11.07.2015 Views

Proceedings of the 5th International Symposium on EQUINE ...

Proceedings of the 5th International Symposium on EQUINE ...

Proceedings of the 5th International Symposium on EQUINE ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

HavemeyerFoundati<strong>on</strong>Havemeyer Foundati<strong>on</strong>M<strong>on</strong>ograph Series No. 3<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><str<strong>on</strong>g>5th</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong><strong>EQUINE</strong> EMBRYO TRANSFER6th - 9th July 2000Saari, FinlandEditors: T. Katila and J. F. Wade


HavemeyerFoundati<strong>on</strong>Havemeyer Foundati<strong>on</strong>M<strong>on</strong>ograph Series No. 3<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><str<strong>on</strong>g>5th</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong><strong>EQUINE</strong> EMBRYO TRANSFER6th - 9th July 2000Saari, FinlandEditors: T. Katila and J. F. Wade


© 2001 by R & W Publicati<strong>on</strong>s (Newmarket) LimitedSuites 3 & 4, 8 Kings Court, Willie Snaith Road, Newmarket, Suffolk CB8 7SG, UKNo part <str<strong>on</strong>g>of</str<strong>on</strong>g> this publicati<strong>on</strong> may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,electr<strong>on</strong>ic, mechanical, photocopying, recording or o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise, without <str<strong>on</strong>g>the</str<strong>on</strong>g> prior permissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> copyright owner.Authorisati<strong>on</strong> to photocopy items for internal or pers<strong>on</strong>al use, or <str<strong>on</strong>g>the</str<strong>on</strong>g> internal or pers<strong>on</strong>al use <str<strong>on</strong>g>of</str<strong>on</strong>g> specific clients, isgranted by R & W Publicati<strong>on</strong>s (Newmarket) Limited for libraries and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r users registered with <str<strong>on</strong>g>the</str<strong>on</strong>g> CopyrightClearance Center (CCC) Transacti<strong>on</strong>al Reporting Service, provided that <str<strong>on</strong>g>the</str<strong>on</strong>g> base fee <str<strong>on</strong>g>of</str<strong>on</strong>g> £0.02 per copy (no additi<strong>on</strong>alfee per page) is paid directly to CCC, 21 C<strong>on</strong>gress Street, Salem, MA 01970. This c<strong>on</strong>sent does not extend to o<str<strong>on</strong>g>the</str<strong>on</strong>g>rkinds <str<strong>on</strong>g>of</str<strong>on</strong>g> copying, such as copying for general distributi<strong>on</strong>, for advertising or promoti<strong>on</strong>al purposes, for creating newcollective works, or for resale.First published 2001ISSN 1472-3158Published by R & W Publicati<strong>on</strong>s (Newmarket) LimitedPrinted in Great Britain by Quality Print Services (Anglia) Limited


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3CONTENTSEDITORS’ FOREWORD ....................................................................................................................Page viSESSION 1: HORSES AND HYBRIDSThe equids and embryos <str<strong>on</strong>g>of</str<strong>on</strong>g> J. Cossar Ewart: a glimpse <str<strong>on</strong>g>of</str<strong>on</strong>g> Victorian and Edwardian research inreproducti<strong>on</strong>K. J. Betteridge ..................................................................................................................................Page 3Hysteroscopic uterotubal inseminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mares with low numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> frozen-thawedejaculated and epididymal spermatozoaL. H. A. Morris, C. Tiplady, S. Wilsher and W. R. Allen ...................................................................Page 4Hysteroscopic inseminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong> frozen and frozen unsexed and sexed equine sptermatozoaA. C. Lindsey, L. H. A. Morris, W. R. Allen, J. L. Schenk, J. K. Graham, J. E. Bruemmer andE. L. Squires .......................................................................................................................................Page 6Uterine blood flow during oestrous cycle and early pregnancy in maresH. Bollwein, R. Mayer and R. Stolla .................................................................................................Page 8SESSION 2: OOCYTES – MATURATION AND FERTILISATIONFollicular waves and selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> follicles in maresO. J. Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r, D. R. Bergfelt and F. X. D<strong>on</strong>adeu .............................................................................Page 15Organisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cytoskelet<strong>on</strong> during in vitro maturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> horse oocytesJ. L.Tremoleda, E. J. Schoevers, T. A. E. Stout, B. Colenbrander and M. M. Bevers .....................Page 19Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature and holding time <strong>on</strong> equine oocyte chromatin c<strong>on</strong>figurati<strong>on</strong>H. G. Pedersen, E. E. Telfer and E. D. Wats<strong>on</strong> ...............................................................................Page 22Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> fetuin <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> z<strong>on</strong>a hardening and cortical ganules distributi<strong>on</strong> in equineoocytes matured in vitroF. C. Landim-Alvarenga, S. E. A. Boyazoglu, G. E. Jr. Seidel and E. L. Squires ...........................Page 26Polyvinylalcohol is superior to bovine serum albumin in equine IVF mediumY. H. Choi, G. E. Seidel, Jr., S. Boyazoglu and E. L. Squires .........................................................Page 28The development <str<strong>on</strong>g>of</str<strong>on</strong>g> blastocysts after intracytoplasmic sperm injecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equine oocytesX. Li, L. H-A. Morris and W. R. Allen ............................................................................................Page 30Embry<strong>on</strong>ic development <str<strong>on</strong>g>of</str<strong>on</strong>g> equine oocytes fertilised by ICSIC. Galli, G. Crotti, G. Mari and G. Lazzari ...................................................................................Page 32Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive adenylate cyclase during oocyte maturati<strong>on</strong> <strong>on</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g>equine embryos following ICSIL. J. Maclellan, M. M. Sims and E. L Squires ................................................................................Page 35iii


Equine Embryo TransferChromatin c<strong>on</strong>figurati<strong>on</strong>, meiotic competence and success <str<strong>on</strong>g>of</str<strong>on</strong>g> intra-cytoplasmic sperminjecti<strong>on</strong> in horse oocytes collected by follicular aspirati<strong>on</strong> or scrapingM. E. Dell’Aquila, M. Masters<strong>on</strong>, F. Maritato and K. Hinrichs ....................................................Page 37Transvaginal intrafollicular sperm cell injecti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> cyclic mareM. Meinjtes, B. Eilts, R. Cochran, K. Graff, R. Dennist<strong>on</strong>, D. Paccam<strong>on</strong>ti and R. Godke ...........Page 39Fertilisati<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> in vitro matured oocytes transferred into <str<strong>on</strong>g>the</str<strong>on</strong>g> oviduct <str<strong>on</strong>g>of</str<strong>on</strong>g> inseminated maresC. C. Love, S. P. Brinsko, D. D. Varner and K. Hinrichs ...............................................................Page 41Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bovine and equine oocytes as host cytoplasts for equine nuclear transferK. Hinrichs, T. Shin, C. C. Love, D. D. Varner and M. E. Westhusin ............................................Page 43Nuclear transfer embryos in <str<strong>on</strong>g>the</str<strong>on</strong>g> horseB. C. Reggio, M. Sansinena, R. A. Cochran, A. Guitreau, J. A. Carter, R. S. Dennist<strong>on</strong>and R. A. Godke ..............................................................................................................................Page 45Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> oocyte maturity and methods <str<strong>on</strong>g>of</str<strong>on</strong>g> collecti<strong>on</strong>, culture and inseminati<strong>on</strong> <strong>on</strong>equine oocyte transferE. M. Carnevale, L. J. Maclellan, T. J. Scott, M. A. Coutinho da Silva, C. F. Scogginand E. L. Squires .............................................................................................................................Page 47SESSION 3: EMBRYO COOLING AND FREEZINGNovel methods <str<strong>on</strong>g>of</str<strong>on</strong>g> embryo cryopreservati<strong>on</strong>S. P. Leibo ......................................................................................................................................Page 51Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glycerol and ethylene glycol in equine embryo freexing using c<strong>on</strong>focalmicroscopy, dapi-staining and n<strong>on</strong>surgical transferM. Huhtinen, A. Sjöholm and J. Paranko .......................................................................................Page 52Cryopreservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equine embryos by OPS, cryoloop, or c<strong>on</strong>venti<strong>on</strong>al slow cooling methodsN. Oberstein, M. K. O’D<strong>on</strong>ovan, J. E. Bruemmer, M. Lane, G. E. Seidel, Jr.,E. M. Carnevale and E. L. Squires .................................................................................................Page 54Metabolic activity <str<strong>on</strong>g>of</str<strong>on</strong>g> equine blastocysts cryopreserved in ethylene glycol and galactoseM. K. O’D<strong>on</strong>ovan, N. Oberstein, J. E. Bruemmer, M. Lane, G. E. Seidel, Jr.,D. K. Gardner and E. L. Squires ...................................................................................................Page 57Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> capsular material by equine trophoblast transplanted into immunodeficient miceA. Albihn, J. Samper, J. G. Oriol, B. A. Croy and K. J. Betteridge ................................................Page 60Does <str<strong>on</strong>g>the</str<strong>on</strong>g> embry<strong>on</strong>ic capsule impede <str<strong>on</strong>g>the</str<strong>on</strong>g> freezing <str<strong>on</strong>g>of</str<strong>on</strong>g> equine embryos?E. Legrand, J. M. Krawiecki, D. Tainturier, P. Cornière, H. Delajarraud andJ. F. Bruyas .....................................................................................................................................Page 62When do equine embryos enter <str<strong>on</strong>g>the</str<strong>on</strong>g> uterine cavity: an attempt to answer?I. Battut, A. Grandchamp des Raux, J. L. Nicaise, F. Fieni, D. Tainturier and J.F. Bruyas ..........Page 66SESSION 4: COMMERCIALEMBRYO TRANSFERChanges <str<strong>on</strong>g>of</str<strong>on</strong>g> PGFM, progester<strong>on</strong>e and LH secreti<strong>on</strong> patterns in relati<strong>on</strong> to cycle lengthafter cervical manipulati<strong>on</strong> in maresJ. Handler, M. Königsh<str<strong>on</strong>g>of</str<strong>on</strong>g>er, H. Kindahl, H.-O. Hoppen, J. E. Aurich and B. Aurich ..................Page 71The influences <str<strong>on</strong>g>of</str<strong>on</strong>g> maternal size, age and parity <strong>on</strong> placental and fetal developmentin <str<strong>on</strong>g>the</str<strong>on</strong>g> horseS. Wilsher and W. R. Allen .............................................................................................................Page 74iv


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3Use <str<strong>on</strong>g>of</str<strong>on</strong>g> busereline to induce ovulati<strong>on</strong> in d<strong>on</strong>or maresJ. F. Bruyas, E. Trocherie, S. Hecht, N. Lepoutre, A. Granchamp des Raux,J.-L.Nicaise, X. Vérin, J. Bertrand, I.Barrier-Battut, F. Fiéni, R. Hoier, A. Renault,L. Egr<strong>on</strong> and D. Tainturier ..............................................................................................................Page 76Improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> ovarian superstimulatory resp<strong>on</strong>se and embryo producti<strong>on</strong> in marestreated with EPE twice dailyM. A. Alvarenga, P. McCue, E. L. Squires and J. R. Neves Neto ..................................................Page 79Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple ovulati<strong>on</strong>s in a commercial equine embryo transfer programmeL. Losinno, J. J. Aguilar and H. Lisa ............................................................................................Page 81Embryo recovery rates in mares with echogenic preovulatory folliclesP. M. McCue, D. K. Vanderwall and E. L. Squires .......................................................................Page 84Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> embryo recovery rates from two years old and mature maresF. Camillo, I. Vannozzi, A. Rota, S. Romagnoli and G. Aria ........................................................Page 86Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> inseminati<strong>on</strong> timing <strong>on</strong> embryo recovery rate, pregnancy rate after transfer,and pregnancy loss rate in a commercial embryo transfer programmeF. L. Riera, J. E. Roldán and K. Hinrichs .....................................................................................Page 89Factors affecting pregnancy rates and early embry<strong>on</strong>ic death after equine embryo transferE. M. Carnevale, R. J. Ramirez, E. L. Squires, M. A. Alvarenga and P. M. McCue .....................Page 91Administered oestrogens are luteolytic during early pregnancy in maresT. A. E Stout and W. R. Allen .........................................................................................................Page 93Results from embryo freezing and post ovulati<strong>on</strong> breeding in a commercial embryotransfer programmeF. A. Lascombes and R. L. Pashen ................................................................................................Page 95LIST OF PARTICIPANTS...................................................................................................................Page 97AUTHOR INDEX ...............................................................................................................................Page 99v


Equine Embryo TransferEDITORS’ FOREWORDThe <str<strong>on</strong>g>5th</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong>Equine Embryo Transfer (EETV) wasarranged as a satellite symposium <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> 14th <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> C<strong>on</strong>gress <strong>on</strong> AnimalReproducti<strong>on</strong> (ICAR). This associati<strong>on</strong> withICAR-2000 was reflected in <str<strong>on</strong>g>the</str<strong>on</strong>g> peripateticvenue <str<strong>on</strong>g>of</str<strong>on</strong>g> EETV. The meeting started <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>Silja Serenade ferry in Stockholm andc<strong>on</strong>tinued during <str<strong>on</strong>g>the</str<strong>on</strong>g> voyage to Helsinki. Thesec<strong>on</strong>d two days <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> meeting was held inSaari, Finland.EETV is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> a large number <str<strong>on</strong>g>of</str<strong>on</strong>g>symposia <strong>on</strong> equine reproducti<strong>on</strong> funded by<str<strong>on</strong>g>the</str<strong>on</strong>g> Dorothy L. Russell HavemeyerFoundati<strong>on</strong>. Sincere thanks are due to MrGene Pranzo, President <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Foundati<strong>on</strong>,for recognising <str<strong>on</strong>g>the</str<strong>on</strong>g> importance andunderstanding <str<strong>on</strong>g>the</str<strong>on</strong>g> needs <str<strong>on</strong>g>of</str<strong>on</strong>g> internati<strong>on</strong>alresearch <strong>on</strong> equine reproducti<strong>on</strong>.The scientific programme was <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>highest quality, including <str<strong>on</strong>g>the</str<strong>on</strong>g> most noveltechniques in equine embryo biotechnology.The presenters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> papers are to bethanked for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir valuable c<strong>on</strong>tributi<strong>on</strong>.EETV was <str<strong>on</strong>g>the</str<strong>on</strong>g> first internati<strong>on</strong>al equinereproducti<strong>on</strong> event ever arranged in Finland.Previous meetings in this series have takenplace in Cornell, Banff, Buenos Aires andReims. Each c<strong>on</strong>gress has had its ownparticular features relating to <str<strong>on</strong>g>the</str<strong>on</strong>g> specifichost countries. Finland is particularly wellknown for pure nature, lakes and sauna.Participants will get <str<strong>on</strong>g>the</str<strong>on</strong>g> opportunity toexperience all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se.We are c<strong>on</strong>fident that <str<strong>on</strong>g>the</str<strong>on</strong>g> meetingrevealed a great deal <str<strong>on</strong>g>of</str<strong>on</strong>g> new informati<strong>on</strong>. Wehope that all participants enjoyed <str<strong>on</strong>g>the</str<strong>on</strong>g>ir stay inFinland and returned home with goodmemories.T. KatilaJ. F. Wadevi


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3Allergic Diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> HorseApril - Lipica, SloveniaOrganisers: Drs D. F. Antczak, S. Lazary and E. MartiEquine Placentitis WorkshopOctober - Lexingt<strong>on</strong>, Kentucky, USAOrganisers: Drs D. F. Antczak, W. R. Allen and W. ZentSepticemia II WorkshopNovember - Bost<strong>on</strong>, Massachusetts, USAOrganiser: Dr M. R. Paradis1999 Equine Genome ProjectJanuary - San Diego, California, USAOrganisers: Drs D. F. Antczak and E. BaileyThird <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Equine Genome WorkshopJune - Uppsala, SwedenOrganisers: Drs D. F. Antczak, E. Bailey and K. SandbergFourth <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Meeting <str<strong>on</strong>g>of</str<strong>on</strong>g> OIE and WHO Experts <strong>on</strong> C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g>Equine InfluenzaAugust - Miami, Florida, USAOrganiser: Dr J. MumfordEuropean Equine Gamete WorkshopSeptember - Lopuszna, PolandOrganisers: Drs W. R. Allen and M. TischnerFetomaternal C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> PregnancyNovember - Barbados, West IndiesOrganisers: Drs T. Stout and W. R. Allen2000 Equine Genome ProjectJanuary - San Diego, California, USAOrganisers: Drs D. F. Antczak and E. BaileyUterine Infecti<strong>on</strong>s in Mares and Women: A Comparative StudyMarch - Naples, Florida, USAOrganiser: Dr M. M. LeBlanc<str<strong>on</strong>g>5th</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> <strong>on</strong> Equine Embryo TransferSaari, FinlandOrganiser: Dr T. Katilaix


xEquine Embryo Transfer


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3SESSION 1:Horses and hybridsChairman: D. C. Sharp1


2Equine Embryo Transfer


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3THE EQUIDS AND EMBRYOS OF J. COSSAR EWART:A GLIMPSE OF VICTORIAN AND EDWARDIANRESEARCH IN REPRODUCTIONK. J. BetteridgeDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomedical Sciences, Ontario Veterinary College, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Guelph, Guelph,Ontario N1G 2W1, CanadaJames Cossar Ewart (1851–1933) lived throughtimes <str<strong>on</strong>g>of</str<strong>on</strong>g> turmoil in <str<strong>on</strong>g>the</str<strong>on</strong>g> biological sciences,particularly those related to <str<strong>on</strong>g>the</str<strong>on</strong>g> understanding <str<strong>on</strong>g>of</str<strong>on</strong>g>heredity. In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g>re was c<strong>on</strong>flict between‘men <str<strong>on</strong>g>of</str<strong>on</strong>g> science’ and practical animal breeders, aswell as am<strong>on</strong>g scientists, as to whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r ‘teleg<strong>on</strong>y’ -<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e sire affecting <str<strong>on</strong>g>the</str<strong>on</strong>g> phenotype <str<strong>on</strong>g>of</str<strong>on</strong>g> adam’s subsequent <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring by different sires - is areal phenomen<strong>on</strong>. Those disputes, which preceded<str<strong>on</strong>g>the</str<strong>on</strong>g> rediscovery <str<strong>on</strong>g>of</str<strong>on</strong>g> Mendel’s observati<strong>on</strong>s, spawned2 different experimental approaches to <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g>heredity, both <str<strong>on</strong>g>of</str<strong>on</strong>g> which were significant to <str<strong>on</strong>g>the</str<strong>on</strong>g>development <str<strong>on</strong>g>of</str<strong>on</strong>g> equine embryo transfer. First, <str<strong>on</strong>g>the</str<strong>on</strong>g>rewas <str<strong>on</strong>g>the</str<strong>on</strong>g> development, in rabbits, <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> transferprocedure itself, by Walter Heape and GeorgeRomanes, independently. Ewart, <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand,undertook a large-scale crossbreeding experimentwith horses and zebras at Penycuik, nearEdinburgh. He tested <str<strong>on</strong>g>the</str<strong>on</strong>g> evidence for teleg<strong>on</strong>y thathad been based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> famous case <str<strong>on</strong>g>of</str<strong>on</strong>g> LordMort<strong>on</strong>’s mare. She had supposedly been‘infected’ by a quagga sire and produced a stripedfoal when subsequently bred to an Arab stalli<strong>on</strong>.Ewart’s studies also led to <str<strong>on</strong>g>the</str<strong>on</strong>g> first descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> chori<strong>on</strong>ic girdle (commemorated in a previousHavemeyer <str<strong>on</strong>g>Symposium</str<strong>on</strong>g>), <str<strong>on</strong>g>of</str<strong>on</strong>g> equine embryos andfoetuses from <str<strong>on</strong>g>the</str<strong>on</strong>g> third week <str<strong>on</strong>g>of</str<strong>on</strong>g> gestati<strong>on</strong>, and <str<strong>on</strong>g>the</str<strong>on</strong>g>irrelevance to <str<strong>on</strong>g>the</str<strong>on</strong>g> phylogenetic history <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> horse,and <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> comparative observati<strong>on</strong>s inreproducti<strong>on</strong>. In c<strong>on</strong>sidering Ewart’s c<strong>on</strong>tributi<strong>on</strong>sto our science, published informati<strong>on</strong> will besupplemented with material gleaned from hispapers and corresp<strong>on</strong>dence held at <str<strong>on</strong>g>the</str<strong>on</strong>g> University<str<strong>on</strong>g>of</str<strong>on</strong>g> Edinburgh. On <str<strong>on</strong>g>the</str<strong>on</strong>g> positive side, <str<strong>on</strong>g>the</str<strong>on</strong>g> lattermaterial documents interesting exchanges betweenEwart and several giants in our field (Heape,Marshall, Hill, Hamm<strong>on</strong>d and Catchpole). Letterstell familiar tales <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> difficulties <str<strong>on</strong>g>of</str<strong>on</strong>g> financingresearch, and less familiar <strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tact withroyalty, Downing Street and <str<strong>on</strong>g>the</str<strong>on</strong>g> aristocracy.Against this must be balanced disturbing tracts <strong>on</strong>eugenics. Overall, however, <str<strong>on</strong>g>the</str<strong>on</strong>g> material <str<strong>on</strong>g>of</str<strong>on</strong>g>fersinstructive insight into <str<strong>on</strong>g>the</str<strong>on</strong>g> life and times <str<strong>on</strong>g>of</str<strong>on</strong>g>:“He who had talked with Darwin and Huxley,who had witnessed <str<strong>on</strong>g>the</str<strong>on</strong>g> change in human thoughtc<strong>on</strong>sequent up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> promulgati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g>ory, [and] was notable am<strong>on</strong>gst his fellows for<str<strong>on</strong>g>the</str<strong>on</strong>g> reas<strong>on</strong> that he, a pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al biologist and aUniversity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, left <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory for <str<strong>on</strong>g>the</str<strong>on</strong>g>farm to use animals <str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omic importance as hisexperimental material and to attack problemswhich not <strong>on</strong>ly possessed a scientific interest, butwhich, in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir soluti<strong>on</strong>, might c<strong>on</strong>fer advantage <strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g> community.”(From <str<strong>on</strong>g>the</str<strong>on</strong>g> obituary <str<strong>on</strong>g>of</str<strong>on</strong>g> J. Cossar Ewart byF.A.E. Crew, Animal Breeding Abstracts, 1934).3


Equine Embryo TransferHYSTEROSCOPIC UTEROTUBAL INSEMINATION OFMARES WITH LOW NUMBERS OF FROZEN-THAWEDEJACULATED AND EPIDIDYMAL SPERMATOZOAL. H. A. Morris, C. Tiplady, S. Wilsher and W. R. AllenEquine Fertility Unit, Mertoun Paddocks, Woodditt<strong>on</strong> Road, Newmarket, Suffolk CB8 9BH, UKINTRODUCTIONFirst cycle c<strong>on</strong>cepti<strong>on</strong> rates for mares inseminatedwith frozen-thawed ejaculated spermatozoa havebeen reported to range from 32% (Vidament et al.1997) to 58% (Samper 1995). These figures havebeen achieved after performing repeated ultrasoundexaminati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> follicular development at 4–8 hintervals to ensure that a minimum <str<strong>on</strong>g>of</str<strong>on</strong>g> 200–500milli<strong>on</strong> spermatozoa are deposited in <str<strong>on</strong>g>the</str<strong>on</strong>g> uterusclose to <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> ovulati<strong>on</strong>. The present studysought to inseminate mares hysteroscopically(Morris et al. 2000) with low numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> frozenthawedejaculated and epididymal spermatozoa at afixed time after administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an ovulati<strong>on</strong>inducingdose <str<strong>on</strong>g>of</str<strong>on</strong>g> human Chori<strong>on</strong>ic G<strong>on</strong>adotropin(Chorul<strong>on</strong>, Intervet, Milt<strong>on</strong> Keynes, UK).MATERIALS AND METHODSSemen was collected by artificial vagina from twoidentical twin P<strong>on</strong>y stalli<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> known highfertility, and by flushing <str<strong>on</strong>g>the</str<strong>on</strong>g> epididymes <str<strong>on</strong>g>of</str<strong>on</strong>g> testiclesrecovered during routine castrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> youngThoroughbred colts. Both <str<strong>on</strong>g>the</str<strong>on</strong>g> ejaculated andepididymal samples were extended in an equalvolume <str<strong>on</strong>g>of</str<strong>on</strong>g> a skim milk – glucose diluent beforebeing centrifuged at 300 g for 10 min. Thesupernatant was decanted and <str<strong>on</strong>g>the</str<strong>on</strong>g> sperm pellet wasresuspended in ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r a Tris-based or a HEPESbufferedextender supplemented with glycerol. Theresulting sperm suspensi<strong>on</strong>s were <str<strong>on</strong>g>the</str<strong>on</strong>g>n frozen inliquid N 2 vapour in 0.5 ml straws. At thawing <str<strong>on</strong>g>the</str<strong>on</strong>g>straws were placed in a 37ºC water bath for 30 s.The ovaries <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oestrous mares to beinseminated were m<strong>on</strong>itored ultras<strong>on</strong>ographically<strong>on</strong>ce daily and, when a dominant follicle <str<strong>on</strong>g>of</str<strong>on</strong>g> ≥35mm diameter was observed an ovulati<strong>on</strong>-inducingdose <str<strong>on</strong>g>of</str<strong>on</strong>g> 1,500–3,000 iu hCG was administered iv.Between 30 and 32 h later, <str<strong>on</strong>g>the</str<strong>on</strong>g> mares wereinseminated as follows: Group 1: 25 milli<strong>on</strong>spermatozoa in 0.5 ml diluent by c<strong>on</strong>venti<strong>on</strong>alartificial inseminati<strong>on</strong> (n = 12); Group 2: 25milli<strong>on</strong> spermatozoa in 0.5 ml diluent, depositedhysteroscopically <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> uterotubal papilla at <str<strong>on</strong>g>the</str<strong>on</strong>g>tip <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> uterine horn ipsilateral to <str<strong>on</strong>g>the</str<strong>on</strong>g> impendingovulati<strong>on</strong> (n =14); Group 3: 5 milli<strong>on</strong> spermatozoain 0.1 ml diluent, deposited hysterscopically <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ipsilateral uterotubal papilla (n = 34); Group 4: 5milli<strong>on</strong> spermatozoa in 0.1 ml diluent depositedhysteroscopically in <str<strong>on</strong>g>the</str<strong>on</strong>g> posterior body <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>uterus to simulate <str<strong>on</strong>g>the</str<strong>on</strong>g> site <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al artificialinseminati<strong>on</strong> (n = 8); Group 5: 5 milli<strong>on</strong>spermatozoa in 0.1 ml diluent depositedhysteroscopically <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> uterotubal papillac<strong>on</strong>tralateral to <str<strong>on</strong>g>the</str<strong>on</strong>g> impending ovulati<strong>on</strong> (n = 12);Group 6: 300 milli<strong>on</strong> epididymal spermatozoa in0.5 ml diluent deposited hysterscopically <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>uterotubal papilla ipsilateral to <str<strong>on</strong>g>the</str<strong>on</strong>g> impendingovulati<strong>on</strong> (n = 25); Group 7: 5 milli<strong>on</strong> epididymalspermatozoa in 0.1 ml diluent depositedhysteroscopically <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> uterotubal papillaipsilateral to <str<strong>on</strong>g>the</str<strong>on</strong>g> impending ovulati<strong>on</strong> (n = 19).RESULTSOf all <str<strong>on</strong>g>the</str<strong>on</strong>g> 148 inseminated mares, 124 (83.8%) hadovulated within 15 h after <str<strong>on</strong>g>the</str<strong>on</strong>g> inseminati<strong>on</strong> inresp<strong>on</strong>se to <str<strong>on</strong>g>the</str<strong>on</strong>g> g<strong>on</strong>adotropin injecti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>seanimals were <str<strong>on</strong>g>the</str<strong>on</strong>g>refore included in <str<strong>on</strong>g>the</str<strong>on</strong>g> results,which are summarised in Figure 1.DISCUSSIONThe results dem<strong>on</strong>strate clearly that highc<strong>on</strong>cepti<strong>on</strong> rates are achievable in mares4


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 310080n=12% c<strong>on</strong>ceived6040n=14n=34n=820n=25025 milli<strong>on</strong> 25 milli<strong>on</strong> 5 milli<strong>on</strong> 5 milli<strong>on</strong> 5 milli<strong>on</strong> 300 milli<strong>on</strong> 5 milli<strong>on</strong>0.5 ml 0.5 ml 0.1 ml 0.1 ml 0.1 ml 0.5 ml 0.1 mlC<strong>on</strong>venti<strong>on</strong>al AI Ipsilateral UTJ Ipsilateral UTJ Cranial to cervix C<strong>on</strong>tralateral UTJ Epididymal UTJ Epididymal UTJn=12n=19Fig 1: C<strong>on</strong>cepti<strong>on</strong> rates achieved in mares inseminated hysteroscopically and c<strong>on</strong>venti<strong>on</strong>ally with low numbers <str<strong>on</strong>g>of</str<strong>on</strong>g>frozen-thawed ejaculated and epididymal spermatozoa.inseminated <strong>on</strong>ce with frozen-thawed ejaculatedspermatozoa from fertile stalli<strong>on</strong>s at a fixed timeafter an ovulati<strong>on</strong>-inducing dose <str<strong>on</strong>g>of</str<strong>on</strong>g> g<strong>on</strong>adotropin.Not <strong>on</strong>ly were high c<strong>on</strong>cepti<strong>on</strong> rates obtained usingboth c<strong>on</strong>venti<strong>on</strong>al uterine body and hysteroscopicuterotubal inseminati<strong>on</strong> techniques, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g>frozen-thawed spermatozoa inseminated was <strong>on</strong>ly5–10% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum number <str<strong>on</strong>g>of</str<strong>on</strong>g> frozen thawedspermatozoa used c<strong>on</strong>venti<strong>on</strong>ally in commercialinseminati<strong>on</strong> programmes.When <str<strong>on</strong>g>the</str<strong>on</strong>g> inseminati<strong>on</strong> dose was 25 milli<strong>on</strong>motile spermatozoa, <str<strong>on</strong>g>the</str<strong>on</strong>g> hysteroscopic uterotubalmethod <str<strong>on</strong>g>of</str<strong>on</strong>g> inseminati<strong>on</strong> held no advantage over<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al uterine body inseminati<strong>on</strong>technique. When <str<strong>on</strong>g>the</str<strong>on</strong>g> inseminati<strong>on</strong> dose wasreduced to <strong>on</strong>ly 5 milli<strong>on</strong> spermatozoa in 0.1 mlextender, however, <str<strong>on</strong>g>the</str<strong>on</strong>g> hysteroscopic uterotubalmethod showed a definite advantage overc<strong>on</strong>venti<strong>on</strong>al depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inseminate justcranial to <str<strong>on</strong>g>the</str<strong>on</strong>g> cervix.Not surprisingly, <strong>on</strong>ly <strong>on</strong>e mare c<strong>on</strong>ceivedafter depositing <str<strong>on</strong>g>the</str<strong>on</strong>g> low dose <str<strong>on</strong>g>of</str<strong>on</strong>g> frozen-thawedspermatozoa <strong>on</strong>to <str<strong>on</strong>g>the</str<strong>on</strong>g> uterotubal papillac<strong>on</strong>tralateral to <str<strong>on</strong>g>the</str<strong>on</strong>g> side <str<strong>on</strong>g>of</str<strong>on</strong>g> ovulati<strong>on</strong>. This reflects<str<strong>on</strong>g>the</str<strong>on</strong>g> fragility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> frozen-thawed cells and <str<strong>on</strong>g>the</str<strong>on</strong>g>irpoor ability to migrate around <str<strong>on</strong>g>the</str<strong>on</strong>g> uterus to achievea satisfactory sperm reservoir at <str<strong>on</strong>g>the</str<strong>on</strong>g> site <str<strong>on</strong>g>of</str<strong>on</strong>g>fertilisati<strong>on</strong>.The low number <str<strong>on</strong>g>of</str<strong>on</strong>g> pregnancies obtained inmares inseminated with frozen-thawed epididymalspermatozoa was disappointing. The epididymalspermatozoa showed an appreciably lower motilitythan <str<strong>on</strong>g>the</str<strong>on</strong>g> ejaculated spermatozoa, both before andafter freezing, and <str<strong>on</strong>g>the</str<strong>on</strong>g>y exhibited a higherproporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> acrosome-reacted spermatozoa afterfreezing. Thus, it appears that <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gevity,viability and fertilising potential <str<strong>on</strong>g>of</str<strong>on</strong>g> epididymalspermatozoa is much less than ejaculatedspermatozoa after freezing and thawing, and thisdeficiency cannot be overcome by hysteroscopicdepositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sample close to <str<strong>on</strong>g>the</str<strong>on</strong>g> site <str<strong>on</strong>g>of</str<strong>on</strong>g>fertilisati<strong>on</strong>.The most important outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> study wasthat high c<strong>on</strong>cepti<strong>on</strong> rates can be achieved inmares inseminated with low numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> frozenthawedejaculated spermatozoa at a fixed timeafter <str<strong>on</strong>g>the</str<strong>on</strong>g> administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an ovulati<strong>on</strong> inducingagent.REFERENCESKloppe, L.H., Varner. D.D., Elmore. R.G., Bretzlaff,K.N. and Shull. J.W. (l988) Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> inseminati<strong>on</strong>timing <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> fertilizing capacity if frozen/thawedequine spermatozoa. Theriogenol. 29, 429-439.Loomis, P.R., Amann, R.P., Squires, E.L. and Pickett,B.W. (l983) Fertility <str<strong>on</strong>g>of</str<strong>on</strong>g> unfrozen and frozen stalli<strong>on</strong>spermatand pacMorris, L.HHysterospermapreovulPace, M.M.insemincomp<strong>on</strong>5


Equine Embryo TransferHYSTEROSCOPIC INSEMINATION OF NON FROZENAND FROZEN UNSEXED AND SEXED <strong>EQUINE</strong>SPERMATOZOAA. C. Lindsey, L. H. A. Morris*, W. R. Allen*, J. L. Schenk † , J. K. Graham,J. E. Bruemmer and E. L. SquiresAnimal Reproducti<strong>on</strong> and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado80523, USA; *Equine Fertility Unit, Mertoun Paddocks, Woodditt<strong>on</strong> Road, Newmarket, Suffolk CB89BH, UK; † XY, Inc., ARBL Building, Foothills Research Campus, Fort Collins, Colorado 80523, USAA safe and reliable method for prec<strong>on</strong>ceptual sexselecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring has been sought for decadesin humans, livestock, and even compani<strong>on</strong>animals. With a method developed some 10 yearsago (Johns<strong>on</strong> et al. 1989), effective preselecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>sex has been accomplished in many species <str<strong>on</strong>g>of</str<strong>on</strong>g>livestock, as well as in humans (Johns<strong>on</strong> 1991;Cran et al. 1997; Seidel et al. 1997; Fugger 1999).Sex preselecti<strong>on</strong> has also been successful in horses(Buchanan et al. 2000), but due to <str<strong>on</strong>g>the</str<strong>on</strong>g> limitednumber <str<strong>on</strong>g>of</str<strong>on</strong>g> spermatozoa available after <str<strong>on</strong>g>the</str<strong>on</strong>g> sortingprocess, traditi<strong>on</strong>al breeding doses are notavailable. Therefore, low-dose inseminati<strong>on</strong>techniques must be improved in order to maximise<str<strong>on</strong>g>the</str<strong>on</strong>g> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> sex-sorted spermatozoa.Hysteroscopic inseminati<strong>on</strong> has recently beenshown to produce acceptable pregnancy rateswhen using <strong>on</strong>ly <strong>on</strong>e milli<strong>on</strong> freshly collectedmotile spermatozoa (Morris et al. 2000). With<str<strong>on</strong>g>the</str<strong>on</strong>g>se encouraging results, it has been hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sisedthat hysteroscopic inseminati<strong>on</strong> could be aneffective and practical method to achievepregnancies using low numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> sex-sortedspermatozoa. The objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiment 1were: 1) to compare pregnancy rate with 5 x 10 6spermatozoa inseminated deep in <str<strong>on</strong>g>the</str<strong>on</strong>g> uterine hornaided by ultras<strong>on</strong>ography, or deposited <strong>on</strong>to <str<strong>on</strong>g>the</str<strong>on</strong>g>uterotubal papilla with <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> a flexible videoendoscope;and 2) to determine if hysteroscopicinseminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sexed spermatozoa can result insatisfactory pregnancy rate.Semen was collected from 2 stalli<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>acceptable fertility. Oestrus was synchr<strong>on</strong>ised(June–July) in 40 mares, ages 3–10, byadministering 10 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> altrenogest orally for 10days, followed by 250 µg cloprostenol im <strong>on</strong> Day11. Mares were given 3,000 iu hCG iv at <str<strong>on</strong>g>the</str<strong>on</strong>g> time<str<strong>on</strong>g>of</str<strong>on</strong>g> inseminati<strong>on</strong> and assigned to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 groups:Group 1 mares (n=10) were inseminated with 5 x10 6 Percoll-washed spermatozoa deposited deepinto <str<strong>on</strong>g>the</str<strong>on</strong>g> uterine horn with <str<strong>on</strong>g>the</str<strong>on</strong>g> aid <str<strong>on</strong>g>of</str<strong>on</strong>g>ultras<strong>on</strong>ography. Group 2 mares (n=10) wereinseminated with 5 x 10 6 Percoll-washedspermatozoa deposited <strong>on</strong>to <str<strong>on</strong>g>the</str<strong>on</strong>g> uterotubal papillaevia hysteroscopic inseminati<strong>on</strong>. Group 3 mares(n=20) were inseminated using <str<strong>on</strong>g>the</str<strong>on</strong>g> hysteroscopictechnique with 5 x 10 6 sex-sorted spermatozoa.Spermatozoa were stained with Hoechst 33342and sorted into X and Y chromosome-bearingpopulati<strong>on</strong>s based <strong>on</strong> DNA c<strong>on</strong>tent using an SXMoFlo sperm sorter. Pregnancy was determinedultras<strong>on</strong>ographically at 16 days post ovulati<strong>on</strong>.Hysteroscopic inseminati<strong>on</strong> resulted in morepregnancies than did <str<strong>on</strong>g>the</str<strong>on</strong>g> ultrasound-guidedTABLE 1: Pregnancy rate resulting from hysteroscopic or deep intrauterine inseminati<strong>on</strong>Treatment Mares inseminated Pregnant (16 d) Pregnancy rate (%)N<strong>on</strong>-sorted sperm, ultrasound guided 10 0 0 aN<strong>on</strong>-sorted sperm, hysteroscopic 10 5 50 bSex-sorted sperm, hysteroscopic 20 5 25 aba,b Values without comm<strong>on</strong> superscripts differ (P


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3TABLE 2: Pregnancy rate resulting from inseminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh/frozen n<strong>on</strong>-sorted/sorted spermTreatment Mares Pregnant Pregnancy Pregnant/inseminatedinseminated (16 d) rate (%) E Fresh n<strong>on</strong>-sorted 10 4 40Fresh sex-sorted 16 6 382/84/8Frozen/thawed n<strong>on</strong>-sorted 16 6 38Frozen/thawed sex-sorted 15 2 13 0/7 2/8technique when n<strong>on</strong>-sorted sperm wereinseminated. Pregnancy rates were notsignificantly lower when hysteroscopicinseminati<strong>on</strong> was used for sorted vs n<strong>on</strong>-sortedspermatozoa.The lack <str<strong>on</strong>g>of</str<strong>on</strong>g> pregnancies in Experiment 1following deep intrauterine inseminati<strong>on</strong> wasunexpected. One cause for <str<strong>on</strong>g>the</str<strong>on</strong>g>se poor results couldbe <str<strong>on</strong>g>the</str<strong>on</strong>g> small inseminati<strong>on</strong> volume used (100 µl).Buchanan et al. (2000) was able to achieve 35%pregnancy rates with a similar method, while usinga larger volume for inseminati<strong>on</strong>. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>rsignificant difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> 2 studies lies in<str<strong>on</strong>g>the</str<strong>on</strong>g> treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> sperm prior to inseminati<strong>on</strong>. In <str<strong>on</strong>g>the</str<strong>on</strong>g>previous study, n<strong>on</strong>-treated sperm wereinseminated within 1 h <str<strong>on</strong>g>of</str<strong>on</strong>g> collecti<strong>on</strong>. In <str<strong>on</strong>g>the</str<strong>on</strong>g> presentexperiment, sperm were inseminated 8 h or morefollowing collecti<strong>on</strong>, and were subjected t<strong>on</strong>umerous treatments, including 2 centrifugati<strong>on</strong>steps. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r studies are needed to determine <str<strong>on</strong>g>the</str<strong>on</strong>g>applicability <str<strong>on</strong>g>of</str<strong>on</strong>g> this method <str<strong>on</strong>g>of</str<strong>on</strong>g> horn inseminati<strong>on</strong>.Based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiment 1, deep uterineinseminati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> aid <str<strong>on</strong>g>of</str<strong>on</strong>g> a video-endoscope is<str<strong>on</strong>g>the</str<strong>on</strong>g> preferred method for low-dose inseminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>n<strong>on</strong>-sorted, as well as sex-sorted spermatozoa.Experiment 2 was c<strong>on</strong>ducted to compareeffects <str<strong>on</strong>g>of</str<strong>on</strong>g> sexing and freezing stalli<strong>on</strong> sperm <strong>on</strong>fertility using a 2 x 2 factorial design: sexed orunsexed vs fresh or frozen. Oestrus wassynchr<strong>on</strong>ised in 41 mares as presented in <str<strong>on</strong>g>the</str<strong>on</strong>g> firstexperiment. Mares were administered 3,000 iuhCG iv ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r 6 h (fresh sperm) or 30 h(frozen/thawed sperm) prior to inseminati<strong>on</strong>.Hysteroscopic inseminati<strong>on</strong> was performed <strong>on</strong> allmares with 5 x 10 6 motile sperm (230 µl). Mareswere randomly assigned to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> 4 treatmentgroups: Group 1 (n=10): inseminated with fresh,n<strong>on</strong>-sorted spermatozoa; Group 2 (n=16):inseminated with fresh sex-sorted spermatozoa.Group 3 (n=16): inseminated with frozen n<strong>on</strong>sortedspermatozoa. Group 4 (n=15): inseminatedwith frozen, sex-sorted spermatozoa.C<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sperm were adjusted beforefreezing, based <strong>on</strong> predetermined average postthaw motilities, so that each dose c<strong>on</strong>tainedapproximately 5 x 10 6 motile sperm post-thaw.Mares in Groups 1 and 2 were inseminatedapproximately 8 h after collecti<strong>on</strong>, based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>time needed to process and sort <strong>on</strong>e inseminati<strong>on</strong>dose. From collecti<strong>on</strong> to inseminati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>spermatozoa were protected from light and held atroom temperature in an adapted HEPES-bufferedtyrodes soluti<strong>on</strong> (Parrish et al. 1988).No difference was found (P>0.1) in pregnancyrate for mares inseminated with fresh n<strong>on</strong>-sorted,fresh sex-sorted or frozen n<strong>on</strong>-sorted spermatozoa(Table 2). Fewer mares became pregnant followinginseminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> frozen, flow-sorted spermatozoacompared to <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r treatments, but thisdifference was not significant, likely due to lowgroup numbers.These studies dem<strong>on</strong>strated that hysteroscopicinseminati<strong>on</strong> can be used to obtain pregnancieswith low numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh and frozen equinespermatozoa, as well as low numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> sex-sortedspermatozoa. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r studies are needed toimprove pregnancy rate with sex-sorted, frozenequine spermatozoa.REFERENCESBuchanan, B.R., Seidel, G.E. Jr, McCue, P.M., Schenk,J.L., Herickh<str<strong>on</strong>g>of</str<strong>on</strong>g>f, L.A. and Squires, E.L (2000)Inseminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mares with low numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> ei<str<strong>on</strong>g>the</str<strong>on</strong>g>runsexed or sexed spermatozoa. Theriogenol. 53,1333-1344.Cran, D.G., McKelvey, W.A.C., King, M.E., Dolman,D.F., McEvoy, T.G., Broadbent, P.J. and Robins<strong>on</strong>,J.J. (1997) Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lambs by low doseintrauterine inseminati<strong>on</strong> with flow cytometricallysorted and unsorted semen. Theriogenol. 47, 267(Abstract).Fugger, E.F. (1999) Clinical experience with flowcytometric separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> human X- and Y-chromosome bearing sperm. Theriogenol. 52, 1435-1440.Johns<strong>on</strong>, L.A. (1991) Sex preselecti<strong>on</strong> in swine: Alteredsex ratios in <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring following surgicalinseminsperm. RJohns<strong>on</strong>, L.preselecspermReprod.Morris, L.HHysterosperma7


Equine Embryo TransferUTERINE BLOOD FLOW DURING OESTROUS CYCLEAND EARLY PREGNANCY IN MARESH. Bollwein, R. Mayer and R. StollaGynaecological Animal Clinic, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Munich, GermanyINTRODUCTIONWhile <str<strong>on</strong>g>the</str<strong>on</strong>g>re are several studies <strong>on</strong> uterine bloodflow during early pregnancy in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species(Greiss and Anders<strong>on</strong> 1970; Ford and Christens<strong>on</strong>1979; Ford et al. 1989), until now <str<strong>on</strong>g>the</str<strong>on</strong>g>re are noinformati<strong>on</strong> about uterine perfusi<strong>on</strong> duringoestrous cycle and early pregnancy in mares. In apreliminary study we could dem<strong>on</strong>strate thattransrectal Colour Doppler s<strong>on</strong>ography is a usefulmethod to measure impedance to uterine bloodflow in mares (Bollwein 1998). In this study weaimed to use this technique for <str<strong>on</strong>g>the</str<strong>on</strong>g> examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>uterine blood flow during oestrous cycle and earlypregnancy in mares.MATERIALAND METHODSFive Trotter mares with a mean age <str<strong>on</strong>g>of</str<strong>on</strong>g> 9.2 years(range 6–13 years) were examined as describedbelow. Two <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m were multiparae and 3 werenullipareae. Each mare underwent transrectalDoppler investigati<strong>on</strong>s by <str<strong>on</strong>g>the</str<strong>on</strong>g> same operator over 2°oestrous cycles and 2 early pregnancies. The time <str<strong>on</strong>g>of</str<strong>on</strong>g>ovulati<strong>on</strong> was determined from daily real-timeultrasound examinati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> last day <strong>on</strong> which <str<strong>on</strong>g>the</str<strong>on</strong>g>dominant follicle was visible being defined as Day1, and <str<strong>on</strong>g>the</str<strong>on</strong>g> first day <strong>on</strong> which <str<strong>on</strong>g>the</str<strong>on</strong>g> ovulatory folliclewas g<strong>on</strong>e being Day 0. Examinati<strong>on</strong>s were carriedout daily between Day °0 (=° ovulati<strong>on</strong>) and Day°3, <str<strong>on</strong>g>the</str<strong>on</strong>g>n every sec<strong>on</strong>d day until Day 29 <str<strong>on</strong>g>of</str<strong>on</strong>g>pregnancy. During oestrous cycle investigati<strong>on</strong>swere performed daily again between Day °3 andDay 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> next oestrous cycle.Both <str<strong>on</strong>g>the</str<strong>on</strong>g> left and right Aa. uterinae wereinvestigated transrectally as published earlier(Bollwein 1998). The transrectal pulsed Dopplerultrasound examinati<strong>on</strong>s were always carried out at<str<strong>on</strong>g>the</str<strong>on</strong>g> same time (ie from 16.00–22.00 h) and lastedabout 20 min for each mare. All obtained bloodflow velocity waveforms were were displayed<strong>on</strong>line and recorded <strong>on</strong> videotapes. Following <str<strong>on</strong>g>the</str<strong>on</strong>g>collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all data, <str<strong>on</strong>g>the</str<strong>on</strong>g> Doppler calculati<strong>on</strong>s wereperformed <str<strong>on</strong>g>of</str<strong>on</strong>g>fline by using 2 similar c<strong>on</strong>secutiveflow velocity waveforms with a maximumenddiastolic frequency shift. The analysis wasbased <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> resistance index (RI), which iscalculated as <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> difference betweenpeak systolic frequency shift (PSF) and enddiastolicfrequency shift (EDF) to peak systolicfrequency shift: RI = (PSF-EDF)/PSF). The RIincreases if <str<strong>on</strong>g>the</str<strong>on</strong>g> proximal c<strong>on</strong>diti<strong>on</strong>s remain c<strong>on</strong>stantand <str<strong>on</strong>g>the</str<strong>on</strong>g> distal vascular bed c<strong>on</strong>stricts. C<strong>on</strong>versely, alow value for <str<strong>on</strong>g>the</str<strong>on</strong>g> RI indicates decreased impedanceto blood flow in <str<strong>on</strong>g>the</str<strong>on</strong>g> distal vasculature. The RIvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two uniform c<strong>on</strong>secutive pulse waveswere averaged. To study <str<strong>on</strong>g>the</str<strong>on</strong>g> intraobserverreproducibility <str<strong>on</strong>g>the</str<strong>on</strong>g> A. uterina was examined 2times, <str<strong>on</strong>g>the</str<strong>on</strong>g> interval between each measurement in <str<strong>on</strong>g>the</str<strong>on</strong>g>same vessel being approximately 5–15 min.Statistical analyses were carried out using <str<strong>on</strong>g>the</str<strong>on</strong>g>Statview II+Graphics statistical s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware package(Abacus C<strong>on</strong>cepts, Inc, California, USA, 1992)and <str<strong>on</strong>g>the</str<strong>on</strong>g> Statistical Analysis System (SAS Institute,North Carolina, USA, 1996).The resistance index<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> left and right A.°uterina and <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pregnantand n<strong>on</strong> pregnant A. uterina were compared usingcorrelati<strong>on</strong> coefficient and paired Student’s t-test.Measurements were subjected to analysis <str<strong>on</strong>g>of</str<strong>on</strong>g>variance <str<strong>on</strong>g>of</str<strong>on</strong>g> replicate measurements, taking intoaccount <str<strong>on</strong>g>the</str<strong>on</strong>g> between animals variance comp<strong>on</strong>entand <str<strong>on</strong>g>the</str<strong>on</strong>g> between cycles within animal comp<strong>on</strong>ent.Intraobserver reproducibility <str<strong>on</strong>g>of</str<strong>on</strong>g> Dopplermeasurement results were expressed as intraclasscorrelati<strong>on</strong> coefficient (Intra-CC).8


