Tevatron: from the Discovery of the Top Quark to the Evidence for ...

Tevatron: from the Discovery of the Top Quark to the Evidence for ... Tevatron: from the Discovery of the Top Quark to the Evidence for ...

kmi.nagoya.u.ac.jp
from kmi.nagoya.u.ac.jp More from this publisher
11.07.2015 Views

Tevatron: from the Discovery of the TopQuark to the Evidence for the Higgs BosonDmitri Denisov, FermilabNagoya University Seminar, November 9 2012

<strong>Tevatron</strong>: <strong>from</strong> <strong>the</strong> <strong>Discovery</strong> <strong>of</strong> <strong>the</strong> <strong>Top</strong><strong>Quark</strong> <strong>to</strong> <strong>the</strong> <strong>Evidence</strong> <strong>for</strong> <strong>the</strong> Higgs BosonDmitri Denisov, FermilabNagoya University Seminar, November 9 2012


Particle Experiments Tools - Accelera<strong>to</strong>rs• Accelera<strong>to</strong>rs are giant microscopes<strong>to</strong> study extremely small objectsWavelength=h/E beam• Accelera<strong>to</strong>rs are “converters” <strong>of</strong>energy in<strong>to</strong> massCellE=mc 2Objects with masses up <strong>to</strong>E beam Mass E beamMass = 2E beam /c 2 could be created<strong>Tevatron</strong> center <strong>of</strong> mass energy is 2000 GeVPro<strong>to</strong>ns wavelength is ~10 -16 cmDmitri Denisov, Nagoya University 2


From Fixed Target <strong>to</strong> Colliders<strong>Tevatron</strong>SppS• In late 1970’s <strong>the</strong> hunt <strong>for</strong> heavier and heavierelementary particles continued– Fixed target E cms ~ √2mE : <strong>for</strong> 100 GeV particle~5 TeV accelera<strong>to</strong>r is required• Brilliant idea: use existing pro<strong>to</strong>n accelera<strong>to</strong>rs andcirculate antipro<strong>to</strong>ns in <strong>the</strong> same beam pipe <strong>to</strong>collide• Main challenge was <strong>to</strong> make enough antipro<strong>to</strong>ns <strong>to</strong>have dense particle beams– SppS and <strong>Tevatron</strong> were bornDmitri Denisov, Nagoya University 3


<strong>Tevatron</strong>: Pro<strong>to</strong>n-antipro<strong>to</strong>n Collider• Chain <strong>of</strong> six accelera<strong>to</strong>rs <strong>to</strong> get <strong>to</strong> 1 TeV per beam energy• Single magnet ring – pro<strong>to</strong>ns and antipro<strong>to</strong>ns circulate in <strong>the</strong> opposite directions• Elaborate source <strong>of</strong> antipro<strong>to</strong>ns – main driver <strong>of</strong> <strong>the</strong> <strong>Tevatron</strong> luminosity– Use <strong>of</strong> electron cooling <strong>of</strong> antipro<strong>to</strong>n beam• Collision particles wavelength is ~10 -16 cmDmitri Denisov, Nagoya University 4


Peak Luminosity vs TimeNumber <strong>of</strong> eventsproducedN events = σ(Ε) x L2001 2011• Improvements <strong>to</strong> antipro<strong>to</strong>n production and cooling increased <strong>Tevatron</strong> peak luminosity• Very high reliability: ~80% <strong>of</strong> ~24 hours s<strong>to</strong>res were ended by planned termination• Average number <strong>of</strong> interactions per crossing is ~12 peak and ~6 average in 2011Dmitri Denisov, Nagoya University 5


<strong>Tevatron</strong> Data SetSep 30 th 2011: 11.9 fb -1 delivered10.7 fb -1 recordedData taking efficiency: > 90%2001 2011• Total data set is ~5 times above original <strong>Tevatron</strong> Run II goal• Detec<strong>to</strong>rs and accelera<strong>to</strong>r components operated well till last s<strong>to</strong>re on September 30, 2011Dmitri Denisov, Nagoya University6


