<br />

Sheet noJrev<br />

1<br />

Appdby Data<br />

TEDDS cateulatlon version 1 2 01 00


CSC >TEDDS<br />

stave Morgan Associates<br />

Consulflng Engineers<br />

Project _<br />

PcXlOrcf CLorrt<br />

Section My^l\ WCMCr\xA<br />

i^ h'>\eu. X\00^ /U>^<br />

Calaby<br />

M<br />

Date<br />

Indicative retaining wail reinforcement diagram<br />

Toe relnforcement-<br />

Toe mesh B786 - (785 mm*/m)<br />

22/04/2010<br />

Chk-dby Date<br />

The design of the retaining wall heel is beyond tiie scope of this calculation!<br />

Stem mesh B785 - (785 mm*/m)<br />

• j<br />

Job Ref<br />

-Stem reinforcement<br />

Stem reinforcement<br />

Sheet noVrev<br />

9<br />

Appdby Date<br />

-Heel reinforcement


CSC•TEDDS<br />

Steve Moi^n Associates<br />

Consulflng Engineers<br />

Project<br />

'^ ^!^i::spa\s^m^^^<br />

Calcby<br />

M<br />

RETAINING WALL ANALYSIS (BS 8002 1994)<br />

Wall details<br />

Retaining wall type<br />

Heigfrt of retaining wall stem<br />

Thickness of wall stem<br />

Lengtiioftoe<br />

Lengtti of heel<br />

Overall length of base<br />

Thickness of l)ase<br />

Deptti of downstend<br />

Position of downstend<br />

Thickness of downstend<br />

Height of retaining wall<br />

Depth of cover In firont of wall<br />

Depth of unplanned excavation<br />

Height of ground water behind wall<br />

Height of satorated fill above base<br />

Density of wall consbucbon<br />

Density of base construction<br />

Angle of rear face of wall<br />

Angle of soil surface behind wall<br />

K-<br />

Effective height at virtoal back of wall<br />

Retained matenal details<br />

Mobilisation factor<br />

-1200-<br />

Date<br />

22/04/2010<br />

Chkdby Date<br />

-1200- -»}«-350>j*-430-H<br />

53 kN/m<br />

-2000-<br />

Unpropped cantilever<br />

hstan = 1800mm<br />

tivaii = 350 mm<br />

Itoa = 1200 mm<br />

Iheei = 450 mm<br />

Ibase = Itoe + Iheel + twall = 2000 mm<br />

tbase = 350 mm<br />

dds = 0 mm<br />

Ids = 1300 mm<br />

tds = 350 mm<br />

hwall = hstam + tbase + dds = 2150 mm<br />

deover = 450 mm<br />

daxc = 450 mm<br />

hwater = 0 mm<br />

hsat = max(hv«atBr tbasa dds 0 mm) = 0 mm<br />

Yw3n = 236kN/m3<br />

ybase = 236 kN/m^<br />

01 = 900 deg<br />

p = 0 0 deg<br />

heii= hwao + beei X tan(p) = 2150 mm<br />

M = 15<br />

Job Ref<br />

Sheet noTrev<br />

1<br />

Appdby Date<br />

TEDDS catoulaVon verston 1 2.01 00


CSC•TEDDS<br />

Steva Morgan Associates<br />

Consulflng Engineers<br />

"^^ %\^o.A Clove<br />

Secflon<br />

C^tby<br />

M<br />

Indicatnre retaining wall reinforcement diagram<br />

Toe reinforcement-<br />

Toe mesh B785 - (785 mm*/m)<br />

Date<br />

22/04/2010<br />

•'fgrf'J ^<br />

Chk-dby<br />

The design of the retaining wall heel is beyond the scope of this calculation!<br />

Stem mesh - B785 (785mm*/m)<br />

Date<br />

UoO-<br />

JobRaf<br />

-Stem reinforcement<br />

Stem reinforcement<br />

Sheet noTrev<br />

9<br />

Appdby Data<br />

- Heel reinforcement

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!