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 30.950.900.850.80RI0.750.70aaaaaa0.650.6000 1 2 3 5 7 9 11 13 15 17 19 21 23 25 27 290 1 2 3 5 7 9 11 13 15 -5 -3 -1Day <str<strong>on</strong>g>of</str<strong>on</strong>g> oestrous cycle/pregnancyFig 1: Resistance Index values (RI) from <str<strong>on</strong>g>the</str<strong>on</strong>g> Aa. uterinae during oestrous cycle () and early pregnancy (□). Valuesare means ± sd <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 oestrous cycles and 2 pregnancies <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 mares. RI values during oestrous cycle with letter ‘a’ aredifferent from <str<strong>on</strong>g>the</str<strong>on</strong>g> RI values <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding days <str<strong>on</strong>g>of</str<strong>on</strong>g> pregnancy (P


Equine Embryo Transfer0.900.850.800.75RI0.70aaa a a0.65aaa0.60011 13 15 17 19 21 23 25 27 29Day <str<strong>on</strong>g>of</str<strong>on</strong>g> pregnancyFig 2: Resistance Index values (RI) from <str<strong>on</strong>g>the</str<strong>on</strong>g> Aa. uterinae ipsi- () and c<strong>on</strong>tralateral ( □ ) to <str<strong>on</strong>g>the</str<strong>on</strong>g> embry<strong>on</strong>ic vesicle.Values are means ± sd <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 oestrous cycles and 2 pregnancies <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 mares. RI values with letter ‘a’ during oestrous cycleare different from <str<strong>on</strong>g>the</str<strong>on</strong>g> RI values <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding days <str<strong>on</strong>g>of</str<strong>on</strong>g> pregnancy (P


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3<strong>on</strong>e reas<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> increase in uterine blood supply.But <str<strong>on</strong>g>the</str<strong>on</strong>g>re are also o<str<strong>on</strong>g>the</str<strong>on</strong>g>r factors <str<strong>on</strong>g>of</str<strong>on</strong>g> embry<strong>on</strong>icorigin like prostaglandin E2 (Weber and Woods1993) which could improve uterine blood flow.In c<strong>on</strong>clusi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> this study showthat <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a cyclic pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> uterine bloodperfusi<strong>on</strong> in mares measurable by transrectalcolour Doppler s<strong>on</strong>ography. As in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species,<str<strong>on</strong>g>the</str<strong>on</strong>g> blood supply <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pregnant uterus comparedto <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-pregnant uterus increases alreadyduring early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> pregnancy. The factorsregulating <str<strong>on</strong>g>the</str<strong>on</strong>g> blood flow in <str<strong>on</strong>g>the</str<strong>on</strong>g> uterine arteries incycling and pregnant mares need to be investigatedin fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r studies.REFERENCESBollwein, H., Maierl, J., Mayer, R. and Stolla, R. (1998)Transrectal color Doppler s<strong>on</strong>ography <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> A.uterina in cycling mares. Theriogenol. 49, 1483-1488.Burdock, E.I., Fleiss, J.I. and Hardesty, A.S. (1963) Anew view <str<strong>on</strong>g>of</str<strong>on</strong>g> interobserver agreement. Pers. Psychol.16, 373-384.Ford, S.P. (1989) Factors c<strong>on</strong>trolling uterine blood flowduring oestrous and early pregnancy. In: The UterineCirculati<strong>on</strong>. Ed: C.R. Rosenfeld, Ithaca, New York,Perinatal. Press 113-135.Ford, S.P., Chenault, J.R. and Echternkamp, S.E. (1979)Uterine blood flow <str<strong>on</strong>g>of</str<strong>on</strong>g> cows during <str<strong>on</strong>g>the</str<strong>on</strong>g> oestrous cycleand early pregnancy: effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ceptus <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>uterine blood supply. J. Reprod. Fert. 56, 53-62.Ford, S.P. and Christens<strong>on</strong>, R.K. (1979) Blood flow touteri <str<strong>on</strong>g>of</str<strong>on</strong>g> sows during <str<strong>on</strong>g>the</str<strong>on</strong>g> oestrous cycle and earlypregnancy: local effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ceptus <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>uterine blood supply. Biol. Reprod. 21, 617-624.Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r, O.J. (1992) Maternal aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> pregnancy. In:Reproductive biology in <str<strong>on</strong>g>the</str<strong>on</strong>g> mare. Ed: O.J. Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r2nd edn. Cross Plains, Wisc<strong>on</strong>sin: Equiservices, pp291-344.Goswamy, R.K. and Steptoe, P.C. (1988) Dopplerultrasound studies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> uterine artery in sp<strong>on</strong>taneousovarian cycles. Hum. Reprod. 3, 721-726.Greiss, F., Jr. and Anders<strong>on</strong>, S.G. (1970) Uterine bloodflow during early ovine pregnancy. Am. J. ObstetGynecol. 106, 30-38.Greiss, F., Jr., Rose, J.C., Kute, T.E., Kelly, R.T. andWinkler, L.S. (1986) Temporal and receptor correlates<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estrogen resp<strong>on</strong>se in sheep. Am. J.Obstet. Gynecol. 154, 831-838.Scholtes, M.C., Wladimir<str<strong>on</strong>g>of</str<strong>on</strong>g>f, J.W., van-Rijen, H.J. andHop, W.C. (1989) Uterine and ovarian flow ve-locitywaveforms in <str<strong>on</strong>g>the</str<strong>on</strong>g> normal menstrual cycle: atransvaginal Doppler study. Fertil. Steril. 52, 981-985.Sladkevicius, P.V. L. (1993) Blood flow velocity in <str<strong>on</strong>g>the</str<strong>on</strong>g>uterine and ovarian arteries during <str<strong>on</strong>g>the</str<strong>on</strong>g> normalmenstrual cycle. Ultrasound Obstet. Gynecol. 3,199-208.Weber, J.A. and Woods, G.L. (1993) Influence <str<strong>on</strong>g>of</str<strong>on</strong>g>embry<strong>on</strong>ic secretory chemicals <strong>on</strong> selective oviductaltransport in mares. Equine. vet. J. Suppl. 15,36-38.11


12Equine Embryo Transfer


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3SESSION 2:Oocytes – maturati<strong>on</strong>and fertilisati<strong>on</strong>Chairmen: E. L. Squires and H. Lehn-Jensen13


14Equine Embryo Transfer


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3FOLLICULAR WAVES AND SELECTION OFFOLLICLES IN MARESO. J. Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r, D. R. Bergfelt and F. X. D<strong>on</strong>adeuAnimal Health and Biomedical Sciences, 1656 Linden Drive, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Wisc<strong>on</strong>sin, Madis<strong>on</strong>,Wisc<strong>on</strong>sin 53706, USAFollicle selecti<strong>on</strong> in mares is <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanismwhereby <strong>on</strong>ly <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> many available follicles <str<strong>on</strong>g>of</str<strong>on</strong>g> awave becomes <str<strong>on</strong>g>the</str<strong>on</strong>g> ovulatory follicle. Part <str<strong>on</strong>g>of</str<strong>on</strong>g> thisreport is a synopsis <str<strong>on</strong>g>of</str<strong>on</strong>g> a review <strong>on</strong> selecti<strong>on</strong> thatwas written in July 1999 and <str<strong>on</strong>g>the</str<strong>on</strong>g> references up tothat m<strong>on</strong>th are cited (Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r 2000a). The o<str<strong>on</strong>g>the</str<strong>on</strong>g>rpart discusses studies completed from August1999 to August 2000.Follicular waves in mares can be classified asmajor waves (characterised by dominant andsubordinate follicles) and minor waves (largestfollicle does not attain <str<strong>on</strong>g>the</str<strong>on</strong>g> diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> a dominantfollicle). Both types <str<strong>on</strong>g>of</str<strong>on</strong>g> waves develop inassociati<strong>on</strong> with a surge in FSH c<strong>on</strong>centrati<strong>on</strong>s. Inmajor waves, <str<strong>on</strong>g>the</str<strong>on</strong>g> future dominant follicle isdetected earlier, <strong>on</strong> average, than <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rfollicles, and <str<strong>on</strong>g>the</str<strong>on</strong>g> follicles grow at a similar rate forseveral days (parallel growing phase). Thedifference in mean diameter between <str<strong>on</strong>g>the</str<strong>on</strong>g> 2 largestfollicles at first detecti<strong>on</strong> and during <str<strong>on</strong>g>the</str<strong>on</strong>g> parallelphase is 2–3 mm, which is equivalent to a growingperiod <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately <strong>on</strong>e day. When <str<strong>on</strong>g>the</str<strong>on</strong>g> largestfollicle reaches a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> about 22.5 mm, <str<strong>on</strong>g>the</str<strong>on</strong>g>parallel phase ends and follicle deviati<strong>on</strong> begins.Deviati<strong>on</strong> is recognised by a c<strong>on</strong>tinuing growthrate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> largest or developing dominant follicleand a decreasing growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> subordinatefollicles. The mean diameter differences between<str<strong>on</strong>g>the</str<strong>on</strong>g> 2 largest follicles at <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> deviati<strong>on</strong>suggests that <str<strong>on</strong>g>the</str<strong>on</strong>g> largest follicle becomesestablished as <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant follicle within <strong>on</strong>e dayor before <str<strong>on</strong>g>the</str<strong>on</strong>g> next largest follicle reaches a similardiameter (Fig 1).The FSH surge that stimulated emergence <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> wave begins to decline in c<strong>on</strong>centrati<strong>on</strong>s when<str<strong>on</strong>g>the</str<strong>on</strong>g> largest follicle reaches a diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> about 13mm. The FSH decline c<strong>on</strong>tinues during <str<strong>on</strong>g>the</str<strong>on</strong>g>remaining parallel growing phase and for severaldays after follicle deviati<strong>on</strong>. The necessity for lowc<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> FSH for deviati<strong>on</strong> is c<strong>on</strong>sistentwith <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple dominant folliclesfollowing administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> FSH or a substance(anti-inhibin) that raises <str<strong>on</strong>g>the</str<strong>on</strong>g> endogenousc<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> FSH.According to studies in cattle, all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>follicles <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wave c<strong>on</strong>tinue to utilise <str<strong>on</strong>g>the</str<strong>on</strong>g>declining FSH c<strong>on</strong>centrati<strong>on</strong>s during <str<strong>on</strong>g>the</str<strong>on</strong>g> parallelgrowing phase. Results <str<strong>on</strong>g>of</str<strong>on</strong>g> a recent study in mares(D<strong>on</strong>adeu and Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r 2000) dem<strong>on</strong>strated thatmore than <strong>on</strong>e follicle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> parallel phasec<strong>on</strong>tributes to <str<strong>on</strong>g>the</str<strong>on</strong>g> FSH decline. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> FSH<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> follicles and c<strong>on</strong>versely <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>follicles <strong>on</strong> FSH during <str<strong>on</strong>g>the</str<strong>on</strong>g> parallel phase havebeen described as a 2-way functi<strong>on</strong>al coupling,involving multiple follicles. The FSH/multiplefolliclecoupling becomes an FSH/single-folliclecoupling at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> parallel phase or <str<strong>on</strong>g>the</str<strong>on</strong>g>beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> diameter deviati<strong>on</strong>. Two-wayFSH/follicle coupling has been postulated to be<str<strong>on</strong>g>the</str<strong>on</strong>g> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> follicle selecti<strong>on</strong> (Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r 2000a,b).Ir<strong>on</strong>ically, <str<strong>on</strong>g>the</str<strong>on</strong>g> pool <str<strong>on</strong>g>of</str<strong>on</strong>g> growing follicles directs ac<strong>on</strong>tinuing decline in available FSH, despite <str<strong>on</strong>g>the</str<strong>on</strong>g>follicles c<strong>on</strong>tinuing requirement for FSH. By <str<strong>on</strong>g>the</str<strong>on</strong>g>time <str<strong>on</strong>g>the</str<strong>on</strong>g> FSH c<strong>on</strong>centrati<strong>on</strong>s reach a precariouslevel at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> parallel phase, <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> mostdeveloped or largest follicle is able to utilise <str<strong>on</strong>g>the</str<strong>on</strong>g>low levels and to direct a c<strong>on</strong>tinuing decline. Theability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> developing dominant follicle toutilise <str<strong>on</strong>g>the</str<strong>on</strong>g> low FSH c<strong>on</strong>centrati<strong>on</strong>s, at leastinitially, has been dem<strong>on</strong>strated in cattle; a similarstudy has not been d<strong>on</strong>e in mares.Results <str<strong>on</strong>g>of</str<strong>on</strong>g> a recent study in mares indicate thatinhibin is <str<strong>on</strong>g>the</str<strong>on</strong>g> substance that is secreted by <str<strong>on</strong>g>the</str<strong>on</strong>g>multiple follicles and causes <str<strong>on</strong>g>the</str<strong>on</strong>g> FSH declineduring <str<strong>on</strong>g>the</str<strong>on</strong>g> parallel growing phase (D<strong>on</strong>adeu andGin<str<strong>on</strong>g>the</str<strong>on</strong>g>r 2000). All follicles 6 mm or larger were15


Equine Embryo Transferablated 10 days after ovulati<strong>on</strong>. Circulating FSHc<strong>on</strong>centrati<strong>on</strong>s increased and inhibin decreasedwithin <strong>on</strong>e or 2 days after ablati<strong>on</strong>. Ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g>largest, 3 largest, or all follicles <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> subsequentnew wave were retained and <str<strong>on</strong>g>the</str<strong>on</strong>g> remainder ablatedbefore <str<strong>on</strong>g>the</str<strong>on</strong>g>y reached >10 mm. Data werenormalised to <str<strong>on</strong>g>the</str<strong>on</strong>g> day <str<strong>on</strong>g>the</str<strong>on</strong>g> largest follicle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>post-ablati<strong>on</strong> wave reached 13 mm (expectedbeginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> FSH decline). C<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>FSH decreased and inhibin increased during <str<strong>on</strong>g>the</str<strong>on</strong>g>remaining parallel growing phase. In <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>efolliclegroup, <str<strong>on</strong>g>the</str<strong>on</strong>g> increase in inhibinc<strong>on</strong>centrati<strong>on</strong>s after <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> FSHdecline was delayed and was temporallyassociated with a slower decrease in FSH than in<str<strong>on</strong>g>the</str<strong>on</strong>g> groups with three or all follicles retained. Theinterrelati<strong>on</strong>ships am<strong>on</strong>g FSH, follicles, andinhibin were also dem<strong>on</strong>strated in a group inwhich all follicles <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> new wave were ablated at13mm from <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> FSH decline until<str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> parallel phase. This effect wasattributable to <str<strong>on</strong>g>the</str<strong>on</strong>g> secreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibin, based <strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g> temporal relati<strong>on</strong>ships between increasinginhibin c<strong>on</strong>centrati<strong>on</strong>s and decreasing FSHc<strong>on</strong>centrati<strong>on</strong>s and <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> positive relati<strong>on</strong>shipbetween <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> retained follicles and <str<strong>on</strong>g>the</str<strong>on</strong>g>extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> increase in inhibin. Near <str<strong>on</strong>g>the</str<strong>on</strong>g> expectedend <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> parallel growing phase or beginning <str<strong>on</strong>g>of</str<strong>on</strong>g>deviati<strong>on</strong>, c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> FSH were no l<strong>on</strong>gerdifferent am<strong>on</strong>g groups with various numbers <str<strong>on</strong>g>of</str<strong>on</strong>g>retained follicles, and inhibin appeared to reachmaximum c<strong>on</strong>centrati<strong>on</strong>s. At <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g>deviati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> FSH c<strong>on</strong>centrati<strong>on</strong>s apparently arealready too low in most waves for survival <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>less-developed smaller follicles.In a recent cattle study (Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r et al. 2000b),an increase in FSH c<strong>on</strong>centrati<strong>on</strong>s occurredimmediately following ablati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> largestfollicle at <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> deviati<strong>on</strong> and aminimal single dose <str<strong>on</strong>g>of</str<strong>on</strong>g> oestradiol at <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g>ablati<strong>on</strong> delayed <str<strong>on</strong>g>the</str<strong>on</strong>g> FSH increase. This findingindicated that oestradiol was <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> FSHdepressingfactors that was lost when <str<strong>on</strong>g>the</str<strong>on</strong>g> largestfollicle was ablated. Thus, oestradiol c<strong>on</strong>tributes to<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinued depressi<strong>on</strong> in FSH c<strong>on</strong>centrati<strong>on</strong>safter <str<strong>on</strong>g>the</str<strong>on</strong>g> expected beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> deviati<strong>on</strong>. Asimilar study has not been d<strong>on</strong>e in mares.However, increasing oestradiol c<strong>on</strong>centrati<strong>on</strong>s aresecreted from <str<strong>on</strong>g>the</str<strong>on</strong>g> largest follicle in mares justbefore <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> deviati<strong>on</strong>. The c<strong>on</strong>tinuingdecrease in c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> FSH at <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning<str<strong>on</strong>g>of</str<strong>on</strong>g> deviati<strong>on</strong> likely reflects <str<strong>on</strong>g>the</str<strong>on</strong>g> synergistic effect(Miller et al. 1979) <str<strong>on</strong>g>of</str<strong>on</strong>g> high c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>inhibin and <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>oestradiol. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> relative c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>inhibin and oestradiol in <str<strong>on</strong>g>the</str<strong>on</strong>g> suppressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> FSH atvarious times during deviati<strong>on</strong> have not beendetermined adequately. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuingdecline in FSH after <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> deviati<strong>on</strong> isnot known. It may serve as an assurance that FSHis adequately depressed for deviati<strong>on</strong> to occur inall waves or may prevent <str<strong>on</strong>g>the</str<strong>on</strong>g> emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> ano<str<strong>on</strong>g>the</str<strong>on</strong>g>rwave.Increasing or transiently elevated LHc<strong>on</strong>centrati<strong>on</strong>s encompass deviati<strong>on</strong> in both maresand cattle (Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r et al. 2000c). C<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>LH have been experimentally reduced by doses <str<strong>on</strong>g>of</str<strong>on</strong>g>progester<strong>on</strong>e that did not alter <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> FSH. In initial studies in mares, <str<strong>on</strong>g>the</str<strong>on</strong>g> reduced LHwas associated with a smaller maximum diameter<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant follicle. However, this effectoccurred well after <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> follicledeviati<strong>on</strong>; <str<strong>on</strong>g>the</str<strong>on</strong>g> growth pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d-largestfollicle was not altered. In a more recent study inmares (Bergfelt et al. 2000), experimentalreducti<strong>on</strong> in c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> LH beginningbefore deviati<strong>on</strong> was associated with reducedcirculating c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> oestradiol. However,<str<strong>on</strong>g>the</str<strong>on</strong>g> LH and oestradiol reducti<strong>on</strong> did not alter FSHc<strong>on</strong>centrati<strong>on</strong>s until 2 days after <str<strong>on</strong>g>the</str<strong>on</strong>g> expectedbeginning <str<strong>on</strong>g>of</str<strong>on</strong>g> deviati<strong>on</strong>. At that time, an increase inFSH c<strong>on</strong>centrati<strong>on</strong>s occurred as well as areducti<strong>on</strong> in diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant follicle.These results indicated that <str<strong>on</strong>g>the</str<strong>on</strong>g> increasedc<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> LH that encompass deviati<strong>on</strong> areutilised by <str<strong>on</strong>g>the</str<strong>on</strong>g> developing dominant follicle for <str<strong>on</strong>g>the</str<strong>on</strong>g>secreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oestradiol. The oestradiol, as notedabove, c<strong>on</strong>tributes to c<strong>on</strong>tinued FSH suppressi<strong>on</strong>and may also be important for facilitating growth<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant follicle and a change fromprimarily FSH to LH dependency.The research model that our laboratory iscurrently using for <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> follicleselecti<strong>on</strong> in mares is shown (Fig 1). It isrecognised that good research models are modifiedand poor models fade away.16


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 33530a)Parallel phaseBeginning <str<strong>on</strong>g>of</str<strong>on</strong>g> deviati<strong>on</strong>DominantfollicleDiameter (mm)2520151013 mm22.5 mmLargestfollicle2nd largestfollicleSubordinatefollicle50 1 2 3 4 5 6 7 8 9 10 11b)FSHLH3530OestradiolDominantfollicleDiameter (mm)252015105InhibinTwo largest folliclesDeviati<strong>on</strong>Subordinatefollicle0 1 2 3 4 5 6 7 8 9 10 11Days after wave emergenceFig 1: Schematic 2-follicle model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> size advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> largest follicle (a) and <str<strong>on</strong>g>the</str<strong>on</strong>g> horm<strong>on</strong>al aspects (b) <str<strong>on</strong>g>of</str<strong>on</strong>g> follicledeviati<strong>on</strong> in mares. The largest follicle emerges, <strong>on</strong> average, about <strong>on</strong>e day before <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d-largest follicle, and <str<strong>on</strong>g>the</str<strong>on</strong>g>2 follicles grow in parallel (a). When <str<strong>on</strong>g>the</str<strong>on</strong>g> follicles reach 13 mm, <str<strong>on</strong>g>the</str<strong>on</strong>g>y begin to secrete a biologically active form <str<strong>on</strong>g>of</str<strong>on</strong>g>inhibin. As a result, <str<strong>on</strong>g>the</str<strong>on</strong>g> FSH surge that stimulated emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> follicles, begins to decline (b). Both follicles secreteincreasing inhibin causing <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuing FSH decline, and <str<strong>on</strong>g>the</str<strong>on</strong>g> declining FSH is utilised by both follicles (2-wayfuncti<strong>on</strong>al coupling). The parallel phase ends and follicle deviati<strong>on</strong> begins when <str<strong>on</strong>g>the</str<strong>on</strong>g> largest follicle reaches 22.5 mm(a). Deviati<strong>on</strong> is characterised by c<strong>on</strong>tinued growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> largest or developing dominant follicle and decreasinggrowth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> smaller or developing subordinate follicle. Deviati<strong>on</strong> is established in less than <strong>on</strong>e day or before <str<strong>on</strong>g>the</str<strong>on</strong>g>sec<strong>on</strong>d-largest follicle can reach a similar diameter (represented by <str<strong>on</strong>g>the</str<strong>on</strong>g> width <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> vertical bar in panel a). Duringthis time, <str<strong>on</strong>g>the</str<strong>on</strong>g> FSH/follicle coupling changes from multiple-follicle to single-follicle. The more-developed larger folliclec<strong>on</strong>tinues <str<strong>on</strong>g>the</str<strong>on</strong>g> FSH/follicle coupling because it is able to utilise <str<strong>on</strong>g>the</str<strong>on</strong>g> reduced c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> FSH. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> lessdevelopedsmaller follicle is unable to maintain follicle coupling because <str<strong>on</strong>g>the</str<strong>on</strong>g> declining c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> FSH havereached a level below its requirements. Just before <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> deviati<strong>on</strong>, oestradiol is secreted by <str<strong>on</strong>g>the</str<strong>on</strong>g> largestfollicle under <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> increased c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> LH (b). The increasing oestradiol acts synergistically withplateaued inhibin to c<strong>on</strong>tinue <str<strong>on</strong>g>the</str<strong>on</strong>g> reducti<strong>on</strong> in FSH c<strong>on</strong>centrati<strong>on</strong>s after deviati<strong>on</strong>. The elevated LH c<strong>on</strong>tinues tostimulate <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oestradiol by <str<strong>on</strong>g>the</str<strong>on</strong>g> developing dominant follicle and exerts a trophic effect <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> dominantfollicle within 2 days after <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> deviati<strong>on</strong>.17


Equine Embryo TransferREFERENCESBergfelt, D.R., Gastal, E.L. and Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r, O.J. (2000)Systemic oestradiol and inhibin c<strong>on</strong>centrati<strong>on</strong>s inresp<strong>on</strong>se to experimentally reduced LHc<strong>on</strong>centrati<strong>on</strong>s during follicle deviati<strong>on</strong> in mares.Biol. Reprod. Submitted.D<strong>on</strong>adeu, F.X. and Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r, O.J. (2000) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> folliclenumber and diameter <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> secreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibin and<str<strong>on</strong>g>the</str<strong>on</strong>g> suppressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> follicle stimulating horm<strong>on</strong>e inmares. Biol. Reprod. Submitted.Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r, O.J. (2000a) Selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant follicle incattle and horses. Anim. Reprod. Sci. 60-61, 61-79.Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r, O.J. (2000b) The FSH-follicle couplinghypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis for follicle selecti<strong>on</strong>. Biol Reprod. Suppl.62, 1, 92.Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r, O.J., Bergfelt, D.R., Kulick, L.J. and Kot, K.(2000a) Selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant follicle in cattle:role <str<strong>on</strong>g>of</str<strong>on</strong>g> two-way functi<strong>on</strong>al coupling betweenfollicle-stimulating horm<strong>on</strong>e and <str<strong>on</strong>g>the</str<strong>on</strong>g> follicles. Biol.Reprod. 62, 920–927.Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r, O.J., Bergfelt, D.R., Kulick, L.J. and Kot ,K.(2000b) Selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant follicle in cattle:role <str<strong>on</strong>g>of</str<strong>on</strong>g> oestradiol. Biol. Reprod. 63, 383–389.Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r, O.J., Bergfelt, D.R., Beg, M.A. and Kot, K.(2000c) Follicle selecti<strong>on</strong> in cattle: role <str<strong>on</strong>g>of</str<strong>on</strong>g>luteinising horm<strong>on</strong>e. Biol. Reprod. in press.Miller, K.F., Wess<strong>on</strong>, J.A. and Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r, O.J. (1979)Changes in c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> circulatingg<strong>on</strong>adotropins following administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equinefollicular fluid to ovariectomized mares. Biol.Reprod. 21, 867-872.18


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3ORGANISATION OF THE CYTOSKELETON DURINGIN VITRO MATURATION OF HORSE OOCYTESJ. L.Tremoleda, E. J. Schoevers*, T. A. E. Stout, B. Colenbrander andM. M. Bevers*Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Equine Sciences, *Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Farm Animal Health, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Medicine,Utrecht University, Utrecht, The Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlandsINTRODUCTIONMeiotic maturati<strong>on</strong> is a complex process duringwhich <str<strong>on</strong>g>the</str<strong>on</strong>g> oocyte must undergo a series <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclearand cytoplasmic changes in order to produce aviable, fertilisable and developmentally competentovum (Albertini et al. 1993). This process involves<str<strong>on</strong>g>the</str<strong>on</strong>g> breakdown <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> germinal vesicle andreorganisati<strong>on</strong> and segregati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>chromosomes with formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> meioticstructures and fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r extrusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polar body.These changes are associated with a completereorganisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cytoskelet<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oocytewhich in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species has been described in terms<str<strong>on</strong>g>of</str<strong>on</strong>g> changes in <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> microtubulesand micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilaments (mouse: Messinger et al. 1991;pig: Kim et al. 1996; man: Kim et al. 1998).Despite this important role in oocyte development,little informati<strong>on</strong> is available with regard to <str<strong>on</strong>g>the</str<strong>on</strong>g>cytoskeletal changes that take place during <str<strong>on</strong>g>the</str<strong>on</strong>g>meiotic maturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equine oocytes. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g>this study was to examine <str<strong>on</strong>g>the</str<strong>on</strong>g> changes in <str<strong>on</strong>g>the</str<strong>on</strong>g>distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microtubules and micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilamentsand <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se cytoskeletal elementsto chromatin c<strong>on</strong>figurati<strong>on</strong>, during in vitromaturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> horse oocytes.MATERIALAND METHODSCumulus oocyte complexes (COCs) wererecovered from <str<strong>on</strong>g>the</str<strong>on</strong>g> ovaries <str<strong>on</strong>g>of</str<strong>on</strong>g> slaughtered maresby aspirating follicles smaller than 30 mm indiameter. Once recovered, COCs were washed inHEPES-buffered Tyrodes medium c<strong>on</strong>taining0.1% polyvinylalcohol and 0.2% BSA and <str<strong>on</strong>g>the</str<strong>on</strong>g>nevaluated under a stereomicroscope. Only oocyteswith a complete, compact, multilayered cumulusinvestment were selected for culture. Theseoocytes were incubated in M199 mediumsupplemented with 10% FCS, 0.01 units/mlporcine FSH and 0.01 units/ml equine LH at 39ºCin a humidified atmosphere <str<strong>on</strong>g>of</str<strong>on</strong>g> 5% CO 2 in air. After0, 12, 24 and 36 h <str<strong>on</strong>g>of</str<strong>on</strong>g> culture, COCs were denudedby vortexing in a calcium-free 0.25% soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>trypsin in EBSS. The oocytes were <str<strong>on</strong>g>the</str<strong>on</strong>g>n washed inPBS and permeabilised, for 1 h at 39ºC, usingmedium M, a glycerol-based microtubulestabilisingsoluti<strong>on</strong> (Simerly and Schatten 1993).Next, <str<strong>on</strong>g>the</str<strong>on</strong>g> oocytes were fixed for 30 min in 2%paraformaldehyde in PBS at room temperature and<str<strong>on</strong>g>the</str<strong>on</strong>g>y were <str<strong>on</strong>g>the</str<strong>on</strong>g>n maintained at 4ºC for 2–5 daysprior staining. With regard to <str<strong>on</strong>g>the</str<strong>on</strong>g> stainingtechniques employed, first <str<strong>on</strong>g>the</str<strong>on</strong>g> microtubules werelabelled by incubating fixed oocytes for 90 min at37ºC with a m<strong>on</strong>ocl<strong>on</strong>al anti-tubulin antibody(Sigma) diluted 1:250 in PBS. After incubati<strong>on</strong>,<str<strong>on</strong>g>the</str<strong>on</strong>g> oocytes were washed several times in PBSc<strong>on</strong>taining 0.1% BSA (Sigma) and <str<strong>on</strong>g>the</str<strong>on</strong>g>n incubatedfor 1 h in a blocking soluti<strong>on</strong> (Simerly andSchatten 1993). Then <str<strong>on</strong>g>the</str<strong>on</strong>g> oocytes were exposed toa sec<strong>on</strong>dary antibody c<strong>on</strong>jugated totetramethylrhodamine isothiocyanate (TRITC) for1 h at 37ºC. Once <str<strong>on</strong>g>the</str<strong>on</strong>g> microtubules had been thuslabelled, <str<strong>on</strong>g>the</str<strong>on</strong>g> oocytes were incubated for 1 h withAlexa Fluor 488 phalloidin to enable detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilaments and for 15 min with TO-PRO 3(Molecular Probes) to allow visualisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>DNA. Finally <str<strong>on</strong>g>the</str<strong>on</strong>g> stained oocytes were mounted<strong>on</strong> glass microscope slides with an antifadesuspensi<strong>on</strong>. The oocytes were examined using alaser scanning c<strong>on</strong>focal microscope, equippedwith a krypto-arg<strong>on</strong> i<strong>on</strong> laser which was able tosimultaneously excite TRITC for <str<strong>on</strong>g>the</str<strong>on</strong>g> visualisati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> microtubules, Alexa Fluor 488 for <str<strong>on</strong>g>the</str<strong>on</strong>g>micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilaments, and TO-PRO 3 for <str<strong>on</strong>g>the</str<strong>on</strong>g> DNA,respectively. The images were recorded digitally19


Equine Embryo TransferTABLE 1: Changes in nuclear stage during IVM <str<strong>on</strong>g>of</str<strong>on</strong>g> equine oocytes*Time (h) Number <str<strong>on</strong>g>of</str<strong>on</strong>g> GV Prometaphase M-I M-II Degeneratein culture oocytes (%) (%) (%) (%) (%)0 50 35(70) - - - 15 (30)12 4811(23) 20(42) 2 (4) 1 (2) 14 (29)24 49 1 (2) - 14 (28) 17 (35) 17 (35)36 54 1 (2) - 5 (9) 23 (43) 24 (46)* GV= germinal vesicle; M-I= metaphase –I; MII= metaphase –IIand archived <strong>on</strong> an erasable magnetic opticaldiskette.RESULTSIn total, 201 oocytes were analysed using <str<strong>on</strong>g>the</str<strong>on</strong>g>CLSM and Table 1 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> oocytesexamined at <str<strong>on</strong>g>the</str<strong>on</strong>g> different times during in vitromaturati<strong>on</strong>. At <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> culture, most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oocytes (70%) were in <str<strong>on</strong>g>the</str<strong>on</strong>g> germinal vesicle stage,shown as diffuse chromatin pattern localisedwithin an organelle free area in <str<strong>on</strong>g>the</str<strong>on</strong>g> ooplasm. Atthis stage <str<strong>on</strong>g>of</str<strong>on</strong>g> development, micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilaments andweakly stained microtubules, were distributedthroughout <str<strong>on</strong>g>the</str<strong>on</strong>g> ooplasma. After 12 h <str<strong>on</strong>g>of</str<strong>on</strong>g> IVM, <str<strong>on</strong>g>the</str<strong>on</strong>g>largest proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oocytes was inpromethaphase (42%) and individualchromosomes were visible as aggregated dots <str<strong>on</strong>g>of</str<strong>on</strong>g>already c<strong>on</strong>densed chromatin, around which <str<strong>on</strong>g>the</str<strong>on</strong>g>microtubules had c<strong>on</strong>centrated. By c<strong>on</strong>trast, <str<strong>on</strong>g>the</str<strong>on</strong>g>micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilaments were observed more near <str<strong>on</strong>g>the</str<strong>on</strong>g>cortical regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oocyte. After 24 h <str<strong>on</strong>g>of</str<strong>on</strong>g> IVM,<str<strong>on</strong>g>the</str<strong>on</strong>g> oocytes were predominantly in Metaphase I(28%) or Metaphase II (35%) and by 36 h an evengreater proporti<strong>on</strong> had reached Metaphase II(43%). In Metaphase I oocytes, <str<strong>on</strong>g>the</str<strong>on</strong>g> microtubuleswere seen to have organised into el<strong>on</strong>gated asterswhich formed <str<strong>on</strong>g>the</str<strong>on</strong>g> meiotic spindle supporting <str<strong>on</strong>g>the</str<strong>on</strong>g>already aligned chromosomes. In Metaphase II,<str<strong>on</strong>g>the</str<strong>on</strong>g> spindle was observed as a symmetrical, barrelshapedstructure with 2 anastral poles and it wasnow located in <str<strong>on</strong>g>the</str<strong>on</strong>g> periphery <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cytoplasm with<str<strong>on</strong>g>the</str<strong>on</strong>g> chromosomes aligned al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> metaphaseplate. Microtubules were <strong>on</strong>ly ever detected as<str<strong>on</strong>g>the</str<strong>on</strong>g>se el<strong>on</strong>gated asters in <str<strong>on</strong>g>the</str<strong>on</strong>g> spindle and <str<strong>on</strong>g>the</str<strong>on</strong>g>y werenot detected in any o<str<strong>on</strong>g>the</str<strong>on</strong>g>r areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cytoplasm.During both Metaphases I and II, micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilamentswere c<strong>on</strong>centrated in <str<strong>on</strong>g>the</str<strong>on</strong>g> oocyte cortex, andespecially micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilament-rich domains were foundoverlying <str<strong>on</strong>g>the</str<strong>on</strong>g> meiotic spindle, and also around <str<strong>on</strong>g>the</str<strong>on</strong>g>area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polar body formati<strong>on</strong> and subsequentlyextrusi<strong>on</strong>. Labelling c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> presence<str<strong>on</strong>g>of</str<strong>on</strong>g> micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilament labelling was also detectedwithin <str<strong>on</strong>g>the</str<strong>on</strong>g> z<strong>on</strong>a pellucida <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> evaluated oocytesto varying degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> intensity. A high proporti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> oocytes were (30% at 0 h), or became (46% at36 h), degenerate during maturati<strong>on</strong> (Table 1) asevidenced by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir aberrant chromatin andcytoskeletal patterns. In <str<strong>on</strong>g>the</str<strong>on</strong>g>se degenerate oocytes,<str<strong>on</strong>g>the</str<strong>on</strong>g> DNA was <str<strong>on</strong>g>of</str<strong>on</strong>g>ten not visible at all or was visible<strong>on</strong>ly as hairlike strands or scattered small dropswhile <str<strong>on</strong>g>the</str<strong>on</strong>g> microtubules and micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilaments weredistributed in clusters <str<strong>on</strong>g>of</str<strong>on</strong>g> ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <strong>on</strong>e or both,scattered throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> ooplasma.DISCUSSIONThe present study enables <str<strong>on</strong>g>the</str<strong>on</strong>g> first descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>cytoskeletal organisati<strong>on</strong>, and its relati<strong>on</strong>ship tochromatin c<strong>on</strong>figurati<strong>on</strong>, during <str<strong>on</strong>g>the</str<strong>on</strong>g> process <str<strong>on</strong>g>of</str<strong>on</strong>g> invitro maturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> horse oocytes. In summary, weshowed that <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bothmicr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilaments and microtubules, <str<strong>on</strong>g>the</str<strong>on</strong>g> 2 majorcytoskeletal comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> a mammalian ovum,change in parallel with <str<strong>on</strong>g>the</str<strong>on</strong>g> process <str<strong>on</strong>g>of</str<strong>on</strong>g>chromosomal alignment and segregati<strong>on</strong> during<str<strong>on</strong>g>the</str<strong>on</strong>g> meiotic maturati<strong>on</strong> process. After <str<strong>on</strong>g>the</str<strong>on</strong>g> germinalvesicle breakdown, <str<strong>on</strong>g>the</str<strong>on</strong>g> microtubules coalesced t<str<strong>on</strong>g>of</str<strong>on</strong>g>orm <str<strong>on</strong>g>the</str<strong>on</strong>g> spindle apparatus and <str<strong>on</strong>g>the</str<strong>on</strong>g>reafter played aclear role in chromosomal segregati<strong>on</strong> andformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first polar body. The aggregati<strong>on</strong>and accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilaments in <str<strong>on</strong>g>the</str<strong>on</strong>g> oocytecortex, initially distributed throughout <str<strong>on</strong>g>the</str<strong>on</strong>g>ooplasm, may suggest that <str<strong>on</strong>g>the</str<strong>on</strong>g>y may play asignificant role in <str<strong>on</strong>g>the</str<strong>on</strong>g> migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r organellesduring cytoplasmic maturati<strong>on</strong>, a range <str<strong>on</strong>g>of</str<strong>on</strong>g>processes that appears to be critical in enabling anoocyte to achieve full developmental competence.During this study, we found that a largeproporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oocytes were (30% at <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g>maturati<strong>on</strong>), or became (46% after 36 h),degenerate during maturati<strong>on</strong> in vitro. The20


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerate oocytes maybe expected when we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> heterogeneouspopulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> healthy and atretic follicles fromwhich <str<strong>on</strong>g>the</str<strong>on</strong>g> oocytes were drawn. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g>rates <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerati<strong>on</strong> were much higher that thoserecorded for <str<strong>on</strong>g>the</str<strong>on</strong>g> oocytes <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species collectedand incubated under similar c<strong>on</strong>diti<strong>on</strong>s (eg 5%during IVM <str<strong>on</strong>g>of</str<strong>on</strong>g> bovine oocytes).In vitro fertilisati<strong>on</strong> (IVF) <str<strong>on</strong>g>of</str<strong>on</strong>g> horse oocytes hasproved a difficult and not repeatable method.Hinrichs (1998) suggested that <str<strong>on</strong>g>the</str<strong>on</strong>g> primaryproblems reside in our inability to ensure thatequine sperm adequately undergo capacitati<strong>on</strong> invitro and a similar inability to ensure that oocytesachieve developmental competence duringmaturati<strong>on</strong> in vitro, where <str<strong>on</strong>g>the</str<strong>on</strong>g> latter problem iscompounded by our inability to objectively assessthis parameter. Although a number <str<strong>on</strong>g>of</str<strong>on</strong>g> studies haveexamined <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> culture c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong>equine oocyte maturati<strong>on</strong>, most have focussedexclusively <strong>on</strong> changes in nuclear c<strong>on</strong>figurati<strong>on</strong>(Willis et al. 1991; Brück et al. 2000). It isincreasingly clear that nuclear maturati<strong>on</strong> al<strong>on</strong>e isnot sufficient to support normal fertilisati<strong>on</strong> andembryo development. In c<strong>on</strong>clusi<strong>on</strong>, fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rstudies <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> structural changes that occur within<str<strong>on</strong>g>the</str<strong>on</strong>g> cytoplasm <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> equine oocyte during in vitromaturati<strong>on</strong>, and <str<strong>on</strong>g>the</str<strong>on</strong>g> relevance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se changes to<str<strong>on</strong>g>the</str<strong>on</strong>g> acquisiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> developmental competence, arerequired if we are to understand <str<strong>on</strong>g>the</str<strong>on</strong>g> reas<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g>relative failure <str<strong>on</strong>g>of</str<strong>on</strong>g> IVM and IVF in this species.REFERENCESAlbertini, D.F., Wickramasinghe, D., Messinger, S.,Matts<strong>on</strong>, B.A. and Plancha, C.E. (1993) Nuclear andcytoplasmic changes during oocyte maturati<strong>on</strong>. In:Preimplantati<strong>on</strong> Embryo Development. Ed: B.D.Bavister, New York: Ser<strong>on</strong>o Symposia-USA Series,Springer-Verlag, pp 3-21.Brück, I., Bézard., Duchamp, G., Baltsen, M., Daels, P.and Greve, T. (2000) Pure preovulatory follicularfluid for in vitro maturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equine oocytes: analternative to c<strong>on</strong>venti<strong>on</strong>al culture media?Theriogenol. 53, 450 (Abstr).Hinrichs, K. (1998) Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> embryos by assistedreproducti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> horse. Theriogenol. 49, 13-21.Kim, N.-H., Funahashi, H., Pra<str<strong>on</strong>g>the</str<strong>on</strong>g>r, R.S., Schatten, G.and Day B.N. (1996) Microtubule and micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilamentdynamics in porcine oocytes during meitoticmaturati<strong>on</strong>. Mol. Reprod. Dev. 43, 248-255.Kim, N.-H., Chung, H.M., Cha, K-Y. and Chung. (1998)Microtubule and micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilament organizati<strong>on</strong> inmaturing human oocytes. Human. Reprod. 13, 2217-2222.Messinger, S.M. and Albertini, D.F. (1991) Centrosomeand microtubule dynamics during meioticprogressi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> mouse oocyte. Human. Reprod. 2,207-216.Simerly, C. and Schatten, H. (1993) Techniques forlocalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> specific molecules in oocytes andembryos. Meth. Enzymol. 225, 516-552.Willis, P., Caudle, A.B. and Fayrer-Hosken, R.A. (1991)Equine oocyte in vitro maturati<strong>on</strong>: influences <str<strong>on</strong>g>of</str<strong>on</strong>g>sera, time, and horm<strong>on</strong>es. Mol. Reprod. Dev. 30,360-368.21


Equine Embryo TransferEFFECT OF TEMPERATURE AND HOLDING TIME ON<strong>EQUINE</strong> OOCYTE CHROMATIN CONFIGURATIONH. G. Pedersen, E. E. Telfer* and E. D. Wats<strong>on</strong>Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Clinical Studies, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Edinburgh, Easter Bush Veterinary Centre, Roslin,Midlothian EH25 9RG; *Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Cell and Molecular Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Edinburgh, Darwin Building,West Mains Road, Edinburgh EH9 3JG, UKINTRODUCTIONEquine oocytes are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten obtained from abattoirsand a c<strong>on</strong>siderable period <str<strong>on</strong>g>of</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g>ten elapsesfrom excisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ovaries until recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oocytes. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> time and temperature couldpotentially affect <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting in vitro maturati<strong>on</strong>rates but differing results have been obtained in <str<strong>on</strong>g>the</str<strong>on</strong>g>different species studied. In a study in horses,storage <str<strong>on</strong>g>of</str<strong>on</strong>g> ovaries for 6–8 h was found not to affectoocyte maturati<strong>on</strong> rates compared to oocytes fromovaries stored for 1.5–4 h (Guignot et al. 1999).Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r study reported no effect <strong>on</strong> maturati<strong>on</strong>rates after storage time <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 15 h compared to3–9 h (Delcampo et al. 1995). The same c<strong>on</strong>clusi<strong>on</strong>was reached after comparis<strong>on</strong>s were made betweenstoring <str<strong>on</strong>g>the</str<strong>on</strong>g> equine oocytes at 5–6, 6–7 and 7–8 h,and fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, no difference was found incumulus morphology (Shabpareh et al. 1993). Byc<strong>on</strong>trast, storing ovine oocytes for 4, 8 and 24 h at5ºC, 22ºC or 37ºC, resulted in a negative effect <strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g> oocytes’ capacity to reach Metaphase II.Storing ovine oocytes at 22ºC affected <str<strong>on</strong>g>the</str<strong>on</strong>g> oocytesless than at 5ºC and 37ºC (Moodie and Graham1989) but ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r study found that exposing bovinegerminal vesicle oocytes to temperatures below23°C reduced <str<strong>on</strong>g>the</str<strong>on</strong>g>ir viability as determined bymembrane integrity (Zer<strong>on</strong> et al. 1999). Thedevelopmental capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> murine oocytes to <str<strong>on</strong>g>the</str<strong>on</strong>g> 2cell stage embryo following storage in <str<strong>on</strong>g>the</str<strong>on</strong>g> ovariesfor up 6 h was not different from c<strong>on</strong>trol oocytes,but storage for 9–12 h was detrimental todevelopment (Schroeder et al. 1991).The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was to investigate <str<strong>on</strong>g>the</str<strong>on</strong>g>effect <str<strong>on</strong>g>of</str<strong>on</strong>g> holding temperature and time <strong>on</strong> equineoocyte chromatin c<strong>on</strong>figurati<strong>on</strong> and cumulusmorphology immediately after recovery from <str<strong>on</strong>g>the</str<strong>on</strong>g>follicle.MATERIALS AND METHODSOvaries were obtained from horses and p<strong>on</strong>iesafter slaughter or after ovariectomy. Theexteriorised ovaries were kept at 20–30ºC or35–37ºC in M199 with Hanks salts and 25 mMHepes for 0.5–24 h. Processed follicles rangedfrom 2–60 mm in diameter. The inner wall <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>follicle was scraped with a b<strong>on</strong>e curette to release<str<strong>on</strong>g>the</str<strong>on</strong>g> cumulus oophorus with <str<strong>on</strong>g>the</str<strong>on</strong>g> oocyte. Afterexaminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cumulus oophorus, <str<strong>on</strong>g>the</str<strong>on</strong>g> oocytewas denuded, fixed and stained with 2.5 µg/mlHoechst stain 33258 (bisBenzimide). Cumulusoophorus morphology was classified ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r ascompact (CP), expanded (EX), or denuded using<str<strong>on</strong>g>the</str<strong>on</strong>g> criteria <str<strong>on</strong>g>of</str<strong>on</strong>g> (Hinrichs et al. 1993a). The oocytechromatin c<strong>on</strong>figurati<strong>on</strong>s were classified asfluorescent nucleus (FN), loosely c<strong>on</strong>densedchromatin (LCC), c<strong>on</strong>densed chromatin (CC),metaphase, or abnormal according to criteria <str<strong>on</strong>g>of</str<strong>on</strong>g>(Hinrichs et al. 1993b). The study c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> 4experiments.Experiment 1: The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <strong>on</strong>chromatin c<strong>on</strong>figurati<strong>on</strong>Oocytes from ovaries stored at 20–30ºC (n=14) or35–37ºC (n=59) were used. To avoid <str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>founding effect <str<strong>on</strong>g>of</str<strong>on</strong>g> time, <strong>on</strong>ly oocytes that hadbeen sitting in <str<strong>on</strong>g>the</str<strong>on</strong>g> follicles for less than 3 h wereselected.Experiment 2: The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> time <strong>on</strong> chromatinc<strong>on</strong>figurati<strong>on</strong>Oocytes (n=222) were stored in <str<strong>on</strong>g>the</str<strong>on</strong>g> follicles for0–1, 1–2, 2–3, 3–4, 4–6, 6–8 and 8–12 h afterexteriorisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ovary.22