<strong>Tevatron</strong> Physics ProgramPrecision tests <strong>of</strong> <strong>the</strong> Standard Model– Weak bosons, <strong>to</strong>p quark, QCD, B-physics…Search <strong>for</strong> particles and <strong>for</strong>ces beyond those known– Higgs, supersymmetry, extra dimensions…Fundamental Questions <strong>Quark</strong> sub-structure? Origin <strong>of</strong> mass? Higgs? Matter-antimatter asymmetry? What is cosmic dark matter?SUSY? What is space-time structure?Extra dimensions?…Dmitri Denisov, Nagoya University 7


The CDF and DZero Collaborations<strong>Tevatron</strong> collaborations are ~1000 scientists <strong>from</strong> 26 countriesDmitri Denisov, Nagoya University8


CDF and DØ Detec<strong>to</strong>rsCDFDØCDFSilicon Detec<strong>to</strong>rCentral Drift ChamberCalorimetryExtended muon coverageFast electronicsSilicon Detec<strong>to</strong>r2 T solenoid and central fiber trackerLarge coverage muon systemFast electronicsDriven by physics goals detec<strong>to</strong>rs are ra<strong>the</strong>r “similar”:silicon, central magnetic field, hermetic calorimetry and muon systemsLayout <strong>of</strong> <strong>the</strong> hadron collider detec<strong>to</strong>rs have been finalized at <strong>the</strong> <strong>Tevatron</strong>Dmitri Denisov, Nagoya University 9


<strong>Tevatron</strong> Results25 years• Over 1000 publications in referenced journals <strong>from</strong> CDF and DØ• From discoveries <strong>of</strong> <strong>the</strong> <strong>to</strong>p quark, new mesons and baryons <strong>to</strong> extremelyprecise measurements and searches <strong>for</strong> new phenomena• ~100 new results over last year alone – visit CDF and DZero Web pages– Only few highlights in this talkDmitri Denisov, Nagoya University 10


<strong>Tevatron</strong> Cross SectionsToday’s content• QCD• B Physics• Electroweak• <strong>Top</strong> <strong>Quark</strong>• The HiggsDmitri Denisov, Nagoya University11


Studies <strong>of</strong> Quantum Chromo Dynamics – QCDThe most copious physics process at hadron colliders“Ru<strong>the</strong>r<strong>for</strong>d experiment”pQCD matrix elementsjetPar<strong>to</strong>n distributionfunctions (PDFs)<strong>of</strong> <strong>the</strong> hadronsHadronization,showeringjetStrong coupling constant α s• PDFs, higher order corrections, α s measurements, production <strong>of</strong> vec<strong>to</strong>r bosonsand jets, direct pho<strong>to</strong>ns, double par<strong>to</strong>n interactions and many o<strong>the</strong>rs• Understand how strong <strong>for</strong>ce works and <strong>to</strong> be able <strong>to</strong> predict backgrounds <strong>for</strong>processes with much lower cross sectionsDmitri Denisov, Nagoya University12


Inclusive JetsVarious QCD Measurements3 jets distributionsW + jetsMany important results including genera<strong>to</strong>rs testingDmitri Denisov, Nagoya University13


α s Running at Untested Scale > 208 GeV• R 3/2 = σ 3Jet / σ 2Jet• Observable: average number <strong>of</strong> neighboringjets in ∆R (∆y-∆φ space) region less than πR ∆R = N jets (∆R) / N jets (all)Confirm strong coupling constantrunning up <strong>to</strong> 400 GeVDmitri Denisov, Nagoya University14


-quark StudiesHigh b quark cross section at <strong>Tevatron</strong>~10 -3 σ <strong>to</strong>t~10 4 b’s per second produced!Large data samples <strong>of</strong> particleswith b-quarks provide• B mesons lifetime studies• Mass spectroscopy (B c , etc.)• Studies <strong>of</strong> B s oscillations• CP violation studies• Search <strong>for</strong> new b hadrons• Search <strong>for</strong> rear decaysDmitri Denisov, Nagoya University 15


