27.11.2012 Views

Bogoliubov Excitations of Inhomogeneous Bose-Einstein ...

Bogoliubov Excitations of Inhomogeneous Bose-Einstein ...

Bogoliubov Excitations of Inhomogeneous Bose-Einstein ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2. The <strong>Inhomogeneous</strong> <strong>Bogoliubov</strong> Hamiltonian<br />

Figure 2.3: <strong>Bogoliubov</strong> dispersion relation<br />

(2.35). Insets: schematic representation<br />

<strong>of</strong> the amplitudes δΨ⊥<br />

and δΨ� (2.37).<br />

ǫk<br />

µ<br />

10<br />

5<br />

1<br />

δ ˆ Ψ⊥<br />

Ψ0<br />

0<br />

2δ ˆ Ψ�<br />

δ ˆ Ψ⊥<br />

1 kξ 2<br />

transformed to ɛk − �k· v. The static obstacle cannot transfer energy, so<br />

excitations can only be created if v > ɛk/(�k). Thus, there is a critical<br />

velocity vc = mink ɛk/�k = c.<br />

Superfluid flow is one <strong>of</strong> the key features <strong>of</strong> <strong>Bose</strong>-<strong>Einstein</strong> condensates and<br />

has been subject <strong>of</strong> many experiments. For example stirring experiments,<br />

where dissipation was observed when the condensate was stirred with velocities<br />

above the critical velocity [56], or persistent flow in a toroidal trap<br />

[100].<br />

In the ideal <strong>Bose</strong> gas (section 2.1), the excitations are still bare particles<br />

with dispersion relation ɛ 0 k<br />

Ψ0<br />

0<br />

δ ˆ Ψ�<br />

and zero critical velocity. The phase transition to<br />

the <strong>Bose</strong>-<strong>Einstein</strong> condensate phase, together with the interactions, results<br />

in superfluidity.<br />

Signature <strong>of</strong> a <strong>Bogoliubov</strong> excitation<br />

Let us split the fluctuation operator δ ˆ Ψ(r) = ˆ Ψ(r) − Φ(r) into its components<br />

parallel and perpendicular to the order parameter Φ(r)<br />

δ ˆ Ψ� = 1�<br />

δΨ ˆ + δ ˆ †<br />

Ψ<br />

2<br />

� , δ ˆ Ψ⊥ = 1 �<br />

δΨˆ − δ ˆ †<br />

Ψ<br />

2i<br />

� . (2.37)<br />

With equation (2.27) and the <strong>Bogoliubov</strong> transformation (2.33), the components<br />

take the form<br />

δ ˆ Ψ� = 1<br />

L d<br />

� ak � ik·r<br />

e ˆγk + e<br />

2 2<br />

k<br />

−ik·r ˆγ † �<br />

k ,<br />

� 1 � ik·r<br />

e ˆγk − e −ik·r ˆγ † �<br />

k ,<br />

δ ˆ Ψ⊥ = 1<br />

L d<br />

2<br />

k<br />

2iak<br />

again with the coefficient ak = � ɛ0 k /ɛk. The signature <strong>of</strong> a <strong>Bogoliubov</strong><br />

, respectively.<br />

excitation is a plane wave with amplitudes ak and a −1<br />

k<br />

32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!