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3Experiment 3: The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <strong>on</strong>cumulus morphologyCumulus oocyte complexes were recovered fromfollicles within 2 h <str<strong>on</strong>g>of</str<strong>on</strong>g> exteriorisati<strong>on</strong>. The follicleshad been stored at 20–30ºC (n=34) and 35–37ºC(n=40).Experiment 4: The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> time <strong>on</strong> cumulusmorphologyCumulus oocyte complexes (n=298) were left infollicles kept at 35–37ºC for varying lengths <str<strong>on</strong>g>of</str<strong>on</strong>g>time ranging from 0–1, 1–2, 2–3, 3–4, 4–6, 6–8and 8–10 h.STATISTICALANALYSISThe effects <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature and time <strong>on</strong> oocytechromatin c<strong>on</strong>figurati<strong>on</strong> and cumulus morphologywere analysed by a Chi-square test or a Fisher testin case <str<strong>on</strong>g>of</str<strong>on</strong>g> small sample numbers. The nullhypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> statistical test assumed that <str<strong>on</strong>g>the</str<strong>on</strong>g>rewas no difference. A P-value <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.05 or less wasc<strong>on</strong>sidered significant.RESULTSExperiment 1: The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <strong>on</strong>chromatin c<strong>on</strong>figurati<strong>on</strong>Storing ovaries at ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r 20–30ºC or 35–37ºC didnot affect (P>0.05) chromatin c<strong>on</strong>figurati<strong>on</strong> inoocytes that were fixed within 3 h <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ovaryleaving <str<strong>on</strong>g>the</str<strong>on</strong>g> animal. In <str<strong>on</strong>g>the</str<strong>on</strong>g> 20–30ºC group, 64.3%<str<strong>on</strong>g>of</str<strong>on</strong>g> oocytes were LCC and 35.7% were CC,whereas in <str<strong>on</strong>g>the</str<strong>on</strong>g> 35–37ºC group, 1.7% were FN,78% were LCC and 20.3% were CC.Experiment 2: The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> time <strong>on</strong> chromatinc<strong>on</strong>figurati<strong>on</strong>There was no difference (P>0.1) in oocytechromatin c<strong>on</strong>figurati<strong>on</strong> within <str<strong>on</strong>g>the</str<strong>on</strong>g> first 6 h <str<strong>on</strong>g>of</str<strong>on</strong>g>storage in <str<strong>on</strong>g>the</str<strong>on</strong>g> follicle. The c<strong>on</strong>figurati<strong>on</strong>s startedto change from 4 h <strong>on</strong>wards, but were notsignificantly affected until after 6 h. There was adifference in distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chromatinc<strong>on</strong>figurati<strong>on</strong>s between 0–6 and 6–12 h (P 0.1). The major changes between 0–6 h and6–12 h were detected in <str<strong>on</strong>g>the</str<strong>on</strong>g> FN c<strong>on</strong>figurati<strong>on</strong> (P


Equine Embryo TransferTABLE 2: Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature <strong>on</strong> cumulus morphologyn Compact cumulus Expanded cumulus Denuded oocytes(%) (%) (%)20–30°C a 34 41.2 35.323.535–37°C b 40 67.5 27.55.0Letters a and b denote difference (


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3Didi<strong>on</strong>, B.A., Pomp, D., Martin, M.J., Homanics, G.E.and Markert, C.L. (1990) Observati<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>cooling and cryopreservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pig oocytes at <str<strong>on</strong>g>the</str<strong>on</strong>g>germinal vesicle stage. J. anim. Sci. 68, 2803-2810.Guignot, F., Bezard, J. and Palmer, E. (1999) Effect <str<strong>on</strong>g>of</str<strong>on</strong>g>time during transport <str<strong>on</strong>g>of</str<strong>on</strong>g> excised mare ovaries <strong>on</strong>oocyte recovery rate and quality after in vitromaturati<strong>on</strong>. Theriogenol. 52, 757-766.Hinrichs, K., Schmidt, A.L., Friedman, P.P., Selgrath, J.P.and Martin, M.G. (1993a) In vitro maturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>horse oocytes: characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chromatinc<strong>on</strong>figurati<strong>on</strong> using fluorescence microscopy. Biol.Reprod. 48, 363-370.Hinrichs, K., Schmidt, A.L. and Selgrath, J.P. (1993b)Atlas <str<strong>on</strong>g>of</str<strong>on</strong>g> chromatin c<strong>on</strong>figurati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> germinalvesicle-stage and maturing horse oocytes. Equinevet. J. Suppl. 15, 60-63.Moodie, G.R. and Graham, E.F. (1989) The effect <str<strong>on</strong>g>of</str<strong>on</strong>g>incubating sheep ovaries for various times andtemperatures <strong>on</strong> oocyte maturati<strong>on</strong> rates in vitro.Biol. Reprod. 40, abstract 53.Moor, R.M. and Crosby, I.M. (1985) Temperatureinducedabnormalities in sheep oocytes duringmaturati<strong>on</strong>. J. reprod. Fertil. 75, 467-473.Richard, F.J. and Sirard, M.A. (1996) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> harvestmethods <str<strong>on</strong>g>of</str<strong>on</strong>g> bovine oocytes cocultured with follicularhemisecti<strong>on</strong>s in vitro <strong>on</strong> nuclear maturati<strong>on</strong>.Theriogenol. 46, 1243-1250.Schroeder, A.C., Johnst<strong>on</strong>, D. and Eppig, J.J. (1991)Reversal <str<strong>on</strong>g>of</str<strong>on</strong>g> postmortem degenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mouseoocytes during meiotic maturati<strong>on</strong> in vitro. J. exp.Zool. 258, 240-245.Shabpareh, V., Squires, E.L., Seidel, G.E. and Jasko, D.J.(1993) Methods for collecting and maturing equineoocytes in vitro. Theriogenol. 40, 1161-1175.Zer<strong>on</strong>, Y., Pearl, M., Borochov, A. and Arav, A. (1999)Kinetic and temporal factors influence chillinginjury to germinal vesicle and mature bovineoocytes. Cryobiol. 38, 35-42.25


Equine Embryo TransferEFFECT OF FETUIN ON THE ZONA HARDENINGAND CORTICAL GRANULES DISTRIBUTION IN<strong>EQUINE</strong> OOCYTES MATURED IN VITROF. C. Landim-Alvarenga, S. E. A. Boyazoglu*, G. E. Jr. Seidel † and E. L. Squires †Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Animal Reproducti<strong>on</strong> and Veterinary Radiology, F.M.V.Z. - UNESP, Botucatu, SP,18618.000, Brazil; *Sport Horse Research Center, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Medicine – Perugia, 06126,Italy; † ARBL, Colorado State University, Fort Collins, Colorado 80523, USAFully grown oocytes from many mammals canundergo sp<strong>on</strong>taneous meiotic maturati<strong>on</strong> when<str<strong>on</strong>g>the</str<strong>on</strong>g>y are liberated from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir follicles and culturedin vitro. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> z<strong>on</strong>a pellucida becomesresistant to chymotrypsin digesti<strong>on</strong> or ‘hardened’,when sp<strong>on</strong>taneous maturati<strong>on</strong> occurs in serumfreemedium (Zhang et al. 1991). Schroeder et al.(1990) described that fetuin, a comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> FetalBovine Serum (FBS), inhibits z<strong>on</strong>a pellucidahardening during oocyte maturati<strong>on</strong>. Dell’ Aquilaet al. (1999) studied <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fetuinin maturati<strong>on</strong> media <str<strong>on</strong>g>of</str<strong>on</strong>g> equine oocytes in presence<str<strong>on</strong>g>of</str<strong>on</strong>g> equine follicular fluid, oestrous mare serum,equine fetal serum and BSA. The results showedthat fetuin reduces z<strong>on</strong>a hardening, but it does notinfluence sperm penetrati<strong>on</strong> after IVF. However,<str<strong>on</strong>g>the</str<strong>on</strong>g>re is a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> <strong>on</strong> z<strong>on</strong>a-hardening <str<strong>on</strong>g>of</str<strong>on</strong>g>in vivo matured oocytes. Also, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no papercorrelating z<strong>on</strong>a hardening and cortical granulesdistributi<strong>on</strong> during different culture periods inequine oocytes. So, <str<strong>on</strong>g>the</str<strong>on</strong>g> objective <str<strong>on</strong>g>of</str<strong>on</strong>g> this study wasto compare z<strong>on</strong>a hardening <str<strong>on</strong>g>of</str<strong>on</strong>g> in vitro and in vivomatured oocytes and to determine whe<str<strong>on</strong>g>the</str<strong>on</strong>g>rexposure <str<strong>on</strong>g>of</str<strong>on</strong>g> equine oocytes to serum-free mediumc<strong>on</strong>taining fetuin would affect ZPH and corticalgranule (CC) distributi<strong>on</strong>.MATERIALAND METHODSOocytes were collected from slaughterhouseovaries according to <str<strong>on</strong>g>the</str<strong>on</strong>g> method described by Choiet al. (1993) and matured in TCM 199 with Earle’ssalt (Sigma M7529, M<strong>on</strong>tana, USA) supplementedwith pyruvate, FSH and Oestradiol 17ß in <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> following treatments:Group 1 (c<strong>on</strong>trol): maturati<strong>on</strong> medium c<strong>on</strong>taining10% FCS;Group 2: maturati<strong>on</strong> medium + 1 mg/mlpolivinylalcohol (PVA) andGroup 3: maturati<strong>on</strong> medium + 1 mg/ml Fetuin.Fifteen to 20 oocytes were cultured in100 µl drops covered with washed, equilibratedparaffin oil. All oocytes were incubated for 36–40h at 38.5°C in 5% CO 2 in air. Five replicates wereused.In vivo (n=12) matured oocytes were obtainedfrom preovulatory follicles. Normal cycling mareswere treated with hCG when <strong>on</strong>e follicle reached35 mm in diameter. After 30 h a transvaginalaspirati<strong>on</strong> was performed to collect <str<strong>on</strong>g>the</str<strong>on</strong>g> oocyte.After maturati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> oocytes were striped <str<strong>on</strong>g>of</str<strong>on</strong>g>cumulus cells using a fine bore pipette in 1% BSAmodified Dulbecco’s PBS (DPBS) + hyalur<strong>on</strong>idasetype V (300 iu/ml). Totally denuded oocytes werewashed <strong>on</strong>ce in DPBS and transferred to a soluti<strong>on</strong>c<strong>on</strong>taining 0.3% protease (Pr<strong>on</strong>ase – Sigma,M<strong>on</strong>tana, USA) in DPBS. The hardening <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>z<strong>on</strong>a pellucida was estimate by <str<strong>on</strong>g>the</str<strong>on</strong>g> time necessaryfor digesti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ZP (d 50 ). The z<strong>on</strong>a freeoocytes were <str<strong>on</strong>g>the</str<strong>on</strong>g>n stained with 45% acetic orceinfor evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclear status. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g>maturati<strong>on</strong> systems were analysed by ANOVA.Cortical granules distributi<strong>on</strong> was analysedusing Transmissi<strong>on</strong> Electr<strong>on</strong> Microscopy insamples <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 oocytes taken just after collecti<strong>on</strong> andafter 15, 24 and 36 h <str<strong>on</strong>g>of</str<strong>on</strong>g> maturati<strong>on</strong> in eachtreatment. A group <str<strong>on</strong>g>of</str<strong>on</strong>g> 4 in vivo matured oocyteswas also used.RESULTS AND DISCUSSIONThe additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> FCS to <str<strong>on</strong>g>the</str<strong>on</strong>g> maturati<strong>on</strong> mediasignificantly increase cumulus cell expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>26


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3equine oocytes matured in vitro (Table 1).However, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> oocytes that reachedmetaphase II (MII) in vitro was not different whenFCS, PVA and fetuin was added to <str<strong>on</strong>g>the</str<strong>on</strong>g> medium(Table 1). This is in agreement with our previousresults showing similar maturati<strong>on</strong> rates for equineoocytes matured in presence or absence <str<strong>on</strong>g>of</str<strong>on</strong>g> serumand horm<strong>on</strong>es (Landim-Alvarenga and Choi1999).In this experiment <str<strong>on</strong>g>the</str<strong>on</strong>g> time necessary fordigesti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> z<strong>on</strong>a pellucida (d 50 ) justafter collecti<strong>on</strong> was 12.04 min. There was nochange in ZP hardening during <str<strong>on</strong>g>the</str<strong>on</strong>g> culture periodwhen PVA was used. When FCS and Fetuin wereadded to <str<strong>on</strong>g>the</str<strong>on</strong>g> maturati<strong>on</strong> media <str<strong>on</strong>g>the</str<strong>on</strong>g> time necessaryfor digesti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> z<strong>on</strong>a (d 50 ) decreased inl<strong>on</strong>ger periods <str<strong>on</strong>g>of</str<strong>on</strong>g> culture, however no statisticdifference were noted (Table 2). After 36 h <str<strong>on</strong>g>of</str<strong>on</strong>g>maturati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> d 50 <str<strong>on</strong>g>of</str<strong>on</strong>g> equine oocytes matured inpresence <str<strong>on</strong>g>of</str<strong>on</strong>g> FCS and fetuin was lower comparedwith <str<strong>on</strong>g>the</str<strong>on</strong>g> group with PVA (Table 2). This is inagreement with <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> Schroeder et al.(1990) who showed that fetuin inhibited z<strong>on</strong>apellucida hardening <str<strong>on</strong>g>of</str<strong>on</strong>g> mouse oocytes in a dosedependent way. Also Dell’ Aquila et al. (1998)observed that bovine fetuin inhibited z<strong>on</strong>apellucida hardening <str<strong>on</strong>g>of</str<strong>on</strong>g> equine oocytes during IVMwith a dose effect.Oocyte maturati<strong>on</strong> in vitro or in vivo isaccompanied by a slow release <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately30–40% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cortical granules (Dulcibella et al.1990). However, in vivo, this precocious release<str<strong>on</strong>g>of</str<strong>on</strong>g> cortical granules does not result in z<strong>on</strong>apellucida modificati<strong>on</strong>s. In fact, <str<strong>on</strong>g>the</str<strong>on</strong>g> d 50 measuredin 12 in vivo matured oocytes aspirated frompreovulatory follicles 30 h after hCG injecti<strong>on</strong>was 9.22 min.The ultrastructural analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> in vivo maturedoocytes showed <str<strong>on</strong>g>the</str<strong>on</strong>g> highest number <str<strong>on</strong>g>of</str<strong>on</strong>g> CC beneath<str<strong>on</strong>g>the</str<strong>on</strong>g> oolema. Similar pattern was observed whenoocytes were matured in vitro for 36 h in presence<str<strong>on</strong>g>of</str<strong>on</strong>g> Fetuin and FCS. However, when maturati<strong>on</strong>occurs in absence <str<strong>on</strong>g>of</str<strong>on</strong>g> serum, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> CC wassmaller. These indicate that in this group aprecocious release <str<strong>on</strong>g>of</str<strong>on</strong>g> CG may happened,justifying <str<strong>on</strong>g>the</str<strong>on</strong>g> high d 50 value observed.We c<strong>on</strong>clude that equine ZP became resistantto lisys by protease following 36 h incubati<strong>on</strong> inserum free media. The additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fetuin or FCS to<str<strong>on</strong>g>the</str<strong>on</strong>g> maturati<strong>on</strong> media reduced <str<strong>on</strong>g>the</str<strong>on</strong>g> d 50 to valuessimilar to <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es observed in vivo maturedoocytes. It is likely that <str<strong>on</strong>g>the</str<strong>on</strong>g> problems related toIVF <str<strong>on</strong>g>of</str<strong>on</strong>g> equine oocytes matured in presence <str<strong>on</strong>g>of</str<strong>on</strong>g>serum are not related with ZPH.ACKNOWLEDGEMENTSSupported by PEG - CSU/USA, FAPESP/Braziland FUNDUNESP/ Brazil.REFERENCESChoi, Y.H., Hochi, S., Braun, J. and Oguri, N. (1993)Theriogenol. 40, 959-66.Dell’Aquila, M.E., De Felici, M., Maritato, F.,Lacalandra, G.M. and Minoia, P. (1998) In:<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 14th Scientific Meeting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>European Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Embryo Transfer, Venice, Italy.Abstract. 140.Dell’Aquila, M.E., Felici, M., Massari, S., Maritato, F.and Minoia, P. (1999) Biol. Reprod. 61, 533-540.Doulcibella, T., Kurasawa, S., Rangarjn, S., Kopf, G.S.and Schultz, R.M. (1990) Dev. Biol. 137, 46-55.Landim-Alvarenga, F.C. and Choi, Y.H. (1999)Theriogenol. 51, 383.Schroeder, A.C., Schultz, R.M., Kopf, G.S., Taylor, F.R.,Becker, R.B. and Eppig, J.J. (1990) Biol. Reprod. 43,891-897.Zhang, X., Rutlege, J. and Armstr<strong>on</strong>g, D.T. (1991) Mol.Reprod. Dev. 28, 292-6.27


Equine Embryo TransferPOLYVINYLALCOHOL IS SUPERIOR TO BOVINESERUM ALBUMIN IN <strong>EQUINE</strong> IVF MEDIUMY. H. Choi, G. E. Seidel, Jr., S. Boyazoglu and E. L. Squires*Centro de Reproducción Equina Doña Pilar, Lincoln, Argentina; *Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Physiology andPharmacology, College <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Medicine, Texas A&M University, College Stati<strong>on</strong>, Texas, USAINTRODUCTIONSeveral studies <strong>on</strong> predicting stalli<strong>on</strong> spermfertility have been d<strong>on</strong>e using hamster or equineoocytes. However, expenses <str<strong>on</strong>g>of</str<strong>on</strong>g> hamster and equineoocytes for investigating stalli<strong>on</strong> sperm fertility arehigh compared with bovine oocytes, which <str<strong>on</strong>g>of</str<strong>on</strong>g>tencan easily be obtained from local slaughterhouses.Bovine serum albumin is widely used tosupplement capacitati<strong>on</strong> and fertilisati<strong>on</strong> media.However, BSA is c<strong>on</strong>taminated by o<str<strong>on</strong>g>the</str<strong>on</strong>g>r serumcomp<strong>on</strong>ents including enzymes, horm<strong>on</strong>es, lipids,and organic and inorganic i<strong>on</strong>s (Bavister 1995). Tomake a defined culture system for examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> capacitati<strong>on</strong> or fertilisati<strong>on</strong>,polyvinylalcohol (PVA) was used as a substitutefor BSA in <strong>on</strong>e 2 x 2 factorial study usingpenetrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> z<strong>on</strong>a-free bovine oocytes, and in asec<strong>on</strong>d study using equine oocytes collected fromslaughterhouse-derived ovaries.MATERIALS AND METHODSFor Experiment 1, Bovine oocytes were collectedfrom slaughterhouse-derived ovaries and maturedin TCM-199 with horm<strong>on</strong>es (FSH, LH and E 2 ) and10% oestrous cow serum. After 22 h <str<strong>on</strong>g>of</str<strong>on</strong>g> culture,oocytes were denuded <str<strong>on</strong>g>of</str<strong>on</strong>g> cumulus cells by gentlepipetting in m-PBS plus hyalur<strong>on</strong>idase and placedin Tyrode’s medium (pH 2.1) for 1–2 min toremove z<strong>on</strong>ae pellucidae. Washed, fresh ejaculatedsperm from 3 stalli<strong>on</strong>s were capacitated at 5 x 10 7sperm/ml in TYH medium (modified Krebs-Ringer bicarb<strong>on</strong>ate) plus 0.5 mM 8-bromo-cAMPfor 3.5 h with or without an additi<strong>on</strong>al 15 min in100 nM i<strong>on</strong>omycin, and supplemented withpolyvinylalcohol (PVA; 1 mg/ml) or BSA (4mg/ml). Intraspecies gametes were co-incubated inTYH/PVA or TYH/BSA for 18–20 h at 10 6sperm/ml. For Experiment 2, equine ovaries weresliced near a slaughterhouse, and oocytes werecollected and transported to <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory insealed 15 ml c<strong>on</strong>ical tubes filled with TCM-199plus 10% FCS covered with paraffin oil. Oocyteswere matured as described for bovine oocytes.After 28–30 h maturati<strong>on</strong>, cumulus cells wereremoved and oocytes with a 1st polar body wereused for fertilisati<strong>on</strong> after approximately <strong>on</strong>e-third<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> z<strong>on</strong>a pellucida was removed with a fragment<str<strong>on</strong>g>of</str<strong>on</strong>g> razor blade in protein-free PBS supplementedwith 0.3 M sucrose (Choi et al. 1994). Freshsemen from 2 stalli<strong>on</strong>s was mixed and washedtwice (330 x g for 5 min) in TYH/PVA orTYH/BSA. Capacitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stalli<strong>on</strong> sperm waswith 8-bromo cAMP and i<strong>on</strong>omycin as describedfor Experiment 1, as was IVF. Experiment 2 wasreplicated 3 times. For both experiments, oocyteswere fixed and stained 18–20 h after <str<strong>on</strong>g>the</str<strong>on</strong>g> start <str<strong>on</strong>g>of</str<strong>on</strong>g>IVF and examined for enlarged sperm heads ormale pr<strong>on</strong>ucleus formati<strong>on</strong>.RESULTSTreatment <str<strong>on</strong>g>of</str<strong>on</strong>g> stalli<strong>on</strong> sperm with cAMP andi<strong>on</strong>omycin in TYH/PVA resulted in a higherpenetrati<strong>on</strong> rate (P


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 323/43 (53%) than BSA, 5/46 (11%). Six <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 23oocytes were polyspermic in <str<strong>on</strong>g>the</str<strong>on</strong>g> PVA group vs 1<str<strong>on</strong>g>of</str<strong>on</strong>g> 5 oocytes in <str<strong>on</strong>g>the</str<strong>on</strong>g> BSA group.CONCLUSIONSStalli<strong>on</strong> sperm penetrati<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> bovine z<strong>on</strong>afreeoocytes and partial z<strong>on</strong>a-removed equineoocytes were superior with PVA compared to BSAsupplementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> capacitati<strong>on</strong> and fertilisati<strong>on</strong>media. The reas<strong>on</strong>/mechanism for PVA superiorityto BSA for capacitati<strong>on</strong> and fertilisati<strong>on</strong> by stalli<strong>on</strong>sperm in <str<strong>on</strong>g>the</str<strong>on</strong>g> system used requires fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rexperimentati<strong>on</strong>. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> chemically definedmedium used in this study will simplifyinvestigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> detailed mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g>capacitati<strong>on</strong>. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r, bovine z<strong>on</strong>a-free oocyteswere useful for assaying in vitro capacitati<strong>on</strong> andfertilisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stalli<strong>on</strong> sperm.REFERENCESBavister, B.D. (1995) Culture <str<strong>on</strong>g>of</str<strong>on</strong>g> preimplantati<strong>on</strong>embryos: facts and artifacts. Hum. Reprod. Update.1, 91-148.Choi, Y.H, Okada ,Y., Hochi, S., Braun, J., Sato, K. andOguri, N. (1994) In vitro fertilisati<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> horseoocytes with partially removed z<strong>on</strong>ae. Theriogenol.42, 795-802.29


Equine Embryo TransferTHE DEVELOPMENT OF BLASTOCYSTS AFTERINTRACYTOPLASMIC SPERM INJECTION OF <strong>EQUINE</strong>OOCYTESX. Li, L. H. A. Morris and W. R. AllenEquine Fertility Unit, Mertoun Paddocks, Woodditt<strong>on</strong> Road, Newmarket, Suffolk CB8 9BH, UKINTRODUCTIONHorse oocytes obtained from abattoir ovaries andcultured in vitro can complete nuclear maturati<strong>on</strong> byreleasing <str<strong>on</strong>g>the</str<strong>on</strong>g> first polar body <str<strong>on</strong>g>of</str<strong>on</strong>g> Metaphase II (MII)after 15–40 h <str<strong>on</strong>g>of</str<strong>on</strong>g> culture (Zhang et al. 1989; Hinrichset al. 1993). Although <str<strong>on</strong>g>the</str<strong>on</strong>g>se MII oocytes havecompleted nuclear maturati<strong>on</strong>, it remains difficult t<str<strong>on</strong>g>of</str<strong>on</strong>g>ertilise <str<strong>on</strong>g>the</str<strong>on</strong>g>m by ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r IVF or ICSI and to induce<str<strong>on</strong>g>the</str<strong>on</strong>g>ir fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r development to <str<strong>on</strong>g>the</str<strong>on</strong>g> blastocyst stageduring subsequent culture in vitro (Choi et al.1994;Dell’Aquila et al. 1997; Li et al. 2000).The importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oviduct in gametematurati<strong>on</strong> and fertilisati<strong>on</strong> has been established(Hunter 1994), and co-culture with oviductepi<str<strong>on</strong>g>the</str<strong>on</strong>g>lial cells is used increasingly to supportoocyte maturati<strong>on</strong> and early embry<strong>on</strong>icdevelopment in vitro. In <str<strong>on</strong>g>the</str<strong>on</strong>g> present study weinvestigated <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> oviduct epi<str<strong>on</strong>g>the</str<strong>on</strong>g>lialcells (OEC) <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> maturati<strong>on</strong>, fertilisati<strong>on</strong> andsubsequent development potential <str<strong>on</strong>g>of</str<strong>on</strong>g> abattoirderivedequine oocytes cultured in vitro after ICSI.MATERIALS AND METHODSHorse ovaries were obtained from twoslaughterhouses and transported to <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratorywithin 24 h. Cumulus oocyte complexes (COCs)were matured in vitro for 28–30 h, with orwithout OEC, in TCM199 medium c<strong>on</strong>taining20% FBS (v:v), 10 µg/ml FSH, 5 µg/ml LH and 1mg/ml oestradiol, at 38ºC in 5% CO 2 -in-air.Three types <str<strong>on</strong>g>of</str<strong>on</strong>g> spermatozoa were prepared forICSI; washed, acrosome-reacted and predec<strong>on</strong>densedspermatozoa.The injecti<strong>on</strong> pipette c<strong>on</strong>taining <str<strong>on</strong>g>the</str<strong>on</strong>g>spermatozo<strong>on</strong> was pushed through <str<strong>on</strong>g>the</str<strong>on</strong>g> z<strong>on</strong>apellucida and plasma membrane so that <str<strong>on</strong>g>the</str<strong>on</strong>g>spermatozo<strong>on</strong> could be injected directly into <str<strong>on</strong>g>the</str<strong>on</strong>g>cytoplasm. The injected oocytes were <str<strong>on</strong>g>the</str<strong>on</strong>g>nactivated by immersing <str<strong>on</strong>g>the</str<strong>on</strong>g>m in STALP soluti<strong>on</strong>c<strong>on</strong>taining 5 µM i<strong>on</strong>omycin and 1% ethanol for 5min. After both ICSI and <str<strong>on</strong>g>the</str<strong>on</strong>g> activati<strong>on</strong> procedure,groups <str<strong>on</strong>g>of</str<strong>on</strong>g> 5–10 oocytes were cultured for 7–9 daysin DMEM medium with cumulus cells m<strong>on</strong>olayer(CCM) at 38ºC in an atmosphere <str<strong>on</strong>g>of</str<strong>on</strong>g> 5% CO 2 -in-air.Two-cell stage embryos were stained withHoechst 33342 (Sigma) in PBS soluti<strong>on</strong> (5 µg/ml)for 10 min at 38ºC before being examined underultraviolet light (excitati<strong>on</strong> wavelength 330–380nm) using a fluorescent microscope.CONCLUSIONSThe mammalian oviduct normally provides <str<strong>on</strong>g>the</str<strong>on</strong>g>optimum envir<strong>on</strong>ment for <str<strong>on</strong>g>the</str<strong>on</strong>g> final maturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>TABLE 1: Nuclear maturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> horse oocytes cultured in vitro, with and without oviduct epi<str<strong>on</strong>g>the</str<strong>on</strong>g>lialcells (OEC)Maturati<strong>on</strong> Total number Number and (%) <str<strong>on</strong>g>of</str<strong>on</strong>g>medium <str<strong>on</strong>g>of</str<strong>on</strong>g> oocytes MII≠ MIIIVM-1 145 74(51) 71(49)IVM-1/OEC 140 77(55) 53(45)30


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3TABLE 2: Cleavage and normal fertilisati<strong>on</strong> rates in 2-cell stage embryos following <str<strong>on</strong>g>the</str<strong>on</strong>g> injecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 3types <str<strong>on</strong>g>of</str<strong>on</strong>g> spermatozoa into <str<strong>on</strong>g>the</str<strong>on</strong>g> cytoplasm <str<strong>on</strong>g>of</str<strong>on</strong>g> MII oocytes matured with or without OECInjected 2-cell stage/total (%) Development pattern** (%)spermatozo<strong>on</strong> NF PD O<str<strong>on</strong>g>the</str<strong>on</strong>g>rsType I 12 / 30 (40 b ) 9 (75 a ) 0b 3 (25 b )Type II 58 / 92 (63 a ) 47(81 a ) 6 (10 a ) 5 (9 a )Type III 10 / 24 (42 b ) 4 (40 b ) 1 (10 a ) 5 (50 b )Type II* 27 / 40 (68 a ) 23 (85 a ) 0 b 4 (15 a )Values in <str<strong>on</strong>g>the</str<strong>on</strong>g> same column with different superscripts are significantly different (P


Equine Embryo TransferEMBRYONIC DEVELOPMENT OF <strong>EQUINE</strong> OOCYTESFERTILISED BY ICSIC. Galli, G. Crotti, G. Mari* and G. LazzariLaborotorio di Tecnologie della Riproduzi<strong>on</strong>e, C.I.Z.- A.I.A. Via Porcellasco 7/f, 26100 Crem<strong>on</strong>a, Italy;*Dipartmento Clinico Veterinario, Universita degli Studi di Bologna, Via Tolara di Sopra 50, OzzanoEmilia, 40064 Bologna, ItalyINTRODUCTIONThe applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> in vitro embryo producti<strong>on</strong>technology in <str<strong>on</strong>g>the</str<strong>on</strong>g> horse is very limited because <str<strong>on</strong>g>the</str<strong>on</strong>g>overall procedure is much less efficient as comparedfor example to <str<strong>on</strong>g>the</str<strong>on</strong>g> bovine where at present manythousands <str<strong>on</strong>g>of</str<strong>on</strong>g> calves are born worldwide following<str<strong>on</strong>g>the</str<strong>on</strong>g> transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> in vitro produced embryos. In <str<strong>on</strong>g>the</str<strong>on</strong>g>horse successful birth <str<strong>on</strong>g>of</str<strong>on</strong>g> foals following assistedreproductive techniques are still occasi<strong>on</strong>al (Palmeret al. 1991; Squires et al. 1996; Cochran et al. 1998;McKinn<strong>on</strong> et al. 1998), anatomical andphysiological peculiarities are <str<strong>on</strong>g>the</str<strong>on</strong>g> main c<strong>on</strong>straint to<str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> assisted reproductive techniquesin this species. The potential applicati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> horsewill be for assisted reproducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infertile orsubfertile mare and stalli<strong>on</strong>s ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than for <str<strong>on</strong>g>the</str<strong>on</strong>g>increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring obtained fromany given d<strong>on</strong>or.The 3 steps involved in <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>embryos in vitro (maturati<strong>on</strong>, fertilisati<strong>on</strong> andculture) have been studied by several laboratories.In vitro maturati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> more efficient step asassessed by <str<strong>on</strong>g>the</str<strong>on</strong>g> transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> in vitro matured oocytesto <str<strong>on</strong>g>the</str<strong>on</strong>g> oviduct for fertilisati<strong>on</strong> and development(Zhang et al. 1989). In vitro fertilisati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> lessreproducible step and it is now overcome by <str<strong>on</strong>g>the</str<strong>on</strong>g>use <str<strong>on</strong>g>of</str<strong>on</strong>g> intracytoplasmic sperm injecti<strong>on</strong> (ICSI).Embryo culture is <str<strong>on</strong>g>the</str<strong>on</strong>g> less studied aspect because<str<strong>on</strong>g>the</str<strong>on</strong>g> embryos are usually transferred to <str<strong>on</strong>g>the</str<strong>on</strong>g> oviductas so<strong>on</strong> as possible after fertilisati<strong>on</strong>. An efficientsystem that would allow <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> invitro produced embryo to blastocyst it would behighly desirable both because it would allow <str<strong>on</strong>g>the</str<strong>on</strong>g>n<strong>on</strong> surgical transfer and possibly <str<strong>on</strong>g>the</str<strong>on</strong>g> freezing <str<strong>on</strong>g>of</str<strong>on</strong>g>such embryos.The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was to improve <str<strong>on</strong>g>the</str<strong>on</strong>g> basicknowledge <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> follicle size andcumulus morphology <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> embryo development<str<strong>on</strong>g>of</str<strong>on</strong>g> horse oocytes fertilised by ICSI and cultured in<str<strong>on</strong>g>the</str<strong>on</strong>g> surrogate oviduct <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sheep.MATERIALS AND METHODSOocytes were collected from ovaries <str<strong>on</strong>g>of</str<strong>on</strong>g>slaughtered mares during <str<strong>on</strong>g>the</str<strong>on</strong>g> period December1999–February 2000. The ovaries were collectedin plastic bags with saline soluti<strong>on</strong> and transportedto <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory in <str<strong>on</strong>g>the</str<strong>on</strong>g>rmostatic boxes kept at24–26°C within 4 h from slaughter. Thec<strong>on</strong>nective tissue capsule was removed from <str<strong>on</strong>g>the</str<strong>on</strong>g>ovaries to help locate <str<strong>on</strong>g>the</str<strong>on</strong>g> follicles. A slit was madein each follicle with a scalpel blade and a Volkmanspo<strong>on</strong> was used to scrape <str<strong>on</strong>g>the</str<strong>on</strong>g> inside <str<strong>on</strong>g>of</str<strong>on</strong>g> each folliclelarge than an estimated 0.5 cm. The oocytesrecovered were divided in two groups according to<str<strong>on</strong>g>the</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> follicle above (large follicles) orbelow (small follicles) 2 cm <str<strong>on</strong>g>of</str<strong>on</strong>g> diameter. Withineach group <str<strong>on</strong>g>the</str<strong>on</strong>g> oocytes were divided according to<str<strong>on</strong>g>the</str<strong>on</strong>g> cumulus morphology, compacted andexpanded. The oocytes bel<strong>on</strong>ging to <str<strong>on</strong>g>the</str<strong>on</strong>g> 2 classes<str<strong>on</strong>g>of</str<strong>on</strong>g> follicle size were matured separately in vitro for26 h (oocytes with expanded cumulus) or 30 h(oocytes with compacted cumulus). Maturati<strong>on</strong>medium c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> TCM 199 with 10% FCS,ITS (insulin transferring and selenium, Sigma),epidermal growth factor analogue (50 ng/ml,Sigma), 0.5 IU <str<strong>on</strong>g>of</str<strong>on</strong>g> FSH LH (Pergovet, Ser<strong>on</strong>o), 17ßoestradiol (2 µg/ml). Incubati<strong>on</strong> was performed at38°C in 5% CO 2. At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> maturati<strong>on</strong> oocyteswere decumulated mechanically beforemicroinjecti<strong>on</strong>.One straw <str<strong>on</strong>g>of</str<strong>on</strong>g> frozen semen <str<strong>on</strong>g>of</str<strong>on</strong>g> proven fertilityfrom <str<strong>on</strong>g>the</str<strong>on</strong>g> same batch was used for ICSi andprepared immediately before use. After thawingmotile spermatozoa were separated <strong>on</strong> 45–90%32


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3TABLE 1: Developmental capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> horse oocytes following ICSI and according to follicle sizeand cumulus morphologyType <str<strong>on</strong>g>of</str<strong>on</strong>g> cumulus- No. ICSI No. survived No. cleaved N. <str<strong>on</strong>g>of</str<strong>on</strong>g> morula/blastocystoocyte complexes (% <str<strong>on</strong>g>of</str<strong>on</strong>g> injected) (% <str<strong>on</strong>g>of</str<strong>on</strong>g> survived) <strong>on</strong> Day 7 (% <str<strong>on</strong>g>of</str<strong>on</strong>g> cleaved)Compacted 11 9 7 2(large follicles) (82 a ) (78 a ) (29 a )Compacted 45 43 36 11(small follicles) (96 a ) (84 a ) (31 a )Expanded 34 32 19 2(small follicles) (94 a ) (59 a ) (11 b )Total 90 84 62 15(93) (74) (24)Numbers within columns with different letters are significantly different (P


Equine Embryo Transferbefore maturati<strong>on</strong> but it is difficult to visualise<str<strong>on</strong>g>the</str<strong>on</strong>g>m because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cumulus andsome more are damaged during <str<strong>on</strong>g>the</str<strong>on</strong>g> removal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>cumulus that it is particularly difficult in thisspecies. Seventy nine per cent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> survivingoocytes had <str<strong>on</strong>g>the</str<strong>on</strong>g> first polar body. Our data indicatethat oocytes with a compacted cumulus have ahigher developmental competence as compared tooocytes surrounded by an expanded cumulus.Although <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> viable oocytes per ovaryis small, <str<strong>on</strong>g>the</str<strong>on</strong>g> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m developing intotransferable embryos is comparable to what canbe obtained in a bovine in vitro producti<strong>on</strong>system.REFERENCESCochran, R., Meinjtes, M., Reggio, B., Hylan, D., Carter,J. Pinto, C., Paccam<strong>on</strong>ti, D. and Godke, R.A. (1998)Live foals produced from sperm-injected oocytesderived from pregnant mares. J. equine vet. Sci. 18,736-740.McKinn<strong>on</strong>, A.O., Lacham-Kaplan, O. and Trouns<strong>on</strong>,A.O. (1998) Pregnancies produced from fertile andinfertile stalli<strong>on</strong>s by intracytoplasmic sperminjecti<strong>on</strong> (ICSI) <str<strong>on</strong>g>of</str<strong>on</strong>g> single frozen/thawedspermatozoa into in vitro matured mare oocytes. 7th<str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Symposium</str<strong>on</strong>g> in Equine Reproducti<strong>on</strong>,University <str<strong>on</strong>g>of</str<strong>on</strong>g> Pretoria, pp 137.Palmer, E., Bezard, J. Magistrini, M. and Duchamp, G.(1991) In vitro fertilisati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> horse. Aretrospective study, J. reprod. Fert. Suppl. 44,375–384.Squires, E.L., Wils<strong>on</strong>, J.M., Kato, H. and Blaszczyk, A.(1996) A pregnancy after intracytoplasmic sperminjecti<strong>on</strong> into equine oocytes matured in vitro.Theriogenol. 45, 306.Zhang, J.J., Boyle, M.S., Allen, W.R. and Galli, C.(1989) Recent studies <strong>on</strong> in vivo fertilisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> invitro matured horse oocytes. Equine. vet. J. Suppl. 8,101-104.34


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3EFFECT OF INVASIVE ADENYLATE CYCLASEDURING OOCYTE MATURATION ON DEVELOPMENTOF <strong>EQUINE</strong> EMBRYOS FOLLOWING ICSIL. J. Maclellan, M. M. Sims and E. L SquiresAnimal Reproducti<strong>on</strong> and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado80523, USAInvasive adenylate cyclase (iAC), a toxin producedby <str<strong>on</strong>g>the</str<strong>on</strong>g> bacterium Bordetella pertussis, can beinternalised by mammalian cells resulting inincreased producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cAMP from <str<strong>on</strong>g>the</str<strong>on</strong>g> cells ownpool <str<strong>on</strong>g>of</str<strong>on</strong>g> adenosine 5-triphosphate (ATP) (C<strong>on</strong>fer etal. 1984). During oocyte collecti<strong>on</strong> procedures<str<strong>on</strong>g>the</str<strong>on</strong>g>re is a significant decrease in intracellular levels<str<strong>on</strong>g>of</str<strong>on</strong>g> cAMP [cAMPi] in cumulus oocyte complexes.Including iAC in <str<strong>on</strong>g>the</str<strong>on</strong>g> collecti<strong>on</strong> medium canprevent this [cAMPi] decrease. Culturing bovineoocytes with low c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> invasiveadenylate cyclase during IVM can stimulatenuclear maturati<strong>on</strong> while high c<strong>on</strong>centrati<strong>on</strong>sinhibit nuclear maturati<strong>on</strong>. In additi<strong>on</strong>, lowc<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> iAC in maturati<strong>on</strong> media resultin increased rates <str<strong>on</strong>g>of</str<strong>on</strong>g> cleavage and increased rates<str<strong>on</strong>g>of</str<strong>on</strong>g> development to <str<strong>on</strong>g>the</str<strong>on</strong>g> blastocysts post IVF(Luciano et al. 1999).The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment was todetermine <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive adenylate cyclaseduring in vitro maturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equine oocytes <strong>on</strong>nuclear maturati<strong>on</strong> and embryo developmentfollowing ICSI.Equine oocytes were collected within 3 h <str<strong>on</strong>g>of</str<strong>on</strong>g>slaughtering mares in three replicates. Oocyteswere obtained by slicing ovaries and washing inTCM-199 plus 0.1% BSA with or without 0.01mM iAC and 0.5 mM 3-isobutyl 1-methylxanthine. Cumulus oocyte complexes(COC) were characterised as: 1) compact cumulus(CP) – having 3 or more layers <str<strong>on</strong>g>of</str<strong>on</strong>g> cumulus cellstightly adhered toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r, completely surrounding<str<strong>on</strong>g>the</str<strong>on</strong>g> oocyte; or 2) expanded cumulus (EX) – havinga completely expanded cumulus with a cellulargelatinous cloud around <str<strong>on</strong>g>the</str<strong>on</strong>g> oocyte. Oocytes weretransported in a Minitub portable incubator to <str<strong>on</strong>g>the</str<strong>on</strong>g>laboratory in 6 ml Falc<strong>on</strong> tubes at 38.5ºC in mediaequilibrated under 6% CO 2 in air. Oocytes were<str<strong>on</strong>g>the</str<strong>on</strong>g>n transferred to 4-well plates for <str<strong>on</strong>g>the</str<strong>on</strong>g> remainder<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> maturati<strong>on</strong> period. There were 4 treatmentgroups: c<strong>on</strong>trol compact (n=104) and c<strong>on</strong>trolexpanded COCs (n=56) cultured in TCM-199 with0.6% BSA and horm<strong>on</strong>es (1 µg/ml b-LH, 15 ng/mlo-FSH, 1 µg/ml E2 and 500 ng/ml progester<strong>on</strong>e);iAC compact (n=95), and iAC expanded COCs(n=52), cultured in TCM-199 with 0.6% BSA and0.01 mM iAC.A sample <str<strong>on</strong>g>of</str<strong>on</strong>g> oocytes was removed from eachgroup at 24 h for nuclear staining with acetoorcein.After maturati<strong>on</strong> for 34–36 h oocytes weredenuded by manual pipetting in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g>300 iu hyalaur<strong>on</strong>idase/ml. Frozen thawed spermwas prepared over a disc<strong>on</strong>tinuous 90/45% Percollgradient and re-suspended in hepes-buffered SOFTABLE 1: Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> iAC during oocyte maturati<strong>on</strong> <strong>on</strong> subsequent developmentCleaved 2-8 cell Morulae Blastocyst Fragmentn (%) n (%) n (%) n (%) n (%)C<strong>on</strong>trol compact 24/68 (35) 20(30) 4(6) 0 7(10)C<strong>on</strong>trol expanded 7/32 (22) 7(22) 0 0 4(13)0.01mM iAC compact 18/57(32) 12(21) 4(7) 2(4) 4(7)0.01mM iAC expanded 8/31(26) 7(23) 1(3) 0 6(19)35


Equine Embryo Transferc<strong>on</strong>taining 10% polyvinylpyrrolid<strong>on</strong>e (PVP, MW360,000). Oocytes were injected with a singlespermatozo<strong>on</strong>. All oocytes were activated with 10µM calcium i<strong>on</strong>ophore A23187 for 5 min andde-activated in SOF c<strong>on</strong>taining 20 mg/ml BSAbefore being transferred to culture dishesc<strong>on</strong>taining modified syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic oviduct fluid (Laneand Gardner 1997).Averaged over compact and expandedcumulus groups, oocytes in <str<strong>on</strong>g>the</str<strong>on</strong>g> iAC group tendedto be more advanced in nuclear maturati<strong>on</strong> at 24 h;32/49 (65%) in MI or MII for iAC vs 12/30 (40%)for c<strong>on</strong>trol oocytes (P


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3CHROMATIN CONFIGURATION, MEIOTICCOMPETENCE AND SUCCESS OF INTRA-CYTOPLASMICSPERM INJECTION IN HORSE OOCYTES COLLECTED BYFOLLICULAR ASPIRATION OR SCRAPINGM. E. Dell’Aquila, M. Masters<strong>on</strong>*, F. Maritato and K. Hinrichs †Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Animal Producti<strong>on</strong>, Secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Reproducti<strong>on</strong>, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Bari, Valenzano, Bari, Italy;*Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Clinical Studies, Tufts University School <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Medicine, Graft<strong>on</strong>, Massachusetts,USA; † Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Physiology and Pharmacology, College <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Medicine, TexasA&M University, College Stati<strong>on</strong>, Texas, USAReported rates <str<strong>on</strong>g>of</str<strong>on</strong>g> oocyte maturati<strong>on</strong> andfertilisati<strong>on</strong> vary greatly am<strong>on</strong>g laboratories. Thismay be related to <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> oocytesselected for use, as <str<strong>on</strong>g>the</str<strong>on</strong>g> maturati<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> horseoocytes is dependent <strong>on</strong> diameter and <str<strong>on</strong>g>the</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g>viability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> follicle from which <str<strong>on</strong>g>the</str<strong>on</strong>g> oocyteoriginates (Hinrichs and Williams 1997; Hinrichsand Schmidt 2000). Higher maturati<strong>on</strong> rates arefound in oocytes from large follicles, and inoocytes from atretic follicles. Cumulus expansi<strong>on</strong>is a marker for oocyte atresia, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore assessment<str<strong>on</strong>g>of</str<strong>on</strong>g> cumulus morphology is an important parameterin selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oocytes for study. Germinal vesiclechromatin c<strong>on</strong>figurati<strong>on</strong> also differs with follicleatresia and follicle size, and is str<strong>on</strong>gly associatedwith <str<strong>on</strong>g>the</str<strong>on</strong>g> meiotic competence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oocyte(Hinrichs and Williams 1997; Hinrichs andSchmidt 2000).Methods for collecti<strong>on</strong> and selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> horseoocytes have not been standardised am<strong>on</strong>glaboratories. The 2 most comm<strong>on</strong> methods forhorse oocyte collecti<strong>on</strong> are aspirati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> follicularfluid or opening follicles and scraping <str<strong>on</strong>g>the</str<strong>on</strong>g>granulosa layer. Oocytes in viable follicles may bemore closely attached to <str<strong>on</strong>g>the</str<strong>on</strong>g> follicle wall, whereasoocytes from atretic follicles may be loose within<str<strong>on</strong>g>the</str<strong>on</strong>g> follicular fluid (Hawley et al. 1995;Mlodawska and Okolski 1997). Thus, it is possiblethat <str<strong>on</strong>g>the</str<strong>on</strong>g>se 2 methods <str<strong>on</strong>g>of</str<strong>on</strong>g> oocyte recovery result incollecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> oocytes, withaspirati<strong>on</strong> favouring collecti<strong>on</strong> oocytes fromatretic follicles and scraping favouring collecti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> oocytes from viable follicles. The type <str<strong>on</strong>g>of</str<strong>on</strong>g>oocytes obtained may affect <str<strong>on</strong>g>the</str<strong>on</strong>g> observed resultsafter maturati<strong>on</strong> or fertilisati<strong>on</strong>, and may be afactor in <str<strong>on</strong>g>the</str<strong>on</strong>g> reported differences in results using<str<strong>on</strong>g>the</str<strong>on</strong>g>se procedures am<strong>on</strong>g laboratories. This studywas c<strong>on</strong>ducted to determine if <str<strong>on</strong>g>the</str<strong>on</strong>g> meiotic anddevelopmental competence <str<strong>on</strong>g>of</str<strong>on</strong>g> horse oocytes couldbe dependent <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> method <str<strong>on</strong>g>of</str<strong>on</strong>g> oocyte collecti<strong>on</strong>.Horse oocytes were recovered fromslaughterhouse ovaries by aspirati<strong>on</strong> or scraping.Only follicles visible <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ovaryand >10 mm diameter were used. Aspirati<strong>on</strong> wasperformed using an 18 ga needle attached to avacuum pump. For scraping, follicles were openedwith a scalpel blade and <str<strong>on</strong>g>the</str<strong>on</strong>g> granulosa cell layerwas removed using a b<strong>on</strong>e curette. Recoveredoocytes were classified as having compact,expanded or partial cumuli; obviouslydegenerating oocytes were discarded. InExperiment 1, oocytes were denuded and fixedimmediately after collecti<strong>on</strong>, and were stainedwith Hoechst 33258 to assess whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g>collecti<strong>on</strong> method influenced <str<strong>on</strong>g>the</str<strong>on</strong>g> initial chromatinc<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oocytes. This was d<strong>on</strong>e both inMay and in October. In Experiment 2, in vitromaturati<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> oocytes recovered byaspirati<strong>on</strong> or scraping were compared. IVM wasperformed as previously described (Dell’Aquila etal. 1996), with <str<strong>on</strong>g>the</str<strong>on</strong>g> medium supplemented with20% (v/v) oestrous mare serum. Oocytes werecultured for 28–30 h at 38.5°C under 5%CO 2 inair. In Experiment 3, oocytes were matured in vitroas for Experiment 2, but with 20% follicular fluidin place <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mare serum, which increases <str<strong>on</strong>g>the</str<strong>on</strong>g>rate <str<strong>on</strong>g>of</str<strong>on</strong>g> male pr<strong>on</strong>ucleus formati<strong>on</strong> in oocyteshaving compact cumuli (Dell’Aquila et al. 1997).37