Discoveries <strong>of</strong> b-BaryonsAll b quark containing species areproduced: B ± , B 0 , B s , B c , Λ b …andmany new heavy baryons!First baryon withquarks <strong>from</strong>all three generationsobserved!Dmitri Denisov, Nagoya University 16


DØ di-muon Charge Asymmetry• Di-muon charge asymmetryAbsl≡NN++b++b−−b−−b<strong>for</strong> events coming <strong>from</strong> decays <strong>of</strong> mesonscontaining b quarks undergoing mixing• Standard Model predicts this asymmetry <strong>to</strong>be very smallbA sl• Any substantial deviation <strong>of</strong> this asymmetry<strong>from</strong> zero will be indication <strong>of</strong> new source<strong>of</strong> CP violation• Measured value is 3.9σ <strong>from</strong> prediction−+NN= ( −2.3+ 0.5− .6) ×010−4Dmitri Denisov, Nagoya University 17


Di-muon Asymmetry AnomalyDecay channel <strong>for</strong> B s0 :B s0 →μ + νD s− XD s− → φπ −φ → K + K −Decay channels <strong>for</strong> B 0 :1) B 0 →μ + νD − XD − → K + π − π −• Combined DØ result– Deviation is ~2.9 σ <strong>from</strong> <strong>the</strong> SM• Reasons– New physics?– Un-known systematic?– Di-muon asymmetry is not related<strong>to</strong> B mesons oscillations?LHCb :B-Fac<strong>to</strong>ries :Dmitri Denisov, Nagoya University18


Electroweak: W Boson Mass MeasurementSingle and pair W/Z production, asymmetries, weak mixing angle…M w = 80,375 23MeV0.03% accuracy• W boson mass is measured using decay products: electron and neutrino• DØ : calibration <strong>of</strong> energy scale is per<strong>for</strong>med using Z boson massDmitri Denisov, Nagoya University 19


World Average W boson MassCDF: tracker based lep<strong>to</strong>nmomentum measurementM w = 80,387 19 MeV0.03% accuracyW mass world average is now80,385 15 MeV (0.02%)Dmitri Denisov, Nagoya University 20


Heaviest known elementary particle:~173 GeVMeasure properties <strong>of</strong> <strong>the</strong> least knownquark• mass, charge, decay modes, etc.• data sets <strong>of</strong> 1000’s <strong>of</strong> <strong>to</strong>p quarks exist Short life time: probe bare quark<strong>Top</strong> <strong>Quark</strong> Studies85 % 15 %<strong>Discovery</strong> in 1995Today~10,000 eventsl+4 jets≥ 1 b-tagDmitri Denisov, Nagoya University 21


<strong>Discovery</strong> <strong>of</strong> <strong>the</strong> <strong>Top</strong> <strong>Quark</strong>Due <strong>to</strong> relatively low backgrounds (high <strong>to</strong>p quark mass, pair production)“a few” candidates only required <strong>for</strong> <strong>the</strong> discoveryDmitri Denisov, Nagoya University 22


<strong>Top</strong> <strong>Quark</strong> Mass Measurement• <strong>Top</strong> quark mass is measured using decay products in many different channels• Lep<strong>to</strong>n+jets channel with two jets coming <strong>from</strong> W boson is <strong>the</strong> most preciseDØ and CDF combined <strong>to</strong>p mass resultm t = 173.2±0.9 GeV0.5% accuracyBest (<strong>of</strong> any) quark mass measurement!Dmitri Denisov, Nagoya University 23


Anomaly in <strong>Top</strong> <strong>Quark</strong> Studies• In Standard Model, <strong>the</strong>re is no asymmetry inleading order, but next <strong>to</strong> leading orderpredicts asymmetry– Positive asymmetry <strong>from</strong> box diagrams– Negative asymmetry <strong>from</strong> ISR and FSR• Forward backward asymmetry– Enhanced in some beyond standardmodels scenariousDmitri Denisov, Nagoya University24


