27.11.2012 Views

Bogoliubov Excitations of Inhomogeneous Bose-Einstein ...

Bogoliubov Excitations of Inhomogeneous Bose-Einstein ...

Bogoliubov Excitations of Inhomogeneous Bose-Einstein ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

6. Bloch Oscillations and Time-Dependent Interactions<br />

Table 6.1.: Collective-coordinates parameters for Gaussian and soliton-shaped wave packets<br />

shape Ã(u) K I<br />

1 u2<br />

− −<br />

Gaussian (2π) 4 e 4<br />

soliton<br />

� π<br />

4 √ 3<br />

�<br />

cosh<br />

� π u<br />

2 √ 3<br />

�� −1<br />

1<br />

4<br />

1<br />

1<br />

4 4 √ π<br />

� �<br />

π 2 1<br />

3 4 √ �<br />

π<br />

π 3<br />

with the free variables center-<strong>of</strong>-mass position x(t) = 〈n〉 = �<br />

2<br />

n n|Ψn(t)|<br />

and variance w(t) = � (n − x(t)) 2� and their conjugate momenta p(t) and<br />

b(t), respectively. The momentum p is included in equation (6.17), according<br />

to its generating role −i∂pΨn = nΨn. Similarly, b is included in the wave<br />

function as<br />

1 −<br />

A(z, w, b) = w 4e ibz2Ã(z/ √ w) . (6.18)<br />

The even, real function Ã(u) is normalized to one with standard deviation<br />

one, � du| Ã(u)|2 = 1 = � du u2 | Ã(u)|2 .<br />

The collective-coordinates ansatz (6.17) is inserted into the Hamiltonian<br />

(6.6). Taylor-expanding the discrete gradient to second order, the effective<br />

Hamiltonian is found as<br />

�<br />

Hcc = F x − 2 cos p 1 − K + 4b2w2 �<br />

+ I<br />

2w<br />

g(t)<br />

√ , (6.19)<br />

w<br />

with the kinetic integral K = � du| Ã′ (u)| 2 �<br />

and the interaction integral I =<br />

1<br />

2 du|Ã(u)| 4 . In table 6.1, these parameters are given for a Gaussian and<br />

for a soliton-shaped wave packet.<br />

By construction, the collective coordinates obey the canonical equations<br />

<strong>of</strong> motion<br />

˙p = − ∂Hcc<br />

∂x<br />

˙x = ∂Hcc<br />

∂p<br />

˙b = − ∂Hcc<br />

∂w = K − 4w2b2 w2 ˙w = ∂Hcc<br />

∂b<br />

= −F, (6.20a)<br />

�<br />

= 2 sin p 1 − K + 4b2w2 �<br />

= sin p<br />

2w<br />

� 2 − (∆k) 2� , (6.20b)<br />

cos p + 1<br />

3<br />

I g(t)w− 2,<br />

2<br />

(6.20c)<br />

= 8wb cos p. (6.20d)<br />

Within the scope <strong>of</strong> collective coordinates, the momentum variance <strong>of</strong> the<br />

wave packet is given as (∆k) 2 = K/w +4b 2 w. It appears in the Hamiltonian<br />

126<br />

� 3<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!