Equine Embryo TransferOocytes in metaphase II were submitted tointracytoplasmic sperm injecti<strong>on</strong> (ICSI), aspreviously described (Dell’Aquila et al. 1997).Frozen-thawed sperm, prepared by swim-up, wereused for injecti<strong>on</strong>. Oocytes were not chemicallyactivated after ICSI.The oocyte recovery rate was significantlyhigher for scraping than for aspirati<strong>on</strong> (83% vs48%). Oocytes collected by scraping had asignificantly higher proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> intact compactcumuli (72/107, 67% vs 69/209, 33%,respectively), and a significantly lower proporti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> partial cumuli (16/107, 15% vs 111/209, 53%for scraping and aspirati<strong>on</strong>, respectively). Oocytescollected by scraping during <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding seas<strong>on</strong>(May) had a higher proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusechromatin within <str<strong>on</strong>g>the</str<strong>on</strong>g> germinal vesicle than didoocytes collected by aspirati<strong>on</strong> (10/43, 23% vs8/113, 7%, respectively), but this difference wasnot seen in oocytes collected in October.Experiment 2 (maturati<strong>on</strong>) was c<strong>on</strong>ducted in <str<strong>on</strong>g>the</str<strong>on</strong>g>fall and winter. The rates <str<strong>on</strong>g>of</str<strong>on</strong>g> maturati<strong>on</strong> tometaphase II were 56/101, 55.4 % and 65/106,61.4% for oocytes collected by scraping and thosecollected by aspirati<strong>on</strong> respectively. These rateswere not significantly different. The rates <str<strong>on</strong>g>of</str<strong>on</strong>g>pr<strong>on</strong>ucleus formati<strong>on</strong> after ICSI for oocytesrecovered by scraping or by aspirati<strong>on</strong> were 50/99,52.6% vs 50/85, 68.5% respectively; <str<strong>on</strong>g>the</str<strong>on</strong>g>se rateswere not significantly different.These findings dem<strong>on</strong>strate that follicleaspirati<strong>on</strong> results in loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cumulus in <str<strong>on</strong>g>the</str<strong>on</strong>g>majority <str<strong>on</strong>g>of</str<strong>on</strong>g> oocytes, which agrees with previousreports (Hinrichs 1991; Alm et al. 1997). During<str<strong>on</strong>g>the</str<strong>on</strong>g> breeding seas<strong>on</strong>, aspirati<strong>on</strong> and scraping resultin collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> oocytes havingdiffering germinal vesicle chromatinc<strong>on</strong>figurati<strong>on</strong>s, with scraping resulting in morediffuse chromatin, a c<strong>on</strong>figurati<strong>on</strong> which isassociated with follicle viability (Hinrichs andWilliams 1997). The observed difference inchromatin c<strong>on</strong>figurati<strong>on</strong> in scraped oocytesbetween seas<strong>on</strong>s is likely due to <str<strong>on</strong>g>the</str<strong>on</strong>g> increase inprevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> diffuse chromatin c<strong>on</strong>figurati<strong>on</strong>during <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding seas<strong>on</strong> (Hinrichs and Schmidt2000). These findings also indicate that whenfollicles >10 mm diameter are used, similarmaturati<strong>on</strong> and fertilisati<strong>on</strong> results may beobtained when oocytes are collected by aspirati<strong>on</strong>or by scraping. Selecti<strong>on</strong> against small follicles(


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3TRANSVAGINAL INTRAFOLLICULAR SPERM CELLINJECTION IN THE CYCLIC MAREM. Meinjtes*, B. Eilts † , R. Cochran ** , K. Graff ‡ , R. Dennist<strong>on</strong>, D. Paccam<strong>on</strong>ti*and R. GodkeDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Animal Science; † Louisiana State University Agricultural Center, Department <str<strong>on</strong>g>of</str<strong>on</strong>g>Veterinary Clinical Sciences, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Medicine, Louisiana State University, Bat<strong>on</strong> Rouge,Louisiana 70803, USAIntrafollicular inseminati<strong>on</strong> (IFI) is an assistedreproductive technique that has been successfullyused in human reproducti<strong>on</strong> (Lecena et al. 1991;Zbella et al. 1992). However it has not beenreported in domestic animals. Intrafollicularinseminati<strong>on</strong> has potential applicati<strong>on</strong>s forcircumventing <str<strong>on</strong>g>the</str<strong>on</strong>g> uterine inflammati<strong>on</strong> in mareswith persistent mating induced endometritis,breeding with reduced numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> sperm cellsfrom oligospermic ejaculates or frozen semen, andresearch applicati<strong>on</strong>s to fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r understandfertilisati<strong>on</strong>. Intrafollicular inseminati<strong>on</strong> may alsobe an attractive, less technically complex approachto achieve <str<strong>on</strong>g>the</str<strong>on</strong>g> same goal as with c<strong>on</strong>venti<strong>on</strong>al IVF.The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was to performtransvaginal ultrasound-guided intrafollicularinseminati<strong>on</strong> to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> IFI toestablish a pregnancy.In this experiment 10 light horse mares withnormal length oestrous cycles were used in a 2 x 2factorial arrangement. The mares were teased,palpated per rectum and had <str<strong>on</strong>g>the</str<strong>on</strong>g> ovaries evaluatedby transrectal ultras<strong>on</strong>ography daily. All IFIprocedures were performed 9–13 h beforeovulati<strong>on</strong>. Ovulati<strong>on</strong> was verified by hourlytransrectal ultrasound examinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ovariesstarting at <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> IF. Mares in Treatment A(n=3) and Treatment B (n=2) received 3,300 iu <str<strong>on</strong>g>of</str<strong>on</strong>g>hCG iv at <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> IFI, and mares in TreatmentPresent address: Presbyterian Hospital, AssistedReproductive Technology Services; **Present address:Reproductive Medicine and Fertility Center, 615 E.Princet<strong>on</strong> Street, Suite 225, Orlando, Florida 32806USA; ‡ Present address: Arnold Palmer Hospital,Fertility Center, 23 West Copeland Drive, Orlando,Florida 32806, USAC (n=3) and Treatment D (n=2) were allowed toovulate naturally after IFI. The sperm used foreach mare was freshly collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> samefertile stalli<strong>on</strong>. The sperm cells used for IFI werewashed and resuspended in 1.5 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> Hams F-10to obtain an inseminati<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 120 x10 6 progressively motile sperm per ml. Themotility <str<strong>on</strong>g>of</str<strong>on</strong>g> different ejaculates ranged between 40and 80%. In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> sperm cells in TreatmentA and C were treated with a 3 µM c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>calcium i<strong>on</strong>ophore A32187 for 5 min to inducecapacitati<strong>on</strong>. The sperm cells for Treatment B andD were not treated with calcium i<strong>on</strong>ophoreA32187, but <strong>on</strong>ly were washed. All IFI wereperformed with <str<strong>on</strong>g>the</str<strong>on</strong>g> sperm cell c<strong>on</strong>centrati<strong>on</strong>adjusted to 120 x 10 6 progressively motile spermper ml. The IFI sperm injecti<strong>on</strong> procedure wasperformed under transvaginal ultrasound guidancewith a 22 g needle c<strong>on</strong>nected to a 2.5 ml syringec<strong>on</strong>taining <str<strong>on</strong>g>the</str<strong>on</strong>g> 1.5 ml sperm-cell suspensi<strong>on</strong> forIFI. The sperm cells remaining in <str<strong>on</strong>g>the</str<strong>on</strong>g> needle aftereach inseminati<strong>on</strong> were used to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> totalmotile sperm cells inseminated. The results aresummarised in Table 1. All mares in Treatment Aand B ovulated, however <strong>on</strong>ly <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 inTreatment C and <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 in Treatment D ovulated.N<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 10 mares having IFI were found to bepregnant when <str<strong>on</strong>g>the</str<strong>on</strong>g>y were examined for pregnancyusing transrectal ultras<strong>on</strong>ography.It is not clear from this study if <str<strong>on</strong>g>the</str<strong>on</strong>g> spermnumber per follicle was adequate, <str<strong>on</strong>g>the</str<strong>on</strong>g> sperm cellsremained unbound in <str<strong>on</strong>g>the</str<strong>on</strong>g> follicular fluid, or if <str<strong>on</strong>g>the</str<strong>on</strong>g>sperm cells could survive in <str<strong>on</strong>g>the</str<strong>on</strong>g> follicularenvir<strong>on</strong>ment l<strong>on</strong>g enough to achieve in viv<str<strong>on</strong>g>of</str<strong>on</strong>g>ertilisati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> follicle or oviduct. Humanpatients have become pregnant after IFinseminati<strong>on</strong> with 200,000 cells (Lucena et al.39


Equine Embryo TransferTABLE 1: Ovulati<strong>on</strong> and pregnancy results in mares administered or not administered 3,300 iu hCG ivbefore intrafollicular inseminati<strong>on</strong> with 180 x 10 6 motile sperm cells treated with calcium i<strong>on</strong>ophore A32187 (capacitated) or not treated with calcium i<strong>on</strong>ophore A 32187 (not capacitated)Treatment A Treatment B Treatment C Treatment D(hCG and (hCG and not (No hCG and (No hCG and notcapacitated) capacitated) capacitated) capacitated)N 3 2 3 2Ovulated 3 2 1 1Pregnant 0 0 0 01991) so it seems that enough cells wereinseminated. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> disparity <str<strong>on</strong>g>of</str<strong>on</strong>g> follicularfluid volume between <str<strong>on</strong>g>the</str<strong>on</strong>g> human and mare follicleresults in a greater diluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells in <str<strong>on</strong>g>the</str<strong>on</strong>g> marefollicle. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> dose <str<strong>on</strong>g>of</str<strong>on</strong>g> sperm cells is stillquesti<strong>on</strong>able. Binding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sperm cells togranulosa cells may have prevented <str<strong>on</strong>g>the</str<strong>on</strong>g> sperm cellsfrom being carried into <str<strong>on</strong>g>the</str<strong>on</strong>g> oviducts at ovulati<strong>on</strong>.Sperm cells are known to bind to mare oviductepi<str<strong>on</strong>g>the</str<strong>on</strong>g>lial cells (Thomas et al. 1994) so <str<strong>on</strong>g>the</str<strong>on</strong>g> spermcells also may have <str<strong>on</strong>g>the</str<strong>on</strong>g> ability to bind to granulosacells in <str<strong>on</strong>g>the</str<strong>on</strong>g> follicle. It was reported that follicularfluid recovered shortly after IFI c<strong>on</strong>tained nosperm cells, perhaps indicating that binding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>sperm cells took place. (Alvarenga, EETVDiscussi<strong>on</strong>) If too many sperm cells are bound togranulosa cells, <str<strong>on</strong>g>the</str<strong>on</strong>g>n insufficient sperm cells mayenter <str<strong>on</strong>g>the</str<strong>on</strong>g> oviduct at ovulati<strong>on</strong> to achievefertilisati<strong>on</strong>. Perhaps cryopreserved stalli<strong>on</strong> spermcells, which have a decreased adherence to mareoviduct epi<str<strong>on</strong>g>the</str<strong>on</strong>g>lial cells (Ellingt<strong>on</strong> et al. 1999) mayactually result in higher pregnancy rates because<str<strong>on</strong>g>of</str<strong>on</strong>g> decreased adhesi<strong>on</strong> to granulosa cells. Theaspirati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> small volume <str<strong>on</strong>g>of</str<strong>on</strong>g> follicular fluiddoes not inhibit ovulati<strong>on</strong> or fertilisati<strong>on</strong> in maresbred by normal artificial inseminati<strong>on</strong> procedures(Duchamp et al. 1996) and <strong>on</strong>ly a small amount <str<strong>on</strong>g>of</str<strong>on</strong>g>follicular fluid is actually needed to enter <str<strong>on</strong>g>the</str<strong>on</strong>g>oviduct at ovulati<strong>on</strong> (Bezard et al. 1996) Since<strong>on</strong>ly a small volume <str<strong>on</strong>g>of</str<strong>on</strong>g> follicular fluid actuallyenters <str<strong>on</strong>g>the</str<strong>on</strong>g> oviduct at ovulati<strong>on</strong>, an insufficientnumber <str<strong>on</strong>g>of</str<strong>on</strong>g> sperm cells may have been carried into<str<strong>on</strong>g>the</str<strong>on</strong>g> oviduct with a low volume <str<strong>on</strong>g>of</str<strong>on</strong>g> follicular fluid.Sperm cells may not retain sufficient motility infollicular fluid to allow normal fertilisati<strong>on</strong> ratesafter IF inseminati<strong>on</strong>. Unpublished work in thislaboratory has shown sperm cells have 63, 49, 36,16, 7, 2 and 1% motility after incubati<strong>on</strong> in vitr<str<strong>on</strong>g>of</str<strong>on</strong>g>or 0, 1, 2, 3, 4, 5 and 6 h, respectively in follicularfluid at 37°C (Eilts et al. unpublished data). This isin c<strong>on</strong>trast to motility <str<strong>on</strong>g>of</str<strong>on</strong>g> semen extended in skimmilk extender which had 80, 72, 48, 32, 25, 16 and12% after 0, 1, 2, 3, 4, 5 and 6 h, respectively.Therefore, if ovulati<strong>on</strong> did not occur until 9–13 hafter IF inseminati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> present study, spermmotility after IFI may not have been adequate toattain optimal fertilisati<strong>on</strong> rates. It appears that <str<strong>on</strong>g>the</str<strong>on</strong>g>use <str<strong>on</strong>g>of</str<strong>on</strong>g> hCG will be desirable in future studies <str<strong>on</strong>g>of</str<strong>on</strong>g>IFI to ensure ovulati<strong>on</strong>.Although IFI has been reported to besuccessful in human (Lecena et al. 1991; Zbella etal. 1992), a more comprehensive study attained<strong>on</strong>ly <strong>on</strong>e pregnancy in 50 attempts (Nuojua-Huttunen et al. 1995). In <str<strong>on</strong>g>the</str<strong>on</strong>g> mare, o<str<strong>on</strong>g>the</str<strong>on</strong>g>rresearchers also reported that no pregnancies wereachieved after intrafollicular inseminati<strong>on</strong>(Alvarenga and McCue, EETV discussi<strong>on</strong>).Perhaps <str<strong>on</strong>g>the</str<strong>on</strong>g> follicular fluid could be removed andreplaced entirely with extended sperm cells.Preliminary work to determine if IFI may bedetrimental in establishing pregnancy whennormal artificial inseminati<strong>on</strong> is performedc<strong>on</strong>comitant with IFI has resulted in nopregnancies (Eilts et al. unpublished data). Inc<strong>on</strong>clusi<strong>on</strong>, more research is needed to determineif in vivo-matured oocytes can be fertilised usingIFI.REFERENCESBezard, J., Duchamp, G., Couty, I. et al. (1996) Thefollicular-fluid is not a compulsory carrier <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>mares oocyte at ovulati<strong>on</strong>. Arch. Tierzucht. 39, 27.Duchamp, G., Gerard, N., Bezard, J., et al. (1996)Sampling <str<strong>on</strong>g>of</str<strong>on</strong>g> preovulatory follicular-fluid in mares.Arch. Tierzucht. 39, 79.Ellingt<strong>on</strong>, J.E., Samper, J.C., J<strong>on</strong>es, A.E. et al. (1999) Invitro interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cryopreserved stalli<strong>on</strong>spermatozoa and oviduct (uterine tube) epi<str<strong>on</strong>g>the</str<strong>on</strong>g>lialcells or56, 51-6Lucena, E., RintrafollJ. reprodNuojua-Huttu(1995) In<str<strong>on</strong>g>of</str<strong>on</strong>g> inferti40


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3FERTILISATION RATES OF IN VITRO MATUREDOOCYTES TRANSFERRED INTO THE OVIDUCT OFINSEMINATED MARESC. C. Love, S. P. Brinsko*, D. D. Varner* and K. HinrichsDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Physiology and Pharmacology; *Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Large Animal Medicine and Surgery,College <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Medicine, Texas A & M University, College Stati<strong>on</strong>, Texas 77843-4475, USAIn vitro-matured (IVM) oocytes are comm<strong>on</strong>lyused for experimentati<strong>on</strong> involving in vitr<str<strong>on</strong>g>of</str<strong>on</strong>g>ertilisati<strong>on</strong> (IVF). However, <str<strong>on</strong>g>the</str<strong>on</strong>g> fertilisati<strong>on</strong>potential <str<strong>on</strong>g>of</str<strong>on</strong>g> IVM oocytes is unknown. The majorbarrier to IVF in <str<strong>on</strong>g>the</str<strong>on</strong>g> horse appears to bepenetrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sperm through <str<strong>on</strong>g>the</str<strong>on</strong>g> z<strong>on</strong>a pellucida. If<str<strong>on</strong>g>the</str<strong>on</strong>g> z<strong>on</strong>a is opened by microdissecti<strong>on</strong> or z<strong>on</strong>adrilling, IVF rates are high (Choi et al. 1994; Li etal. 1995). It is possible that in vitro maturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>oocytes is associated with hardening <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> z<strong>on</strong>apellucida which precludes penetrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sperm.Hardening <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> z<strong>on</strong>a due to premature release <str<strong>on</strong>g>of</str<strong>on</strong>g>cortical granules has been documented duringIVM in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species under specific culturec<strong>on</strong>diti<strong>on</strong>s. The ability <str<strong>on</strong>g>of</str<strong>on</strong>g> IVM oocytes to allowsperm penetrati<strong>on</strong> must be ascertained before <str<strong>on</strong>g>the</str<strong>on</strong>g>ymay be used effectively for research in IVF. Only<strong>on</strong>e previous study (Zhang et al. 1989) hasdocumented fertilisati<strong>on</strong> and development <str<strong>on</strong>g>of</str<strong>on</strong>g> IVMoocytes after transfer to mares. In that report, 4transfers were performed. Of 29 oocytestransferred, 5 c<strong>on</strong>firmed blastocysts wererecovered. The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> our study was todetermine <str<strong>on</strong>g>the</str<strong>on</strong>g> in vivo fertilisati<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> oocytesmatured in vitro in 3 different media andtransferred to <str<strong>on</strong>g>the</str<strong>on</strong>g> oviduct <str<strong>on</strong>g>of</str<strong>on</strong>g> recipient mares.Oocytes were obtained from slaughterhousespecimens by opening follicles with a scalpelblade and scraping <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tents using a b<strong>on</strong>ecurette. Only oocytes having expanded cumuliwere used. Oocytes were cultured in <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> 3treatments: 1) M199 with 10% fetal calf serum, 5µU FSH/ml and 25 µg/ml gentamycin (mM199)for 24 h; 2) 100% follicular fluid, obtained from apreovulatory follicle aspirated 24 h after hCGadministrati<strong>on</strong>, with 25 µg/ml gentamycin (FF) for24 h; or 3) mM199 with 10 µg/ml cycloheximide(CH) for 24 h followed by washing and maturati<strong>on</strong>in mM199 for 24 h. Cycloheximide was used tosuppress meiosis in order to manipulate <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> maturati<strong>on</strong> (Alm and Hinrichs 1996).Oocytes were cultured in microdroplets <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 mlmedium/oocyte under oil in a humidifiedatmosphere <str<strong>on</strong>g>of</str<strong>on</strong>g> 5% CO 2 in air. After culture,oocytes were transferred into both oviducts <str<strong>on</strong>g>of</str<strong>on</strong>g> each<str<strong>on</strong>g>of</str<strong>on</strong>g> 4 mares (a separate treatment per side) viastanding flank laparatomy. Mares wereinseminated 6 h prior to transfer. Oocytes/embryoswere recovered 40–44 h later, following euthanasia<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mare and removal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ovary and oviducts.A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 130 IVM oocytes were transferred.Oocytes were transferred with an intact cumulus,thus <str<strong>on</strong>g>the</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> oocyte maturati<strong>on</strong> or degenerati<strong>on</strong>could not be determined before transfer. Of 100oocytes/embryos recovered, 13 appeared to be <str<strong>on</strong>g>the</str<strong>on</strong>g>recipient mare’s oocytes from previous cycles (iewere flattened, oval and had a pale cytoplasmwithout an intact cytoplasmic membrane)<str<strong>on</strong>g>the</str<strong>on</strong>g>refore, 87 oocytes/embryos recovered werec<strong>on</strong>sidered to have been from transferred oocytes,giving a 67% recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> transferred oocytes. Onereplicate (9 oocytes) was found to be c<strong>on</strong>taminatedafter recovery, as evidenced by presence <str<strong>on</strong>g>of</str<strong>on</strong>g>bacteria in <str<strong>on</strong>g>the</str<strong>on</strong>g> cytoplasm and white blood cellsattached to <str<strong>on</strong>g>the</str<strong>on</strong>g> z<strong>on</strong>a pellucida, and this replicatewas not included in <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis. Thus, 78 oocyteswere used for evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisati<strong>on</strong> rates.All recovered oocytes/embryos were fixed inbuffered formal saline and stained with Hoechst33258 to determine <str<strong>on</strong>g>the</str<strong>on</strong>g>ir chromosomal andnuclear status. A fertilised oocyte was c<strong>on</strong>sideredto be an oocyte in any stage from dec<strong>on</strong>densingsperm head to multiple-cell embryo. Thefertilisati<strong>on</strong> rate was determined in 2 ways: as apercentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> potentially fertilisable oocytes(ie fertilised oocytes plus oocytes in MII,41


Equine Embryo Transferdisregarding degenerating oocytes) and as apercentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total oocytes recovered.The fertilisati<strong>on</strong> rates for potentiallyfertilisable oocytes for <str<strong>on</strong>g>the</str<strong>on</strong>g> mM199, FF, and CHgroups (3, 3 and <strong>on</strong>e replicates, respectively) were11/15 (73%); 22/30 (73%) and 6/12 (50%),respectively. The fertilisati<strong>on</strong> rates based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>total oocytes recovered for each treatment were11/25 (44%), 22/37 (59%) and 6/16 (38%),respectively. The overall fertilisati<strong>on</strong> rate forpotentially fertilisable oocytes was 68% (39/57)and <str<strong>on</strong>g>the</str<strong>on</strong>g> fertilisati<strong>on</strong> rate for all oocytes recoveredwas 50% (39/78).One recovered oocyte was in Anaphase II witha dec<strong>on</strong>densing sperm head, and <strong>on</strong>e was inmitosis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first divisi<strong>on</strong>; <str<strong>on</strong>g>the</str<strong>on</strong>g>se were groupedwith <str<strong>on</strong>g>the</str<strong>on</strong>g> cells having 2 pr<strong>on</strong>uclei. Thus, <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>fertilised oocytes recovered, 20/39 (51%) had 2pr<strong>on</strong>uclei, 13/39 (33%) were 2-cell embryos, and6/39 (15%) were 3- to 4- cell embryos. There wasa significant difference in distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> embryostage am<strong>on</strong>g maturati<strong>on</strong> treatments. Theproporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilised oocytes that had cleavedto 2 or more - cell embryos in <str<strong>on</strong>g>the</str<strong>on</strong>g> mM199 and CHgroup were both significantly higher than that for<str<strong>on</strong>g>the</str<strong>on</strong>g> FF group (9/11, 82%; 5/6, 83%; and 6/22,27%, respectively; P


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3COMPARISON OF BOVINE AND <strong>EQUINE</strong> OOCYTESAS HOST CYTOPLASTS FOR <strong>EQUINE</strong> NUCLEARTRANSFERK. Hinrichs, T. Shin, C. C. Love, D. D. Varner and M. E. WesthusinCollege <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Medicine, Texas A&M University, College Stati<strong>on</strong>, Texas 77843-4466, USATransfer <str<strong>on</strong>g>of</str<strong>on</strong>g> adult somatic cell nuclei to enucleatedoocytes has resulted in producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring inmany species, including sheep, cattle and mice.The basic steps involved in nuclear transfer arematurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oocytes to MII, enucleati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> MIIoocytes to form a host cytoplast, placement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>somatic cell into <str<strong>on</strong>g>the</str<strong>on</strong>g> perivitelline space, fusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> cell membranes to introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> somatic cellnucleus into <str<strong>on</strong>g>the</str<strong>on</strong>g> cytoplast, and activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rec<strong>on</strong>structed oocyte. No informati<strong>on</strong> is currentlyavailable <strong>on</strong> nuclear transfer in <str<strong>on</strong>g>the</str<strong>on</strong>g> horse, however,our preliminary studies suggested that many stepsinvolved in nuclear transfer may be more difficultin <str<strong>on</strong>g>the</str<strong>on</strong>g> horse than in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species. To define <str<strong>on</strong>g>the</str<strong>on</strong>g>areas which may present problems in work withhorse oocytes, we compared <str<strong>on</strong>g>the</str<strong>on</strong>g> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g>nuclear transfer procedures using ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r enucleatedbovine or equine oocytes as host cytoplasts. Weevaluated <str<strong>on</strong>g>the</str<strong>on</strong>g>ir ability to dec<strong>on</strong>dense a transferredhorse somatic cell nucleus and to undergo cleavageand development after nuclear transfer. Bovineoocytes have been used successfully as hostcytoplasts for <str<strong>on</strong>g>the</str<strong>on</strong>g> transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei from a variety<str<strong>on</strong>g>of</str<strong>on</strong>g> species, including sheep, pigs, m<strong>on</strong>keys and rats(Dominko et al. 1999). While development to <str<strong>on</strong>g>the</str<strong>on</strong>g>blastocyst stage was reported for interspeciesnuclear transfer embryos, in our experience andthat <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs, <str<strong>on</strong>g>the</str<strong>on</strong>g>se embryos rarely progress past<str<strong>on</strong>g>the</str<strong>on</strong>g> 16-cell stage.Mature bovine oocytes were obtained from acommercial source. One hundred fifty-nine invitro-matured Metaphase II bovine oocytesunderwent enucleati<strong>on</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g> which all (100%)survived intact. Micromanipulati<strong>on</strong> was performedas previously described (Hill et al. 2000). Theenucleated cells were recombined with equinecumulus or fibroblast cells and were subjected to 2x 25-µs 1.2 kv/cm DC pulses. The proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>cells successfully fused was 109/159 (69%).Oocytes were activated using i<strong>on</strong>ophore A23187or i<strong>on</strong>omycin followed by culture in 6-DMAP.Ninety-three fused oocytes were cultured fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rin vitro <strong>on</strong> Vero cell m<strong>on</strong>olayers; <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se, 49(53%) cleaved and 36 (39%) developed to <str<strong>on</strong>g>the</str<strong>on</strong>g> 8 to16-cell stage. No morula or blastocystdevelopment was observed. There were nosignificant differences in fusi<strong>on</strong> or cleavage ratesbetween oocytes fused with cumulus cells (35/51,69% and 17/35, 49%, respectively) or fibroblasts(74/108, 69% and 32/58, 55%, respectively).Horse oocytes were recovered fromslaughterhouse-derived ovaries and were harvestedand matured in vitro as previously described(Hinrichs and Schmidt 2000) or were matured in100% equine follicular fluid derived in vivo from adominant preovulatory follicle 24 h after hCGadministrati<strong>on</strong>. Of 86 in vitro-matured MetaphaseII horse oocytes used for NT, 59 (69%) were intactafter enucleati<strong>on</strong>. The difficulty <str<strong>on</strong>g>of</str<strong>on</strong>g> enucleati<strong>on</strong> wasincreased because <str<strong>on</strong>g>of</str<strong>on</strong>g> various factors. Thec<strong>on</strong>sistency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> z<strong>on</strong>a pellucida was more pliablethan that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bovine oocytes, and thus was moredifficult to penetrate with <str<strong>on</strong>g>the</str<strong>on</strong>g> large pipette neededfor enucleati<strong>on</strong> and for transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> somatic cells.The metaphase plate and polar body were <str<strong>on</strong>g>of</str<strong>on</strong>g>tenwidely separated, necessitating 2 z<strong>on</strong>a puncturesto fully enucleate <str<strong>on</strong>g>the</str<strong>on</strong>g> oocyte. In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> polarbody frequently appeared to be attached to <str<strong>on</strong>g>the</str<strong>on</strong>g>z<strong>on</strong>a pellucida, making it difficult to removewithout damage to <str<strong>on</strong>g>the</str<strong>on</strong>g> oocyte. No obviousdifferences in ease <str<strong>on</strong>g>of</str<strong>on</strong>g> oocyte manipulati<strong>on</strong> werenoted between maturati<strong>on</strong> treatments. Theenucleated oocytes were recombined with equinecumulus or fibroblast cells. Of recombined cells,28/59 (48%) successfully fused. In unfusedoocytes, ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> somatic cell lysed after <str<strong>on</strong>g>the</str<strong>on</strong>g>43


Equine Embryo Transferelectric pulse, or both oocyte and somatic cellmembranes were found to be still intact. Oocyteswere activated using ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r i<strong>on</strong>omycin or calciumi<strong>on</strong>ophore A23187, followed by cycloheximidetreatment. Subsequent culture was performed <strong>on</strong> aVero cell m<strong>on</strong>olayer. Only 3/28 (11%) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fusedrecombined cells cleaved; no significantdifferences were noted between maturati<strong>on</strong>treatments or d<strong>on</strong>or cell source. These recombinedcells developed to <str<strong>on</strong>g>the</str<strong>on</strong>g> 2-, 3-, and 5-cell stage butdid not develop fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Presence <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei wasc<strong>on</strong>firmed in <str<strong>on</strong>g>the</str<strong>on</strong>g>se embryos using Hoechst 33258.To our knowledge, this is <str<strong>on</strong>g>the</str<strong>on</strong>g> first reportdocumenting <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equine nucleartransfer embryos. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> this study indicatethat rates <str<strong>on</strong>g>of</str<strong>on</strong>g> enucleati<strong>on</strong>, fusi<strong>on</strong> and subsequentcleavage are lower when equine IVM oocytes areused as cytoplasts than when bovine IVM oocytesare used. The difficulty in performing <str<strong>on</strong>g>the</str<strong>on</strong>g>procedures necessary for nuclear transfer in <str<strong>on</strong>g>the</str<strong>on</strong>g>horse is unfortunate in light <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lowefficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> methods for harvest <str<strong>on</strong>g>of</str<strong>on</strong>g> equineoocytes (by follicular slicing and scraping <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>granulosa cell layer or by follicle aspirati<strong>on</strong>),relatively low maturati<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> equine oocytesin vitro, and labour-intensive methods needed fordenuding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> equine cumulus (by individualpipetting, as mass vortexing is not effective).These factors combine to increase <str<strong>on</strong>g>the</str<strong>on</strong>g> difficulty <str<strong>on</strong>g>of</str<strong>on</strong>g>using horse oocytes as host cytoplasts, incomparis<strong>on</strong> with bovine oocytes. The successobtained with bovine host cytoplasts dem<strong>on</strong>stratesthat <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> equine somatic cells can result insuccessful fusi<strong>on</strong> and cleavage. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r work isneeded to determine optimal parameters for invitro maturati<strong>on</strong> and nuclear transfer in horseoocytes.ACKNOWLEDGEMENTSThis work was supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> Link EquineResearch Endowment Fund, Texas A&MUniversity.REFERENCESDominko, T., Mitalipova, M., Haley, B., Zeki, B.,Memili, E., McKusick, B. and First, N. (1999)Bovine oocyte cytoplasm supports development <str<strong>on</strong>g>of</str<strong>on</strong>g>embryos produced by nuclear transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> somaticcell nuclei from various mammalian species. Biol.reprod. 60, 1496-1502.Hill, J.R., Winger, Q.A., L<strong>on</strong>g, C.R., Lo<strong>on</strong>ey, C.R.,Thomps<strong>on</strong>, J.A. and Westhusin, M.E. (2000)Development rates <str<strong>on</strong>g>of</str<strong>on</strong>g> male bovine nuclear transferembryos derived from adult and fetal cells. Biol.reprod. 62, 1135-1140.Hinrichs, K. and Schmidt, A.L. (2000) Meioticcompetence in horse oocytes: Interacti<strong>on</strong>s am<strong>on</strong>gchromatin c<strong>on</strong>figurati<strong>on</strong>, follicle size, cumulusmorphology and seas<strong>on</strong>. Biol. reprod. 62, 1402-1408.44


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3NUCLEAR TRANSFER EMBRYOS IN THE HORSEB. C. Reggio, M. Sansinena, R. A. Cochran, A. Guitreau, J. A. Carter,R. S. Dennist<strong>on</strong> and R. A. GodkeDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Animal Science, Louisiana State University, Bat<strong>on</strong> Rouge, Louisiana 70803, USAINTRODUCTIONAfter <str<strong>on</strong>g>the</str<strong>on</strong>g> recent births <str<strong>on</strong>g>of</str<strong>on</strong>g> healthy foals producedfrom intracytoplasmic sperm injecti<strong>on</strong> by thislaboratory (Cochran et al. 1998), an attempt wasmade to produce cl<strong>on</strong>ed horses embryos usingsimilarly harvested oocytes from live mares(Meintjes et al. 1995) (Part I). Oocyte availabilityis <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> major limitati<strong>on</strong>s in c<strong>on</strong>ductingnuclear transfer studies in many species. In <str<strong>on</strong>g>the</str<strong>on</strong>g>horse, oocyte collecti<strong>on</strong> is cumbersome and <str<strong>on</strong>g>of</str<strong>on</strong>g>tenseas<strong>on</strong>al, thus potenially limiting to <str<strong>on</strong>g>the</str<strong>on</strong>g> success <str<strong>on</strong>g>of</str<strong>on</strong>g>a nuclear transfer program. In a study c<strong>on</strong>ductedby Dominko et al. (1999) bovine oocytes wereused as recipients <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclear transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> variousmammalian species (rat, cow, sheep, pig, m<strong>on</strong>keyand rat). Regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> species <str<strong>on</strong>g>of</str<strong>on</strong>g> d<strong>on</strong>orfibroblasts used in this study, all coupletsprogressed through <str<strong>on</strong>g>the</str<strong>on</strong>g> first cell cycle, and somerec<strong>on</strong>structed embryos developed to <str<strong>on</strong>g>the</str<strong>on</strong>g>blastocysts stage. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> timing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first twocleavage divisi<strong>on</strong>s in bovine in vitro-producedembryos corresp<strong>on</strong>ded more closely to <str<strong>on</strong>g>the</str<strong>on</strong>g> timing<str<strong>on</strong>g>of</str<strong>on</strong>g> cleavage in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> d<strong>on</strong>or nucleus species,bovine oocytes were used in <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d part <str<strong>on</strong>g>of</str<strong>on</strong>g> thisstudy (Part II).Part I. A group <str<strong>on</strong>g>of</str<strong>on</strong>g> 6 mixed breed mares weretreated daily with 0.044 mg/kg altrenogest(Regumate) <str<strong>on</strong>g>the</str<strong>on</strong>g>n subjected to a follicle reducti<strong>on</strong>via transvaginal ultrasound-guided aspirati<strong>on</strong> <strong>on</strong>Day 21. Oocytes were <str<strong>on</strong>g>the</str<strong>on</strong>g>n collected every 10 days beginning <strong>on</strong> Day 31 and matured in vitro inTCM-199 supplemented with oestrous mare serumfor 36 h. Mature oocytes were enucleated byremoving <str<strong>on</strong>g>the</str<strong>on</strong>g> first polar body and sec<strong>on</strong>dmetaphase plate using Hoechst 33342 stain (5µg/ml) and epifluorescent microscopy to c<strong>on</strong>firm<str<strong>on</strong>g>the</str<strong>on</strong>g> complete removal <str<strong>on</strong>g>of</str<strong>on</strong>g> maternal DNA. A singled<strong>on</strong>or cumulus cell recovered from <str<strong>on</strong>g>the</str<strong>on</strong>g> pool <str<strong>on</strong>g>of</str<strong>on</strong>g>mature oocytes was <str<strong>on</strong>g>the</str<strong>on</strong>g>n inserted into <str<strong>on</strong>g>the</str<strong>on</strong>g>perivitelline space <str<strong>on</strong>g>of</str<strong>on</strong>g> each cytoplast. Enucleati<strong>on</strong>and rec<strong>on</strong>structi<strong>on</strong> were c<strong>on</strong>ducted in 2 µg/ml <str<strong>on</strong>g>of</str<strong>on</strong>g>cytochalasin B (CB) using a Nik<strong>on</strong> Diaphotmicroscope equipped with H<str<strong>on</strong>g>of</str<strong>on</strong>g>fman objectives andNarishige micromanipulators. D<strong>on</strong>or cells andrecipient cytoplasts were fused with 2 electricalpulses (3.5 kV/cm, 30 µs) in a 0.3 M mannitolfusi<strong>on</strong> buffer c<strong>on</strong>taining 0.1 mM MgSO4, 0.5 mMHEPES and 1 mg/ml <str<strong>on</strong>g>of</str<strong>on</strong>g> BSA (pH 7.0; 25°C).Immediately following <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<str<strong>on</strong>g>of</str<strong>on</strong>g>usi<strong>on</strong>procedure, couplets were incubated for 1 h in 7.5mg/ml <str<strong>on</strong>g>of</str<strong>on</strong>g> CB, washed and held in P-1 culturemedium (Irvine Scientific) for 9 h at 38°C.Couplets (n = 36) were <str<strong>on</strong>g>the</str<strong>on</strong>g>n randomly assigned to<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> two treatments: activati<strong>on</strong> (A) or noactivati<strong>on</strong> (B). Activati<strong>on</strong> was performed at 45 hpost-maturati<strong>on</strong> with 5 µM i<strong>on</strong>omycin followed bya 4 h treatment in 2 mM 6-dimethylaminopurine.N<strong>on</strong>activated oocytes were maintained in P-1medium supplemented with 10% FBS.From 142 follicles aspirated (n = 5 aspirati<strong>on</strong>s)(Table 1), 74 cumulus enclosed oocytes wereTABLE 1: Aspirati<strong>on</strong>, recovery and maturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equine oocytes <str<strong>on</strong>g>of</str<strong>on</strong>g> live maresAspirated Recovered Matured* Rec<strong>on</strong>structed*142 74 (52%) 48 (65%) 36 (75%)*Percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> oocytes matured and rec<strong>on</strong>structed based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> oocytes recovered.45


Equine Embryo TransferTABLE 2: Fusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equine rec<strong>on</strong>structedoocytesTABLE 4: Cleavaged equine rec<strong>on</strong>structedembryos and nuclei stainingTreatment n FusedTreatmentCleaved (day 3) Nuclei stainingActivated 1814 (77%)N<strong>on</strong>activated 1810 (56%)TABLE 3: Enucleati<strong>on</strong>, rec<strong>on</strong>structi<strong>on</strong> andfusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bovine oocytes with equine fibroblastd<strong>on</strong>orsTreatment Enucleated Rec<strong>on</strong>structed FusedProliferating 26 25 13 (52%)Quiescent 17 16 13 (81%)Total 43 41 26 (63%)10-cell 8-cell10-cell 6-cellProliferating 10-cell 6-cell10 (78%) 8-cell 4-cell8-cell2-cell10-cell 4-cell6-cell4-cellQuiescent 5-cell 3-cell10 (78%) 5-cell cf*5-cellcf*Total 20 (77%)*cf: = cytoplasmic fragments.recovered (52%), 48 were matured in vitro (65%)and 36 were successfully rec<strong>on</strong>structed (75%). Atotal <str<strong>on</strong>g>of</str<strong>on</strong>g> 24 rec<strong>on</strong>structed oocytes were successfullyfused (67%) but failed to divide in culture,regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> activati<strong>on</strong> treatment schedule(Table 2).Part II. The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>d study was toevaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cow oocyte to supportmitotic cycles following interspecies nucleartransfer, and to explore <str<strong>on</strong>g>the</str<strong>on</strong>g> potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bovineoocyte as recipient for nuclear transfer in specieswhere oocyte collecti<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten limited. Oocyteswill be obtained from a commercial source(BOMED; Madis<strong>on</strong>,WI) and enucleated at 18 hpost-maturati<strong>on</strong>. Quiescent (starved) orproliferating d<strong>on</strong>or cells will be immediatelyinjected into <str<strong>on</strong>g>the</str<strong>on</strong>g> perivitelline space <str<strong>on</strong>g>of</str<strong>on</strong>g> enucleatedoocytes. In this study, couplets were electr<str<strong>on</strong>g>of</str<strong>on</strong>g>usedwith <strong>on</strong>e single electrical pulse (1.80 kV/cm, 30ms). Activati<strong>on</strong> was performed with i<strong>on</strong>omycin (4min) followed by a 3 h treatment in 6-methylaminopurine. Par<str<strong>on</strong>g>the</str<strong>on</strong>g>nogenic oocytes(c<strong>on</strong>trol) were activated in similar fashi<strong>on</strong>. Nucleartransfer couplets were cultured in glucose-free P1medium, and cleavage was assessed at 72 h postrec<strong>on</strong>structi<strong>on</strong>(<str<strong>on</strong>g>the</str<strong>on</strong>g> end point). Couplets wereexposed to a Hoechst 33342 stain to determine <str<strong>on</strong>g>the</str<strong>on</strong>g>presence <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei.In summary, a total <str<strong>on</strong>g>of</str<strong>on</strong>g> 43 oocytes wereenucleated resulting in 41 successfully rec<strong>on</strong>structed(Table 3). A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 26 rec<strong>on</strong>structedcouplets successfully fused (63%), and 20 (77%)<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se had cleaved when assessed <strong>on</strong> Day 3 <str<strong>on</strong>g>of</str<strong>on</strong>g>culture. From a total <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 fused couplets, stainedwith Hoechst 33342 <strong>on</strong> Day 3 <str<strong>on</strong>g>of</str<strong>on</strong>g> culture, revealedthat four embryos were at <str<strong>on</strong>g>the</str<strong>on</strong>g> 10-cell stage, threewere at 8-cell stage, three were at 6-cell stage,three were at 5-cell, three were at 4-cell, <strong>on</strong>e wasat 3-cell, and <strong>on</strong>e at 2-cell stage (Table 4). In <str<strong>on</strong>g>the</str<strong>on</strong>g>remaining two couplets, staining revealedcyto-plasmic fragmentati<strong>on</strong> and no nuclei.Although acceptable rates <str<strong>on</strong>g>of</str<strong>on</strong>g> fusi<strong>on</strong> wereobtained in <str<strong>on</strong>g>the</str<strong>on</strong>g>se preliminary trials, more work isneeded to elucidate <str<strong>on</strong>g>the</str<strong>on</strong>g> factors necessary foreffectively activating equine oocytes prior to nucleartransfer. Although this was a preliminarystudy, <str<strong>on</strong>g>the</str<strong>on</strong>g> bovine cytoplast was able to supportmitotic divisi<strong>on</strong> and give indicati<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g>y couldserve as a cytoplasmic recipient for futureinterspecies nuclear transfer in <str<strong>on</strong>g>the</str<strong>on</strong>g> horse. Certainlymore research is needed to develop thismethodolgy, and normal live nuclear transfer<str<strong>on</strong>g>of</str<strong>on</strong>g>fspring are needed validate <str<strong>on</strong>g>the</str<strong>on</strong>g> technology.REFERENCESCochran, R., M. Meintjes, B. Reggio, D. Hylan, J. Carter,C. Pinto, D. Paccam<strong>on</strong>ti and R. A.Godke. (1998)Live foals produced from sperm-injected ooctyesderived from pregnant mares. J. Equine Vet. Sci. 18,736-740.Dominko, T., M. Mitalipova, B. Maley, Z. Beyhan, E.Memilli, B. McKusick and N.L. Fisrt. (1999) Bovineoocyte cytoplasm supports development <str<strong>on</strong>g>of</str<strong>on</strong>g> embryosproduced by nuclear transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> somatic nuclei fromvarious mammalian species. Biol. Reprod. 60, 1496-1502.Meintjes, M., M.S. Bellow, J.B. Paul, J.R. Broussard, L-Y. Li, D. Paccam<strong>on</strong>ti, B. Eilts and R.A.Godke.(1995) Transvaginal ultrasound-guided oocyteretrieval from cyclic and pregnant horse and p<strong>on</strong>ymares for in vitro fertilizati<strong>on</strong>. Biol. Reprod. M<strong>on</strong>o.1, 281-292.46


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3EFFECTS OF OOCYTE MATURITY AND METHODSOF COLLECTION, CULTURE AND INSEMINATIONON <strong>EQUINE</strong> OOCYTE TRANSFERE. M. Carnevale, L. J. Maclellan, T. J. Scott, M. A. Coutinho da Silva,C. F. Scoggin and E. L. SquiresAnimal Reproducti<strong>on</strong> and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado80523, USAAssisted reproductive techniques, such as oocytetransfer, are currently being used to obtainpregnancies from subfertile mares. For oocytetransfer, preovulatory oocytes are usually collected24 h after hCG, and maturati<strong>on</strong> is completed invitro prior to transfer. Development <str<strong>on</strong>g>of</str<strong>on</strong>g> techniquesthat would eliminate in vitro culture and allow <str<strong>on</strong>g>the</str<strong>on</strong>g>use <str<strong>on</strong>g>of</str<strong>on</strong>g> immature oocytes and low numbers <str<strong>on</strong>g>of</str<strong>on</strong>g>sperm would permit assisted reproductivetechniques to be used when an incubator and/orculture expertise are not available, whenpreovulatory oocytes are not available (egeuthanasia <str<strong>on</strong>g>of</str<strong>on</strong>g> mare), or when sperm numbers arelow (eg subfertile stalli<strong>on</strong>s, sexed sperm, frozensperm). Objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 experiments were tocompare embryo development rates for: 1) oocytescompleting maturati<strong>on</strong> in vitro or within <str<strong>on</strong>g>the</str<strong>on</strong>g>oviduct; 2) intraoviductal versus intrauterineinseminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> recipients; 3) oocytes maturedwithin <str<strong>on</strong>g>the</str<strong>on</strong>g> follicle versus in vitro; and 4) oocytescollected from live mares versus fromslaughterhouse ovaries.In Experiment 1, oocytes were recovered usingtransvaginal, ultrasound-guided follicularaspirati<strong>on</strong>s (TVA) from naturally cycling d<strong>on</strong>ormares 24 to 26 h after hCG when follicles reached35 mm. Multiple oocytes (1–4) were transferredsurgically into oviducts <str<strong>on</strong>g>of</str<strong>on</strong>g> 4 or 5 recipients pergroup. Recipient’s oocytes were collected prior totransfers. Three groups <str<strong>on</strong>g>of</str<strong>on</strong>g> transfers werecompared: 1) transfers <str<strong>on</strong>g>of</str<strong>on</strong>g> oocytes cultured in vitr<str<strong>on</strong>g>of</str<strong>on</strong>g>or 12 to 14 h post collecti<strong>on</strong> with uterineinseminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> recipients 2 h post surgery; 2)transfers <str<strong>on</strong>g>of</str<strong>on</strong>g> oocytes into oviducts within 1 h <str<strong>on</strong>g>of</str<strong>on</strong>g>collecti<strong>on</strong>, with completi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oocyte maturati<strong>on</strong>occurring within oviducts, and uterineinseminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> recipients 14–16 h post surgery;and 3) transfers <str<strong>on</strong>g>of</str<strong>on</strong>g> sperm and oocytes (cultured 12to 14 h in vitro) into oviducts. Oocytes, cultured invitro, were placed in culture medium (TCM 199with 10% FCS, 0.2 mM pyruvate and 50 µg/mlgentamicin sulphate) in an atmosphere <str<strong>on</strong>g>of</str<strong>on</strong>g> 5% CO 2and air at 38.5°C. Recipients were inseminatedinto <str<strong>on</strong>g>the</str<strong>on</strong>g> uterine body with 2 x 10 9 progressivelymotile sperm from <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 stalli<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> knownfertility. Approximately 1 h prior to intraoviductalinseminati<strong>on</strong> (Group 3), semen was collected froma stalli<strong>on</strong> and separated through a density gradient(90/45% Percoll centrifuged for 10 min at 300G).The sperm pellet was washed and resuspended inHepes-buffered syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic oviduct fluid (H-SOFwith 0.6% BSA); 500,000 progressively motilesperm were transferred with oocytes into eachrecipient’s oviduct. In Experiment 1, numbers <str<strong>on</strong>g>of</str<strong>on</strong>g>embryos detected <strong>on</strong> Day 16 <str<strong>on</strong>g>of</str<strong>on</strong>g> gestati<strong>on</strong> were notdifferent (P>0.1) for Groups 1, 2 and 3 (8/14, 57%;6/14, 43% and 3/11, 27%). Therefore, maturingoocytes successfully completed final stages <str<strong>on</strong>g>of</str<strong>on</strong>g>maturati<strong>on</strong> within <str<strong>on</strong>g>the</str<strong>on</strong>g> oviduct, and spermdeposited within <str<strong>on</strong>g>the</str<strong>on</strong>g> oviduct were capable <str<strong>on</strong>g>of</str<strong>on</strong>g>fertilising oocytes.In Experiment 2, oocytes were collected byTVA from live mares or from slicingslaughterhouse ovaries. Four groups <str<strong>on</strong>g>of</str<strong>on</strong>g> oocyteswere transferred into oviducts <str<strong>on</strong>g>of</str<strong>on</strong>g> recipients:1) oocytes matured in vivo and collected by TVAfrom preovulatory follicles <str<strong>on</strong>g>of</str<strong>on</strong>g> oestrous mares32–36 h after administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hCG; 2) immatureoocytes collected from dioestrous mares between 5and 10 days after aspirati<strong>on</strong> or ovulati<strong>on</strong> by TVAand matured in vitro for 36–38 h; 3) immatureoocytes collected from dioestrous mares between5–10 days after aspirati<strong>on</strong> or ovulati<strong>on</strong> by TVAand transferred into a recipient’s oviduct