<strong>Top</strong> <strong>Quark</strong> Forward-Backward Asymmetry• CDF l+jets (8.7 fb -1 )A FB = (16.2 ± 4.7) %Theory prediction: 6.6 %~2 σ deviation <strong>from</strong> NLOSlope <strong>of</strong> A FB (M tt )(15.6 ± 5.0) ×10 -4• DØ results (5.4 fb -1 )l+jets : A FB = 15.2 ± 4.0 %dilep<strong>to</strong>ns : A FB = 5.8 ± 5.1 ± 1.3%(stat.) (syst.)Combined result : 11.8 ± 3.2 %SM prediction : 4.7 %~2 σ deviation <strong>from</strong> NLO• Options• Statistics?• Not accurate enough QCD predictions?• New Physics?Dmitri Denisov, Nagoya University25


Main <strong>Top</strong> <strong>Quark</strong> Properties Measured at <strong>the</strong> <strong>Tevatron</strong>• <strong>Top</strong> quark mass: m t = 173.2±0.9 GeV (0.5% accuracy)• Are <strong>to</strong>p and anti<strong>to</strong>p masses <strong>the</strong> same? Test <strong>of</strong> CPT∆m=0.8± 1.9 GeV (equal <strong>to</strong> 1%)• <strong>Top</strong> quark lifetimeΓ t =1.99(+0.69/-0.55) GeV agrees with SM• <strong>Top</strong> charge |q|=2/3e <strong>to</strong> 95% C.L.• W helicity in <strong>to</strong>p decay expect 70% longitudinal, 30% left-handedSM looks good• Asymmetry <strong>of</strong> <strong>to</strong>p quark in p vs pbar direction expected <strong>to</strong> be a few %Anomalous asymmetry <strong>of</strong> ~15% - requires <strong>the</strong>ory improvements?• Correlations <strong>of</strong> spins <strong>of</strong> <strong>to</strong>p and anti-<strong>to</strong>p are consistent with SM• No flavor changing neutral currents


Higgs Searches – Indirect LimitsIndirect experimental limits Precision <strong>the</strong>ory fits including W bosonmass and <strong>to</strong>p quark massM H


Higgs Searches Status: ~1.5 Years Ago• Higgs masses 158-173 GeV are excluded by <strong>the</strong> <strong>Tevatron</strong>• Precision measurements point <strong>to</strong> Higgs masses below ~150 GeV• LEP results indicate Higgs mass is above ~114 GeVMarch 2011<strong>Tevatron</strong> Direct Limits+ Indirect Constrains• Higgs mass was limited <strong>to</strong> 114 <strong>to</strong> 137 GeV window at 95% CL• Most probable value was… 125 GeVDmitri Denisov, Nagoya University 28


Higgs Production and Decays at <strong>the</strong> <strong>Tevatron</strong>Production cross sections in <strong>the</strong> 1 pb range <strong>for</strong> gg H in <strong>the</strong> 0.1 pb range <strong>for</strong> associatedvec<strong>to</strong>r boson productionDecays bb <strong>for</strong> M H < 135 GeV WW <strong>for</strong> M H > 135 GeVSearch strategy:M H 135 GeV gg H production with decay <strong>to</strong> WWMain background: electroweak WW productionDmitri Denisov, Nagoya University 29


Experimental Challenges• Probability <strong>of</strong> producing Higgs is lowN events = L x σ• High luminosity is important!• Backgrounds <strong>from</strong> Standard Modelprocesses are high– Only one out <strong>of</strong> ~10 12 collisionsmight contain Higgs• Separation <strong>of</strong> backgrounds is one <strong>of</strong> <strong>the</strong>main challenges in hunt <strong>for</strong> <strong>the</strong> HiggsMassDmitri Denisov, Nagoya University 30


