Satellite Orbit and Ephemeris Determination using Inter Satellite Links

Satellite Orbit and Ephemeris Determination using Inter Satellite Links Satellite Orbit and Ephemeris Determination using Inter Satellite Links

athene.bibl.unibw.muenchen.de
from athene.bibl.unibw.muenchen.de More from this publisher
11.07.2015 Views

Orbit ComputationInter Satellite LinksU =U =withGMrGMr+ GM+ GMN∑∑n= 2 m=0Nnn∑∑n= 2 m=0arnen+1arcosnen+m+1Pm(m)nϕ⋅P(m)n(sin ϕ)(C(sin ϕ)(Cnmrmnmcoscosmλ + Smnmϕ⋅cosmλ + Ssin mλ)nmrmcosmϕ⋅sin mλ)Eq. 4.2-26x = r cosϕcosλEq. 4.2-27y = r cosϕsinλz = r sin ϕIntroducing the following abbreviationsm mξ=r cos ϕcosmλmmη = r cos ϕsinmλmmyields for the gradient of the gravity potentialU U Ugrad Ugrad GM N nn∂ ∂ ∂ae( m)( ) = ( , , ) = ( ) + GM∑ ∑ grad{ P C Sn m n(sin ϕ)( nmξm +nmηm)}+ + 1∂x∂y∂zrrn=2 m=0ξ , η can be computed recursively using the following simple expressionsmmEq. 4.2-28Eq. 4.2-29ξ = 1Eq. 4.2-30ηξη00mm= 0= ξ= ξm−1m−1x − ηy + ηm−1m−1yxIn the following the partials of the above expression are givenn∂ aea{ } =− ( n+ m+1 )n mn∂x rrne+ + 1 + m+3n∂ aea{ } =− ( n+ m+1 )n mn∂y rrne+ + 1 + m+3n∂ aea{ } =− ( n+ m+1 )n mn∂z rrne+ + 1 + m+3xyzEq. 4.2-31Eq. 4.2-32Eq. 4.2-33∂ϕϕ∂x P ( m) zxr P ( m+1) Eq. 4.2-34[n(sin )] =−n(sin )3∂ϕϕ∂y P ( m) zyr P ( m+1)Eq. 4.2-35[n(sin )] =−n(sin )3Page 30R. Wolf

Inter Satellite LinksOrbit Computation2∂ϕϕ∂z P ( m) 1 zr r PEq. 4.2-36( m+1)[n(sin )] = −n(sin )3∂ξm∂x∂ξm∂y∂ξm∂z∂ηm∂x∂ηm∂ym xsin λ= [ ξm + tanϕcosλsinϕξm + ηm = mξm−r rcosϕ]1m ycosλ= [ ξm + tanϕsinλsinϕξηm−m= −mηm−r rcosϕm z= [ ξm− tanϕcos ϕξm] = 0r r]1m xsin λ= [ ηm + tanϕcosλsinϕηm − ξm = mηm−r rcosϕ]1m ycosλ= [ ηm + tanϕsinλsinϕηm + ξm = mξm−r rcosϕ]1Eq. 4.2-37Eq. 4.2-38Eq. 4.2-39Eq. 4.2-40Eq. 4.2-41∂ηm∂zm z= [ ηm− tanϕcos ϕηm] = 0r rEq. 4.2-42Especially the computation of the η and ξ is subject to numerical problems because they arein the order of magnitude of r m . For a high order spherical expansion it is advantageous tocomputeηη =mrξξ =mrEq. 4.2-43which is dimensionless and restricted to the range between 0 and 1. The remaining factor r mcan be multiplied with the termsranen+m+1andarnen+m+3This has the additional advantage of bringing them into a numerical stable formEq. 4.2-44R. Wolf Page 31

<strong>Orbit</strong> Computation<strong>Inter</strong> <strong>Satellite</strong> <strong>Links</strong>U =U =withGMrGMr+ GM+ GMN∑∑n= 2 m=0Nnn∑∑n= 2 m=0arnen+1arcosnen+m+1Pm(m)nϕ⋅P(m)n(sin ϕ)(C(sin ϕ)(Cnmrmnmcoscosmλ + Smnmϕ⋅cosmλ + Ssin mλ)nmrmcosmϕ⋅sin mλ)Eq. 4.2-26x = r cosϕcosλEq. 4.2-27y = r cosϕsinλz = r sin ϕIntroducing the following abbreviationsm mξ=r cos ϕcosmλmmη = r cos ϕsinmλmmyields for the gradient of the gravity potentialU U Ugrad Ugrad GM N nn∂ ∂ ∂ae( m)( ) = ( , , ) = ( ) + GM∑ ∑ grad{ P C Sn m n(sin ϕ)( nmξm +nmηm)}+ + 1∂x∂y∂zrrn=2 m=0ξ , η can be computed recursively <strong>using</strong> the following simple expressionsmmEq. 4.2-28Eq. 4.2-29ξ = 1Eq. 4.2-30ηξη00mm= 0= ξ= ξm−1m−1x − ηy + ηm−1m−1yxIn the following the partials of the above expression are givenn∂ aea{ } =− ( n+ m+1 )n mn∂x rrne+ + 1 + m+3n∂ aea{ } =− ( n+ m+1 )n mn∂y rrne+ + 1 + m+3n∂ aea{ } =− ( n+ m+1 )n mn∂z rrne+ + 1 + m+3xyzEq. 4.2-31Eq. 4.2-32Eq. 4.2-33∂ϕϕ∂x P ( m) zxr P ( m+1) Eq. 4.2-34[n(sin )] =−n(sin )3∂ϕϕ∂y P ( m) zyr P ( m+1)Eq. 4.2-35[n(sin )] =−n(sin )3Page 30R. Wolf

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!