Equine Embryo Transfercollecti<strong>on</strong>; and 4) immature oocytes collected fromslaughterhouse ovaries c<strong>on</strong>taining a corpus luteumand matured in vitro for 36–38 h. Recipients inGroup 1, 2 and 4 were inseminated 12–14 h priorto oocyte transfer; recipients in Group 3 wereinseminated 34–36 h after transfer. Recipientswere inseminated with 2 x 10 9 progressivelymotile sperm from <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> two stalli<strong>on</strong>s. Oocytes,matured in vitro, were placed in maturati<strong>on</strong>medium (TCM 199 with 0.2 mM pyruvate, 1 mMglutamine, 25 mM bicarb<strong>on</strong>ate, 10% FCS, 15ng/ml FSH, 1 µg/ml LH, 1 µg/ml E 2 , 50 µg/mlgentamicin) and incubated for 36–38 h at 38.5°Cin 5% CO 2 and air. Oocyte recipients were allowedto ovulate <str<strong>on</strong>g>the</str<strong>on</strong>g> preovulatory follicle; subsequently,<str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> recipient ovulati<strong>on</strong>s were subtractedfrom <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> embry<strong>on</strong>ic vesicles imagedwith ultrasound.In Experiment 2, oocytes matured in vivo(9/11, 82%) resulted in higher (P0.1) embryo development rates after transfer <str<strong>on</strong>g>of</str<strong>on</strong>g>immature oocytes.In c<strong>on</strong>clusi<strong>on</strong>, oocyte transfer was a repeatablemethod for testing oocyte competence after IVM.Embryo development rates were high after transfer<str<strong>on</strong>g>of</str<strong>on</strong>g> oocytes matured in vivo. The final stage <str<strong>on</strong>g>of</str<strong>on</strong>g>oocyte maturati<strong>on</strong> successfully occurred within<str<strong>on</strong>g>the</str<strong>on</strong>g> oviduct; however, immature oocytes did notcomplete maturati<strong>on</strong> within <str<strong>on</strong>g>the</str<strong>on</strong>g> oviduct.Pregnancies were obtained from oocytes collectedby TVA or from slaughterhouse ovaries, maturedin vitro, and transferred into recipients; however,embryo development rates were low. Transfer <str<strong>on</strong>g>of</str<strong>on</strong>g>sperm and oocytes into <str<strong>on</strong>g>the</str<strong>on</strong>g> oviduct resulted inembryo development, suggesting this technique(GIFT) has a potential use in equine assistedreproducti<strong>on</strong>.ACKNOWLEDGEMENTSThis project was funded in part through <str<strong>on</strong>g>the</str<strong>on</strong>g>Research Council <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> College <str<strong>on</strong>g>of</str<strong>on</strong>g> VeterinaryMedicine and Biomedical Sciences at ColoradoState University, Colorado Equine RacingCommissi<strong>on</strong> and by benefactors <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> programmefor Preservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Equine Genetics and <str<strong>on</strong>g>the</str<strong>on</strong>g> LucyWhittier Foundati<strong>on</strong>. The authors would like tothank Mary O’D<strong>on</strong>ovan, Camille Torres andJessica Valle for technical assistance and Drs.George Seidel, Jr., Marco Alvarenga, FernandaAlvarenga, and Young Ho Choi for scientificinput.48


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3SESSION 3:Embryo cooling andfreezingChairman: E. Palmer49


50Equine Embryo Transfer


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3NOVEL METHODS OF EMBRYO CRYOPRESERVATIONS. P. LeiboAudub<strong>on</strong> Center for Research <str<strong>on</strong>g>of</str<strong>on</strong>g> Endangered Species, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Sciences, University<str<strong>on</strong>g>of</str<strong>on</strong>g> New Orleans, New Orleans, Louisiana, USAThe capability to cryopreserve mammalian embryosis a powerful adjunct to methods <str<strong>on</strong>g>of</str<strong>on</strong>g> assistedreproducti<strong>on</strong>. Tens <str<strong>on</strong>g>of</str<strong>on</strong>g> thousands <str<strong>on</strong>g>of</str<strong>on</strong>g> mice andhundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> thousands <str<strong>on</strong>g>of</str<strong>on</strong>g> cattle have been producedfrom cryopreserved embryos. In c<strong>on</strong>trast, <strong>on</strong>lyabout 50 equine pregnancies and fewer than 10 foalsresulting from cryopreserved c<strong>on</strong>ceptuses have beenreported in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> innumerableinvestigati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cryobiology <str<strong>on</strong>g>of</str<strong>on</strong>g> embryos,especially those <str<strong>on</strong>g>of</str<strong>on</strong>g> mice and cattle, c<strong>on</strong>siderablemechanistic understanding has been derived <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>factors that determine ultimate survival and fulltermdevelopment <str<strong>on</strong>g>of</str<strong>on</strong>g> cryopreserved embryos.However, <str<strong>on</strong>g>the</str<strong>on</strong>g>re have been many fewer studies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>basic cryobiological aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> equine embryos thatmay influence <str<strong>on</strong>g>the</str<strong>on</strong>g>ir resp<strong>on</strong>se to freezing andthawing. Any such investigati<strong>on</strong> must take intoaccount unique features <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> equine c<strong>on</strong>ceptus,and also <str<strong>on</strong>g>the</str<strong>on</strong>g> unusual reproductive biology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>mare compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> female <str<strong>on</strong>g>of</str<strong>on</strong>g> many o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species.Cryopreservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> embryos <str<strong>on</strong>g>of</str<strong>on</strong>g> all speciesc<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following steps:1. Exposure to molar c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e or morecryoprotective additives (CPAs);2. Cooling to sub-zero temperatures underc<strong>on</strong>diti<strong>on</strong>s that result in efflux <str<strong>on</strong>g>of</str<strong>on</strong>g> virtually allintracellular water from <str<strong>on</strong>g>the</str<strong>on</strong>g> embryos;3. Immersi<strong>on</strong> in liquid nitrogen (LN 2 ) at -196°C,permitting unlimited storage with no loss <str<strong>on</strong>g>of</str<strong>on</strong>g>biological functi<strong>on</strong>;4. Warming to physiological temperatures;5. Removal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CPAs from <str<strong>on</strong>g>the</str<strong>on</strong>g> embryos.Cryopreservati<strong>on</strong> is a unidirecti<strong>on</strong>al process;c<strong>on</strong>sequently, all <str<strong>on</strong>g>the</str<strong>on</strong>g> steps <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sequence must beperformed properly if an embryo is to survivecryopreservati<strong>on</strong>. But each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se steps has <str<strong>on</strong>g>the</str<strong>on</strong>g>potential to damage or destroy mammalianembryos. For example, comm<strong>on</strong> CPAs are glycerol,dimethyl sulphoxide, ethylene or propylene glycol.C<strong>on</strong>centrated soluti<strong>on</strong>s (10–50% by volume) <str<strong>on</strong>g>of</str<strong>on</strong>g>those CPAs may damage embryos, ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r by directtoxic effects or by osmotic shock, during <str<strong>on</strong>g>the</str<strong>on</strong>g> initialexposure or during its removal. Very few studies <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> CPAs <strong>on</strong> equine embryos have beenc<strong>on</strong>ducted. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r factor that may affect embryodevelopment is exposure to n<strong>on</strong>-physiologicaltemperatures. Although embryos may ‘tolerate’exposure to temperatures near or below 0°C, it isbecoming increasingly evident that embryos mayundergo subtle injury caused by chilling. There aresignificant differences in chilling sensitivity am<strong>on</strong>gembryos <str<strong>on</strong>g>of</str<strong>on</strong>g> different species, and am<strong>on</strong>g variousdevelopmental stages <str<strong>on</strong>g>of</str<strong>on</strong>g> a given species. Little isknown about <str<strong>on</strong>g>the</str<strong>on</strong>g> susceptibility <str<strong>on</strong>g>of</str<strong>on</strong>g> equine embryos tochilling injury. A third factor known to have a majoreffect <strong>on</strong> embryo survival is <str<strong>on</strong>g>the</str<strong>on</strong>g> rate at whichsamples are cooled from ~0°C to sub-zerotemperatures below -30°C. Only <strong>on</strong>e very briefstudy <str<strong>on</strong>g>of</str<strong>on</strong>g> this variable in <str<strong>on</strong>g>the</str<strong>on</strong>g> horse c<strong>on</strong>ceptus hasbeen reported. Most investigati<strong>on</strong>s have used asingle cooling rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.3°C/min to freeze equineembryos; this may or may not be <str<strong>on</strong>g>the</str<strong>on</strong>g> optimum rate.Yet ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r potentially damaging event may occurduring removal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CPA from <str<strong>on</strong>g>the</str<strong>on</strong>g> embryo after itscryopreservati<strong>on</strong>. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> CPA removal <strong>on</strong>embryo survival depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> permeability <str<strong>on</strong>g>of</str<strong>on</strong>g> thatspecific embry<strong>on</strong>ic stage to <str<strong>on</strong>g>the</str<strong>on</strong>g> CPA itself and <str<strong>on</strong>g>the</str<strong>on</strong>g>temperature coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> permeability. There aresignificant differences am<strong>on</strong>g species with respectto embryo permeability; little is known about <str<strong>on</strong>g>the</str<strong>on</strong>g>relati<strong>on</strong>ship between permeability to various CPAsand temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> equine c<strong>on</strong>ceptus.In summary, systematic studies <str<strong>on</strong>g>of</str<strong>on</strong>g>cryobiological variables known to affect survival <str<strong>on</strong>g>of</str<strong>on</strong>g>embryos <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r mammalian species, as well asstudies that allow for excepti<strong>on</strong>al characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> equine c<strong>on</strong>ceptus may yield improved methodsfor <str<strong>on</strong>g>the</str<strong>on</strong>g>ir cryopreservati<strong>on</strong>.51


Equine Embryo TransferCOMPARISON OF GLYCEROL AND ETHYLENEGLYCOL IN <strong>EQUINE</strong> EMBRYO FREEZING USINGCONFOCAL MICROSCOPY, DAPI-STAINING ANDNONSURGICAL TRANSFERM. Huhtinen, A. Sjöholm and J. Paranko*MTT, Equines, Ypäjä, Finland; *Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, Laboratory <str<strong>on</strong>g>of</str<strong>on</strong>g> Animal Physiology, University <str<strong>on</strong>g>of</str<strong>on</strong>g>Turku, FinlandINTRODUCTIONAfter reaching a certain diameter anddevelopmental stage, equine embryos are severelydamaged during freezing. Several cryoprotectantshave been tested in an attempt to overcome thisproblem, but so far, <strong>on</strong>ly glycerol hasgiven reas<strong>on</strong>able results in c<strong>on</strong>venti<strong>on</strong>alcryopreservati<strong>on</strong> procedures (for review see Seidel1996). In <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, <str<strong>on</strong>g>the</str<strong>on</strong>g> higher permeability <str<strong>on</strong>g>of</str<strong>on</strong>g>ethylene glycol versus glycerol (Pfaff et al. 1993)would favour <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> former. The availability<str<strong>on</strong>g>of</str<strong>on</strong>g> reliable techniques to study damages induced byfreezing and thawing <str<strong>on</strong>g>of</str<strong>on</strong>g> embryos have beenlimited. One such tool could be c<strong>on</strong>focalfluorescence microscopy because it enables a 3-dimensi<strong>on</strong>al analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise difficult intactbiological specimens, like fluorescently labelledmulticellular embryos. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> present workwas to compare cryodamage in equine embryosafter freezing in glycerol or ethylene glycol usingc<strong>on</strong>focal microscopy, DAPI-staining, andn<strong>on</strong>surgical transfer.MATERIALS AND METHODSThirty-seven embryos, 140–190 µm in diameter,were frozen in a programmable freezer afteradditi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> selected cryoprotectant. Glyceroland 50 mM glutamine were added in 4 steps for18 embryos. Nineteen embryos were placed into1.5 M ethylene glycol in Emcare. All embryoswere thawed by holding <str<strong>on</strong>g>the</str<strong>on</strong>g> straws in <str<strong>on</strong>g>the</str<strong>on</strong>g> air for10 s and <str<strong>on</strong>g>the</str<strong>on</strong>g>n in a water bath at 30ºC for 20 s. In<str<strong>on</strong>g>the</str<strong>on</strong>g> glycerol group, <str<strong>on</strong>g>the</str<strong>on</strong>g> cryoprotectant wasremoved in six steps with sucrose (Huhtinen et al.1997). Half <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> embryos in each treatmentgroup were stained with DAPI (1 µg/ml) for 15min in room temperature, washed and transferredn<strong>on</strong>surgically to <str<strong>on</strong>g>the</str<strong>on</strong>g> uteri <str<strong>on</strong>g>of</str<strong>on</strong>g> recipient mares thathad ovulated four days before transfer.The remaining half were fixed in 3.7%formaldehyde for 15 min in room temperature.After three washes in PBS, <str<strong>on</strong>g>the</str<strong>on</strong>g>y were extractedwith <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1% Trit<strong>on</strong> X-100 inPBS for 5 min. After 3 washes in PBS, <str<strong>on</strong>g>the</str<strong>on</strong>g>embryos were treated with RNAse (1 mg/ml) inPBS for 15 min. After short washes in PBS, <str<strong>on</strong>g>the</str<strong>on</strong>g>embryos were incubated for 15 min in PBSc<strong>on</strong>taining 1% BSA. Then <str<strong>on</strong>g>the</str<strong>on</strong>g> embryos wereincubated in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Oreg<strong>on</strong> Greed 514phalloidin and propidium iodide (0.5 µg/ml) for30 min in room temperature. After 3 washes inPBS, <str<strong>on</strong>g>the</str<strong>on</strong>g> embryos were mounted <strong>on</strong> a slide in 1%agar and analysed with Leica TCS NT c<strong>on</strong>focalmicroscope.TABLE 1: Number/percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> DAPI-stained cells in frozen-thawed embryos before transferEmbryo number1 2 3 4 5 6 7 8 9 10Gly 0* 1 6* 10 10* 11 25 20%* 30% -EG 4* 10* 14 15 30 35 35 50 30%* 40%* = The embryo c<strong>on</strong>tinued its development after transfer52


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3RESULTS AND DISCUSSIONOf 9 embryos frozen with glycerol, 4 c<strong>on</strong>tinueddeveloping in <str<strong>on</strong>g>the</str<strong>on</strong>g> uteri <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> recipient mares. In<str<strong>on</strong>g>the</str<strong>on</strong>g> ethylene glycol group, 3 out <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 transferswere successful. The number/percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> DAPIstainedcells is presented in detail in Table 1. Nostatistical differences in pregnancy rates or in <str<strong>on</strong>g>the</str<strong>on</strong>g>percentages <str<strong>on</strong>g>of</str<strong>on</strong>g> DAPI-stained cells were notedbetween <str<strong>on</strong>g>the</str<strong>on</strong>g> 2 freezing protocols. Double labellingfor actin and nuclei indicated well preservedcytoskelet<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> outer embry<strong>on</strong>ic cell layers.More diffuse actin staining in <str<strong>on</strong>g>the</str<strong>on</strong>g> inner parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>embryo was c<strong>on</strong>sidered as an indicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>improper cryopreservati<strong>on</strong>.This study compared 2 different freezingmethods for equine embryos: glycerol + L-glutamine and Emcare ethylene glycol. The effects<str<strong>on</strong>g>of</str<strong>on</strong>g> L-glutamine or Emcare media itself cannot bedifferentiated from <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> glycerol andethylene glycol. However, both methods seemed tobe able to protect <str<strong>on</strong>g>the</str<strong>on</strong>g> embryos equally well toproduce pregnancies after transfer. The thawingmethod might also have to be selected according to<str<strong>on</strong>g>the</str<strong>on</strong>g> freezing protocol, although <str<strong>on</strong>g>the</str<strong>on</strong>g> same thawingmethods have been used in <str<strong>on</strong>g>the</str<strong>on</strong>g> previouslypublished papers irrespective <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cryoprotectiveagent (Bruyas 1997).The developmental stage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> embryoinfluences <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> cryoprotectant passage to <str<strong>on</strong>g>the</str<strong>on</strong>g>inner parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> embryo. The capsule, inparticular, seems to impede <str<strong>on</strong>g>the</str<strong>on</strong>g> successful freezing<str<strong>on</strong>g>of</str<strong>on</strong>g> equine embryos (Bruyas 1997). Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g>time that embryos are equilibrated in <str<strong>on</strong>g>the</str<strong>on</strong>g>cryoprotectant soluti<strong>on</strong>s should vary according to<str<strong>on</strong>g>the</str<strong>on</strong>g> developmental stage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> embryo. Theembryo should be carefully m<strong>on</strong>itored duringcryoprotecti<strong>on</strong>, and <str<strong>on</strong>g>the</str<strong>on</strong>g> freezing should not bestarted equilibrium has been reached in <str<strong>on</strong>g>the</str<strong>on</strong>g>soluti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> cryoprotective agent has enteredalso <str<strong>on</strong>g>the</str<strong>on</strong>g> inner cell mass cells.The study <str<strong>on</strong>g>of</str<strong>on</strong>g> whole-mount equine embryosindicates that c<strong>on</strong>focal microscopy with multilabellingtechnique is a promising method for <str<strong>on</strong>g>the</str<strong>on</strong>g>analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular damage induced bycryopreservati<strong>on</strong>. However, fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r work isrequired to elucidate if <str<strong>on</strong>g>the</str<strong>on</strong>g> cytoskeletal damagesseen in <str<strong>on</strong>g>the</str<strong>on</strong>g> thawed embryos are severe enough toprevent fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> embryos.REFERENCESBruyas, J-F. (1997) C<strong>on</strong>tributi<strong>on</strong> a l’etude de lac<strong>on</strong>gelati<strong>on</strong> des embry<strong>on</strong>s equins: une approchemetabolique et cellulaire. Thesis, Ecole Nati<strong>on</strong>alevétérinaire de Nantes.Huhtinen, M., Lagneaux, D., Koskinen, E. and Palmer E.(1997) The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> sucrose in <str<strong>on</strong>g>the</str<strong>on</strong>g> thawing soluti<strong>on</strong><strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> morphology and mobility <str<strong>on</strong>g>of</str<strong>on</strong>g> frozen equineembryos. Equine. vet. J. Suppl. 25, 94-97.Pfaff, R.T., Seidel, G.E. Jr. and Squires, E.L. (1993)Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> glycerol and ethylene glycol <strong>on</strong> survival <str<strong>on</strong>g>of</str<strong>on</strong>g>equine embryos. J. anim. Sci. Suppl. 1, 72, 82 abstr.Seidel, G.E. Jr. (1996) Cryopreservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equineembryos. Vet. Clin. North. Am. equine Pract. 12, 85-99.53


Equine Embryo TransferCRYOPRESERVATION OF <strong>EQUINE</strong> EMBRYOS BY OPS,CRYOLOOP, OR CONVENTIONAL SLOW COOLINGMETHODSN. Oberstein, M. K. O’D<strong>on</strong>ovan, J. E. Bruemmer, M. Lane, G. E. Seidel, Jr.,E. M. Carnevale and E. L. SquiresAnimal Reproducti<strong>on</strong> and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado80523, USA; Colorado Center for Reproductive Medicine, Englewood, Colorado 80110, USACryopreservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equine embryos has been <strong>on</strong>lymarginally successful with c<strong>on</strong>venti<strong>on</strong>al slowcoolingprocedures. The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> thisexperiment was to compare <str<strong>on</strong>g>the</str<strong>on</strong>g> efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> 2vitrificati<strong>on</strong> procedures to c<strong>on</strong>venti<strong>on</strong>al slowcoolingprocedures for freezing equine embryos.Small (≥ 300 µm) embryos were recoveredfrom mares <strong>on</strong> Day 6 or 7 post ovulati<strong>on</strong>. TwentysevenGrade 1 or 2 embryos were randomlyassigned to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 cryopreservati<strong>on</strong> treatments.For Treatment 1, embryos were placed in 1.8M ethylene glycol (EG) and 0.1 M sucrose andequilibrated <strong>on</strong> a warm plate at 30°C for 10 min.Individual embryos were loaded into 0.25 mlFrench straws as follows: 5 µl <str<strong>on</strong>g>of</str<strong>on</strong>g> H-SOF, airbubble, 50 µl H-SOF with 1.8 M EG and 0.1 Msucrose c<strong>on</strong>taining <str<strong>on</strong>g>the</str<strong>on</strong>g> embryo, air bubble, and 150µl <str<strong>on</strong>g>of</str<strong>on</strong>g> H-SOF. Straws were heat-sealed <strong>on</strong> <strong>on</strong>e endand sealed with <str<strong>on</strong>g>the</str<strong>on</strong>g> PVC cott<strong>on</strong> plug <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rend. Straws were placed in a programmablefreezer at 0°C, cooled at 0.5°C/min to -6°C andseeded. The temperature was held for 1 min at-6°C, and <str<strong>on</strong>g>the</str<strong>on</strong>g>n dropped to -35°C at 0.3°C/min afterwhich straws were plunged into liquid nitrogen.Embryos were thawed by holding straws in air for10 s and <str<strong>on</strong>g>the</str<strong>on</strong>g>n placing <str<strong>on</strong>g>the</str<strong>on</strong>g>m in a 37°C waterbath for20 s. Cryoprotectant was removed by transferringembryos directly into H-SOF. Embryos weresubsequently washed through three 150 µl drops <str<strong>on</strong>g>of</str<strong>on</strong>g>H-SOF for 5 min each.Embryos in Treatment 2 were cryopreserved inan open pulled straw (OPS) (Hochi et al. 1996).After washing, embryos were placed into a droplet<str<strong>on</strong>g>of</str<strong>on</strong>g> H-SOF c<strong>on</strong>taining 7.5% DMSO and 7.5% EGfor 3 min. Embryos were transferred inapproximately 1–2 µl <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong> into a 20 µldroplet <str<strong>on</strong>g>of</str<strong>on</strong>g> H-SOF with 16.5% EG, 16.5% DMSOand 0.5 M sucrose. Approximately l µl <str<strong>on</strong>g>of</str<strong>on</strong>g> mediumc<strong>on</strong>taining <str<strong>on</strong>g>the</str<strong>on</strong>g> embryo <str<strong>on</strong>g>the</str<strong>on</strong>g>n was drawn into <str<strong>on</strong>g>the</str<strong>on</strong>g>fine end <str<strong>on</strong>g>of</str<strong>on</strong>g> an open pulled straw by capillaryacti<strong>on</strong>. The fine end was immediately submergedinto liquid nitrogen. The interval from embryoc<strong>on</strong>tact with c<strong>on</strong>centrated cryoprotectant soluti<strong>on</strong>and freezing was 20–30 s. Straws were stored inliquid nitrogen until viability testing. Embryoswere thawed by immersing <str<strong>on</strong>g>the</str<strong>on</strong>g> pulled end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>straw in 1.2 ml H-SOF c<strong>on</strong>taining 0.15 M sucrosefor 5 min and moved twice into fresh H-SOF for 5min.For Treatment 3, embryos were directlyimmersed into liquid nitrogen using a cryoloop(Hochi et al. 1994). Embryos were washed 4times in H-SOF and placed into H-SOF with 7.5%DMSO and 7.5% EG for 2.5 min. Embryos weretransferred into H-SOF with 17.5% DMSO, 17.5%EG, 1 M sucrose, and 0.25 µM ficoll. A nyl<strong>on</strong> loopwas mounted. Embryos were transferred into H-SOF with 17.5% DMSO, 17.5% EG, 1 M sucrose,and 0.25 µM ficoll. <strong>on</strong> a stainless steel cylinderinserted into <str<strong>on</strong>g>the</str<strong>on</strong>g> lid <str<strong>on</strong>g>of</str<strong>on</strong>g> a cryovial. Loops werepurchased mounted and epoxied into vials. Themetal insert <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> lid enabled <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> a handlewith a small magnet for manipulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> loop.While <str<strong>on</strong>g>the</str<strong>on</strong>g> embryo was in <str<strong>on</strong>g>the</str<strong>on</strong>g> first cryoprotectantsoluti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> cryoloop was dipped into <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>dcryoprotectant soluti<strong>on</strong> to retain a thin film <str<strong>on</strong>g>of</str<strong>on</strong>g>medium within <str<strong>on</strong>g>the</str<strong>on</strong>g> loop. A single embryo waspipetted <strong>on</strong>to <str<strong>on</strong>g>the</str<strong>on</strong>g> film. The cryoloop c<strong>on</strong>taining <str<strong>on</strong>g>the</str<strong>on</strong>g>embryo was <str<strong>on</strong>g>the</str<strong>on</strong>g>n immediately plunged into <str<strong>on</strong>g>the</str<strong>on</strong>g>cryovial, which was already submerged underliquid nitrogen. The cryovial lid was sealed underliquid nitrogen in <strong>on</strong>e moti<strong>on</strong>. The intervalbetween c<strong>on</strong>tact with c<strong>on</strong>centrated cryoprotectantand plunging was 20–30 s. Embryos were stored in54


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3TABLE 1: Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> cryopreservati<strong>on</strong> <strong>on</strong> embryo grade, size and percent live cellsGrade Diameter (µm) % live cell †Post 20 h Post- 20 hInitial thaw culture S.E. Initial thaw culture S.ETreatmentSlow-cooled 1.4 2.6 2.9 0.2 257 21823811.1 74*Vitrified OPS 1.4 2.9 3.1 0.1 232 184 176 9.9 51Vitrified cryoloop 1.3 2.6 3.3 0.2 211 184 196 11.4 48*Three embryos in <str<strong>on</strong>g>the</str<strong>on</strong>g> slow-cooled treatment group were killed and lost during staining and are not included† sd ± 37liquid nitrogen until thawing in a 4-well dish at37°C. The lid and loop was removed from <str<strong>on</strong>g>the</str<strong>on</strong>g>cryovial under liquid nitrogen. The loopc<strong>on</strong>taining <str<strong>on</strong>g>the</str<strong>on</strong>g> embryo was sequentially placedinto wells, c<strong>on</strong>taining 840 µl H-SOF plus 420 ml<str<strong>on</strong>g>of</str<strong>on</strong>g> H-SOF supplemented with 1 M sucrose for 2.5min, 840 µl H-SOF plus 210 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> H-SOFsupplemented with 1 M sucrose for 3 min, and 840ml H-SOF for 5 min. After thawing, embryos werecultured for 20 h in SOFaa in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> 6%CO 2 , 5% O 2 , 89% N 2 at 38.5°C.Embryos were graded and measured prefreeze,post thaw, and after 20 h <str<strong>on</strong>g>of</str<strong>on</strong>g> culture.Embryos were <str<strong>on</strong>g>the</str<strong>on</strong>g>n stained with propidium iodideand Hoechst 3342 to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>live cells. Embryos were washed in a 100 µldroplet <str<strong>on</strong>g>of</str<strong>on</strong>g> H-SOF under oil and placed in stainingsoluti<strong>on</strong> c<strong>on</strong>taining H-SOF supplemented with 8mg/ml BSA with 10 µg/ml PI and Hoechst 33342.Embryos were placed into a 100 µl droplet <str<strong>on</strong>g>of</str<strong>on</strong>g>staining soluti<strong>on</strong> at 38.5°C for 15 min under foil.After staining embryos were washed twice in H-SOF and mounted <strong>on</strong> a slide in an 11 µl drop <str<strong>on</strong>g>of</str<strong>on</strong>g> H-SOF, covered with a cover-slip, which mounds <strong>on</strong>four drops <str<strong>on</strong>g>of</str<strong>on</strong>g> a paraffin oil/vaseline mixture.Fluorescence was observed with a Nik<strong>on</strong> EclipseE800 narrowband microscope (Filter FITC,TRITC and DAPI) with a 20X/0.75 objective(Nik<strong>on</strong>); nuclei and dead cells <str<strong>on</strong>g>of</str<strong>on</strong>g> embryosfluoresce with bright blue and red colour,respectively, and percent live cells were estimated.It was not possible to count <str<strong>on</strong>g>the</str<strong>on</strong>g> cells, due to <str<strong>on</strong>g>the</str<strong>on</strong>g>large numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> cells per embryo. Three differentpeople independently estimated <str<strong>on</strong>g>the</str<strong>on</strong>g> percent livecells and <str<strong>on</strong>g>the</str<strong>on</strong>g> average <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se numbers were taken.Results were evaluated by analyses <str<strong>on</strong>g>of</str<strong>on</strong>g>variance. There were no significant differences(P>0.1) in grade or size <str<strong>on</strong>g>of</str<strong>on</strong>g> embryos prior tocryopreservati<strong>on</strong>. Up<strong>on</strong> thawing, an equalproporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> embryos fractured in <str<strong>on</strong>g>the</str<strong>on</strong>g> slowcooled,OPS and cryoloop procedure resulting in12.5% (1/8), 18% (2/11) and 12.5% (1/8) fracturedembryos.Because <str<strong>on</strong>g>the</str<strong>on</strong>g> fractured embryos in <str<strong>on</strong>g>the</str<strong>on</strong>g> slowcooledmethod appeared viable <str<strong>on</strong>g>the</str<strong>on</strong>g>y were includedin <str<strong>on</strong>g>the</str<strong>on</strong>g> results. Embryos that survivedcryopreservati<strong>on</strong> were stained, and ranged indiameter from 140–320 µm after 20 h <str<strong>on</strong>g>of</str<strong>on</strong>g> culture.There were no significant differences (P>0.1) inembryo grade or viability post-thaw am<strong>on</strong>gcryopreservati<strong>on</strong> treatments. Embryo grade andviability as assessed by staining were correlatedr =-0.66 (P0.1) as measured bypercent live cells and morphological grades. Inc<strong>on</strong>clusi<strong>on</strong> vitrificati<strong>on</strong> procedures with OPS orcryoloop were similarly effective forcryopreservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> small equine embryos. Theseresults are in agreement with those obtained ino<str<strong>on</strong>g>the</str<strong>on</strong>g>r species including bovine (Vajta et al. 1998)and hamsters (Lane et al. 1999). Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r, bothvitrificati<strong>on</strong> methods produced results which weresimilar to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r studies where morphological gradepost-thaw and subsequent transfers wereperformed. In those studies embryos graded 1 or1.5 prior to cryopreservati<strong>on</strong> were determined tograde 2.4 <strong>on</strong> average and result in 50 to 53%pregnancy rates, respectively (Slade et al. 1985;Squires et al. 1989). It is likely, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore, that<str<strong>on</strong>g>the</str<strong>on</strong>g>se techniques will eventually supercede <str<strong>on</strong>g>the</str<strong>on</strong>g>55


Equine Embryo Transferslow-cooling methods because <str<strong>on</strong>g>of</str<strong>on</strong>g> speed, ease <str<strong>on</strong>g>of</str<strong>on</strong>g>technique, and reduced cost for equipment. In thisstudy embryos were evaluated by morphologicalgrade or staining; however, a true indicator <str<strong>on</strong>g>of</str<strong>on</strong>g>viability is pregnancy rates. Therefore, this studyshould be repeated to determine pregnancy ratesfollowing embryo transfer.REFERENCESHochi, S., Maruyama, K. and Oguri, N. (1996) Directtransfer <str<strong>on</strong>g>of</str<strong>on</strong>g> equine blastocysts frozen-thawed in <str<strong>on</strong>g>the</str<strong>on</strong>g>presence <str<strong>on</strong>g>of</str<strong>on</strong>g> ethylene glycol and sucrose.Theriogenol. 46, 1217-1224.Hochi, S., Fujimoto, T., Choi, Y.H., Braun J. andOguri, N. (1994) Cryopreservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equineoocytes by 2-step freezing. Theriogenol. 42,1085-1094.Vajta, G., Holm, P., Kuwayama, M., Booth, P.J.,Jacobsen, H., Greve, T. and Callesen, H. (1998)Open pulled straw (OPS) vitrificati<strong>on</strong>: A new way toreduce cryoinjuries <str<strong>on</strong>g>of</str<strong>on</strong>g> bovine ova and embryos. Mol.Reprod. Dev. 51, 53-58.Lane, M., Forest, K.T., Ly<strong>on</strong>s, E.A. and Bavister, B.D.(1999) Live births following vitrificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hamsterembryos using a novel c<strong>on</strong>tainerless technique.Theriogenol. 51, 167 (abstr).Squires, E.L., Seidel, G.E. Jr. and McKinn<strong>on</strong>, A.O(1989) Transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> cryopreserved equine embryos toprogestin-treated ovariectomised mares. Equine vet.J. Suppl. 8, 89-91.Slade, N.P., Takeda, T., Squires, E.L., Elsden, R.P. andSeidel, G.E. Jr. (1985) A new procedure forcryopreservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equine embryos. Theriogenol.24, 45-57.56


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3METABOLIC ACTIVITY OF <strong>EQUINE</strong> BLASTOCYSTSCRYOPRESERVED IN ETHYLENE GLYCOL ANDGALACTOSEM. K. O’D<strong>on</strong>ovan, N. Oberstein, J. E. Bruemmer, M. Lane*, G. E. Seidel, Jr.,D. K. Gardner* and E. L. SquiresAnimal Reproducti<strong>on</strong> and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado80523, USA; * Colorado Center for Reproductive Medicine, Englewood, Colorado 80110, USAINTRODUCTIONThe inability <str<strong>on</strong>g>of</str<strong>on</strong>g> expanded equine blastocysts tosurvive standard cryopreservati<strong>on</strong> protocols is welldocumented (Yamamoto et al. 1982; Squires et al.1989; Young et al. 1997). The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> thisstudy was to compare <str<strong>on</strong>g>the</str<strong>on</strong>g> efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 protocolsfor cryopreserving equine embryos 300–600 Fm indiameter. It was hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sised that exposingexpanded equine blastocysts to galactose andethylene glycol at various c<strong>on</strong>centrati<strong>on</strong>s for 40min would allow proper equilibrati<strong>on</strong> to occurprior to cryopreservati<strong>on</strong>, thus improving postthaw survival.MATERIALS AND METHODSMorphological Grade 1 or 2 embryos recovered <strong>on</strong>Day 7 post ovulati<strong>on</strong>, between 300–600 Fm indiameter were randomly assigned to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> 3cryoprotectant treatments: 1) (n=8) 0.3 Mgalactose (10 min), 2.0 M ethylene glycol (EG) +0.3 M galactose (40 min); 2) (n=5) 0.3 M galactose(10 min), 2.0 M EG + 0.3 M galactose (15 min),and 4.5 M EG + 0.3 M galactose (25 min); or 3)(n=8) 0.3 M galactose (10 min), 2.0 M EG + 0.3 Mgalactose (10 min), 4.5 M EG + 0.3 M galactose(15 min), 2.0 M EG + 0.8 M galactose (10 min).All embryos were loaded into 0.25 ml straws andcooled to -6°C at 4°C/min, held 5 min, seeded,cooled to -35°C at 0.5°C/min and plunged intoliquid nitrogen. Embryos were thawed in air (15 s)followed by a 37°C water bath (15 s). Up<strong>on</strong>thawing, cryoprotectants were removed in 3 or 4steps based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> specific treatment. Viability wasassessed following <str<strong>on</strong>g>the</str<strong>on</strong>g> freeze/thaw procedure bygrading <str<strong>on</strong>g>the</str<strong>on</strong>g> embryos and recording changes indiameter over time. Additi<strong>on</strong>ally, metabolicactivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> embryos pre-freeze and post thawwas compared. Measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose andpyruvate uptake and producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lactate wereanalysed using micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luorescence assays (Gardneret al. 1996). Embryos were stained after <str<strong>on</strong>g>the</str<strong>on</strong>g> lastmetabolic assay using Hoechst 33342 (10 µg/ml)and propidium iodide (10 µg/ml) to determinepercent live cells.RESULTSTwenty-<strong>on</strong>e embryos were randomly assigned to<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 treatments, n 1 =8, n 2 =5, n 3 =8. Meandiameters <str<strong>on</strong>g>of</str<strong>on</strong>g> embryos were not different am<strong>on</strong>gtreatments (P>0.1) but varied within treatmentover time (P


Equine Embryo TransferTABLE 1: Mean diameters and morphological scores (± sd) by timeEndpoint Treatment Initial Thaw Post thaw Post Post IVCassay IVC assayDiameter (Fm) 1 (n=8) 407 a 294 b 247 b 330 a,b 345 a(±90) (±123) (±80) (±113) (±109)2 (n=5) 410 a 279 b 275 b * 295 b * 302 b *(±97) (±80) (±35) (±64) (±81)3 (n=8) 369 a 303 a,b 250 b,c 216 c 198 c(±49) (±56) (±56) (±27) (±45)Grade(1-4) 1 (n=8) 1.3 a 3.4 b 3.4 b 3.1 b 2.9 b(±.27) (±.23) (±.34) (±.74) (±.88)2 (n=5) 1.2 a 3.6 b 3.5 b * 3.6 b,A * 3.7 b,A *(±.45) (±.42) (±.35) (±.89) (±.67)3 (n=8) 1.4 a 3.3 b 3.8 c 4 c,A 4 c,A(±.35) (±.26) (±.38) (± 0) (± 0)a,b,c Means without comm<strong>on</strong> superscript within rows differ (P0.1)Embryos were pooled across treatments int<strong>on</strong><strong>on</strong>viable (Grade 3 to 4, 5 to 25% live cells) andviable (Grade 2.5 or better, 90% live cells) groups.There was no significant difference in post-thawmetabolic parameters between viable (n=5) andn<strong>on</strong>viable (n=16) embryos (Table 3).DISCUSSIONIn <str<strong>on</strong>g>the</str<strong>on</strong>g> current investigati<strong>on</strong>, treatment <strong>on</strong>e (lowmolar ethylene glycol) was more effective incryopreserving large equine embryos thanTreatments 2 (high molar ethylene glycol) and 3(step-down equilibrati<strong>on</strong>). Embryos in treatment<strong>on</strong>e had significantly better final morphologicalgrades and a higher percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> live cells.Additi<strong>on</strong>ally, embryos in Treatment 1 had lesschange in metabolic activity pre-freeze to postthawthan embryos in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r treatments, although<str<strong>on</strong>g>the</str<strong>on</strong>g> difference between treatments was notsignificant (P>0.1). Expanded equine blastocystsexposed to 2 M ethylene glycol for 40 minsurvived cryopreservati<strong>on</strong>.Three embryos from Treatment 2 werefractured up<strong>on</strong> thaw and degenerated in <str<strong>on</strong>g>the</str<strong>on</strong>g> postthaw metabolic assay. C<strong>on</strong>ceivably, embryos58


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3frozen in a cryoprotectant soluti<strong>on</strong> c<strong>on</strong>taining 4.5Methylene glycol and 0.3 M galactose requiredifferent rates for cooling or thawing. Altering<str<strong>on</strong>g>the</str<strong>on</strong>g>se rates may reduce problems associated withfracture planes.Although Young et al. (1997) reported successwith step-down-equilibrati<strong>on</strong> using glycerol andlarge equine embryos, it was clearly not repeatedin this study using a different cryoprotectant plusadding galactose before adding cryoprotectant.Step-down-equilibrati<strong>on</strong> may have failed in <str<strong>on</strong>g>the</str<strong>on</strong>g>study because ethylene glycol permeates equineembryos faster and more effectively (embryos loseless volume) than glycerol (Pfaff et al. 1993).Moving embryos through 2 M, 4.5 M and 2 Msoluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ethylene glycol may have been toxic.Although Gardner et al. (1996) successfullyused micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luoresence assays to determinenutrient uptake and utilisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> in vitroproduced,cryopreserved Day 7 bovine embryos,it was difficult to make any str<strong>on</strong>g c<strong>on</strong>clusi<strong>on</strong>sregarding viability from metabolic data in thisexperiment. Although viable embryos appeared tohave higher rates <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose uptake and utilisati<strong>on</strong>than n<strong>on</strong>viable embryos, significant differenceswere not detected, in part due to <str<strong>on</strong>g>the</str<strong>on</strong>g> largevariati<strong>on</strong> in values. The variati<strong>on</strong> in all substratesin <str<strong>on</strong>g>the</str<strong>on</strong>g> present study may be a result <str<strong>on</strong>g>of</str<strong>on</strong>g> differentages <str<strong>on</strong>g>of</str<strong>on</strong>g> embryos; embryos could have beenbetween 168 and 192 h <str<strong>on</strong>g>of</str<strong>on</strong>g> age. A larger samplesize and a more homogenous populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>embryo age might have lead to differentc<strong>on</strong>clusi<strong>on</strong>s.In summary, treatment <strong>on</strong>e, 2 M ethyleneglycol for 40 min, was <str<strong>on</strong>g>the</str<strong>on</strong>g> most promising methodfor cryopreservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> expanded equineblastocysts. Perhaps <str<strong>on</strong>g>the</str<strong>on</strong>g> extended exposure toethylene glycol allowed for greater intracellularequilibrati<strong>on</strong> and subsequent protecti<strong>on</strong> thanprevious studies. One caveat in <str<strong>on</strong>g>the</str<strong>on</strong>g>se studies is thatno embryos were transferred, so pregnancy ratesare not available. Assessing viability withmicr<str<strong>on</strong>g>of</str<strong>on</strong>g>luorescence assays may be enhanced bycreating a larger more homogeneous populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>embryos.REFERENCESGardner, D.K., Pawelczynski, M. and Trouns<strong>on</strong>, A.O.(1996) Nutrient uptake and utilizati<strong>on</strong> can be used toselect viable day 7 bovine blastocysts aftercryopreservati<strong>on</strong>. Mol. Reprod. Dev. 44, 472-475.Pfaff, R., Seidel, G.E., Jr., Squires, E.L. and Jasko, D.J.(1993) Permeability <str<strong>on</strong>g>of</str<strong>on</strong>g> equine blastocytsts toethylene glycol and glycerol. Theriogenol. 39, 284abstr.Squires, E.L., Seidel, G.E. Jr. and McKinn<strong>on</strong>, A.O.(1989) Transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> cryopreserved equine embryos toprogestin-treated ovariectomised mares. Equine vet.J. (Suppl) 8, 89-91.Yamamoto, Y., Oguri, N., Tsutsumi, Y. and Hachinohe,Y. (1982) Experiments in <str<strong>on</strong>g>the</str<strong>on</strong>g> freezing and storage <str<strong>on</strong>g>of</str<strong>on</strong>g>equine embryos. J. reprod. Fert. (Suppl) 32, 399-403.Young, C.A., Squires, E.L., Seidel, G.E., Kato, H. andMcCue, P.M. (1997) Cryopreservati<strong>on</strong> proceduresfor day 7-8 equine embryos. Equine vet. J. (Suppl)25, 98-102.59


Equine Embryo TransferPRODUCTION OF CAPSULAR MATERIAL BY <strong>EQUINE</strong>TROPHOBLAST TRANSPLANTED INTOIMMUNODEFICIENT MICEA. Albihn, J. Samper*, J. G. Oriol, B. A. Croy and K. J. BetteridgeDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomedical Sciences, Ontario Veterinary College; *The Equine Research Centre,University <str<strong>on</strong>g>of</str<strong>on</strong>g> Guelph, Guelph, Ontario, N1G 2W1, CanadaThe equine embry<strong>on</strong>ic capsule is presumedessential to normal embry<strong>on</strong>ic development(Betteridge 1989; Stout et al. 1997). It also seemsto impede <str<strong>on</strong>g>the</str<strong>on</strong>g> successful freezing <str<strong>on</strong>g>of</str<strong>on</strong>g> equineembryos (Bruyas 1997). The capsule is c<strong>on</strong>sideredto be produced largely by <str<strong>on</strong>g>the</str<strong>on</strong>g> trophoblast (Oriol etal. 1993) but, because producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this mucinlikeglycoprotein by equine embryos has not so farbeen dem<strong>on</strong>strated in vitro (Betteridge 1989;McKinn<strong>on</strong> et al. 1989), this assumpti<strong>on</strong> is difficultto prove. The present study was <str<strong>on</strong>g>the</str<strong>on</strong>g>refore designedto test <str<strong>on</strong>g>the</str<strong>on</strong>g> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis that capsular material isproduced by <str<strong>on</strong>g>the</str<strong>on</strong>g> trophoblast, independently <str<strong>on</strong>g>of</str<strong>on</strong>g>maternal c<strong>on</strong>tributi<strong>on</strong>s. To do so, xenogeneictransplantati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equine endometrium and/ortrophoblast into mice with severe combinedimmunodeficiency (SCID; scid/scid orscid/scid.bg/bg mice; Croy and Chapeau 1990)was used as an ‘in vivo culture system’.To develop <str<strong>on</strong>g>the</str<strong>on</strong>g> procedures (Experiment 1),endometrial biopsy samples from dioestrous mareswere partly infiltrated with India ink, <str<strong>on</strong>g>the</str<strong>on</strong>g>n used toprepare multiple 1 mm 3 grafts. These weresurgically transplanted into various sites in 18mice for 4, 8 or 16 days. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> Experiment1 are summarised in Table 1.Overall, 23/52 (44%) grafts were recovered inhistological secti<strong>on</strong>s, proporti<strong>on</strong>ately more from<str<strong>on</strong>g>the</str<strong>on</strong>g> ovarian fat pad or kidney capsule than from <str<strong>on</strong>g>the</str<strong>on</strong>g>uterine lumen. Histomorphology was wellmaintained for up to 16 days and ink staininghelped recovery (78% recovery for ink-stainedversus 26% for n<strong>on</strong>-stained grafts). Technicaldifficulties ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than graft rejecti<strong>on</strong> mostprobably accounted for <str<strong>on</strong>g>the</str<strong>on</strong>g> failure to find somegrafts at <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> euthanasia. Thus,xenotransplantati<strong>on</strong> into SCID mice was shown tobe a useful culture system for grafted equineendometrium.In Experiments 2 and 3, endometrial biopsysamples and c<strong>on</strong>ceptuses from 5 mares 13–15 daysafter ovulati<strong>on</strong> were used to prepare grafts <str<strong>on</strong>g>of</str<strong>on</strong>g>endometrium (E), trophoblast (T) and capsule (C)for transplantati<strong>on</strong> into 59 mice. At this stage <str<strong>on</strong>g>of</str<strong>on</strong>g>development, ‘trophoblast’ would have comprisedtrophectoderm, endoderm and possibly mesoderm.Grafts recovered at <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> euthanasia wereexamined for <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> capsule-like materialei<str<strong>on</strong>g>the</str<strong>on</strong>g>r histochemically (Experiment 2, 20 mice) orimmunohistochemically (Experiment 3, 39 mice).PAS staining was used in Experiment 2, a mousem<strong>on</strong>ocl<strong>on</strong>al antibody against equine capsule(MAb OC-1; Oriol et al. 1993) in Experiment 3.The overall graft recovery rate in Experiment2 was 22/49 (45%; 11/28 single grafts, and 11/21when E and T were co-engrafted). Capsule-likeextracellular glycoprotein at <str<strong>on</strong>g>the</str<strong>on</strong>g> graft site wasidentified by PAS staining <str<strong>on</strong>g>of</str<strong>on</strong>g> histologicalsecti<strong>on</strong>s as summarised in Table 2. Str<strong>on</strong>g PASpositivereacti<strong>on</strong>s (5–7 mm thick) were found inTABLE 1: Graft recovery rates in Experiment 1Graft recovery ratesNo. mice Ink infiltrati<strong>on</strong> Kidney Uterine lumen Ovarian fatpad Total %12 - 3/11 3/12 3/11 9/34 26%6 + 6/6 2/6 6/6 14/1878%189/17 5/189/17 23/52 44%60