Number <strong>of</strong> Higgs Events• Number <strong>of</strong> Higgs events available <strong>to</strong> CDF+DØ with <strong>the</strong> full <strong>Tevatron</strong>Run II data set <strong>of</strong> 10 fb -1 at 125 GeV is ~10 3• Reconstruction/selection efficiencies– ~10% in H→bb channels and ~25% in H→WW channelsDmitri Denisov, Nagoya University 31


Higgs Search: H WW lνlν (M H >130 GeV)Search strategy:H 2 high P t lep<strong>to</strong>ns and missing E t WW pair comes <strong>from</strong> spin 0 Higgs:lep<strong>to</strong>ns prefer <strong>to</strong> point in <strong>the</strong> samedirectionνW + l +νW - l -0 jet ≥2 jetsDmitri Denisov, Nagoya University 32


Final Selection DiscriminantsMultivariate Analyses (neural networks, boosted decision trees, etc.)are used <strong>to</strong> provide a gain sensitivity beyond that obtained <strong>from</strong>optimized, cut-based analysisEventKinematicsTrainingBackgroundsSignalTrainingFinalMVA (NN, BDT…)Discriminantcorrelate multipleinput variablesEven <strong>for</strong> a single channel reach S/B ~1 in high discriminant region!Dmitri Denisov, Nagoya University33


CDF/D0 H→WW→lνlν LimitsLimits are presented as ration <strong>to</strong> Standard Model predictionsBoth experiments exclude Standard Model Higgs boson around 165 GeVDmitri Denisov, Nagoya University34


H→W + W - <strong>Tevatron</strong> CombinationExclude 147 < MH < 180 GeV at 95% CLDmitri Denisov, Nagoya University35


165 GeV Mass - Number <strong>of</strong> EventsEvents in all channels are sorted based on signal/background ratioNo excess observedDmitri Denisov, Nagoya University36


Low Mass Higgs Channels• Main discriminant is di-jet mass<strong>from</strong> b-quarks pair• Elaborate b-tagging <strong>of</strong> jets• Multivariate analyses help <strong>to</strong>extract full in<strong>for</strong>mation aboutevent kinematicDmitri Denisov, Nagoya University37


Results <strong>from</strong> DØ38ZHllbb ∫Ldt=9.7fb -1 WHlvbb ∫Ldt=9.7 fb -1 ZHvvbb ∫Ldt=9.5 fb -195% CL Exp (obs)Limit 3.7 (4.3) x SM@ MH=115 GeV95% CL Exp (obs)Limit 3.2 (3.7) x SM@ MH=115 GeV95% CL Exp (obs)Limit 3.0 (2.7) x SM@ MH=115 GeVAll channels are consistent and demonstrate sensitivity <strong>to</strong> <strong>the</strong> HiggsDmitri Denisov, Nagoya University38


Results <strong>from</strong> CDFZHllbb∫Ldt=9.5 fb -1 WHlvbb ∫Ldt=9.5 fb -1 ZHvvbb ∫Ldt=9.5 fb -12 b-tag, TT+TLx10x2095% CL Exp (obs)Limit 2.6 (4.7) x SM@ MH=115 GeV95% CL Exp (obs)Limit 2.0 (3.1) x SM@ MH=115 GeV95% CL Exp (obs)Limit 2.7 (2.7) x SM@ MH=115 GeVPattern <strong>of</strong> an excess is starting <strong>to</strong> appear…Dmitri Denisov, Nagoya University39


Cross Check on Di-boson Processes40Benchmark <strong>for</strong> Hbb searches using well known processWZ, ZZ with W or Z decaying <strong>to</strong> lep<strong>to</strong>ns and Z decaying <strong>to</strong> heavy flavor jetsH or ZApply exactly <strong>the</strong> same selections and multivariate analysis as <strong>for</strong> WH/ZH searchesCDF+DØ combination cross-section: 3.9 +/- 0.9 pbStandard Model prediction: 4.4 +/- 0.3 pb4.5 σ significanceDmitri Denisov, Nagoya University40


CDF and DØ Higgs Search ResultsCDF and DØ combinations <strong>of</strong> all Higgs search channels:H→WW, H→bb, H→γγ + o<strong>the</strong>r modesRemarkably similar shapes: no excess belowbroad excess aroundexclusion around~110 GeV~120-140 GeV~165 GeVDmitri Denisov, Nagoya University41


June 2012 <strong>Tevatron</strong> CombinationObserved LimitExpected LimitSM PredictionDmitri Denisov, Nagoya UniversitySignificant excess: at 120-135 GeV42


Excess Shape Comparable with Higgs – Yes!Injection <strong>of</strong> Standard Model Higgs signal at 125 GeV provides very similar<strong>to</strong> <strong>the</strong> observed behavior“background like” shape above ~140 GeV“signal like” shape in 115-140 GeV regionDmitri Denisov, Nagoya University43


Probability <strong>of</strong> Background <strong>to</strong> Mimic Signal3.0σ local excess at 120 GeV2.5σ global excess taking in<strong>to</strong> account “look elsewhere effect”as we per<strong>for</strong>m studies at many data pointsDmitri Denisov, Nagoya University44


<strong>Tevatron</strong> H→bb Combination95% CL Upper Limits/SMJuly 2012Broad excess, maximum between 120 and 140 GeVDmitri Denisov, Nagoya UniversityWidth consistent with di-jet mass resolution45


H→bb, Probability <strong>of</strong> Background <strong>to</strong> Mimic SignalJuly 2012Significance <strong>of</strong>observedexcessChannels Local GlobalH→bb3.3 σ3.1 σ<strong>Evidence</strong>!Dmitri Denisov, Nagoya University46


Events Count <strong>for</strong> 125 GeV Higgs SearchClear excess in <strong>the</strong> high Signal/Background regionDmitri Denisov, Nagoya University47


Best Fit Cross Sections• Using data we extract σ x Br <strong>for</strong> H bb, H WW and H γγ valuesnormalized by <strong>the</strong> Standard Model predictions• All data are compatible with predictions <strong>for</strong> <strong>the</strong> Standard Model Higgs bosonDmitri Denisov, Nagoya University 48


<strong>Evidence</strong> <strong>for</strong> <strong>the</strong> Higgs Boson with Full <strong>Tevatron</strong> Data Set• <strong>Tevatron</strong> Higgs search data are incompatible with background only hypo<strong>the</strong>sis• For Higgs <strong>to</strong> bb channel p-value is 3.1σ• <strong>Tevatron</strong> data are compatible with Standard Model Higgs boson production in <strong>the</strong>mass range• 115 GeV < M H < 135 GeV in all studied channels including H bb, H WW and H γγ•• Based on <strong>Tevatron</strong> results, including precision W boson and <strong>to</strong>p quark massmeasurements, new particle has properties predicted <strong>for</strong> <strong>the</strong> Higgs in <strong>the</strong>Standard Model and couples <strong>to</strong> fermions• All <strong>of</strong> <strong>the</strong> above is interpreted as• <strong>Evidence</strong> <strong>for</strong> <strong>the</strong> Higgs boson production at <strong>the</strong> <strong>Tevatron</strong>


Current Status <strong>of</strong> Higgs “Searches”• LHC provides large samples <strong>of</strong> Higgs bosons (x100 <strong>Tevatron</strong> cross section)– Rare and clean decay modes, like γγ can be used <strong>for</strong> searches – discovery this summer!• <strong>Tevatron</strong>, due <strong>to</strong> pro<strong>to</strong>n-antipro<strong>to</strong>n collisions, provides unique opportunity <strong>to</strong> study mostprobable at 125 GeV decay mode: pair <strong>of</strong> b quarks and indicate coupling <strong>to</strong> fermionsCareful analysis <strong>of</strong> all available data, including cross sections at vastly differentcollision energies, demonstrates good agreement between properties <strong>of</strong> <strong>the</strong>observed particle and predicted in <strong>the</strong> Standard Model Higgs bosonDmitri Denisov, Nagoya University 50