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3TABLE 2: Str<strong>on</strong>g PAS-positive reacti<strong>on</strong>s foundin grafts recovered in Experiment 2Endometrium al<strong>on</strong>e- in mice with T elsewhere :0/7- in E+T sites :0/1Trophoblast al<strong>on</strong>e- in mice with E elsewhere :2/2- in E+T sites :2/4E+T :5/6Capsule :2/2TABLE 3: Mab OC-1 binding to grafts recoveredin Experiment 3Endometrium al<strong>on</strong>e- in mice with T elsewhere :0/2- in E+T sites :0/10Trophoblast al<strong>on</strong>e- in mice receiving no E :12/12- in mice with E elsewhere :2/2- in E+T sites :5/5E+T :10/104/6 sites c<strong>on</strong>taining T al<strong>on</strong>e (ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r originally coengraftedwith E or with E at ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r site in <str<strong>on</strong>g>the</str<strong>on</strong>g>same mouse), 5/6 successfully co-engrafted E+Tsites, and 0/8 grafts <str<strong>on</strong>g>of</str<strong>on</strong>g> E al<strong>on</strong>e (whe<str<strong>on</strong>g>the</str<strong>on</strong>g>roriginally co-engrafted with T or with T atano<str<strong>on</strong>g>the</str<strong>on</strong>g>r site in <str<strong>on</strong>g>the</str<strong>on</strong>g> mouse). There was nodiscernible increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PAS-positive reacti<strong>on</strong>swith time (4–16 days).The PAS-positive material was more closelyrelated to T, or to <str<strong>on</strong>g>the</str<strong>on</strong>g> interface between T and E,than to E al<strong>on</strong>e. Weak PAS staining (a


Equine Embryo TransferDOES THE EMBRYONIC CAPSULE IMPEDE THEFREEZING OF <strong>EQUINE</strong> EMBRYOS?E. Legrand, J. M. Krawiecki*, D. Tainturier † , P. Cornière, H. Delajarraud andJ. F. Bruyas †Progen, 50500 Carentan, France; *Veterinary Clinic, EAABC, 49400 Saumur, France; † Department <str<strong>on</strong>g>of</str<strong>on</strong>g>Reproducti<strong>on</strong>, Nantes Veterinary School, BP 40706, 44307 Nantes, FranceThere has been no increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> success rate <str<strong>on</strong>g>of</str<strong>on</strong>g>equine embryos freezing since 1982 (± 20 to 30%).A widely held view is that <str<strong>on</strong>g>the</str<strong>on</strong>g> younger (morula orearly blastocyst) (Slade et al. 1985; Skidmore et al.1991) and smaller (200 µm) (Slade et al. 1984;Lagneaux and Palmer 1991) <str<strong>on</strong>g>the</str<strong>on</strong>g> embryo is, <str<strong>on</strong>g>the</str<strong>on</strong>g>greater its chance <str<strong>on</strong>g>of</str<strong>on</strong>g> pregnancy after deep-freezingprocedure. Previous studies indicate that <str<strong>on</strong>g>the</str<strong>on</strong>g> capsuleplays a bigger part in <str<strong>on</strong>g>the</str<strong>on</strong>g> freezability <str<strong>on</strong>g>of</str<strong>on</strong>g> embryos inglycerol than <str<strong>on</strong>g>the</str<strong>on</strong>g> size or <str<strong>on</strong>g>the</str<strong>on</strong>g> stage (Legrand et al.1999; Bruyas et al. 2000). In order to verify this fact3 experiments have been c<strong>on</strong>ducted.EXPERIMENT 1The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first experiment was to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g>relati<strong>on</strong>ship between <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> capsule and<str<strong>on</strong>g>the</str<strong>on</strong>g> cellular damage in embryos treated withcryoprotectant with or without freezing.Materials and methodsExaminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> histological secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 15embryos treated with glycerol and 15frozen/thawed embryos from previous studies(Bruyas et al. 1993; Bruyas et al. 1995; Legrand etal. 1999; Bruyas et al. 2000) was performed. Ineach <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se previous studies, each embryo, aftera classical procedure <str<strong>on</strong>g>of</str<strong>on</strong>g> glycerol incorporati<strong>on</strong> andremoval and a classical freezing/thawing processusing glycerol as cryoprotectant, was incubatedduring 6 h at 37°C in order to underline cellulardamage. After culture, <str<strong>on</strong>g>the</str<strong>on</strong>g>y were fixed at 4°C inglutaraldehyde 2%, post fixed in 2% osmiumtetroxide, dehydrated in a graded ethanol seriesand embedded in ep<strong>on</strong> 812. They were seriallysecti<strong>on</strong>ed into semi-thin secti<strong>on</strong>s (1 µm) and everyfifth secti<strong>on</strong> was stained with 0.5% hot toluidineblue for light microscopy.In <str<strong>on</strong>g>the</str<strong>on</strong>g> present study, nuclear and capsularstages were assessed using <str<strong>on</strong>g>the</str<strong>on</strong>g>se semi-thinsecti<strong>on</strong>s. Each class <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclei (pycnotic,caryorhexic and caryolytic for dead cells andinterphasic and mitotic for live cells) werecounted. Notati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> capsule thickness was asfollows: (Fig 1): 0 = no capsule; 1 = formingcapsule, a simple trace is detectable; 2 = sharp andthin capsule, sometime disc<strong>on</strong>tinued; 3 = sharpcapsule; 4 = thick capsule (0,8 µm). Four secti<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> each embryo were looked at, <str<strong>on</strong>g>the</str<strong>on</strong>g> capsular notewas determined as <str<strong>on</strong>g>the</str<strong>on</strong>g> mean <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 4 notes.Results and discussi<strong>on</strong>Embryos treated with glycerol without freezingand with a capsule graded from 0–3 showed anincrease (Fig 2) in <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> dead cells, whereasthis rate decreased dramatically for embryos witha Grade 4 capsule (Fig 3).To explain that, our hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis is as follow. Inembryos with a capsule noted 0–2, <str<strong>on</strong>g>the</str<strong>on</strong>g> water outflow and glycerol entry induce mild osmoticdamage. In embryos with a thicker capsule (Grade3) <str<strong>on</strong>g>the</str<strong>on</strong>g> water outflow cannot be compensated by <str<strong>on</strong>g>the</str<strong>on</strong>g>glycerol entry due to <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> capsule.Therefore <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a higher degree <str<strong>on</strong>g>of</str<strong>on</strong>g> osmoticdamage. Embryos with a thick capsule (Grade 4)presented <str<strong>on</strong>g>the</str<strong>on</strong>g> same morphology as fresh embryoswith a very low rate <str<strong>on</strong>g>of</str<strong>on</strong>g> dead cells. This observati<strong>on</strong>suggests that <str<strong>on</strong>g>the</str<strong>on</strong>g>re are no fluid movements through<str<strong>on</strong>g>the</str<strong>on</strong>g> capsule: no glycerol entry no water outflow,and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore no osmotic damage.In <str<strong>on</strong>g>the</str<strong>on</strong>g> frozen/thawed groups (Fig 4), <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g>dead cells was directly proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> capsulethickness. This rate was respectively: 46.5 ±20.7% (Grade < 2), 57.4 ± 19.8 % (Grade 3), and85.4% ± 10.1 % (Grade 4). The embryos withthick capsule do not tolerate freezing-thawing62


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3Capsule note 0Capsule note 1pellucidpellucidcapsuleinterphasicnucleusinterphasicnucleusnucleolusExternalmediumCapsule note 2Capsule note 3pellucidpellucidcapsulecapsuletrophoblasticcellsCapsule note 4Capsule note 4pellucidpellucidcapsulenecrotic cellscapsuletrophoblasticcellsembry<strong>on</strong>iccellsblastocoeleFig 1: Embry<strong>on</strong>ic capsule notati<strong>on</strong>.process, and <str<strong>on</strong>g>the</str<strong>on</strong>g> embryos without capsule are lessdamaged than o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs.The explanati<strong>on</strong> could be that embry<strong>on</strong>iccapsule interferes with <str<strong>on</strong>g>the</str<strong>on</strong>g> cryoprotective effectsby preventing glycerol entry in embry<strong>on</strong>ic cells.EXPERIMENT 2In order to remove this difficulty <str<strong>on</strong>g>the</str<strong>on</strong>g> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>sec<strong>on</strong>d experiment was to test <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g>enzymatic treatments <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> capsule so as to deleteor to permeabilise it.Materials and methodsThe effect <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> embryo was also observed.Two enzymes, trypsin (EC 3.4.21.4) andcollagenase (EC 3.4.24.3), have been used indifferent c<strong>on</strong>centrati<strong>on</strong>s (Trypsin: 0.005%,0.01%, 0.025%, 0.05%, 0.1%, 0.25%, 0.5%, 1%,63


Equine Embryo TransferNecrotic rate (%)807060504030201000 1 2 3 4Capsular noteFig 2. Relati<strong>on</strong> between necrotic rate and capsularthickness in embryos without freezing procedure.Necrotic rate10090807060504030201000 1 2 3 4Capsule noteBruyas et al. 1993 (glycerol 1.4M)Legrand et al. 1999 (glycerol 1M)Bruyas et al. 2000 (glycerol 1.5M)Fig 4. Relati<strong>on</strong>ship between necrotic rate and capsularthickness in frozen/thawed embryos.Necrotic rate (%)7060504030201000 1 2 3 4Necrotic rate (%)10090807060504030201000.005 0.01 0.025 0.05 0.1 0.5 1 5C<strong>on</strong>centrati<strong>on</strong> (%)Fig 3. Model graph <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship between necroticrate and capsular importance.Fig 5: Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> trypsin treatment <strong>on</strong> embryos treatedwith glycerol without freezing/thawing process.TABLE 1: pregnancy rate according to <str<strong>on</strong>g>the</str<strong>on</strong>g> age and size <str<strong>on</strong>g>of</str<strong>on</strong>g> embryosPregnancy Age <str<strong>on</strong>g>of</str<strong>on</strong>g> embryos (days post ovulati<strong>on</strong>) Diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> embryos (µm)diagnoses 5.5 6.5 7.5 8.5 < 200 200–500 500–1000 > 1000Day 14 0/1 1/1 2/2 3/4 2/3 1/1 0/1 3/3Day 21 0/1 1/1 0/1* 2/4 1/3 0/0* 0/1 2/3Day 280/1 1/1 0/1* 2/4 1/3 0/0* 0/1 2/3* a pregnant mare was injured between Day 14 and Day 215% and collagenase : 0.5%, 1%, 2.5%, 5%).Thirteen Day 8 embryos were placed in PBSmedium + enzyme for 15 min, <str<strong>on</strong>g>the</str<strong>on</strong>g>n glycerol wasadded in 3 steps (0.5 M for 10 min; 1 M for 10min; 1.5 M for 10 min) and immediatelyremoved in 3 steps (Glycerol (G)1.25 M +sucrose (s) 0.25 M for 10 min; G 0.6 M + s 0.25M for 10 min; s 0.25 M for 10 min) withoutfreezing. Histological analysis was performed asin <str<strong>on</strong>g>the</str<strong>on</strong>g> first experiment.Results and discussi<strong>on</strong>Necrotic rate with trypsin treatment is reported inFigure 5.Data show that: i) trypsin seemed to be betterto increase <str<strong>on</strong>g>the</str<strong>on</strong>g> permeability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> capsule thancollagenase; and ii) low enzymatic c<strong>on</strong>centrati<strong>on</strong>s(1%) were toxic for embry<strong>on</strong>iccells.64


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3EXPERIMENT 3The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> third experiment was to transferfrozen/thawed embryos without capsule (PatentFR 97 073 11/PCT).Materials and methodsEight embryos (5.5–8.5 days old and 187–1,581µm) were collected. After being placed in a bath <str<strong>on</strong>g>of</str<strong>on</strong>g>trypsin (0.2 % w/v) for 15 min, <str<strong>on</strong>g>the</str<strong>on</strong>g>y werefrozen/thawed c<strong>on</strong>venti<strong>on</strong>ally: additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glycerolin 3 steps (0.5 M for 15 min; 1 M for 15 min; 1.5M for 15 min), seeding at -7°C, cooling rate <str<strong>on</strong>g>of</str<strong>on</strong>g>-0.3°C/min, storage in liquid nitrogen, thawing inwater bath (37°C) for 1 min, removal <str<strong>on</strong>g>of</str<strong>on</strong>g> glycerol in3 steps using sucrose (Glycerol (G)1 M + sucrose(s) 0.25 M for 15 min; G 0.5 M + s 0.25 M for 15min; s 0.25 M for 15 min). Embryos were <str<strong>on</strong>g>the</str<strong>on</strong>g>n n<strong>on</strong>surgically transferred in synchr<strong>on</strong>ous recipients.Results and discussi<strong>on</strong>Six pregnancies were observed by ultrasoundexaminati<strong>on</strong> at Day 14 as summarised <strong>on</strong> Table 1.For <str<strong>on</strong>g>the</str<strong>on</strong>g> first time pregnancies were obtained withlarge equine blastocysts (Day 8).The capsular hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis is a simpleexplanati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> previous results <strong>on</strong> equineembryo freezing; why <str<strong>on</strong>g>the</str<strong>on</strong>g> largest embryos areparticularly difficult to freeze, and why results are<str<strong>on</strong>g>of</str<strong>on</strong>g>ten erratic in this species. The capsule is specificto horse embryos. These 3 experiments indicatedthat: i) it is not impossible to freeze large Day 8embryos; and ii) experiments <strong>on</strong> cryopreservati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> equine embryos should take thickness andpermeability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> capsule into account.REFERENCESBruyas, J.F. , Battut, I., Pol, J.M., Botrel, C., Fieni, F. andTainturier, D. (1995) Quantitative analysis <str<strong>on</strong>g>of</str<strong>on</strong>g>morphological modificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Day 6.5 horseembryos after treatment with 4 cryoprotectants:differential effects <strong>on</strong> ICM and trophoblast cells.Biol. repro. M<strong>on</strong>ograph. 1, 329-339.Bruyas, J.F., Bezard, J., Lagneaux, D. and Palmer, E(1993) Quantitative analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> morphologicalmodificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> day 6.5 horse embryos aftercryopreservati<strong>on</strong>: differential effects <strong>on</strong> ICM andtrophoblast cells, J. reprod. Fert. 99, 15-23.Bruyas, J.F., Sans<strong>on</strong>, J.P., Battut, I., Fieni, F. andTainturier, D. (2000) Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>cryoprotectant properties <str<strong>on</strong>g>of</str<strong>on</strong>g> glycerol and ethyleneglycol for early (day 6) equine embryos. J. reprod.Fert. Suppl. 52, (in press).Lagneaux, D. and Palmer, E. (1991) N<strong>on</strong> surgicalrecovery <str<strong>on</strong>g>of</str<strong>on</strong>g> morulae in <str<strong>on</strong>g>the</str<strong>on</strong>g> mare for freezing purposeusing inducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ovulati<strong>on</strong>. Theriogenol. 35, 228.Legrand, E., Bencharif, D., Battut, I., Tainturier, D. andBruyas, J.F. (1999) Horse embryosfreezing:influence <str<strong>on</strong>g>of</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> capsule.<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1<str<strong>on</strong>g>5th</str<strong>on</strong>g> Scientific Meeting <str<strong>on</strong>g>of</str<strong>on</strong>g>European Embryo Transfer Associati<strong>on</strong>, Ly<strong>on</strong> 10-11sept, 184-185.Skidmore, J.A., Boyle, M.S. and Allen, W.R. (1991) Acomparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two methods <str<strong>on</strong>g>of</str<strong>on</strong>g> freezing horseembryos. J. reprod. Fert. Suppl. 44, 714-716.Slade, N.P., Tadeka, T., Squiresm E.L. and Eldsen, R.P.(1984) Development and viability <str<strong>on</strong>g>of</str<strong>on</strong>g> frozen-thawedequine embryos. Theriogenol. 21, 263.Slade, N.P., Tadeka, T., Squires, E.L., Eldsen, R.P. andSeidel, G.E. (1985) A new procedure for <str<strong>on</strong>g>the</str<strong>on</strong>g>cryopreservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equine embryos. Theriogenol.24, 45-58.65


Equine Embryo TransferWHEN DO <strong>EQUINE</strong> EMBRYOS ENTER THE UTERINECAVITY: AN ATTEMPT TO ANSWER ?I. Battut, A. Grandchamp des Raux, J. L. Nicaise, F. Fieni, D. Tainturier andJ. F. BruyasDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Reproducti<strong>on</strong>, Veterinary School, B.P. 40 706, 44307 Nantes Cedex 03, FranceA previous study (Battut et al. 1997) has suggestedthat horse embryos enter <str<strong>on</strong>g>the</str<strong>on</strong>g> uterine cavitybetween 144–156 h after ovulati<strong>on</strong>.Variability indevelopment stage was c<strong>on</strong>siderable betweenembryos recovered at <str<strong>on</strong>g>the</str<strong>on</strong>g> same age: from 117–417cells at 156 h and 272–2217 cells at 168 h(Colchen et al. 2000). The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> presentstudy was: 1) to determine more precisely <str<strong>on</strong>g>the</str<strong>on</strong>g>timing <str<strong>on</strong>g>of</str<strong>on</strong>g> embry<strong>on</strong>ic transport between 144–156 hafter ovulati<strong>on</strong>, if necessary using successiveuterine flushings at 3 or 6 h interval <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> samemare; and 2) to evaluate homogeneity indevelopment stage am<strong>on</strong>g embryos recovered at<str<strong>on</strong>g>the</str<strong>on</strong>g> same age.MATERIALAND METHODSSeventeen mares (9 Trotter, 2 Thoroughbred and 6P<strong>on</strong>y) were used as embryo d<strong>on</strong>ors, between 30thJune and 3rd September. The <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> oestrus wasdetected by daily teasing with a stalli<strong>on</strong>, folliculargrowth was <str<strong>on</strong>g>the</str<strong>on</strong>g>n checked by daily ultrasoundexaminati<strong>on</strong>. When a growing follicle reached 33mm, ovulati<strong>on</strong> was induced alternatively by <strong>on</strong>e ivinjecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 2,500 iu human Chori<strong>on</strong>icG<strong>on</strong>adotrophin (hCG), or 4 iv injecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 µgbuserelin at 12 h intervals. Artificial inseminati<strong>on</strong>was performed 24 h after <str<strong>on</strong>g>the</str<strong>on</strong>g> first injecti<strong>on</strong>, withpooled fresh semen from 2 stalli<strong>on</strong>s. Ovulati<strong>on</strong>was checked hourly by ultrasound examinati<strong>on</strong>sstarting 32 h after injecti<strong>on</strong>, until ovulati<strong>on</strong>, oruntil 48 h. Embryo collecti<strong>on</strong> was performed byuterine flushing, <str<strong>on</strong>g>the</str<strong>on</strong>g> moment being chosen atrandom; ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r 144, 147 or 150 h after ovulati<strong>on</strong>.When no embryo was obtained, some collecti<strong>on</strong>attempts were repeated 3 or 6 h later (see Fig 1).After recovery, embryos were measured underan inverted microscope, fixed in 2%glutaraldehyde, embedded in Ep<strong>on</strong> 812, secti<strong>on</strong>ed(1 µm) and stained with Toluidin blue forhistological analysis (Bruyas et al. 1993).RESULTSRecovery ratesForty five first collecti<strong>on</strong> attempts, 28 sec<strong>on</strong>d and7 third collecti<strong>on</strong> attempts were performed.Inducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ovulati<strong>on</strong>A. I.Ovulati<strong>on</strong>144 hEmbryo collecti<strong>on</strong>:1st2nd150 h 6 h1st 2nd147 h 3 h1st 2nd 2nd 3rd3 h 3 h 6 hOestrusHourlyDay 6 Day 6.25Day 6.5Fig 1: Experimental protocol.66


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3TABLE 1: Rates <str<strong>on</strong>g>of</str<strong>on</strong>g> successful embryo collecti<strong>on</strong> knowing <str<strong>on</strong>g>the</str<strong>on</strong>g> exact age <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> embryoFirst collecti<strong>on</strong> attemptSec<strong>on</strong>d and third collecti<strong>on</strong> attemptsMoment <str<strong>on</strong>g>of</str<strong>on</strong>g> 144 h 147 h 150 h 147 h 150 h 150 h 156 h 156 hcollecti<strong>on</strong> (after 144) (after 144) (after 147) (after 150) (after 144(h after ovulati<strong>on</strong>) and 147)Successful 2/16 3/14 5/15 0/2 1/9 0/9 0/80/7collecti<strong>on</strong>s (16%) (21%) (33%) (11%)No. <str<strong>on</strong>g>of</str<strong>on</strong>g> embryos 2 4 a 7 b 1Twin embryos were recovered in 1 a or 2 b cases (double ovulati<strong>on</strong>s were synchr<strong>on</strong>ous)TABLE 2: Morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> embryos recovered 144, 147 or 150 h after ovulati<strong>on</strong>Moment <str<strong>on</strong>g>of</str<strong>on</strong>g> recovery 144 h 147 h 150 h(h after ovulati<strong>on</strong>)No. <str<strong>on</strong>g>of</str<strong>on</strong>g> embryos n = 2 n = 4 n = 8Diameter (µm):mean + sd (range) 186 + 21 163 + 11 166 + 9.8(171-201) (146-168) (153-183)Cell number: 407 + 227( n = 2) 440 (n = 1) 317 + 60 (n = 4)mean + sd (range) (247-568) (274-403)% inner cell mass 37 + 9 29 35 + 7% mitosis 5.6 + 0.7 5.2 5.1 + 3For <str<strong>on</strong>g>the</str<strong>on</strong>g> first collecti<strong>on</strong> attempts, rates <str<strong>on</strong>g>of</str<strong>on</strong>g> succesdid not significantly differ according to <str<strong>on</strong>g>the</str<strong>on</strong>g>moment <str<strong>on</strong>g>of</str<strong>on</strong>g> collecti<strong>on</strong>. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> time, at sec<strong>on</strong>dand third collecti<strong>on</strong> attempts, <str<strong>on</strong>g>the</str<strong>on</strong>g> cervix wasrelaxed, and embryos have probably been lost,ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r during flushing or in <str<strong>on</strong>g>the</str<strong>on</strong>g> time elapsedbetween 2 successive collecti<strong>on</strong>s.In c<strong>on</strong>trast with our previous results (Battut etal. 1997), some embryos were recovered from <str<strong>on</strong>g>the</str<strong>on</strong>g>uterus 144 h (exactly 6 days) after ovulati<strong>on</strong>.Recovery rates at 150 h were lower than thatpreviously reported at 156 h: all <str<strong>on</strong>g>the</str<strong>on</strong>g> embryos d<strong>on</strong>ot seem to have reached <str<strong>on</strong>g>the</str<strong>on</strong>g> uterus 150 h (exactly6.25 days) after ovulati<strong>on</strong>. These data corroborateprevious results (Colchen et al. 2000), indicatingthat <str<strong>on</strong>g>the</str<strong>on</strong>g> moment <str<strong>on</strong>g>of</str<strong>on</strong>g> arrival <str<strong>on</strong>g>of</str<strong>on</strong>g> equine embryos in<str<strong>on</strong>g>the</str<strong>on</strong>g> uterus after ovulati<strong>on</strong> varies am<strong>on</strong>g embryos,within an interval about 12 h. The possible reas<strong>on</strong>sexplaining this variability are: i) variable delaybetween ovulati<strong>on</strong> and fertilisati<strong>on</strong>, depending <strong>on</strong>individual oocytes; ii) maternal factors: noinfluence <str<strong>on</strong>g>of</str<strong>on</strong>g> maternal breed was observed, andprogester<strong>on</strong>emia has no influence (Colchen et al.2000); iii) envir<strong>on</strong>mental factors (o<str<strong>on</strong>g>the</str<strong>on</strong>g>r thanseas<strong>on</strong>); and iv) embry<strong>on</strong>ic factors: sex; moment<str<strong>on</strong>g>of</str<strong>on</strong>g> PGE 2 secreti<strong>on</strong>; o<str<strong>on</strong>g>the</str<strong>on</strong>g>r individual factors.MorphologyUnder inverted microscope, all <str<strong>on</strong>g>the</str<strong>on</strong>g> embryoslooked like morula or early blastocyst, <str<strong>on</strong>g>the</str<strong>on</strong>g>difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> 2 stages being difficult toevaluate. Diameters and cell numbers arepresented <strong>on</strong> Table 2. There was no significantdifference according to <str<strong>on</strong>g>the</str<strong>on</strong>g> moment <str<strong>on</strong>g>of</str<strong>on</strong>g> recovery.Only 8 embryos could be subjected tohistological analysis. One was degenerated, 6 wereearly blastocysts, and <strong>on</strong>e was a morula (150 h,168 µm, 313 cells). Fragments <str<strong>on</strong>g>of</str<strong>on</strong>g> capsule werevisible <strong>on</strong> all <str<strong>on</strong>g>the</str<strong>on</strong>g> embryos, but a c<strong>on</strong>tinuous andvery thin capsule was observed <strong>on</strong>ly around <strong>on</strong>eembryo (150 h, 153 µm, 279 cells). Cell numbersare presented <strong>on</strong> Table 2. There was no correlati<strong>on</strong>between diameter, cell number, percentage <str<strong>on</strong>g>of</str<strong>on</strong>g>inner cell mass, and percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> mitosis.These results indicate that morphology <str<strong>on</strong>g>of</str<strong>on</strong>g>equine embryos, between Day 6 and Day 6.25,does not depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir age in relati<strong>on</strong> toovulati<strong>on</strong>. Hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> explanati<strong>on</strong> are:i) variability in <str<strong>on</strong>g>the</str<strong>on</strong>g> interval ovulati<strong>on</strong>-fertilisati<strong>on</strong>;ii) variability in development rate; iii) variability in<str<strong>on</strong>g>the</str<strong>on</strong>g> interval : arrival in <str<strong>on</strong>g>the</str<strong>on</strong>g> uterus - recovery. In <str<strong>on</strong>g>the</str<strong>on</strong>g>uterus, capsule begins to form, and cell number67


Equine Embryo Transferseems to increase 2-fold every 6 h (Colchen et al.2000). Embryos were recovered at a fixed intervalafter ovulati<strong>on</strong>, but <str<strong>on</strong>g>the</str<strong>on</strong>g> moment <str<strong>on</strong>g>of</str<strong>on</strong>g> transport to <str<strong>on</strong>g>the</str<strong>on</strong>g>uterus is variable with respect to ovulati<strong>on</strong>. Thesereas<strong>on</strong>s explain <str<strong>on</strong>g>the</str<strong>on</strong>g> large possible variati<strong>on</strong> inembry<strong>on</strong>ic morphology (cell number, aspect <str<strong>on</strong>g>of</str<strong>on</strong>g>capsule) according to <str<strong>on</strong>g>the</str<strong>on</strong>g> time spent in <str<strong>on</strong>g>the</str<strong>on</strong>g> uterusbetween arrival and recovery.CONCLUSIONM<strong>on</strong>itoring ovulati<strong>on</strong> hourly does not help torecover an homogenous group <str<strong>on</strong>g>of</str<strong>on</strong>g> embryos, forfreezing or micromanipulati<strong>on</strong>, for example.Factors related to individual oocytes or embryos,and resp<strong>on</strong>sible for this variati<strong>on</strong>, have to beidentified.When ovulati<strong>on</strong>s are checked by ultrasoundexaminati<strong>on</strong> <strong>on</strong>ly <strong>on</strong>ce or twice a day, embryocollecti<strong>on</strong> must be performed 156 h after <str<strong>on</strong>g>the</str<strong>on</strong>g> firstobservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a corpus luteum, to be sure that <str<strong>on</strong>g>the</str<strong>on</strong>g>embryo has reached <str<strong>on</strong>g>the</str<strong>on</strong>g> uterine cavity.REFERENCESBattut, I., Colchen, S., Fieni, F., Tainturier, D. andBruyas, J.F. (1997) Success rate when attempting t<strong>on</strong><strong>on</strong> surgically collect equine embryos at 144, 156and 168 hours after ovulati<strong>on</strong>. Equine vet. J. Suppl.25, 60-62.Bruyas, J.F., Bézard, J., Lagneaux, D. and Palmer, E.(1993) Quantitative analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> morphologicalmodificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> day 6.5 horse embryos aftercryopreservati<strong>on</strong>: differential effects <strong>on</strong> inner cellmass and trophoblast cells. J. reprod. Fert. 99,15-23.Colchen, S., Battut,I., Fieni, F., Tainturier, D., Siliart B.and Bruyas J.F. (2000) Quantitative histologicalanalysis <str<strong>on</strong>g>of</str<strong>on</strong>g> equine embryos at exactly 156 and 168 hafter ovulati<strong>on</strong>. J. reprod. Fert.Suppl. 52, In press.68


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3SESSION 4:Commercialembryo transferChairmen: K. Hinrichs and W. R. Allen69


70Equine Embryo Transfer


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3CHANGES OF PGFM, PROGESTERONE AND LHSECRETION PATTERNS IN RELATION TO CYCLELENGTH AFTER CERVICAL MANIPULATION IN MARESJ. Handler, M. Königsh<str<strong>on</strong>g>of</str<strong>on</strong>g>er, H. Kindahl*, H.-O. Hoppen † , J. E. Aurich andC. AurichUniversity <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Sciences, Vienna, Austria; *Swedish University <str<strong>on</strong>g>of</str<strong>on</strong>g> Agricultural Sciences, Uppsala,Sweden; † College <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Medicine, Hannover, GermanyINTRODUCTIONIn horses, early embry<strong>on</strong>ic loss after transcervicaltransfer <str<strong>on</strong>g>of</str<strong>on</strong>g> embryos is tremendous when comparedto o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species. Better results have been obtainedafter surgical transfer. Endocrine changes causedby cervical manipulati<strong>on</strong> may be resp<strong>on</strong>sible forthis phenomen<strong>on</strong>.In n<strong>on</strong>-pregnant horse mares <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g>cervical manipulati<strong>on</strong> <strong>on</strong> cycle length werec<strong>on</strong>troversially discussed in previous studies(Hurtgen and Ganjam 1979; Betteridge et al.1985; Wilde et al. 1989). While Hurtgen andGanjam (1979) were able to shorten dioestrus bydigital manipulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cervix, Betteridge etal. (1985) as well as Wilde et al. (1989) could notfind any release <str<strong>on</strong>g>of</str<strong>on</strong>g> prostaglandins and influence<strong>on</strong> oestrous cycle after inserti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a transferca<str<strong>on</strong>g>the</str<strong>on</strong>g>ter into <str<strong>on</strong>g>the</str<strong>on</strong>g> cervix. Kask et al. (1997)induced prostaglandin release and shortenedoestrous cycle length in individual mares byperforming sham embryo transfers, whileBetteridge et al. (1985) did not obtaincomparable resp<strong>on</strong>ses to this manipulati<strong>on</strong>. All<str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>flicting results might be caused by <str<strong>on</strong>g>the</str<strong>on</strong>g>use <str<strong>on</strong>g>of</str<strong>on</strong>g> different techniques <str<strong>on</strong>g>of</str<strong>on</strong>g> cervicalstimulati<strong>on</strong>.In <str<strong>on</strong>g>the</str<strong>on</strong>g> present study we tested <str<strong>on</strong>g>the</str<strong>on</strong>g> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sisthat in n<strong>on</strong>-pregnant mares, a standardisedprocedure <str<strong>on</strong>g>of</str<strong>on</strong>g> cervical manipulati<strong>on</strong> and dilatati<strong>on</strong>causes an increase in prostaglandin release leadingto disturbances <str<strong>on</strong>g>of</str<strong>on</strong>g> luteal functi<strong>on</strong> and a subsequentdecrease in cycle length.MATERIALS AND METHODSMares (n=6) were c<strong>on</strong>trolled for cyclic activityduring 5 c<strong>on</strong>secutive oestrous cycles (oestrousbehaviour, transrectal palpati<strong>on</strong> and s<strong>on</strong>ographicevaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ovaries and uterus). Daily bloodsamples were taken for determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plasmaprogester<strong>on</strong>e and LH c<strong>on</strong>centrati<strong>on</strong>s. Progester<strong>on</strong>eas well as LH secreti<strong>on</strong> were calculated as areaunder <str<strong>on</strong>g>the</str<strong>on</strong>g> curve (AUC) for <str<strong>on</strong>g>the</str<strong>on</strong>g> time period fromDay 1–Day 18 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cycle (ovulati<strong>on</strong> = Day 0).During <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d, third and fourth cycle at Days5 and 7 after ovulati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> following experimentswere performed in every mare at random order:1) Inserti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an embryo flushing ca<str<strong>on</strong>g>the</str<strong>on</strong>g>ter into <str<strong>on</strong>g>the</str<strong>on</strong>g>cervix via speculum; 2) Inserti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ca<str<strong>on</strong>g>the</str<strong>on</strong>g>terTABLE 1: Oestrous cycle length, dioestrous length, maximal progester<strong>on</strong>e c<strong>on</strong>centrati<strong>on</strong>s and totalprogester<strong>on</strong>e release (AUC) in mares after inserti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a ca<str<strong>on</strong>g>the</str<strong>on</strong>g>ter into <str<strong>on</strong>g>the</str<strong>on</strong>g> cervix (inserti<strong>on</strong>), afterinserti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ca<str<strong>on</strong>g>the</str<strong>on</strong>g>ter and dilatati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ballo<strong>on</strong> (dilatati<strong>on</strong>) and without treatment (c<strong>on</strong>trol)Treatment Cycle length Dioestrous length Max P4 P4 (AUC)d, mean ± sd d, mean ± sd ng/ml, mean ± sd ng/ml, mean ± sdC<strong>on</strong>trol 22.7 ± 2.1 a 18.8 ± 1.8 a 8.5 ± 1.1 a 83.1 ± 15.8 aInserti<strong>on</strong> 21.8 ± 2.8 17.2 ± 2.2 8.1 ± 1.8 76.6 ± 14.2Dilatati<strong>on</strong> 19.8 ± 1.2 b 16.3 ± 1.4 b 7.8 ± 1.4 b 70.6 ± 14.5 ba,b – different superscripts indicate significant differences (P


Equine Embryo Transfer6055C<strong>on</strong>trolInserti<strong>on</strong>Dilatati<strong>on</strong>50Plasma-PGFM (pmol/l)4540353025200 10 20 30 31 31.5 32 32.5 33 33.5 34 34.5 35 35.5 36 37 38 41 46 56 96MinFig 1: PGFM c<strong>on</strong>centrati<strong>on</strong> in blood plasma <str<strong>on</strong>g>of</str<strong>on</strong>g> mares after inserti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a ca<str<strong>on</strong>g>the</str<strong>on</strong>g>ter into <str<strong>on</strong>g>the</str<strong>on</strong>g> cervix (inserti<strong>on</strong>), afterinserti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ca<str<strong>on</strong>g>the</str<strong>on</strong>g>ter and dilatati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ballo<strong>on</strong> (dilatati<strong>on</strong>) and without treatment (c<strong>on</strong>trol). Black barindicates time period <str<strong>on</strong>g>of</str<strong>on</strong>g> dilatati<strong>on</strong> and inserti<strong>on</strong>, respectively.and stepwise dilatati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ballo<strong>on</strong> to a size <str<strong>on</strong>g>of</str<strong>on</strong>g>4.5 cm in diameter; 3) No treatment (c<strong>on</strong>trol).Blood samples for determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> prostaglandinmetabolites (PGFM) were taken 30, 20, 10 minand immediately before inserti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ca<str<strong>on</strong>g>the</str<strong>on</strong>g>ter,after inserti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ca<str<strong>on</strong>g>the</str<strong>on</strong>g>ter and at 30 s intervalsduring dilatati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ballo<strong>on</strong>. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r bloodsamples were taken 1, 2, 5, 20 and 60 min afterremoval <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ca<str<strong>on</strong>g>the</str<strong>on</strong>g>ter. Horm<strong>on</strong>e c<strong>on</strong>centrati<strong>on</strong>swere analysed by radioimmunoassay methods:progester<strong>on</strong>e (H<str<strong>on</strong>g>of</str<strong>on</strong>g>fmann et al. 1973), LH (Behrenset al. 1993) and PGFM (Granström and Kindahl1982).RESULTS AND DISCUSSIONIntracervical inserti<strong>on</strong> and dilatati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ca<str<strong>on</strong>g>the</str<strong>on</strong>g>ter caused significant changes inprogester<strong>on</strong>e levels, durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dioestrus andcycle length, respectively. Cycle length (inparen<str<strong>on</strong>g>the</str<strong>on</strong>g>ses dioestrous length) was 21.8 ± 2.8(17.2 ± 2.2) days in mares after inserti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ca<str<strong>on</strong>g>the</str<strong>on</strong>g>ter, 19.8 ± 1.2 (16.3 ± 1.4) after inserti<strong>on</strong> anddilatati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ca<str<strong>on</strong>g>the</str<strong>on</strong>g>ter and 22.7 ± 2.1 (18.8 ±1.8) days in untreated mares (P


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3collecti<strong>on</strong>, transfer procedures and maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> corpus luteum. Equine vet. J. Suppl. 3, 25-33.Behrens, C., Aurich, J.E., Klug, E. Naumann, H. andHoppen, H.O. (1993) Inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> g<strong>on</strong>a-dotrophinrelease in mares during <str<strong>on</strong>g>the</str<strong>on</strong>g> luteal phase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oestrous cycle by endogenous opioids. J. reprod.Fert. 3, 509-514.Granström, E. and Kindahl, H. (1982)Radioimmunoassay <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> major plasma metabolite<str<strong>on</strong>g>of</str<strong>on</strong>g> PGF 2a , 15-keto-13,14-dihydro-PGF 2α. MethodsEnzymol. 86, 320-339.H<str<strong>on</strong>g>of</str<strong>on</strong>g>fmann, B., Schams, D., Gimenez, T., Ender, M.L.,Herrmann, C.H. and Karg, H. (1973) Changes <str<strong>on</strong>g>of</str<strong>on</strong>g>progester<strong>on</strong>e, total oestrogens, corticosteroids,prolactin and LH in bovine peripheral plasmaaround parturiti<strong>on</strong> with special reference to <str<strong>on</strong>g>the</str<strong>on</strong>g>effect <str<strong>on</strong>g>of</str<strong>on</strong>g> exogenous corticoids and a prolactininhibitior, respectively. Acta endocrinol. 73, 385-395.Hurtgen, J.P. and Ganjam, V.K. (1979) The effect <str<strong>on</strong>g>of</str<strong>on</strong>g>intrauterine and cervical manipulati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> equineoestrous cycle and horm<strong>on</strong>e pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles. J. reprod. Fert.Suppl. 27, 191-197.Kask, K., Odensvik, K. and Kindahl, H. (1997)Prostaglandin F release associated with an embryotransfer procedure in <str<strong>on</strong>g>the</str<strong>on</strong>g> mare. Equine vet. J. 29,286-289.Wilde, M.H., Dinger, J.E., Hoagland, T.A., Graves-Hoagland, R.L. and Woody, C.O. (1989) The effects<str<strong>on</strong>g>of</str<strong>on</strong>g> cervical dilatati<strong>on</strong> <strong>on</strong> plasma PGFM,progester<strong>on</strong>e and <str<strong>on</strong>g>the</str<strong>on</strong>g> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> luteal functi<strong>on</strong> indiestrous mares. Theriogenol. 32, 675-681.73


Equine Embryo TransferTHE INFLUENCES OF MATERNAL SIZE, AGE ANDPARITY ON PLACENTAL AND FETAL DEVELOPMENTIN THE HORSES. Wilsher and W. R. AllenEquine Fertility Unit, Mertoun Paddocks, Woodditt<strong>on</strong> Road, Newmarket, Suffolk CB8 9BH, UKClear evidence that maternal size, and henceuterine size, pr<str<strong>on</strong>g>of</str<strong>on</strong>g>oundly effects <str<strong>on</strong>g>the</str<strong>on</strong>g> birthweight <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> foal was dem<strong>on</strong>strated by Walt<strong>on</strong> andHamm<strong>on</strong>d (1938) in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir classical experiment <str<strong>on</strong>g>of</str<strong>on</strong>g>between breed inseminati<strong>on</strong>s in Shetland p<strong>on</strong>iesand Shire horses. Tischner and Klimszak (1989)also showed <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> intrauterine envir<strong>on</strong>ment<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fetus in horses bytransferring p<strong>on</strong>y embryos to larger draft mares andcomparing <str<strong>on</strong>g>the</str<strong>on</strong>g> birth size and subsequentdevelopment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foals with sex-matched siblingsborn from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir natural p<strong>on</strong>y mo<str<strong>on</strong>g>the</str<strong>on</strong>g>rs. In bo<str<strong>on</strong>g>the</str<strong>on</strong>g>xperiments <str<strong>on</strong>g>the</str<strong>on</strong>g> size differences between <str<strong>on</strong>g>the</str<strong>on</strong>g> foalsat birth persisted into adulthood. It is hardlysurprising that uterine size effects <str<strong>on</strong>g>the</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>foal so dramatically since <str<strong>on</strong>g>the</str<strong>on</strong>g> diffuse, n<strong>on</strong>-invasive,epi<str<strong>on</strong>g>the</str<strong>on</strong>g>liochorial equine placenta establishes a closemicrovillous interdigitati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> entireendometrial surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> maternal uterus.Endometrosis may compromise <str<strong>on</strong>g>the</str<strong>on</strong>g> uterineenvir<strong>on</strong>ment during pregnancy and Bracher et al.(1996) showed a close relati<strong>on</strong>ship between <str<strong>on</strong>g>the</str<strong>on</strong>g>health <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> endometrium and <str<strong>on</strong>g>the</str<strong>on</strong>g> normality anddensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> microcotyled<strong>on</strong>s per area <str<strong>on</strong>g>of</str<strong>on</strong>g> placentaduring <str<strong>on</strong>g>the</str<strong>on</strong>g> first two thirds <str<strong>on</strong>g>of</str<strong>on</strong>g> gestati<strong>on</strong>. Thec<strong>on</strong>diti<strong>on</strong> appears to be associated more with agethan parity and Ricketts and Al<strong>on</strong>so (1991)showed that aged maiden mares developendometrosis, without <str<strong>on</strong>g>the</str<strong>on</strong>g> endometrium havingsuffered <str<strong>on</strong>g>the</str<strong>on</strong>g> challenges <str<strong>on</strong>g>of</str<strong>on</strong>g> semen, infecti<strong>on</strong>,pregnancy or parturiti<strong>on</strong>. Parity is also associatedwith foal birthweight and Hintz et al. (1979)observed that Thoroughbred mares < 7 years <str<strong>on</strong>g>of</str<strong>on</strong>g>age had lighter foals with smaller cann<strong>on</strong> b<strong>on</strong>esthan mares 7–11 years old. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g>sedifferences persisted until at least 510 days <str<strong>on</strong>g>of</str<strong>on</strong>g> age.Barr<strong>on</strong> (1995) surveyed racetrack performance <str<strong>on</strong>g>of</str<strong>on</strong>g>Thoroughbreds and c<strong>on</strong>cluded that foals born fromparous mares aged 7–11 years were moresuccessful than those from maiden mares or olderanimals. Similarly, Finocchio (1996) reported thatthat third foals were most likely to become Stakeswinners, followed closely by foals produced inparities 5, 2 and 4, in that order.In <str<strong>on</strong>g>the</str<strong>on</strong>g> present experiment <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g>maternal size, age and parity <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> gross andmicroscopic development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> placenta and <strong>on</strong>foal birthweight were investigated. Normal termplacentae were recovered at sp<strong>on</strong>taneous thirdstage labour from 2 cohorts <str<strong>on</strong>g>of</str<strong>on</strong>g> mares and, afterweighing <str<strong>on</strong>g>the</str<strong>on</strong>g> allantochori<strong>on</strong> and measuring itsgross area and volume, stereological techniqueswere applied to 10 biopsies selected randomlyfrom all parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> allantochori<strong>on</strong> to measure <str<strong>on</strong>g>the</str<strong>on</strong>g>microscopic surface area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> microcotyled<strong>on</strong>s.The microscopic fetomaternal c<strong>on</strong>tact per unitvolume <str<strong>on</strong>g>of</str<strong>on</strong>g> chori<strong>on</strong> (surface density <str<strong>on</strong>g>of</str<strong>on</strong>g>microcotyled<strong>on</strong>s) and, by multiplicati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g>gross volume <str<strong>on</strong>g>of</str<strong>on</strong>g> chori<strong>on</strong>; <str<strong>on</strong>g>the</str<strong>on</strong>g> total area <str<strong>on</strong>g>of</str<strong>on</strong>g>fetomaternal c<strong>on</strong>tact across <str<strong>on</strong>g>the</str<strong>on</strong>g> entire placenta,were recorded.In <str<strong>on</strong>g>the</str<strong>on</strong>g> first cohort <str<strong>on</strong>g>of</str<strong>on</strong>g> mares between-breedembryo transfer was used to create 8Thoroughbred-in-P<strong>on</strong>y (Tb-in-P) pregnancies inwhich <str<strong>on</strong>g>the</str<strong>on</strong>g> genetically larger Thoroughbred fetusexperienced cramping and nutriti<strong>on</strong>al deprivati<strong>on</strong>in utero, 7 P-in-Tb pregnancies in which <str<strong>on</strong>g>the</str<strong>on</strong>g>smaller P<strong>on</strong>y fetus was exposed to nutriti<strong>on</strong>alexcess in utero, with 7 normal Tb-in-Tb and 7 P-in-P pregnancies as c<strong>on</strong>trols. Str<strong>on</strong>g positivecorrelati<strong>on</strong>s were dem<strong>on</strong>strated between maternalweight and foal birthweight and betweenbirthweight and both <str<strong>on</strong>g>the</str<strong>on</strong>g> weight and gross area <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> placenta. Unexpectedly, surface density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>microcotyled<strong>on</strong>s, which was also was positivelycorrelated with foal birthweight, was <str<strong>on</strong>g>the</str<strong>on</strong>g> highest in74