Self-consistency <strong>of</strong> <strong>the</strong> Standard ModelPrecision measurements <strong>of</strong> Standard Model parameters and Higgs mass<strong>of</strong> ~125 GeV are in perfect agreementDmitri Denisov, Nagoya University 51


• <strong>Tevatron</strong>Looking Ahead - Higgs• Improved analysis will gain ano<strong>the</strong>r ~10% in sensitivity• HCP, Kyo<strong>to</strong> next week• Using mass constrain <strong>of</strong> 125 GeV will improve measurements <strong>of</strong>branching fraction <strong>to</strong> a pair <strong>of</strong> b-quarks• Measurement <strong>of</strong> Higgs couplings• LHC• More data coming: ~30 fb -1 by later this year be<strong>for</strong>e ~2 yearsshutdown• Sensitivity over 3 σ <strong>for</strong> majority decay modes, including fermions• Measurement <strong>of</strong> Higgs spin using large data sets• Measurement <strong>of</strong> Higgs couplings• Higgs fac<strong>to</strong>ry• As Higgs mass is relatively low• Medium energy lep<strong>to</strong>n collider will suffice• High luminosity is required <strong>for</strong> reasonable number <strong>of</strong> Higgs bosons• Exciting option widely discussedDmitri Denisov, Nagoya University52


<strong>Tevatron</strong> Highlights Summary• <strong>Tevatron</strong> experiments published over 1000 fundamental results• From <strong>the</strong> discovery <strong>of</strong> <strong>the</strong> <strong>to</strong>p quark <strong>to</strong> <strong>the</strong> evidence <strong>of</strong> <strong>the</strong> Higgs bosonproduction and decay <strong>to</strong> fermions• Many extremely precise measurements <strong>of</strong> <strong>the</strong> Standard Model parameters• 100’s <strong>of</strong> searches <strong>for</strong> physics beyond Standard Model with two “clouds” remaining• <strong>Top</strong> quark <strong>for</strong>ward-backward asymmetry• Anomalous di-muon asymmetry• 10 fb -1 unique pro<strong>to</strong>n-antipro<strong>to</strong>n collisions 1.96 TeV data set is accumulated• <strong>Tevatron</strong> collaborations will publish ~150 papers in 2012 and 2013• Large number <strong>of</strong> analyses in all physics areas continue including• Unique <strong>for</strong> pro<strong>to</strong>n-antipro<strong>to</strong>n collider measurements• <strong>Top</strong> quark mass <strong>to</strong> ~0.6 GeV accuracy and W boson mass <strong>to</strong> ~10 MeV accuracyDmitri Denisov, Nagoya University 53


Thank you <strong>for</strong> <strong>the</strong> invitation <strong>to</strong> visit Nagoya Universityand present an exciting summary <strong>of</strong> recent <strong>Tevatron</strong>results!ありがとうございます。Dmitri Denisov, Nagoya University 54


Backup Slides


Wjj Puzzle at <strong>the</strong> <strong>Tevatron</strong>• CDF: 3.2σ peak in di-jet mass spectrum• Cross section 3.1+/- 0.8 pb• Mass 144 +/- 5 GeV• Width consistent with detec<strong>to</strong>rresolution• ATLAS/CMS (pp) do not see “<strong>the</strong>bump”• Waiting <strong>for</strong> updated CDF analysisaddressing uncovered concernsDmitri Denisov, Nagoya University• DZero: good agreement withStandard Model• Exclude 3.1 pb cross section at 5 . 10 -4• 95% CL exclusion at 1.9 pb56


Cross Section * BR MeasurementJuly 2012SM Higgs @ 125 GeV:Dmitri Denisov, Nagoya University57


Higgs <strong>to</strong> γγDmitri Denisov, Nagoya University 58


Best Fit Cross SectionsDmitri Denisov, Nagoya University 59


Full Combination Events CountDmitri Denisov, Nagoya University 60


H <strong>to</strong> bb Combination Events CountDmitri Denisov, Nagoya University 61

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!