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3<str<strong>on</strong>g>the</str<strong>on</strong>g> Tb-in-Tb c<strong>on</strong>trol and lowest in <str<strong>on</strong>g>the</str<strong>on</strong>g> P-in-Pc<strong>on</strong>trol placentae, and was higher in <str<strong>on</strong>g>the</str<strong>on</strong>g> P-in-Tbthan <str<strong>on</strong>g>the</str<strong>on</strong>g> Tb-in-P pregnancies, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby indicatingthat this parameter is influenced more by <str<strong>on</strong>g>the</str<strong>on</strong>g> breed<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mo<str<strong>on</strong>g>the</str<strong>on</strong>g>r than by <str<strong>on</strong>g>the</str<strong>on</strong>g> intrauterine experiences<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fetal foal. The very str<strong>on</strong>g correlati<strong>on</strong> thatexisted between foal birthweight and <str<strong>on</strong>g>the</str<strong>on</strong>g> total area<str<strong>on</strong>g>of</str<strong>on</strong>g> fetomaternal c<strong>on</strong>tact across <str<strong>on</strong>g>the</str<strong>on</strong>g> placentalinterface dem<strong>on</strong>strated c<strong>on</strong>vincingly that <str<strong>on</strong>g>the</str<strong>on</strong>g> inutero growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foal is governed by ‘real’placental size and competence which, in turn, isgoverned by <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> available endometrium.The sec<strong>on</strong>d cohort <str<strong>on</strong>g>of</str<strong>on</strong>g> 32 normal, commercialThoroughbred mares resident in <str<strong>on</strong>g>the</str<strong>on</strong>g> Newmarketarea were separated into 4 groups <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> basis <str<strong>on</strong>g>of</str<strong>on</strong>g>age and parity; primigravid mares aged 4–7 yearsand parous mares aged 5–9 years, 10–15 years and≥ 16 years. The gross placental parameters andfoal birthweights were all lower in <str<strong>on</strong>g>the</str<strong>on</strong>g> primigravidmares than <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r 3 groups <str<strong>on</strong>g>of</str<strong>on</strong>g> parous mares. Ofparticular interest was <str<strong>on</strong>g>the</str<strong>on</strong>g> finding <str<strong>on</strong>g>of</str<strong>on</strong>g> a reducedsurface density <str<strong>on</strong>g>of</str<strong>on</strong>g> microcotyled<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g>seprimigravid animals, compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> 5–9 year oldparous mares, despite <str<strong>on</strong>g>the</str<strong>on</strong>g> reas<strong>on</strong>able assumpti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> a healthy, virginal endometrium in <str<strong>on</strong>g>the</str<strong>on</strong>g> maidengroup. The surface density <str<strong>on</strong>g>of</str<strong>on</strong>g> microcotyled<strong>on</strong>swas also lower in <str<strong>on</strong>g>the</str<strong>on</strong>g> aged (≥16 years) mares thanin <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r 2 groups <str<strong>on</strong>g>of</str<strong>on</strong>g> parous mares, presumablydue to <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> age-related endometrosis in<str<strong>on</strong>g>the</str<strong>on</strong>g> opposing endometrium. However, thismicroscopic interface deficiency was <str<strong>on</strong>g>of</str<strong>on</strong>g>fset by ahigher volume and gross area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> placenta in <str<strong>on</strong>g>the</str<strong>on</strong>g>aged animal which maintained a high mean foalbirthweight in <str<strong>on</strong>g>the</str<strong>on</strong>g> group. Thus, primiparityappears to be more important in determining foalbirthweight than maternal age, due to reducti<strong>on</strong> inmicrocotyled<strong>on</strong> surface density, coupled withreduced volume <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chori<strong>on</strong>, lessening <str<strong>on</strong>g>the</str<strong>on</strong>g> totalarea available for haemotrophic exchange <str<strong>on</strong>g>of</str<strong>on</strong>g>nutrients and gases across <str<strong>on</strong>g>the</str<strong>on</strong>g> placental interface.Accordingly, when selecting recipient maresfor use in an embryo transfer programme it shouldbe remembered that maternal parameters such assize, age and parity will all bear varying degrees <str<strong>on</strong>g>of</str<strong>on</strong>g>influence <strong>on</strong> health and total microscopic area <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> placenta which, in turn, will govern <str<strong>on</strong>g>the</str<strong>on</strong>g> sizeand health <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foal at birth and in later life.Ideally, recipient mares should be between 5 and 9years <str<strong>on</strong>g>of</str<strong>on</strong>g> age, should have already produced at least<strong>on</strong>e healthy foal, and should have a body size thatis equal to, or bigger than, that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mareproducing <str<strong>on</strong>g>the</str<strong>on</strong>g> embryo.REFERENCESBarr<strong>on</strong>, J.K. (1995) The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> maternal age and parity<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> racing performance <str<strong>on</strong>g>of</str<strong>on</strong>g> Thoroughbred horses.Equine vet. J. 27, 73-75.Bracher, V., Mathias, S. and Allen, W.R. (1996)Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic degenerative endometritis(endometrosis) <strong>on</strong> placental development in <str<strong>on</strong>g>the</str<strong>on</strong>g>mare. Equine vet. J. 28, 180-188.Finocchio, E.J. (1986) Race performance and itsrelati<strong>on</strong>ship to birthrank and maternal age. Proc.Am. Ass. Equine Pract. 31, 571-578.Hintz, H.F., Hintz, R.L. and Van Vleck, L.D. (1979)Growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> Thoroughbreds. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> age <str<strong>on</strong>g>of</str<strong>on</strong>g> dam,year and m<strong>on</strong>th <str<strong>on</strong>g>of</str<strong>on</strong>g> birth, and sex <str<strong>on</strong>g>of</str<strong>on</strong>g> foal. J.anim.Sci.48, 480-487.Ricketts, S.W. and Al<strong>on</strong>so, S. (1991) The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> ageand parity <strong>on</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> equine chr<strong>on</strong>icendometrial disease. Equine vet. J. 23, 189-192.Tischner, M. and Klimszak, M. (1989) Development <str<strong>on</strong>g>of</str<strong>on</strong>g>Polish p<strong>on</strong>y foals born after transfer to large mares.J. reprod. Fert. Suppl. 8, 62-63.Walt<strong>on</strong>, A. and Hamm<strong>on</strong>d, J. (1938). The maternaleffects <strong>on</strong> growth and c<strong>on</strong>formati<strong>on</strong> in Shire horse-Shetland p<strong>on</strong>y crosses. Proc. Roy. Soc. Series B.125, 311-335.75


Equine Embryo TransferUSE OF BUSERELINE TO INDUCE OVULATION INDONOR MARESJ. F. Bruyas, E. Trocherie, S. Hecht, N. Lepoutre, A. Granchamp des Raux,J.-L.Nicaise, X. Vérin, J. Bertrand, I. Barrier-Battut, F. Fiéni, R. Hoier*,A. Renault † , L. Egr<strong>on</strong> † and D. TainturierDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Reproducti<strong>on</strong>, Nantes Veterinary School, B.P. 40706-44307 Nantes cedex 03, France;*Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Clinical Studies, Royal Veterinary and Agricutural University, Frederiksberg, Denmark;† Intervet, BP 17144, 49071 Beaucouzé Cedex, FranceHuman chori<strong>on</strong>icg<strong>on</strong>adotropin (hCG) injected iv(2,500 ui) is comm<strong>on</strong>ly used for inducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ovulati<strong>on</strong> in mares. However, repetitiveadministrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> xenogenic g<strong>on</strong>adotropin inhorses were described as resp<strong>on</strong>sible forantibodies producti<strong>on</strong>. In France, implantablesustained release deslorelin for ovulati<strong>on</strong>inducti<strong>on</strong> in mares, are not commerciallyavailable. It would be desirable to have ano<str<strong>on</strong>g>the</str<strong>on</strong>g>rmeans <str<strong>on</strong>g>of</str<strong>on</strong>g> inducting <str<strong>on</strong>g>of</str<strong>on</strong>g> ovulati<strong>on</strong> in d<strong>on</strong>or mares.The <strong>on</strong>ly <strong>on</strong>e GnRH-analogue available in Francefor animal treatment is busereline. Many previousstudies have shown that a single injecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> GnRHor GnRH-analogues were not effective in mares.Harris<strong>on</strong> et al. (1991) suggested that repeatedinjecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> busereline were able to induceovulati<strong>on</strong> in mares. The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se 5 studieswas to test <str<strong>on</strong>g>the</str<strong>on</strong>g> efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> busereline for hasteningovulati<strong>on</strong> using different protocols in d<strong>on</strong>or mares.MATERIALS AND METHODSFive cross trials were performed to compare, ineach experiment, 2 treatments alternativelyinjected to induce ovulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 or 4 successiveoestrous cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> embryo-d<strong>on</strong>or mares (Fig 1). Atotal <str<strong>on</strong>g>of</str<strong>on</strong>g> 22 mares were used. Oestrus was detectedby teasing. Follicular growth and ovulati<strong>on</strong> werechecked by ultras<strong>on</strong>ography, daily untilobservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 33 mm follicle, <str<strong>on</strong>g>the</str<strong>on</strong>g>n every 12 h(excepted in Experiments 4 and 5) untilobservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a corpus luteum.Tested treatments started when a growingfollicle reached 33 mm <str<strong>on</strong>g>of</str<strong>on</strong>g> diameter.In Experiment 1 and 2, Treatment A(busereline 40 µg) and placebo were injected iv 4times every 12 h. In Experiment 2, blood sampleswere taken every 15 min, until ovulati<strong>on</strong>, formeasurement <str<strong>on</strong>g>of</str<strong>on</strong>g> LH using an homologousradioimmunoassay (Hoier 1994).In Experiment 3, Treatment A (busereline 40µg) and B (busereline 20 µg) were injected iv 4times every 12 h.In Experiment 4, Treatment B (20 µgbusereline injected iv 4 times every 12 h) and hCG(2,500 ui, <strong>on</strong>e iv injecti<strong>on</strong>) were compared andtime <str<strong>on</strong>g>of</str<strong>on</strong>g> ovulati<strong>on</strong> was determined by hourlyultrasound examinati<strong>on</strong>s between 32 h and 48 hafter <str<strong>on</strong>g>the</str<strong>on</strong>g> first injecti<strong>on</strong> or <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g>treatments.In Experiment 5, treatment C (13.3 µgbusereline injected iv 3 times every 6 h) and hCG(2,500 ui, <strong>on</strong>e iv injecti<strong>on</strong>) were compared, andtime <str<strong>on</strong>g>of</str<strong>on</strong>g> ovulati<strong>on</strong> was determined by hourlyultrasound examinati<strong>on</strong>s as in Experiment 4.In Experiments 1 and 3, mares wereinseminated with fresh semen from a fertilestalli<strong>on</strong> with a dose <str<strong>on</strong>g>of</str<strong>on</strong>g> 400.10 6 spermatozoadiluted in skim milk extender, every o<str<strong>on</strong>g>the</str<strong>on</strong>g>r day,from <str<strong>on</strong>g>the</str<strong>on</strong>g> start <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment to <str<strong>on</strong>g>the</str<strong>on</strong>g> ovulati<strong>on</strong>. N<strong>on</strong>surgicalembryo collecti<strong>on</strong>s were performed 6days after ovulati<strong>on</strong>.STATISTICALANALYSISQuantitative data were analysed by Student’s t test<strong>on</strong> paired series and qualitative data were analysedby <str<strong>on</strong>g>the</str<strong>on</strong>g> method <str<strong>on</strong>g>of</str<strong>on</strong>g> McNemar, each mare being itsown c<strong>on</strong>trol.RESULTSIn Experiment 1, busereline treatment inducedsignificantly a higher rate <str<strong>on</strong>g>of</str<strong>on</strong>g> ovulati<strong>on</strong> both within76


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3Treatment 1Treatment 2Treatment 1Treatment 2PGF2αPGF2αPGF2αPGF2αPGF2αGroup Aoestrusoestrusoestrusoestrusov Day 6ov Day 6ov Day 6ov Day 6ov Day 6ov Day 6ov Day 6ov Day 6ov Day 6 ov Day 6Group BoestrusoestrusoestrusoestrusPGF2αPGF2αPGF2αPGF2αPGF2αTreatment 2Treatment 1Treatment 2Treatment 1Fig 1: Experimental protocol.(LH)[ng/ml]40353025201510500BuserelinePlaceboTime <str<strong>on</strong>g>of</str<strong>on</strong>g> inducedovulati<strong>on</strong>Time <str<strong>on</strong>g>of</str<strong>on</strong>g>sp<strong>on</strong>taneousovulati<strong>on</strong>3 6 9 12 15 16 21 24 27 30 33 36 39 42 45 48 51 54 57Injecti<strong>on</strong>Injecti<strong>on</strong>Injecti<strong>on</strong>Injecti<strong>on</strong>Hours after <str<strong>on</strong>g>the</str<strong>on</strong>g> first injecti<strong>on</strong>Fig 2: Variati<strong>on</strong> before ovulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> LH c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a mare treated in 2 c<strong>on</strong>secutive cycles alternatively withbusereline (40 µg) and placebo injected intravenously 4 times every 12 h.48 h (P


Equine Embryo TransferTABLE 1: Success rates <str<strong>on</strong>g>of</str<strong>on</strong>g> inducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ovulati<strong>on</strong> in Experiments 1 and 3Exp 1 (72 paired oestrous cycles) Exp 3 (60 paired oestrous cycles)Busereline Placebo P Busereline Busereline P40 µg x4 40 µg x4 20 µg x4Ovulati<strong>on</strong> within 48 hafter 1st injecti<strong>on</strong> 61% 22% < 0.00 183% 90% N.S.Ovulati<strong>on</strong> between 24and 48 h after1st injecti<strong>on</strong> 47% 14% < 0.054 7% 57% N.S.TABLE 2: success rates <str<strong>on</strong>g>of</str<strong>on</strong>g> inducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ovulati<strong>on</strong> in Experiment 4 and 5Exp 4 (50 paired oestrous cycles) Exp 5 (60 paired oestrous cycles)Busereline hCG P Busereline hCG P20 µg x 4 2500 ui 13.3 µg x 3 2500 uiOvulati<strong>on</strong> between32 and 48 hafter 1st injecti<strong>on</strong> 56 % 76 % N.S. 57 % 50 % N.S.Mean time <str<strong>on</strong>g>of</str<strong>on</strong>g>ovulati<strong>on</strong> ± sd 39.5 ± 3.1 h38.4 ± 2.5 h N.S .43.1 ± 2.1 h 37.7 ± 2.3 h < 0.01<str<strong>on</strong>g>of</str<strong>on</strong>g> ovulati<strong>on</strong> did not differ significantly between<str<strong>on</strong>g>the</str<strong>on</strong>g> 2 treatments (busereline 3 x 13.3 µg or hCG2,500 ui). However, <str<strong>on</strong>g>the</str<strong>on</strong>g>re were many earlysp<strong>on</strong>taneous ovulati<strong>on</strong>s within 32 h after <str<strong>on</strong>g>the</str<strong>on</strong>g> start<str<strong>on</strong>g>of</str<strong>on</strong>g> treatment quite <strong>on</strong>ly in cycles treated with hCG(11/30 versus 1/30). When ovulati<strong>on</strong> occurredbetween 32 and 48 h after <str<strong>on</strong>g>the</str<strong>on</strong>g> first or <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>lyinjecti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>re was a significant difference(P


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3IMPROVEMENT OF OVARIAN SUPERSTIMULATORYRESPONSE AND EMBRYO PRODUCTION IN MARESTREATED WITH EPE TWICE DAILYM. A. Alvarenga, P. McCue*, E. L. Squires* and J. R. Neves NetoDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Animal Reproducti<strong>on</strong> and Veterinary Radiology-Scholl <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Medicine andAnimal Science, UNESP –Botucatu –SP –Brazil-18618; *Animal Reproducti<strong>on</strong> and BiotechnologyLaboratory, Colorado State University, Fort Collins, Colorado 80523, USAINTRODUCTIONEquine pituitary extract (EPE) is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>lycompound that has been reported to c<strong>on</strong>sistentlyinduce multiple ovulati<strong>on</strong> in horses. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>superovulatory resp<strong>on</strong>se in mares treated withEPE, is far lower than <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se obtained ino<str<strong>on</strong>g>the</str<strong>on</strong>g>r species. Ovulati<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.7 to 3.8ovulati<strong>on</strong>s per cycle have been reported after EPEtreatment in mares (McCue 1996).In cows, <str<strong>on</strong>g>the</str<strong>on</strong>g> superovulatory resp<strong>on</strong>se is morec<strong>on</strong>sistent when FSH is injected twice daily than<strong>on</strong>ce daily (M<strong>on</strong>niaux et al. 1983). On <str<strong>on</strong>g>the</str<strong>on</strong>g> firstreport <str<strong>on</strong>g>of</str<strong>on</strong>g> successful superovulati<strong>on</strong> in maresDouglas et al. (1974) used EPE twice daily inseas<strong>on</strong>ally anovulatory mares, a subsequentpublicati<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> same laboratory showedsimilar resp<strong>on</strong>se using EPE <strong>on</strong>ce daily (Lapin andGin<str<strong>on</strong>g>the</str<strong>on</strong>g>r 1977). Since <str<strong>on</strong>g>the</str<strong>on</strong>g>n, <str<strong>on</strong>g>the</str<strong>on</strong>g> protocol used toinduce multiple ovulati<strong>on</strong>s in mares c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>cedaily EPE administrati<strong>on</strong>. Attempts to improve <str<strong>on</strong>g>the</str<strong>on</strong>g>effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> EPE for inducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> supeovulati<strong>on</strong>in mares have focused <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> daily dose (Woodsand Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r 1982), time <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment initiati<strong>on</strong>(Dippert et al. 1992) and utilisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> purifiedfracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equine FSH (Rosas et al. 1998). Ourrecent study had dem<strong>on</strong>strated that more frequentdaily injecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> EPE increased ovarian resp<strong>on</strong>seto EPE (Alvarenga et al. 1999). The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>present experiment was to compare superovulatoryresp<strong>on</strong>se and embryo recovery rates <str<strong>on</strong>g>of</str<strong>on</strong>g> cyclingmares follow EPE administrati<strong>on</strong> <strong>on</strong>ce and twicedaily.MATERIALS AND METHODSEquine pituitary extract (EPE) was prepared atColorado State University utilising a methodpurposed by Guillou and Combarnous (1983).Seven days after ovulati<strong>on</strong> mares were treatedwith PGF2 (Dinoprost 10 mg) administered<strong>on</strong>ce, im and <str<strong>on</strong>g>the</str<strong>on</strong>g>n randomly assigned to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> 2treatments: Group 1 (n=8) received 25 mg <str<strong>on</strong>g>of</str<strong>on</strong>g> EPE<strong>on</strong>ce daily and Group 2 (n=8) treated with 25 mg<str<strong>on</strong>g>of</str<strong>on</strong>g> EPE 2 times daily (8 am and 6 pm) given im.For both group <str<strong>on</strong>g>of</str<strong>on</strong>g> mares <str<strong>on</strong>g>the</str<strong>on</strong>g> treatment wasdisc<strong>on</strong>tinued when at least half <str<strong>on</strong>g>of</str<strong>on</strong>g> >30 mmdetected follicles reached 35 mm and 2,500 iu <str<strong>on</strong>g>of</str<strong>on</strong>g>hCG was administered iv.Mares were inseminated daily, until ovulati<strong>on</strong>,with semen from a fertile Arabian stalli<strong>on</strong>.Embryo recovery was performed 8 days afterovulati<strong>on</strong>. On <str<strong>on</strong>g>the</str<strong>on</strong>g> day <str<strong>on</strong>g>of</str<strong>on</strong>g> embryo recovery bloodsamples were collected to determine differences in<str<strong>on</strong>g>the</str<strong>on</strong>g> circulating levels <str<strong>on</strong>g>of</str<strong>on</strong>g> progester<strong>on</strong>e in mareswith different number <str<strong>on</strong>g>of</str<strong>on</strong>g> ovulati<strong>on</strong>s.RESULTSA higher number <str<strong>on</strong>g>of</str<strong>on</strong>g> ovulati<strong>on</strong>s occurred and alarger number <str<strong>on</strong>g>of</str<strong>on</strong>g> embryos were recovered in marestreated twice daily than those treated <strong>on</strong>ce daily(P


Equine Embryo TransferTABLE 1: Superovulatory resp<strong>on</strong>se in mares treated with EPE <strong>on</strong>ce and twice dailyParameters EPE <strong>on</strong>ce daily EPE twice dailyNumber <str<strong>on</strong>g>of</str<strong>on</strong>g> mares 88Days treated 6.62 ± 1.3 a 6.6±1.6 aInterval treatment - ovulati<strong>on</strong> 8.1±0.9 a 8.5±1.7 a% mares with multiple ovulati<strong>on</strong>s 62.5% 100%Mares with > 4 ovulati<strong>on</strong>s 1 6Ovulati<strong>on</strong>s/mare 2.4 ±1.8 a 7.1±5.1 bEmbryo/mare 1.6±1.0 a 3.5±1.8 b% embryo/ovulati<strong>on</strong> 67% a 49% aa-b Means with different superscripts differ within rows (P


IMPACT OF MULTIPLE OVULATIONS IN ACOMMERCIAL <strong>EQUINE</strong> EMBRYO TRANSFERPROGRAMMEL. Losinno, J. J. Aguilar and H. Lisa*Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3Producción Equina, Fac.Agr.y Veterinaria, Universidad Naci<strong>on</strong>al de Rio Cuarto, (5800) Rio Cuarto,Argentina; *Equine Embryo Transfer Centre La Irenita SA, Daireaux, Buenos Aires, ArgentinaINTRODUCTIONArgentina is internati<strong>on</strong>ally known for its equineindustry and is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> countries with moreequine embryo transfer performed per year. Most<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se transfers are demanded by <str<strong>on</strong>g>the</str<strong>on</strong>g> Poloindustry which has been greatly benefited with thistechnology since 1989 (Riera 1999). TheArgentine Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Polo Horse Breeders(AACCP) have no restricti<strong>on</strong>s <strong>on</strong> foals producedby artificial inseminati<strong>on</strong> or embryo transfer.The mare is generally c<strong>on</strong>sider a m<strong>on</strong>ovularspecies, but <str<strong>on</strong>g>the</str<strong>on</strong>g> reported incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> multipleovulati<strong>on</strong>s has ranged between 4 and 43% (Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r1992; Bruyas 1997). A wide variati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>reports c<strong>on</strong>sider breed, age, reproductive status,genetics, nutriti<strong>on</strong> and seas<strong>on</strong> as <str<strong>on</strong>g>the</str<strong>on</strong>g> main factorsthat may affect <str<strong>on</strong>g>the</str<strong>on</strong>g> incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> multipleovulati<strong>on</strong>s in mares (Squires 1987; Pascoe 1987;Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r 1992; Bruyas 1997). The incidence <str<strong>on</strong>g>of</str<strong>on</strong>g>multiple ovulati<strong>on</strong>s in Thoroughbreds and drafthorses varied between 15 and 30% whereas that inp<strong>on</strong>ies and light breeds appeared to be lower(2–10%) (Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r 1992; Brujas 1997).Despite <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>siderable amount <str<strong>on</strong>g>of</str<strong>on</strong>g>investigati<strong>on</strong>s to induced superovulati<strong>on</strong> in maresthrough <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> equine pituitary extracts, FSHand immunisati<strong>on</strong> against inhibin limited andinc<strong>on</strong>sistent results have been obtained (Squires1987; McCue 1999). Currently, <str<strong>on</strong>g>the</str<strong>on</strong>g> d<strong>on</strong>or mares incommercial embryo transfer programmes are notsuperstimulated because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g>commercially available treatments.Factors affecting <str<strong>on</strong>g>the</str<strong>on</strong>g> reproductive efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g>equine embryo transfer (EET) programmesinclude age, selecti<strong>on</strong> and management <str<strong>on</strong>g>of</str<strong>on</strong>g> d<strong>on</strong>orsand recipients, degree <str<strong>on</strong>g>of</str<strong>on</strong>g> synchr<strong>on</strong>y, embryoquality, transfer technique and pregnancy losses(Aguilar 1997; Squires 1999).The limitati<strong>on</strong>s for a successful commercialoperati<strong>on</strong> in EET include financial c<strong>on</strong>siderati<strong>on</strong>srelated to <str<strong>on</strong>g>the</str<strong>on</strong>g> costs <str<strong>on</strong>g>of</str<strong>on</strong>g> purchasing, maintaining andsynchr<strong>on</strong>ising recipients, breed restricti<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g>number <str<strong>on</strong>g>of</str<strong>on</strong>g> foals accepted per seas<strong>on</strong> andsubfertility <str<strong>on</strong>g>of</str<strong>on</strong>g> mares and stalli<strong>on</strong>s (McCue 1999).The objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> this study were to determine<str<strong>on</strong>g>the</str<strong>on</strong>g> frequency, distributi<strong>on</strong>, repeatability andimpact <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple ovulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> d<strong>on</strong>or mares <strong>on</strong>reproductive efficiency and ec<strong>on</strong>omic results <str<strong>on</strong>g>of</str<strong>on</strong>g> alarge-scale commercial equine embryo transferprogramme.MATERIALS AND METHODSRecords from four natural breeding seas<strong>on</strong>s(96/97–99/00) in <str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn hemisphere(October–April) <str<strong>on</strong>g>of</str<strong>on</strong>g> an Equine Embryo TransferCentre were analysed in this study. The facilitieswere located in <str<strong>on</strong>g>the</str<strong>on</strong>g> Buenos Aires province,Argentina, at 33°S and 64°W in a central,temperate area with daylight hours ranging from11.5–14.5 during <str<strong>on</strong>g>the</str<strong>on</strong>g> breeding seas<strong>on</strong>.A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 197 Polo Argentino d<strong>on</strong>or mares,mostly Thoroughbred type, were included in <str<strong>on</strong>g>the</str<strong>on</strong>g>study. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mares were in activecompetiti<strong>on</strong> during <str<strong>on</strong>g>the</str<strong>on</strong>g> spring and immediatelyafter finishing <str<strong>on</strong>g>the</str<strong>on</strong>g> campaign in Argentina, <str<strong>on</strong>g>the</str<strong>on</strong>g>ywere moved to <str<strong>on</strong>g>the</str<strong>on</strong>g> Embryo Transfer Centre. Thed<strong>on</strong>ors and recipients mares were maintainedexclusively <strong>on</strong> good quality pasture. The cycles <str<strong>on</strong>g>of</str<strong>on</strong>g>a 500 mares herd, mostly criollo type mares, werec<strong>on</strong>tinuously m<strong>on</strong>itored by palpati<strong>on</strong> andultrasound, to provide naturally synchr<strong>on</strong>isedrecipient mares.81


Equine Embryo TransferTABLE 1: Frequency, percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> positive flushes, embryo recovery rate, pregnancy rate andefficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> cycles with single, double, triple and multiple ovulati<strong>on</strong>sCycles n (%) % positive Embryos Pregnancy Efficiencyflushes recovered (%) rateSingle 821(71.0) 64.9 533(64.9) a 79.9 a 0.52 aDouble 313(27.1) 76.4 364(116.3) b 82.3 a 0.97 bTriple 22(1.9) 81.8 36(163.6) c 80.6 a 1.32 cMultiple 335(29.0) 76.7 400(119.4) b 82.1 a 0.98 bDifferent superscripts indicate statistical differencesD<strong>on</strong>or mares were inseminated with at least500 x 10 6 motile sperm <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh extended semenwhen a 35 mm follicle was detected byultras<strong>on</strong>ography. Embryo recovery attempts wereperformed n<strong>on</strong> surgically at Days 7–8 postovulati<strong>on</strong> with PBS supplemented with 1% FCSwith an in-line embryo filter system (Aguilar1997). All transfers were carried out using <str<strong>on</strong>g>the</str<strong>on</strong>g>n<strong>on</strong>-surgical technique to recipients selected from<str<strong>on</strong>g>the</str<strong>on</strong>g> available pool according <str<strong>on</strong>g>the</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g>synchr<strong>on</strong>y with <str<strong>on</strong>g>the</str<strong>on</strong>g> d<strong>on</strong>or (Riera 1999).The transferred recipients were m<strong>on</strong>itored forpregnancy by ultrasound at Day 7 after transfer.STATISTICALANALYSESEmbryo recovery rate and pregnancy rate <str<strong>on</strong>g>of</str<strong>on</strong>g> singleand multiple ovulati<strong>on</strong>s were compared by ChiSquare test, whereas efficiency was compared byt-Test.RESULTSThe number <str<strong>on</strong>g>of</str<strong>on</strong>g> flushes performed to each marevaried from 1–23 and <str<strong>on</strong>g>the</str<strong>on</strong>g> average number <str<strong>on</strong>g>of</str<strong>on</strong>g>flushes per mare was 5.8. From <str<strong>on</strong>g>the</str<strong>on</strong>g> total 1156flushes, 790 (positive flushes, 68.3%) resultedwith at least <strong>on</strong>e embryo collected. The overallembryo recovery rate was 80.7% (933/1156)which gave <strong>on</strong> average 1.18 embryos per positiveflush. The pregnancy rate at 30 days was 80.6%(752/933) and <str<strong>on</strong>g>the</str<strong>on</strong>g> overall efficiency in terms <str<strong>on</strong>g>of</str<strong>on</strong>g>pregnancies per flush was 0.65 (752/1156).The frequency, percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> positive flushes,embryo recovery rate, pregnancy rate andefficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> cycles with single, double, triple andmultiple ovulati<strong>on</strong>s are showed in Table 1.There was a statistical tendency (P=0.1) for <str<strong>on</strong>g>the</str<strong>on</strong>g>m<strong>on</strong>thly distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple ovulati<strong>on</strong>s percycle to increase towards <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> breedingseas<strong>on</strong> (April): October 0% (0/14), November26.0% (19/73), December 29.8.% (60/201), January30.4% (104/341), February 23.3% (39/167), March27.8% (37/133) and April 53.3% (8/15).Mares with at least <strong>on</strong>e multiple ovulati<strong>on</strong>detected during <str<strong>on</strong>g>the</str<strong>on</strong>g>se 4 seas<strong>on</strong>s were c<strong>on</strong>sideredmultiple ovulators and represented a 75.0%(148/197) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong> under study, whereas<strong>on</strong>ly 24.8% (49/197) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mares were classifiedas single ovulators.Multiple ovulator mares repeated this event <strong>on</strong>an average <str<strong>on</strong>g>of</str<strong>on</strong>g> 38% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cycles, and thisrepeatability varied between 7 and 100 %. A 5.4%(8/148) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mares repeated multiple ovulati<strong>on</strong>s<strong>on</strong> 100% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir cycles (n=22). The distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>mares with different repeatabilities is showed inGraphic 1.The benefit/cost ratio obtained frompregnancies <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple ovulati<strong>on</strong> cycles was 96%higher than <str<strong>on</strong>g>the</str<strong>on</strong>g> benefit/cost ratio obtained frompregnancies <str<strong>on</strong>g>of</str<strong>on</strong>g> single ovulati<strong>on</strong> cycles (2.40 and1.25, respectively).DISCUSSIONIt can be c<strong>on</strong>cluded from <str<strong>on</strong>g>the</str<strong>on</strong>g>se results that multipleovulati<strong>on</strong>s increased <str<strong>on</strong>g>the</str<strong>on</strong>g> embryo recovery rate.Indirectly can be assumed that oocytes frommultiple ovulati<strong>on</strong>s are able to fertilise anddevelop to normal transferable embryos. Theseembryos <strong>on</strong>ce transferred were able to producepregnancies at very similar rates as embryos fromsingle ovulated oocytes.Multiple ovulati<strong>on</strong>s clearly increased <str<strong>on</strong>g>the</str<strong>on</strong>g>efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> embryo transfer programmebecause allowed <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a highernumber <str<strong>on</strong>g>of</str<strong>on</strong>g> pregnancies at a lower cost which had adirect impact <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omic results.82


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3REFERENCESAguilar, J. and Woods, G. (1997) Embryo transfer inhorses: indicati<strong>on</strong>s, technique and expectedoutcomes, in current <str<strong>on</strong>g>the</str<strong>on</strong>g>rapy in large animal.Theriogenol. 208-213.Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r, O.J., Doulas, R.H. and Lawrence, J.R. (1982)Twinning in mares: a survey <str<strong>on</strong>g>of</str<strong>on</strong>g> veterinarians andanalyses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>riogenology records. Theriogenol. 18,333-347.Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r, O. (1992) Reproductive Biology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Mare.Basic and Applied Aspects. 2nd ed. Cross Plains,WI: Equiservices.McCue, P.M. (1996) Superovulati<strong>on</strong>. Veterinary Clinics<str<strong>on</strong>g>of</str<strong>on</strong>g> North America. Equine Practice 12, 1-11.McCue, P.M. et al. (1999) Commercial embryo transferin <str<strong>on</strong>g>the</str<strong>on</strong>g> horse. in 18th Annual C<strong>on</strong>venti<strong>on</strong>. ColoradoSprings, Colorado.Pascoe, R., Pascoe, D. and Wils<strong>on</strong>, M. (1987) Influence<str<strong>on</strong>g>of</str<strong>on</strong>g> follicular status <strong>on</strong> twinning rate in mares. J.reprod. Fert. Suppl. 35, 183-189.Riera, F.L. (1999) Equine embryo transfer, in EquineBreeding Managment and ArtificialInseminati<strong>on</strong>.Ed: J. Samper, W.B. Saunders Co:Philadelphia. 229-246.Squires, E. et al. (1987) Reproductive characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g>sp<strong>on</strong>taneous single and double ovulating mares andsuperovulating mares. J. reprod. Fert. Suppl. 35,399-403.Squires, L.L., McCue, P.M. and Vanderwall, D. (1999)The current status <str<strong>on</strong>g>of</str<strong>on</strong>g> equine embryo transfer.Theriogenol. 51, 91-104.83


Equine Embryo TransferEMBRYO RECOVERY RATES IN MARES WITHECHOGENIC PREOVULATORY FOLLICLESP. M. McCue, D. K. Vanderwall and E. L. SquiresEquine Reproducti<strong>on</strong> Laboratory, Colorado State University, Fort Collins, Colorado 80523, USAINTRODUCTIONEchogenic particles may be noted in <str<strong>on</strong>g>the</str<strong>on</strong>g> follicularfluid <str<strong>on</strong>g>of</str<strong>on</strong>g> dominant follicles prior to ovulati<strong>on</strong> insome mares. The goals <str<strong>on</strong>g>of</str<strong>on</strong>g> this study were todetermine <str<strong>on</strong>g>the</str<strong>on</strong>g> incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> preovulatory folliclesc<strong>on</strong>taining echogenic follicular fluid and compareembryo recovery rates following ovulati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> echogenic or n<strong>on</strong>-echogenic follicles.Reproductive records <str<strong>on</strong>g>of</str<strong>on</strong>g> 721 mares examined bytransrectal ultras<strong>on</strong>ography prior to breeding overa total <str<strong>on</strong>g>of</str<strong>on</strong>g> 1,694 oestrous cycles were reviewed.Embryo recovery data were recorded for 34 maresthat ovulated a single n<strong>on</strong>-echogenic follicle or asingle echogenic follicle during oestrous cycleswithin <str<strong>on</strong>g>the</str<strong>on</strong>g> same breeding seas<strong>on</strong>. N<strong>on</strong>-echogenicand echogenic preovulatory follicles were noted in93.8% and 6.2% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cycles, respectively.Embryo recovery rate per flush was significantlyhigher (P


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3TABLE 1: Embryo recovery rates from mares following ovulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-echogenic or echogenicpreovulatory folliclesUltrasound appearance (N) No. <str<strong>on</strong>g>of</str<strong>on</strong>g> cycles No. <str<strong>on</strong>g>of</str<strong>on</strong>g> embryos % embryo recoveryN<strong>on</strong>echogenic 34 111 50 45.0Echogenic 34 44 92 0.5ovulati<strong>on</strong> when a preovulatory follicle greater than35 mm was detected. Mares were inseminatedwith ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r fresh, cooled-transported or frozensemen prior to ovulati<strong>on</strong>. A mare was c<strong>on</strong>sideredto be pregnant following breeding to an echogenicor n<strong>on</strong>echogenic follicle if ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r an embryo wascollected 7–8 days after ovulati<strong>on</strong> or an embry<strong>on</strong>icvesicle was detected by transrectalultras<strong>on</strong>ography 12–16 days after ovulati<strong>on</strong>.Statistical comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pregnancy ratesbetween mares that ovulated ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r echogenic orn<strong>on</strong>echogenic follicles was made by Chi-squareanalysis. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ages <str<strong>on</strong>g>of</str<strong>on</strong>g> mares with andwithout echogenic ovulatory follicles was madeby Student’s t-test. Data are presented as <str<strong>on</strong>g>the</str<strong>on</strong>g> mean±sd.RESULTSRecords for 1,694 oestrous cycles from a total <str<strong>on</strong>g>of</str<strong>on</strong>g>721 mares examined during <str<strong>on</strong>g>the</str<strong>on</strong>g> 5 year period werereviewed. N<strong>on</strong>-echogenic and echogenicpreovulatory follicles were noted in 1,589 (93.8%)and 105 (6.2%) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1,694 cycles, respectively.Echogenic ovulatory follicles were observed atleast <strong>on</strong>ce during a breeding seas<strong>on</strong> in 16.0% <str<strong>on</strong>g>of</str<strong>on</strong>g> allmares. The age <str<strong>on</strong>g>of</str<strong>on</strong>g> mares exhibiting echogenicovulatory follicles (15.0 ± 5.4 years) was notsignificantly different (P>0.05) than age <str<strong>on</strong>g>of</str<strong>on</strong>g> maresnot exhibiting echogenic ovulatory follicles (11.8± 5.5 years). The mean interval from initialdetecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> echogenic particles within <str<strong>on</strong>g>the</str<strong>on</strong>g>follicular fluid and ovulati<strong>on</strong> was 1.4 ± 0.9 days.Ovulati<strong>on</strong> was induced by hCG or GnRH in 87.3%<str<strong>on</strong>g>of</str<strong>on</strong>g> all oestrous cycles. Treatment with hCG orGnRH preceded detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an echogenicovulatory follicle in 41.9% <str<strong>on</strong>g>of</str<strong>on</strong>g> cases.Administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hCG or GnRH occurredfollowing detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> echogenic ovulatoryfollicles in 25.7% <str<strong>on</strong>g>of</str<strong>on</strong>g> cases and no hCG or GnRHwas administered before or after detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> anechogenic ovulatory follicle in 32.4% <str<strong>on</strong>g>of</str<strong>on</strong>g> cases.Embryo recovery data were recorded for 34mares that ovulated a single n<strong>on</strong>-echogenic follicleor a single echogenic follicle during oestrouscycles within <str<strong>on</strong>g>the</str<strong>on</strong>g> same breeding seas<strong>on</strong>. Embryorecovery rate per flush was significantly higher(P


Equine Embryo TransferCOMPARISON OF EMBRYO RECOVERY RATES FROMTWO YEARS OLD AND MATURE MARESF. Camillo, I. Vannozzi, A. Rota, S. Romagnoli and G. AriaDipartimento di Clinica Veterinaria, Università di Pisa,56010 San Piero a Grado, Pisa, ItalyINTRODUCTIONEmbryo recovery rates in 2 year old (TY) andmature (MA) Haflinger mares were 74/85 (87%)and 22/26 (84.6%) respectively. No short or l<strong>on</strong>gterm effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> early use as embryo d<strong>on</strong>ors wereobserved in <str<strong>on</strong>g>the</str<strong>on</strong>g> TY mares. This study shows thatTY old mares can be successfully used as embryod<strong>on</strong>ors.Fillies, especially if born during winter orspring, reach puberty at <str<strong>on</strong>g>the</str<strong>on</strong>g> age <str<strong>on</strong>g>of</str<strong>on</strong>g> 12–15 m<strong>on</strong>ths(Wess<strong>on</strong> and Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r 1981), have an ovulatoryseas<strong>on</strong> similar to that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mature mares at 2years, but rarely are bred before <str<strong>on</strong>g>the</str<strong>on</strong>g> age <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 years.This is due to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cern <str<strong>on</strong>g>of</str<strong>on</strong>g> compromising <str<strong>on</strong>g>the</str<strong>on</strong>g>irbody development and/or ag<strong>on</strong>istic or showperformances. To anticipate by at least <strong>on</strong>e year <str<strong>on</strong>g>the</str<strong>on</strong>g>reproductive life <str<strong>on</strong>g>of</str<strong>on</strong>g> a valuable mare avoiding <str<strong>on</strong>g>the</str<strong>on</strong>g>possible adverse effects <str<strong>on</strong>g>of</str<strong>on</strong>g> an early pregnancy, 2years old fillies could be used as embryo d<strong>on</strong>ors.The use <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 year old mares as embryo d<strong>on</strong>orshas been reported to result in a low embryorecovery rates by some authors (Iuliano andSquires 1985; Steiner and Jordan 1988) but not byo<str<strong>on</strong>g>the</str<strong>on</strong>g>rs (Fleury et al. 1989; Savage et al. 1989.)The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was to compare embryorecovery rates from 2 year old and mature mares.MATERIALS AND METHODSDuring May–July <str<strong>on</strong>g>of</str<strong>on</strong>g> different breeding seas<strong>on</strong>sfifty-<strong>on</strong>e 24–28 m<strong>on</strong>ths old (2-year-old = TY) and12 4–12-year-old (mature = MA) Haflinger mareswere employed as embryo d<strong>on</strong>ors for a total <str<strong>on</strong>g>of</str<strong>on</strong>g> 85and 26 oestrus cycles, respectively.Twenty seven 2- and 3-year-old Haflingermares were employed as embryo recipients.Mares were checked daily by ultrasounds foruterine status and ovarian activity; oestrus wasinduced by prostaglandin F2alfa (PGF 2α ); d<strong>on</strong>ormares were naturally bred, or artificiallyinseminated with fresh extended semen, everysec<strong>on</strong>d day <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oestrus from <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> agrowing follicle/s ≥34 mm until ovulati<strong>on</strong>. Tosynchr<strong>on</strong>ise ovulati<strong>on</strong>s d<strong>on</strong>ors and recipients weretreated with human cori<strong>on</strong>ic g<strong>on</strong>adotropin.Seven to 8 days after ovulati<strong>on</strong>, mares wereflushed 3 times for embryo recovery (Lagneaux etal. 1988) ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r with a soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Dulbecco’s PBSc<strong>on</strong>taining 0.2% <str<strong>on</strong>g>of</str<strong>on</strong>g> bovine serum albumin or withsaline, depending if <str<strong>on</strong>g>the</str<strong>on</strong>g> transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> an embryo wasplanned or not. Recovered embryos were evaluatedfor morphology (McKinn<strong>on</strong> and Squires 1988).When embryo transfer was planned, recoveredembryos were washed 10 times in a new soluti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> DPBS, placed in a French straw and n<strong>on</strong>surgically transferred in <str<strong>on</strong>g>the</str<strong>on</strong>g> recipients using aguarded French gun (Lagneaux et al. 1988).Recipient mares, when pregnant, were treatedwith PGF 2α at Day 30 <str<strong>on</strong>g>of</str<strong>on</strong>g> gestati<strong>on</strong> to induceaborti<strong>on</strong>.In <str<strong>on</strong>g>the</str<strong>on</strong>g> following years, foaling rates <str<strong>on</strong>g>of</str<strong>on</strong>g> 11mares previously used as TY embryo d<strong>on</strong>ors and <str<strong>on</strong>g>of</str<strong>on</strong>g>8 c<strong>on</strong>trol mares, <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same breed, age and studand never used as embryo d<strong>on</strong>ors, were compared.These animals were kept <strong>on</strong> pasture with stalli<strong>on</strong>s(<strong>on</strong>e stalli<strong>on</strong>/20 mares or less) and <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> live foals was recorded for a period <str<strong>on</strong>g>of</str<strong>on</strong>g> 1–8breeding seas<strong>on</strong>s.Statistical analysis was performed using <str<strong>on</strong>g>the</str<strong>on</strong>g> chisquare test.RESULTSNo differences were found in embryo recoveryrates and recipient pregnancy rates in <str<strong>on</strong>g>the</str<strong>on</strong>g> TY and86


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3TABLE 1: Embryo recovery rates and recipients pregnancy rates at Day 14 and 30 in TY and in MAHaflinger maresEmbryo recovery rate Recipient pregnancy rate Recipient pregnancy rate(Day 14) (Day 30)Two years 74/85(87%) 8/16(50%) 8/16 (50%)mature 22/26(84.6%) 6/11(54.5%) 5/11(45.4%)TABLE 2: Embryo recovery rates in <str<strong>on</strong>g>the</str<strong>on</strong>g> different years <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> study in <str<strong>on</strong>g>the</str<strong>on</strong>g> TY d<strong>on</strong>ors1991 1992 1993 1994 1995 1996 1997 Total10/13 4/6 17/18 6/6 17/20 12/12 8/10 74/85(77%) (67%) (94%) (100%) (85%) (100%) (80%) (87%)TABLE 3: Outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>secutive embryo recovery attempts in <str<strong>on</strong>g>the</str<strong>on</strong>g> same mares in <str<strong>on</strong>g>the</str<strong>on</strong>g> TY d<strong>on</strong>ors1st cycle 2nd cycle 3rd cycle 4th cycle <str<strong>on</strong>g>5th</str<strong>on</strong>g> cycle 6th cycle Total44/51 20/24 6/6 2/2 1/1 1/1 74/85(86%) (83%) (100%) - - - (87%)MA mares (Table 1). Recipients ovulated between<strong>on</strong>e day before and 4 days after <str<strong>on</strong>g>the</str<strong>on</strong>g> d<strong>on</strong>ors.Embryo quality was excellent or good in 71/74(95.9%) and in 22/22 embryos derived from <str<strong>on</strong>g>the</str<strong>on</strong>g>TY and <str<strong>on</strong>g>the</str<strong>on</strong>g> MA mares, respectively.Embryo recovery rates in <str<strong>on</strong>g>the</str<strong>on</strong>g> TY d<strong>on</strong>ors weresimilar both in <str<strong>on</strong>g>the</str<strong>on</strong>g> different years <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> study(Table 2) and in c<strong>on</strong>secutive oestrous cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>same year (Table 3).TY d<strong>on</strong>ors and c<strong>on</strong>trol mares, when bred,produced live foals in 42/49 (85.7%) and in 38/43(88.4%) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> occasi<strong>on</strong>s, respectively.DISCUSSION AND CONCLUSIONSIn this study <str<strong>on</strong>g>the</str<strong>on</strong>g> use TY Haflinger mares asembryo d<strong>on</strong>ors resulted in a high embryo recoveryrate throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> years and in a pregnancy rateafter n<strong>on</strong> surgical transfer in <str<strong>on</strong>g>the</str<strong>on</strong>g> normal range(Squires et al. 1999). Both embryo recovery ratesand recipient pregnancy rates were similar in TYand in MA mares.These results are in agreement with whatfound by Savage et al. (1989) and Fleury et al.(1985), which reported an embryo recovery rate <str<strong>on</strong>g>of</str<strong>on</strong>g>80.6% in 2 years old Arabian fillies and <str<strong>on</strong>g>of</str<strong>on</strong>g> 85% inunder 3 years old Mangalarga mares, respectively.On <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary, Iuliano and Squires (1985)obtained an embryo recovery rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly 36.3% in2-year-old Arabian fillies and Steiner and Jordan(1988) reported a lower embryo recovery rate inthree 2-year-old than in 3 mature Hanoverianmares. Breed and seas<strong>on</strong>al effects could haveaccounted for <str<strong>on</strong>g>the</str<strong>on</strong>g>se differing results.Although in our study most fillies wereemployed as embryo d<strong>on</strong>ors <strong>on</strong>ly <strong>on</strong>ce or twice,some mares provided embryos in 3 and 6c<strong>on</strong>secutive oestrus cycles suggesting that shorttime fertility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se young d<strong>on</strong>ors was notaffected by embryo recovery procedures aspreviously reported for mature mares (McKinn<strong>on</strong>and Squires 1988). The foaling rates for marespreviously used as embryo d<strong>on</strong>ors and for c<strong>on</strong>trolswas similar, c<strong>on</strong>firming that early use as d<strong>on</strong>orsdid not affect fertility in <str<strong>on</strong>g>the</str<strong>on</strong>g> following years(Savage et al. 1989).In c<strong>on</strong>clusi<strong>on</strong>, this study indicate that 2-yearoldmares can be successfully used as embryod<strong>on</strong>ors, as a method to anticipate foals producti<strong>on</strong>from valuable mares, with no negative effects <strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g>ir future reproductive efficiency.ACKNOWLEDGEMENTSWe thank <str<strong>on</strong>g>the</str<strong>on</strong>g> Stud <str<strong>on</strong>g>of</str<strong>on</strong>g> Corpo Forestale dello Stato<str<strong>on</strong>g>of</str<strong>on</strong>g> Pieve S. Stefano (AR) which provided <str<strong>on</strong>g>the</str<strong>on</strong>g>horses, and <str<strong>on</strong>g>the</str<strong>on</strong>g> former undergraduate students <str<strong>on</strong>g>of</str<strong>on</strong>g>Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Medicine <str<strong>on</strong>g>of</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g>87


Equine Embryo TransferPisa for help in management <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> animals.The study was partially funded by <str<strong>on</strong>g>the</str<strong>on</strong>g>University <str<strong>on</strong>g>of</str<strong>on</strong>g> Pisa (F<strong>on</strong>do di Ateneo).REFERENCESFleury, J.J., Costa Neto, J.B.F. and Alvarenga, M.A.(1989) Results from an embryo transfer programmewith Mangalarga mares in Brazil. Equine vet. J.Suppl. 8, 73-74.Iuliano, M.F. and Squires, E.L. (1985) Embryo transferin two-year-old d<strong>on</strong>or. Theriogenol. 24, 647-553.Lagneaux, D., Duchamp, G. and Palmer E. (1988) Latransplantati<strong>on</strong> embry<strong>on</strong>naire chez la jument. 14emeCEREOPA. 163-181.McKinn<strong>on</strong>, A.O. and Squires, E.L. (1988) Equineembryo transfer. Vet. Clin. <str<strong>on</strong>g>of</str<strong>on</strong>g> North Am. EquinePract. 4, 305-333.Savage, N.C., Woodcock, L.A. and de Gannes, G. (1988)Use <str<strong>on</strong>g>of</str<strong>on</strong>g> two-years-old mares as embryo d<strong>on</strong>ors in acommercial embryo transfer programme. EquinePract. 68-70.Squires, E.L., McCue, P.M. and Vanderwall, D. (1999)The current status <str<strong>on</strong>g>of</str<strong>on</strong>g> equine embryo transfer.Theriogenol. 51, 91-104.Steiner, J.V. and Jordan, M.T. (1988) Ovulati<strong>on</strong> rates,embryo collecti<strong>on</strong> rates and embryo transfer ratesfor mature and two-years-old Hanoverian mares.Equine Pract. 10, 6-8.Wess<strong>on</strong>, J.A. and Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r, O.J. (1981) Influence <str<strong>on</strong>g>of</str<strong>on</strong>g>seas<strong>on</strong> and age <strong>on</strong> reproductive activity in p<strong>on</strong>ymares <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> a slaughterhouse survey. J.anim. Sci. 52, 119-129.88


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3EFFECT OF INSEMINATION TIMING ON EMBRYORECOVERY RATE, PREGNANCY RATE AFTERTRANSFER, AND PREGNANCY LOSS RATE IN ACOMMERCIAL EMBRYO TRANSFER PROGRAMMEF. L. Riera, J. E. Roldán and K. Hinrichs*Centro de Reproducción Equina Doña Pilar, Lincoln, Argentina; *Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Physiology andPharmacology, College <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Medicine, Texas A&M University, College Stati<strong>on</strong>, Texas, USAINTRODUCTIONScheduling inseminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> d<strong>on</strong>or mares is a majorcomp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> success in an embryo transferprogram. Periodically, a stalli<strong>on</strong> is overbooked,semen is shipped late, help needed for stalli<strong>on</strong>collecti<strong>on</strong> is absent, or a mare ovulates earlier thananticipated, and <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly chance <str<strong>on</strong>g>of</str<strong>on</strong>g> pregnancy <strong>on</strong>that cycle is to inseminate <str<strong>on</strong>g>the</str<strong>on</strong>g> mare after ovulati<strong>on</strong>.We recorded data for 191 cycles in d<strong>on</strong>or mares <str<strong>on</strong>g>of</str<strong>on</strong>g>normal fertility over <strong>on</strong>e breeding seas<strong>on</strong> toexamine <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> inseminati<strong>on</strong> time <strong>on</strong> embryorecovery rate, pregnancy rate after transfer, andembryo loss rate in recipient mares.MATERIALS AND METHODSThirty seven polo p<strong>on</strong>y mares aging 5–20 yearsand weighing 450–550 kg were used as d<strong>on</strong>ormares. Mares with preovulatory follicles wereexamined by ultras<strong>on</strong>ography and palpati<strong>on</strong> perrectum twice daily, between 6 and 8 am andbetween 6 and 8 pm.Eight Thoroughbred or Thoroughbred-crossfertile stalli<strong>on</strong>s were used to inseminate <str<strong>on</strong>g>the</str<strong>on</strong>g>d<strong>on</strong>ors. Inseminati<strong>on</strong> with extended fresh orcooled semen was performed before ovulati<strong>on</strong>(pre) if possible; however, due to c<strong>on</strong>straints asgiven above, some mares were first inseminated at<str<strong>on</strong>g>the</str<strong>on</strong>g> time ovulati<strong>on</strong> was detected (within 12 h afterovulati<strong>on</strong> occurred; post).Uterine lavage for embryo recovery wasperformed using a standard technique with an inlineembryo filter (Riera and MacD<strong>on</strong>ough 1993).Embryos were recovered <strong>on</strong> Day 7 for pre maresand at Day 8 for post mares.Embryos were located using a dissecti<strong>on</strong>microscope and graded for quality <strong>on</strong> a 1–4 scaleaccording to morphological features. Embryoswere also classified according to <str<strong>on</strong>g>the</str<strong>on</strong>g> stage <str<strong>on</strong>g>of</str<strong>on</strong>g>development as morula, early blastocyst (Ebl),blastocyst (Bl), expanded blastocyst (XBl) andvery expanded blastocyst (XXBl).The embryos were transferred transcervicallyto <str<strong>on</strong>g>the</str<strong>on</strong>g> uterus <str<strong>on</strong>g>of</str<strong>on</strong>g> synchr<strong>on</strong>ised recipient mares thathad ovulated from <strong>on</strong>e day before to 3 days after<str<strong>on</strong>g>the</str<strong>on</strong>g> d<strong>on</strong>or. Ultrasound examinati<strong>on</strong> for pregnancywas performed between Day 14 and 21 and againbetween Day 40 and 60.RESULTSOnly results from single-ovulating mares wereused for this analysis. There was a significantreducti<strong>on</strong> in embryo recovery rate for postinseminati<strong>on</strong> (86/103, 83% for pre inseminati<strong>on</strong> vs19/30, 63% for post, P


Equine Embryo TransferThe embryo recovery rate was similar in premares inseminated <strong>on</strong>e or 2 times, both for singleovulating mares (52/62, 84% and 34/41, 83%respectively) and for double ovulating mares(15/11, 136% and 50/37, 135%, respectively).There was no difference in embryo recovery rateam<strong>on</strong>g single ovulating mares last bred 0.5, 1, 1.5,2, or 2.5 days before ovulati<strong>on</strong> (29/35, 83%; 4/6,67%; 31/37, 84%; 6/8, 75% and 2/2, 100%,respectively).DISCUSSIONThese findings indicate that post ovulati<strong>on</strong>inseminati<strong>on</strong> results in reduced embryo recovery,but no increase in embryo mortality after transfer.Although reduced, <str<strong>on</strong>g>the</str<strong>on</strong>g> recovery rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 63%justifies using this procedure ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r thanaband<strong>on</strong>ing <str<strong>on</strong>g>the</str<strong>on</strong>g> cycle. For <str<strong>on</strong>g>the</str<strong>on</strong>g> 8 stalli<strong>on</strong>s used inthis programme, <str<strong>on</strong>g>the</str<strong>on</strong>g>re was no advantage ininseminating 2 times ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than <strong>on</strong>ce, or fortiming inseminati<strong>on</strong> closer than 2.5 days beforeovulati<strong>on</strong>.There have been c<strong>on</strong>flicting reports in <str<strong>on</strong>g>the</str<strong>on</strong>g>literature regarding <str<strong>on</strong>g>the</str<strong>on</strong>g> fertility <str<strong>on</strong>g>of</str<strong>on</strong>g> post ovulati<strong>on</strong>breeding in <str<strong>on</strong>g>the</str<strong>on</strong>g> mare. Huhtinen et al. (1996) foundthat embryo recovery rate decreased as time fromovulati<strong>on</strong> to inseminati<strong>on</strong> increased, but maresinseminated within 16 h <str<strong>on</strong>g>of</str<strong>on</strong>g> ovulati<strong>on</strong> had similarrecovery rates to mares inseminated beforeovulati<strong>on</strong>. Woods et al. (1990) reported thatinseminati<strong>on</strong> within 12 h <str<strong>on</strong>g>of</str<strong>on</strong>g> ovulati<strong>on</strong> did notsignificantly decrease pregnancy rates. However,<str<strong>on</strong>g>the</str<strong>on</strong>g>se studies involved few mares (14–20 pergroup) which may have limited <str<strong>on</strong>g>the</str<strong>on</strong>g> power to detectdifferences between treatments. In <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g>Woods et al. (1990), pregnancy rates achieved inmares inseminated 0–6 h post ovulati<strong>on</strong> and 6–12h post ovulati<strong>on</strong> (79% and 65% respectively) weresimilar to our embryo recovery rates for pre andpost breedings (83% and 63%, respectively),suggesting that most fertilisati<strong>on</strong> failure/embryoloss occurs in mares inseminated 6–12 h afterovulati<strong>on</strong>.The delay from ovulati<strong>on</strong> to fertilisati<strong>on</strong> inpost breedings incorporates both <str<strong>on</strong>g>the</str<strong>on</strong>g> time neededfor <str<strong>on</strong>g>the</str<strong>on</strong>g> sperm to arrive at <str<strong>on</strong>g>the</str<strong>on</strong>g> site <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisati<strong>on</strong>and time needed for capacitati<strong>on</strong>. Oocyte agingmay result in lack <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisati<strong>on</strong> or in reducedviability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fertilised eggs. It is also possiblethat some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> embryos from post ovulati<strong>on</strong>breeding lack <str<strong>on</strong>g>the</str<strong>on</strong>g> ability to signal <str<strong>on</strong>g>the</str<strong>on</strong>g> oviduct fordescent into <str<strong>on</strong>g>the</str<strong>on</strong>g> uterus, and thus perish in <str<strong>on</strong>g>the</str<strong>on</strong>g>oviduct. The embryos recovered from postbreedings, even though <str<strong>on</strong>g>the</str<strong>on</strong>g>y were recovered <strong>on</strong>eday later, were at an earlier stage <str<strong>on</strong>g>of</str<strong>on</strong>g> developmentthan were embryos from pre breedings. However,<str<strong>on</strong>g>the</str<strong>on</strong>g>re was no significant difference in quality.These findings agree with those <str<strong>on</strong>g>of</str<strong>on</strong>g> Huhtinen et al.(1996), and also with <str<strong>on</strong>g>the</str<strong>on</strong>g> ultras<strong>on</strong>ographicfindings <str<strong>on</strong>g>of</str<strong>on</strong>g> Woods et al. (1990), who reported thatpost embryos were more than <strong>on</strong>e day smaller indiameter than pre embryos at Days 11–15 <str<strong>on</strong>g>of</str<strong>on</strong>g>pregnancy. Since inseminati<strong>on</strong> was performedwithin 12 h <str<strong>on</strong>g>of</str<strong>on</strong>g> ovulati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> >1 day developmentaldelay in post embryos may reflect <str<strong>on</strong>g>the</str<strong>on</strong>g> time neededfor <str<strong>on</strong>g>the</str<strong>on</strong>g> sperm to capacitate before fertilisati<strong>on</strong>, orpossibly retardati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> embryo growth because <str<strong>on</strong>g>of</str<strong>on</strong>g>compromised oocyte viability. The time requiredfor <str<strong>on</strong>g>the</str<strong>on</strong>g> sperm to capacitate is not known in <str<strong>on</strong>g>the</str<strong>on</strong>g>stalli<strong>on</strong>. When mares were bred before ovulati<strong>on</strong>,anaphase was recognised by 6 h after ovulati<strong>on</strong>(Bezard et al. 1989). However in mares bred postovulati<strong>on</strong>, telophase was not seen until 10 h postcoitum (Enders et al. 1987). Although <str<strong>on</strong>g>the</str<strong>on</strong>g> data arescant, this suggests about a 4 h delay relating totransport and capacitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sperm afterinseminati<strong>on</strong>. The c<strong>on</strong>trast between our results and<str<strong>on</strong>g>the</str<strong>on</strong>g>se previous data suggest that more work isneeded <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> physiology <str<strong>on</strong>g>of</str<strong>on</strong>g> in vivo spermtransport and capacitati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> horse, and <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>effects <str<strong>on</strong>g>of</str<strong>on</strong>g> oocyte aging <strong>on</strong> embryo development.REFERENCESBezard, J., Magistrini, M., Duchamp, G. and Palmer, E.(1989) Chr<strong>on</strong>ology <str<strong>on</strong>g>of</str<strong>on</strong>g> Equine fertilisati<strong>on</strong> andembry<strong>on</strong>ic development in vivo and in vitro. Equinevet. J. Suppl. 8, 105-110.Enders, A.C., Liu, I.K.M., Bowers, J., Lantz, K.C.,Schlafke S. and Suarez, S. (1987) The ovulatedovum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> horse: cytology <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fertilized ova topr<strong>on</strong>uclear stage ova. Biol. Reprod. 37, 453-466.Huhtinen, M., Koskinen, E., Skidmore, J.A. and Allen,W.R. (1996) Recovery rate and quality <str<strong>on</strong>g>of</str<strong>on</strong>g> embryosfrom mares inseminated after ovulati<strong>on</strong>.Theriogenol. 45, 719-726.Riera, F.L and MacD<strong>on</strong>ough, J. (1993) Commercialembryo transfer in polo p<strong>on</strong>ies in Argentina. Equinevet. J. Suppl. 15, 116-118.Woods, J, Bergfelt, D.R. and Gin<str<strong>on</strong>g>the</str<strong>on</strong>g>r, O.J. (1990) Effects<str<strong>on</strong>g>of</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> inseminati<strong>on</strong> relative to ovulati<strong>on</strong> <strong>on</strong>pregnancy rate and embry<strong>on</strong>ic loss rate in mares.Equine vet. J. 22, 410-415.90


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3FACTORS AFFECTING PREGNANCY RATES ANDEARLY EMBRYONIC DEATH AFTER <strong>EQUINE</strong> EMBRYOTRANSFERE. M. Carnevale, R. J. Ramirez, E. L. Squires, M. A. Alvarenga and P. M. McCueAnimal Reproducti<strong>on</strong> and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado80523, USASuccess <str<strong>on</strong>g>of</str<strong>on</strong>g> a commercial embryo transferprogram is dependent up<strong>on</strong> identifying factorsthat affect pregnancy and embry<strong>on</strong>ic death.Previous studies have examined <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g>method <str<strong>on</strong>g>of</str<strong>on</strong>g> transfer, technician, size, age <str<strong>on</strong>g>of</str<strong>on</strong>g>embryo, embryo morphology, seas<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> year,synchr<strong>on</strong>y between d<strong>on</strong>or and recipient, andculture and storage <str<strong>on</strong>g>of</str<strong>on</strong>g> embryos (Squires et al.1982; Iuliano and Squires 1985; McKinn<strong>on</strong> andSquires 1988; Cook et al. 1989; Carney et al.1991; Squires et al. 1992; Squires and Seidel1995; Fluery and Alvarenga 1999; McCue et al.1999; Squires et al. 1999). This is a retrospectivestudy involving 638 embryos transferred intorecipients at Colorado State University EquineReproducti<strong>on</strong> Laboratory during 1996, 1997 and1998. The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> this retrospective studywas to determine which factors (recipient orembryo) had significant effects <strong>on</strong> pregnancy andembry<strong>on</strong>ic loss rates. D<strong>on</strong>or mares were ei<str<strong>on</strong>g>the</str<strong>on</strong>g>rmares housed at Colorado State University orthose housed at various breeding farmsthroughout <str<strong>on</strong>g>the</str<strong>on</strong>g> United States. Embryos werecollected 7 or 8 days after ovulati<strong>on</strong> ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r atCSU or collected <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> farm, cooled andtransported within 24 h to Colorado StateUniversity. Recipients were light horse maresbetween 2 and 18 years <str<strong>on</strong>g>of</str<strong>on</strong>g> age and 400 to 600 kg.Cycling recipients were examined by palpati<strong>on</strong>and ultrasound at regular intervals and dailyduring oestrus. Reproductive tracts wereexamined for <str<strong>on</strong>g>the</str<strong>on</strong>g> detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> follicular activity,day <str<strong>on</strong>g>of</str<strong>on</strong>g> ovulati<strong>on</strong>, presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> corpus luteum,uterine oedema, and fluid in <str<strong>on</strong>g>the</str<strong>on</strong>g> uterine lumen.Recipients were classified as ‘acceptable’ if awell-defined corpus luteum and a good toexcellent cervical and uterine t<strong>on</strong>e were present.Recipients were classified as marginallyacceptable if <str<strong>on</strong>g>the</str<strong>on</strong>g>y had a small or poorly imagedcorpus luteum and/or poor to fair cervical anduterine t<strong>on</strong>e. Embryos were measured and gradedbased <strong>on</strong> morphology ((McKinn<strong>on</strong> and Squires1988). Embryos shipped from ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r locati<strong>on</strong>for subsequent transfer were placed in a plasticculture tube c<strong>on</strong>taining transport medium (Ham’sF10 with 10% fetal calf serum plus 1%penicillin/streptomycin), which was gassed with5% CO 2 , 5% O 2 and 90% N 2 . Embryo werepackaged in Equitainers as previously describedand transported via a commercial airline or parceldelivery service (Squires et al. 1992). Transporttime varied from 6 to 32 h. Pregnancy rates <strong>on</strong>Day 50 were significantly higher for recipientsthat had excellent to good uterine t<strong>on</strong>e and weregraded as acceptable recipients vs recipients thathad fair to poor uterine t<strong>on</strong>e and gradedmarginally acceptable (60% vs 45%). Embry<strong>on</strong>icfactors that affected pregnancy rates significantlywere morphology grade, diameter and stage <str<strong>on</strong>g>of</str<strong>on</strong>g>development. Embryos 100 to 200 µm resulted inlower pregnancy rates. As expected, thoseembryos given a quality grade <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 (excellent)resulted in higher pregnancy rates that thosegraded 2, 3 or 4. Fewer (P


Equine Embryo Transfervesicles that were imaged with ultrasound during<str<strong>on</strong>g>the</str<strong>on</strong>g> first pregnancy examinati<strong>on</strong> (5 days aftertransfer) resulted in significantly fewer embry<strong>on</strong>icdeaths than vesicles imaged <strong>on</strong> subsequentexaminati<strong>on</strong>.Reduced uterine t<strong>on</strong>e and quality scores forrecipients were associated with reducedpregnancy rates and tended to be associated withincreased embry<strong>on</strong>ic loss rates. Reduced uterinet<strong>on</strong>e in recipients may indicate a uterineenvir<strong>on</strong>ment that is not maximally compatible forembry<strong>on</strong>ic growth and development. In a previousstudy (McCue et al. 1999), lower circulatingc<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> progester<strong>on</strong>e appeared to becorrelated with reduced uterine and/or cervicalt<strong>on</strong>e. In <str<strong>on</strong>g>the</str<strong>on</strong>g> present study, <str<strong>on</strong>g>the</str<strong>on</strong>g> incidence <str<strong>on</strong>g>of</str<strong>on</strong>g>embry<strong>on</strong>ic loss was not different for fresh vscooled embryos. Thus, when properly d<strong>on</strong>e,cooling and transporting an embryo is an effectiveway <str<strong>on</strong>g>of</str<strong>on</strong>g> utilising recipients without a decrease inpregnancy rates or an increase in early embry<strong>on</strong>icloss. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> this study suggest thatrecipients should be critically evaluated <strong>on</strong> Day 5after ovulati<strong>on</strong> and used as recipients for embryoswithin 7 days <str<strong>on</strong>g>of</str<strong>on</strong>g> ovulati<strong>on</strong>. The morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>embryo was predictive <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>embryo to result in a pregnancy or to undergoembryo losses.Embryos that were delayed in developmentwere associated with lower pregnancy rates.Recipient quality and selecti<strong>on</strong> appears to be <str<strong>on</strong>g>the</str<strong>on</strong>g>major factor that could be successfullymanipulated to increase pregnancy rates afterembryo transfer.REFERENCESCarney, N.J., Squires, E.L., Cook, V.M., Seidel, G.E. Jrand Jasko, D.J. (1991) Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pregnancyrates from transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh versus cooled,transported equine embryos. Theriogenol. 36, 23-32.Cook, V.M., Squires, E.L., McKinn<strong>on</strong>, A.O., Bailey, J.and L<strong>on</strong>g, P.L. (1989) Pregnancy rates <str<strong>on</strong>g>of</str<strong>on</strong>g> cooledtransported equine embryos. Equine vet. J. Suppl. 8,80-81.Fleury, J.J. and Alvarenga, M.A. (1999) Effects <str<strong>on</strong>g>of</str<strong>on</strong>g>collecti<strong>on</strong> day <strong>on</strong> embryo recovery and pregnancyrates in a n<strong>on</strong>surgical equine embryo transferprogram. Theriogenol. 51, 261.Iuliano, M.F. and Squires, E.L. (1985) Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> age<str<strong>on</strong>g>of</str<strong>on</strong>g> equine embryos and method <str<strong>on</strong>g>of</str<strong>on</strong>g> transfer <strong>on</strong>pregnancy rate. J. anim. Sci. 60, 258-263.McCue, P.M., Vanderwall, D.K., Keith, S.L. and Squires,E.L. (1999) Equine embryo transfer: influence <str<strong>on</strong>g>of</str<strong>on</strong>g>endogenous progester<strong>on</strong>e c<strong>on</strong>centrati<strong>on</strong> in recipients<strong>on</strong> pregnancy outcome. Theriogenol. 51, 267.McKinn<strong>on</strong>, A.O. and Squires, E.L. (1988) Morphologicassessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> equine embryo. J. Am. vet. Med.Ass. 192, 401-406.Squires, E.L., Cook, V.M., Jasko, D.J. and Tarr, S.F.(1992) Pregnancy rates after collecti<strong>on</strong> and shipment<str<strong>on</strong>g>of</str<strong>on</strong>g> equine embryos (1988-1991). Proc 38th. Am. Ass.equine Pract. 609-617.Squires, E.L., Imel, K.J., Iuliano, M.F. and Shideler, R.K.(1982) Factors affecting reproductive efficiency inan equine embryo transfer program. J. reprod. Fertil.Suppl. 32, 409-414.Squires, E.L., McCue, P.M. and Vanderwall, D.K. (1999)The current status <str<strong>on</strong>g>of</str<strong>on</strong>g> equine embryo transfer.Theriogenol. 51, 91-104.Squires, E.L. and Seidel, G.E. Jr. (1995)Collecti<strong>on</strong> andTransfer <str<strong>on</strong>g>of</str<strong>on</strong>g> Equine Embryos. Animal Reproducti<strong>on</strong>and Biotechnology Laboratory Bulletin No. 08. FortCollins, CO: Colorado State University.92


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3ADMINISTERED OESTROGENS ARE LUTEOLYTICDURING EARLY PREGNANCY IN MAREST. A. E Stout and W. R. Allen*Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Equine Sciences, Utrecht University, Secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Reproducti<strong>on</strong>, Yalelaan 12, 3584 CMUtrecht, The Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands; *Equine Fertility Unit, Mertoun Paddocks, Woodditt<strong>on</strong> Road, Newmarket,Suffolk CB8 9BH, UKINTRODUCTIONRecent surveys have reported early pregnancy loss(EPL) rates <str<strong>on</strong>g>of</str<strong>on</strong>g> between 5 and 24% in young,healthy mares and up to 70% in aged, subfertilemares (see Ball 1993 for review), <str<strong>on</strong>g>the</str<strong>on</strong>g>rebyc<strong>on</strong>firming that EPL is a significant cause <str<strong>on</strong>g>of</str<strong>on</strong>g>ec<strong>on</strong>omic loss to <str<strong>on</strong>g>the</str<strong>on</strong>g> horsebreeding industry. In <str<strong>on</strong>g>the</str<strong>on</strong>g>present m<strong>on</strong>ograph, Carnevale et al. report similarrates <str<strong>on</strong>g>of</str<strong>on</strong>g> EPL for pregnancies established byembryo transfer (12–25%) and <str<strong>on</strong>g>the</str<strong>on</strong>g>y discuss some<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> factors that may have c<strong>on</strong>tributed to <str<strong>on</strong>g>the</str<strong>on</strong>g>selosses. In general, while it is clear that <str<strong>on</strong>g>the</str<strong>on</strong>g> majority<str<strong>on</strong>g>of</str<strong>on</strong>g> EPL occurs within <str<strong>on</strong>g>the</str<strong>on</strong>g> first 35 days <str<strong>on</strong>g>of</str<strong>on</strong>g> gestati<strong>on</strong>,when maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> primary corpus luteum isessential to c<strong>on</strong>ceptus survival, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>sunder which <str<strong>on</strong>g>the</str<strong>on</strong>g> CL might undergo luteolysis in<str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a normal c<strong>on</strong>ceptus are not wellunderstood. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, it has been widelyspeculated that oestrogens secreted by <str<strong>on</strong>g>the</str<strong>on</strong>g>developing horse c<strong>on</strong>ceptus may effect maternalrecogniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pregnancy and luteostasis, as <str<strong>on</strong>g>the</str<strong>on</strong>g>ydo in pigs (Bazer and Thatcher 1977). However,this hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis has remained unproven, primarilybecause administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exogenous oestrogensdoes not reliably prol<strong>on</strong>g luteal activity in cyclingmares. Indeed, G<str<strong>on</strong>g>of</str<strong>on</strong>g>f et al. (1993) reported that <str<strong>on</strong>g>the</str<strong>on</strong>g>administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oestrogens to mares in latedioestrus stimulates, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than inhibits,luteolysis, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby mirroring <str<strong>on</strong>g>the</str<strong>on</strong>g> situati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g>domestic ruminants in which oestrogens promoteluteolysis by enhancing endometrial oxytocinreceptor development and, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby, oxytocininducedPGF 2α release (McCracken et al. 1984).Moreover, in cattle, horm<strong>on</strong>al treatments given toprotect against failure <str<strong>on</strong>g>of</str<strong>on</strong>g> maternal recogniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>pregnancy and loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> primary CL, namely,exogenous progester<strong>on</strong>e or a mid-dioestrousinjecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a GnRH analogue, have been proposedto do so by reducing circulating oestradiolc<strong>on</strong>centrati<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g>reby weakening <str<strong>on</strong>g>the</str<strong>on</strong>g>luteolytic drive (Mann and Lamming 1995).Similar treatments are being used increasingly inmares in an attempt to minimise early pregnancyloss, despite a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence to support <str<strong>on</strong>g>the</str<strong>on</strong>g>irefficacy. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no rati<strong>on</strong>ale forsuch treatments unless it can be established thatoestrogens are pro-luteolytic during earlypregnancy in equids; such an effect is bothunproven and c<strong>on</strong>trary to <str<strong>on</strong>g>the</str<strong>on</strong>g> existing dogma. Theaim <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was to determine if administeredoestrogens might be luteolytic during earlypregnancy in <str<strong>on</strong>g>the</str<strong>on</strong>g> mare and, if so, whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g>y actby stimulating PGF 2α release directly or byenhancing endometrial oxytocin-sensitivity.MATERIALS AND METHODSOn Days 14 and 22 <str<strong>on</strong>g>of</str<strong>on</strong>g> pregnancy and Day 14 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oestrous cycle, Welsh p<strong>on</strong>y mares (n = 3 in each <str<strong>on</strong>g>of</str<strong>on</strong>g>6 groups) were given ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r an iv injecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.01mg/kg oestradiol-ß al<strong>on</strong>e, or an im injecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>0.03 mg/kg oestradiol-ß followed 6 h later by an ivinjecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 iu/500 kg oxytocin. Jugular veinplasma samples were collected at 10 min intervalsfrom 1 h before to 1 h after oestradiol-ß oroxytocin injecti<strong>on</strong> and assayed for <str<strong>on</strong>g>the</str<strong>on</strong>g>irc<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 13,14-dihydro,15-keto PGF 2α(PGFM). Additi<strong>on</strong>al blood samples were collectedtwice daily to m<strong>on</strong>itor post treatment peripheralprogester<strong>on</strong>e c<strong>on</strong>centrati<strong>on</strong>s and pregnancy wasm<strong>on</strong>itored by palpati<strong>on</strong> and ultrasound scanning <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> reproductive tract <strong>on</strong> alternate days.RESULTSOestradiol benzoate followed by oxytocin, but notoestradiol-ß al<strong>on</strong>e, caused a rapid decline in93


Equine Embryo Transferperipheral serum progester<strong>on</strong>e c<strong>on</strong>centrati<strong>on</strong>s. In<str<strong>on</strong>g>the</str<strong>on</strong>g> pregnant mares, however, progester<strong>on</strong>ec<strong>on</strong>centrati<strong>on</strong>s plateaued and stabilised at around2–3 ng/ml so that <str<strong>on</strong>g>the</str<strong>on</strong>g> pregnancies weremaintained. Circulating PGFM c<strong>on</strong>centrati<strong>on</strong>s didnot rise within <str<strong>on</strong>g>the</str<strong>on</strong>g> first h after oestradiol-ßinjecti<strong>on</strong> in any <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> animals whereas oxytocinchallenge 6h after oestradiol-benzoate resulted in asignificant rise in plasma PGFM c<strong>on</strong>centrati<strong>on</strong>s in<strong>on</strong>e Day 14 dioestrous mare (<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e analysed thusfar) and two <str<strong>on</strong>g>of</str<strong>on</strong>g> three Day 22 pregnant mares, butnot in ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 Day 14 pregnant mares.CONCLUSIONSThese results indicate that a single oestrogenchallenge, given as an iv injecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oestradiol-ß,does not stimulate uterine PGF 2α release or reduceluteal activity in <str<strong>on</strong>g>the</str<strong>on</strong>g> mare when administeredei<str<strong>on</strong>g>the</str<strong>on</strong>g>r late in dioestrus or early in pregnancy. On<str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, more prol<strong>on</strong>ged oestrogen <str<strong>on</strong>g>the</str<strong>on</strong>g>rapy(im oestradiol benzoate) followed by oxytocinchallenge caused partial luteolysis in all pregnantmares treated <strong>on</strong> Day 14 or 22 after ovulati<strong>on</strong>;although <str<strong>on</strong>g>the</str<strong>on</strong>g>re was no discernable rise in PGFMc<strong>on</strong>centrati<strong>on</strong>s in those treated <strong>on</strong> Day 14. Thisargues against <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> oestradiol benzoatebeing mediated primarily by enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oxytocin-PGF 2α pathway and, since oxytocininjecti<strong>on</strong> al<strong>on</strong>e does not influence peripheralserum progester<strong>on</strong>e c<strong>on</strong>centrati<strong>on</strong>s in Day 22pregnant mares (authors, unpublishedobservati<strong>on</strong>s), <str<strong>on</strong>g>the</str<strong>on</strong>g> luteolysis seen in <str<strong>on</strong>g>the</str<strong>on</strong>g> presentstudy was unlikely to have been caused by <str<strong>on</strong>g>the</str<strong>on</strong>g>administered oxytocin per se. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand,an earlier experiment recorded a similar fall incirculating progester<strong>on</strong>e c<strong>on</strong>centrati<strong>on</strong>s in Day 23pregnant mares to which oestradiol benzoate wasadministered <strong>on</strong>ce daily for 10 days (Gerstenberg1998), which also supports <str<strong>on</strong>g>the</str<strong>on</strong>g> proposal thatoestradiol benzoate has a luteolytic acti<strong>on</strong> which isindependent <str<strong>on</strong>g>of</str<strong>on</strong>g> exogenous oxytocin and whichrarely results in complete CL lysis.In summary, we present preliminary evidencethat <str<strong>on</strong>g>the</str<strong>on</strong>g> administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>ger-acting oestrogensto mares during early pregnancy may compromiseluteal survival. Although <str<strong>on</strong>g>the</str<strong>on</strong>g>se findings need to bec<strong>on</strong>firmed and extended, <str<strong>on</strong>g>the</str<strong>on</strong>g>y n<strong>on</strong>e<str<strong>on</strong>g>the</str<strong>on</strong>g>less lendsupport to <str<strong>on</strong>g>the</str<strong>on</strong>g> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis that high systemicoestrogen c<strong>on</strong>centrati<strong>on</strong>s may be detrimental topregnancy in <str<strong>on</strong>g>the</str<strong>on</strong>g> mare.REFERENCESBall, B.A. (1993) Embry<strong>on</strong>ic death in mares. In: EquineReproducti<strong>on</strong> Eds. A.O. McKinn<strong>on</strong> and J.L. Voss,Lea and Febiger, Pennsylvania, USA. pp 517-531.Bazer, F.W. and Thatcher, W.W. (1977) Theory <str<strong>on</strong>g>of</str<strong>on</strong>g>maternal recogniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pregnancy in swine based <strong>on</strong>oestrogen c<strong>on</strong>trolled endocrine versus exocrinesecreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> prostaglandin F 2α by <str<strong>on</strong>g>the</str<strong>on</strong>g> uterineendometrium. Prostagla. 14, 397-401.Carnevale, E.M., Ramirez, R.J., Squires, E.L.,Alvarenga, M.A. and McCue, P.M. (2000) Factorsaffecting pregnancy rates and early embry<strong>on</strong>ic deathafter embryo transfer. Proc. <str<strong>on</strong>g>5th</str<strong>on</strong>g> Int. Symp. <strong>on</strong> EquineEmbryo Transfer.G<str<strong>on</strong>g>of</str<strong>on</strong>g>f, A.K., Sirois, J. and P<strong>on</strong>tbriand, D. (1993) Effect <str<strong>on</strong>g>of</str<strong>on</strong>g>oestradiol <strong>on</strong> oxytocin-stimulated prostaglandin F 2αrelease in mares. J. reprod. Fert. 98, 107-112.Gerstenberg, C. (1999) Factors c<strong>on</strong>trolling epi<str<strong>on</strong>g>the</str<strong>on</strong>g>liochorialplacentati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> mare. University <str<strong>on</strong>g>of</str<strong>on</strong>g> CambridgePhD Thesis.McCracken, J.A., Schramm, W. and Okulicz, W.C.(1984) Horm<strong>on</strong>e receptor c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> pulsatilesecreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PGF 2α from <str<strong>on</strong>g>the</str<strong>on</strong>g> ovine uterus d.uringluteolysis and its abrogati<strong>on</strong> in early pregnancyAnim. reprod. Sci. 7, 31-55Mann, G.E. and Lamming, G.E. (1995) Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>level <str<strong>on</strong>g>of</str<strong>on</strong>g> oestradiol <strong>on</strong> oxytocin-inducedprostaglandin F 2α release in <str<strong>on</strong>g>the</str<strong>on</strong>g> cow. J. Endocrinol.145, 175-180.94


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3RESULTS FROM EMBRYO FREEZING AND POSTOVULATION BREEDING IN A COMMERCIAL EMBRYOTRANSFER PROGRAMMEF. A. Lascombes and R. L. Pashen*Laboratorio Estancia ‘El Boyero’, C.C. 101 Casbas 6417, Provincia de Buenos Aires, Argentina;*Australian Animal Genetics Pty. Ltd., 54 Kalimna Drive, Morningt<strong>on</strong>, Victoria, 3931, AustraliaEMBRYO FREEZINGThe uteri <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 d<strong>on</strong>or mares were flushedrepeatedly during a 70 day period with <str<strong>on</strong>g>the</str<strong>on</strong>g>intenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> freezing any embryos collected. Aprevious unpublished study had indicated that largeembryos (≥ 220 µm) failed to develop when frozenand thawed but that those


Equine Embryo Transferdetected <strong>on</strong> ultrasound, and <str<strong>on</strong>g>the</str<strong>on</strong>g> operator thought<str<strong>on</strong>g>the</str<strong>on</strong>g>y would ovulate >24 h apart, mating wasdelayed until <str<strong>on</strong>g>the</str<strong>on</strong>g> first follicle had ovulated and thiswas followed by an iv injecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hCG (2,500 iu).Mares were re-mated prior to ovulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>sec<strong>on</strong>d follicle which usually occurred 24–36 hafter <str<strong>on</strong>g>the</str<strong>on</strong>g> first ovulati<strong>on</strong>.In mares with a single ovulati<strong>on</strong>, mating tookplace 2–14 h post ovulati<strong>on</strong>. The following resultswere obtained: <str<strong>on</strong>g>of</str<strong>on</strong>g> 13 recovery attempts performedfollowing matings 2–5 h post ovulati<strong>on</strong>, 11 (85%)yielded embryos. When mating occurred 6–8 hpost ovulati<strong>on</strong>, 15 <str<strong>on</strong>g>of</str<strong>on</strong>g> 16 flushes (94%) producedembryos. Following matings at 9–10 h postovulati<strong>on</strong>, embryos were recovered from2 <str<strong>on</strong>g>of</str<strong>on</strong>g> 3attempts (67%). Ten mares were mated >10 h postovulati<strong>on</strong> and <strong>on</strong>ly <strong>on</strong>e (10%) flush produced anembryo. These results show that acceptable rates<str<strong>on</strong>g>of</str<strong>on</strong>g> fertilisati<strong>on</strong> can be achieved when mares aremated up to 10 h post ovulati<strong>on</strong>.In mares with asynchr<strong>on</strong>ous twin ovulati<strong>on</strong>s,comparis<strong>on</strong>s were made between embryo collecti<strong>on</strong>rates when mating occurred before ovulati<strong>on</strong> andthose when mares were mated pre- and postovulati<strong>on</strong>. The following results were obtained:For pre-ovulati<strong>on</strong> mating in mares withovulati<strong>on</strong>s 24 h apart, 9 flushes (21%) produced noembryo, 15 (37%) produced <strong>on</strong>e and 18 (42%)produced 2. In mares with ovulati<strong>on</strong>s 36 h apart, 3flushes (17%) produced nothing, 8 (44%)produced <strong>on</strong>e embryo and 7 (39%) produced 2embryos. In mares with ovulati<strong>on</strong>s 48 h apart, 4flushes (31%) produced nothing, 5 (38%)produced <strong>on</strong>e embryo and 4 (31%) produced 2embryos. When mating occurred <strong>on</strong>ce before and<strong>on</strong>ce after ovulati<strong>on</strong>, and ovulati<strong>on</strong>s occurred 24 hapart, 3 flushes (15%) produced nothing, 7 (35%)produced <strong>on</strong>e embryo and 10 (50%) produced 2embryos. When ovulati<strong>on</strong>s were 36 h apart, 2flushes (22%) produced nothing, 5 (56%)produced <strong>on</strong>e embryo and 2 (22%) produced 2embryos. When ovulati<strong>on</strong>s were 48 h apart, 3flushes (27%) produced nothing, 2 (18%)produced <strong>on</strong>e embryo and 6 (55%) produced 2embryos. In all cases embryo recovery did notdiffer between <str<strong>on</strong>g>the</str<strong>on</strong>g> groups.In practice, when mares are mated postovulati<strong>on</strong>, flushing must be delayed for 24–36 h.O<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise, embryo recovery is poor suggestingthat fertilisati<strong>on</strong> occurs up to 24 h after mating.96


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3LIST OF PARTICIPANTSTWINK ALLENUnited KingdomGIULIO AIUDIItalyJAVIER AGUILARArgentinaMARIA ALBRIZIOItalyMARCO ALVARENGABrazilSERGEI AMSTISLAVSKYFinalndMARI AOKIJapanKAIJA ARPIAINENFinlandISABELLE BATTUTFranceKEITH BETTERIDGECanadaINGRID BOEGHDenmarkHEINRICH BOLLWEINGermanySONIA BOYAZOGLUUnited StatesJEAN-FRANCOIS BRUYASFranceDOMINIK BURGERSwitzerlandMICHELE CAIRAItalyFRANCESCO CAMILLOItalyELAINE CARNEVALEUnited StatesCELINA CHECURAArgentinaRAFFAELE CHERCHIItalyMARIO CINONEItalyJUAN MANUEL CORTEZArgentinaPETER DAELSFranceMARIA DELL’AQUILAItalyVITO DE NIGRISItalyJERRY DILSAVERUnited StatesREYNALD DUPRASCanadaBRUCE EILTSUnited StatesLILIAN FRANZUnited StatesEDUARDO GASTALBrazilMELBA GASTALBrazilDAVID GERBERSouth AfricaFAHRAD GHASEMIIranHAMID GHASEMZADEH-NAVAIranPAOLA GHERGOItalyOLLIE GINTHERUnited StatesROBERT GODKEUnited StatesKEN GREANEYNew ZealandJOHANNES HANDLERBrazilMARC HENRYBrazilKATRIN HINRICHSUnited StatesMIRJA HUHTINENFinlandJOHN HYLANDAustraliaJUDIT JUHAZSultanate <str<strong>on</strong>g>of</str<strong>on</strong>g> OmanTERTTU KATILAFinlandERKKI KOSKINENFinlandHANNA KUKKOLAFinlandGIOVANNI LACALANDRAItalyFERNANDA LANDIM ALVARENGABrazilFRANCISCO LASCOMBESArgentinaSUZANNE LAURENCECanada97


Equine Embryo TransferHENRIK LEHN-JENSENDenmarkSTAN LEIBOUnited StatesKTLIN LEISSONEst<strong>on</strong>iaXIHE LIUnited KingdomHELI LINDEBERGFinlandALLISON LINDSEYUnited StatesHERALDO LISANor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn IrelandLUIS LOSINNOArgentinaCHARLES LOVEUnited StatesJORGE MACDONOUGHArgentinaLISA MACLELLANUnited StatesMARGO MACPHERSONUnited StatesMAARIT MAKIFinlandGAETANO MARIItalyPATRICK MCCUEUnited StatesSALLY MEADOWSNor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn IrelandPAOLO MINOIAItalyLEE MORRISUnited KingdomPETER NAGYSultanate <str<strong>on</strong>g>of</str<strong>on</strong>g> OmanYASUO NAMBOJapanANN NHEIMSwedenAMIR NIASARI-NASLAJIIranJESPER NIELSENDenmarkLEILA NURMIKIVIFinlandNICOLE OBERSTEINGermanyMARY O’ DONOVANUnited StatesJULIO ORIOLDominican RepublicRICHARD OWENUnited KingdomDALE PACCAMONTIUnited StatesERIC PALMERFrancePASCALE PALMERFranceROBERT PASHENAustraliaHANNE PEDERSENUnited KingdomMORTEN PETERSENDenmarkKATJA PILTTIFinlandGENE PRANZOUnited StatesTIINA REILASFinlandMARTINA REIMSFinlandLUIGI RICCIItalyFERNANDO RIERAArgentinaSIMON ROBINSONAustraliaMIKKO RVINENFinlandMARIE SAINT-DIZIERFranceKIRSI SOJAKKAFinlandDAN SHARPUnited StatesDAN SHAWNew ZealandHARALD SIEMEGermanyCRISTI SPORLEDERArgentinaED SQUIRESUnited StatesTOM STOUTThe Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlandsJULIAN SKIDMOREUnited KingdomBRUCE TAYLORNew ZealandRAGNAR THOMASSENNorwayMERJA-LIISA TOIVONENFinlandJORDI TREMOLEDAThe Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlandsLUISA VALENTINIItalyDICKSON VARNERUnited StatesJAN WADEUnited KingdomELAINE WATSONUnited KingdomSANDRA WILSHERUnited Kingdom98


Havemeyer Foundati<strong>on</strong> M<strong>on</strong>ograph Series No. 3AUTHOR INDEXAGUILAR, J.J. see LOSINNO, L.,et al.ALBIHN, A. et al., 60ALLEN, W.R. see LI, X. et al.;LINDSEY, A.C. et al.; MORRIS,L.H.A. et al.; STOUT, T.A.E. andALLEN, W.R.; WILSHER, S. andALLEN, W.R.ALVARENGA, M.A., et al., 79 andsee CARNEVALE, E.M. et al.ARIA, G. see CAMILLO, F. et al.AURICH, C. see HANDLER, J.et al.AURICH, J.E. see HANDLER, J.et al.BARRIER-BATTUT, I. seeBRUYAS, J.F. et al.BATTUT, I. et al., 66BERGFELT, D.R. see GINTHER,O.J. et al.BERTRAND, J. see BRUYAS, J.F.et al.BETTERIDGE, K.J., 3 and seeALBIHN, A. et al.BEVERS, M.M. see TREMOLEDA,J.L. et al.BOLLWEIN, H. et al., 8BOYAZOGLU, S.E.A. see CHOI,Y.H. et al.; LANDIM-ALVARENGA, F.C. et al.BRINSKO, S.P. see LOVE, C.C.et al.BRUEMMER, J.E. see LINDSEY,A.C. et al.; OBERSTEIN, N. etal.; O’DONOVAN, M.K. et al.BRUYAS, J.F. et al., 76 and seeBATTUT, I. et al.; LEGRAND, E.et al.CAMILLO, F. et al., 86CARNEVALE, E.M. et al., 47, 91and see OBERSTEIN, N. et al.CARTER, J.A., see REGGIO, B.C.et al.CHOI, Y.H. et al., 28COCHRAN, R. see MEINJTES, M.et al.; REGGIO, B.C. et al.COLENBRANDER, B. seeTREMOLEDA, J.L. et al.CORNIÉRE, P. see LEGRAND, E.et al.COUTINHO DA SILVA, M.A. seeCARNEVALE, E.M. et al.CROTTI, G. see GALLI, C. et al.CROY, B.A. see ALBIHN, A. et al.DELAJARRAUD, H. seeLEGRAND, E. et al.DELL’AQUILA, M.E. et al., 37DENNISTON, R. see MEINJTES,M. et al.; REGGIO, B.C. et al.DONADEU, F.X. see GINTHER,O.J. et al.EGRON, L. see BRUYAS, J.F. et al.EILTS, B. see MEINJTES, M. et al.FIENI, F. see BATTUT, I. et al.;BRUYAS, J.F. et al.GALLI, C. et al., 32GARDNER, D.K. seeO’DONOVAN, M.K. et al.GINTHER, O.J. et al., 15GODKE, R. see MEINJTES, M.et al.; REGGIO, B.C. et al.GRAFF, K. see MEINJTES, M.et al.GRAHAM, J.K see LINDSEY, A.C.et al.GRANDCHAMP DES RAUX, A.see BATTUT, I. et al.; BRUYAS,J.F. et al.GUITREAU, A. see REGGIO, B.C.et al.HANDLER, J. et al., 71HECHT, S. see BRUYAS, J.F.et al.HINRICHS, K. et al., 43 and seeDELL’AQUILA, M.E. et al.;LOVE, C.C. et al.; RIERA, F.L.et al.HOIER, R. see BRUYAS, J.F. et al.HOPPEN, H.-O. see HANDLER, J.et al.HUHTINEN, M. et al. 52KINDAHL, H. see HANDLER, J.et al.KÖNIGSHOFER, M. seeHANDLER, J. et al.KRAWIECKI, J.M. see LEGRAND,E. et al.99


Equine Embryo TransferLANDIM-ALVARENGA, F.C. et al.,26LANE, M. see OBERSTEIN, N.et al.; O’DONOVAN, M.K.et al.LASCOMBES, F.A. and PASHEN,R.L., 95LAZZARI, G. see GALLI, C. et al.LEGRAND, E. et al., 62LEIBO, S.P., 51LEPOUTRE, N. see BRUYAS, J.F.et al.LI, X. et al., 30LINDSEY, A.C. et al., 6LISA, H. see LOSINNO, L., et al.LOSINNO, L., et al., 81LOVE, C.C. et al., 41 and seeHINRICHS, K. et al.MACLELLAN, L.J. et al., 35 andsee CARNEVALE, E.M.et al.MARI, G. see GALLI, C. et al.MARITATO, F. see DELL’AQUILA,M.E. et al.MASTERSON, M. seeDELL’AQUILA, M.E. et al.MAYER, R. see BOLLWEIN, H.et al.McCUE, P. et al., 84 and seeALVARENGA, M.A., et al.;CARNEVALE, E.M. et al.MEINJTES, M. et al., 39MORRIS, L.H.A. et al., 4 and seeLI, X. et al.; LINDSEY, A.C.et al.NEVES NETO, J.R. seeALVARENGA, M.A., et al.NICAISE, J.L. see BATTUT, I.et al.; BRUYAS, J.F. et al.OBERSTEIN, N. et al., 54 and seeO’DONOVAN, M.K. et al.O’DONOVAN, M.K. et al., 57 andsee OBERSTEIN, N. et al.ORIOL, J.G. see ALBIHN, A.et al.PACCAMONTI, D. see MEINJTES,M. et al.PARANKO, J. see HUHTINEN, M.et al.PASHEN, R.L. see LASCOMBES,F.A. and PASHEN, R.L.PEDERSEN, H.G. et al., 22RAMIREZ, R.J. see CARNEVALE,E.M. et al.REGGIO, B.C. et al., 45RENAULT, A. see BRUYAS, J.F.et al.RIERA, F.L. et al., 89ROLDÁN, J.E. see RIERA, F.L. et al.ROMAGNOLI, S. see CAMILLO, F.et al.ROTA, A. see CAMILLO, F. et al.SAMPER, J. see ALBIHN, A. et al.SANSINENA, M. see REGGIO,B.C. et al.SCHENK, J.L. see LINDSEY, A.C.et al.SCHOEVERS, E.J. seeTREMOLEDA, J.L. et al.SCOGGIN, C.F. see CARNEVALE,E.M. et al.SCOTT, T.J. see CARNEVALE,E.M. et al.SEIDEL, Jr., G.E. see CHOI, Y.H.et al.; LANDIM-ALVARENGA,F.C. et al.; OBERSTEIN, N. etal.; O’DONOVAN, M.K. et al.SHIN, T. see HINRICHS, K. et al.SIMS, M.M. see MACLELLAN, L.J.et al.SJÖHOLM, A. see HUHTINEN, M.et al.SQUIRES, E.L. see ALVARENGA,M.A., et al.; CARNEVALE, E.M.et al.; CHOI, Y.H. et al.;LANDIM-ALVARENGA, F.C.et al.; LINDSEY, A.C. et al.;MACLELLAN, L.J. et al.;OBERSTEIN, N. et al.;O’DONOVAN, M.K. et al.;McCUE, P. et al.STOLLA, R. see BOLLWEIN, H. etal.STOUT, T.A.E. and ALLEN, W.R.and see TREMOLEDA, J.L. et al.TAINTURIER, D. see BATTUT, I. etal.; BRUYAS, J.F. et al.;LEGRAND, E. et al.TELFER, E.E. see PEDERSEN,H.G. et al.TIPLADY, C. see MORRIS, L.H.A.et al.TREMOLEDA, J.L. et al., 19TROCHERIE, E., see BRUYAS, J.F.et al.VANDERWALL, D.K. see McCUE,P. et al.VANNOZZI, I. see CAMILLO, F. etal.VARNER, D.D. see HINRICHS, K.et al.; LOVE, C.C. et al.VÉRIN, X. see BRUYAS, J.F. et al.WATSON, E.D. see PEDERSEN,H.G. et al.WESTHUSIN, M.E. see HINRICHS,K. et al.WILSHER, S. and ALLEN, W.R., 74and see MORRIS, L.H.A. et al.100

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!