11.07.2015 Views

nreg1805-0 - College of Engineering

nreg1805-0 - College of Engineering

nreg1805-0 - College of Engineering

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

U.S. Nuclear Regulatory CommissionOffice <strong>of</strong> Nuclear Reactor RegulationWashington, DC 20555-0001


NUREG-1805sFire Dynamics Tools (FDT ):Quantitative Fire HazardAnalysis Methods for theU.S. Nuclear Regulatory CommissionFire Protection Inspection ProgramFinal ReportManuscript Completed: October 2004Date Published: December 2004Prepared byNaeem Iqbal, Mark Henry SalleySunil Weerakkody, NRC Project ManagerPrepared forDivision <strong>of</strong> System Safety and AnalysisOffice <strong>of</strong> Nuclear Reactor RegulationU.S. Nuclear Regulatory CommissionWashington, DC 20555-0001


ABSTRACTThe U.S. Nuclear Regulatory Commission (NRC), Office <strong>of</strong> Nuclear Reactor Regulation (NRR),Division <strong>of</strong> Systems Safety and Analysis (DSSA), Plant Systems Branch (SPLB), Fire Protection<strong>Engineering</strong> and Special Projects Section, has developed quantitative methods, known ass“Fire Dynamics Tools” (FDT ), to assist regional fire protection inspectors in performing fire hazardanalysis (FHA). These methods have been implemented in spreadsheets and taught at the NRC’ssquarterly regional inspector workshops. FDT were developed using state-<strong>of</strong>-the-art fire dynamicsequations and correlations that were preprogrammed and locked into Micros<strong>of</strong>t Excel ®sspreadsheets. These FDT will enable the inspector to perform quick, easy, first-order calculationsfor the potential fire scenarios using today’s state-<strong>of</strong>-the-art principles <strong>of</strong> fire dynamics. Each FDT sspreadsheet also contains a list <strong>of</strong> the physical and thermal properties <strong>of</strong> the materials commonlyencountered in nuclear power plants. This NUREG-series report addresses the technical basessfor FDT , which were derived from the principles developed primarily in the Society <strong>of</strong> FireProtection Engineers (SFPE) Handbook <strong>of</strong> Fire Protection <strong>Engineering</strong>, National Fire ProtectionAssociation (NFPA) Fire Protection Handbook, and other fire science literature. The subject matter<strong>of</strong> this report covers many aspects <strong>of</strong> fire dynamics and contains descriptions <strong>of</strong> the most importantfire processes. A significant number <strong>of</strong> examples, reference tables, illustrations, and conceptualdrawings are presented in this report to expand the inspector’s appreciation in visualizing andretaining the material and understanding calculation methods.iii


CONTENTSAbstractPage................................................................... iiiList <strong>of</strong> Fire Dynamics Tools ................................................. xxviiDisclaimer................................................................xxxiThe Authors ............................................................. xxxiiiAcknowledgments ........................................................ xxxvExecutive Summary .......................................................xxxviisHow To Use this NUREG and the FDT ........................................xxxixAbbreviations ..............................................................Nomenclature .............................................................xlixlviiChapter 1. Introduction ................................................... 1-11.1 Purpose................................................ 1-11.2 Objective ............................................... 1-11.3 Regulatory Background on Fire Protection for Nuclear Power Plants 1-11.4 Fire Hazard Analysis for Nuclear Power Plants . . . . . . . . . . . . . . . . . 1-31.5 Fire Protection Inspection Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-31.6 Fire Scenario Development for Nuclear Power Plants . . . . . . . . . . . . 1-41.7 Process <strong>of</strong> Fire Development ............................... 1-41.8 The Fire Hazards ........................................ 1-61.8.1 Combustible Materials Found in Nuclear Power Plants . . . . . 1-71.8.1.1 Transient Combustibles . . . . . . . . . . . . . . . . . . . . . 1-71.8.1.2 In Situ Combustibles . . . . . . . . . . . . . . . . . . . . . . . . 1-71.8.1.3 Liquid Fuels ............................... 1-81.8.1.4 Explosive and Flammable Gases . . . . . . . . . . . . . . 1-81.9 Location <strong>of</strong> the Fire ....................................... 1-91.10 Risk-Informed Performance-Based Fire Protection . . . . . . . . . . . . . . 1-91.11 Data Sources for Combustible Materials Found in Nuclear Power Plants 1-101.12 References ............................................ 1-121.13 Additional Readings ..................................... 1-13v


CONTENTS (continued)Chapter 2.Predicting Hot Gas Layer Temperature and Smoke Layer Height in a Room Firewith Natural and Forced Ventilation ................................ 2-12.1 Objectives .............................................. 2-12.2 Introduction ............................................. 2-12.3 Compartment Fire Growth.................................. 2-12.3.1 Stages <strong>of</strong> Compartment Fires . . . . . . . . . . . . . . . . . . . . . . . . . 2-12.3.2 Ventilation-Limited or Ventilation-Controlled Fires . . . . . . . . . 2-42.3.3 Fuel-Limited Fires .................................. 2-42.4 Compartment Ventilation................................... 2-42.4.1 Definitions ........................................ 2-62.5 Temperature ............................................ 2-62.6 Estimating Hot Gas Layer Temperature . . . . . . . . . . . . . . . . . . . . . . . 2-82.6.1 Natural Ventilation: Method <strong>of</strong> McCaffrey, Quintiere, andHarkleroad (MQH)................................... 2-82.6.2 Natural Ventilation (Compartment Closed): Method <strong>of</strong> Beyler . 2-122.6.3 Forced Ventilation: Method <strong>of</strong> Foote, Pagni, and Alvares (FPA) 2-122.6.4 Forced Ventilation: Method <strong>of</strong> Deal and Beyler . . . . . . . . . . 2-132.7 Estimating Smoke Layer Height . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-142.7.1 Smoke Layer ..................................... 2-152.7.2 Smoke Layer Interface Position . . . . . . . . . . . . . . . . . . . . . . 2-152.7.3 Natural Ventilation (Smoke Filling):The Non-Steady-State Yamana and Tanaka Method . . . . . . 2-152.8 Data Sources for Heat Release Rate . . . . . . . . . . . . . . . . . . . . . . . . 2-172.9 Identification <strong>of</strong> Fire Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-192.10 Assumption and Limitations ............................... 2-232.11 Required Input for Spreadsheet Calculations . . . . . . . . . . . . . . . . . . 2-242.12 Cautions .............................................. 2-252.13 Summary .............................................. 2-252.14 References ............................................ 2-262.15 Additional Readings ..................................... 2-282.16 Problems .............................................. 2-29vi


CONTENTS (continued)Chapter 5. Estimating Radiant Heat Flux from Fire to a Target Fuel . . . . . . . . . . . . . . . . 5-15.1 Objectives .............................................. 5-15.2 Introduction ............................................. 5-15.3 Critical Heat Flux to a Target ............................... 5-25.3.1 Point Source Radiation Model . . . . . . . . . . . . . . . . . . . . . . . . . 5-35.3.2 Solid Flame Radiation Model with Target At and AboveGround Level...................................... 5-55.3.2.1 Emissive Power............................ 5-65.3.2.2 Configuration Factor F12under Wind-Free Conditions 5-75.3.2.3 Configuration Factor F12in Presence <strong>of</strong> Wind . . . 5-115.4 Method <strong>of</strong> Estimating Thermal Radiation from Hydrocarbon Fireball . . 5-155.4.1 Radiation Due to BLEVEs with Accompanying Fireball . . . . . 5-155.5 Assumptions and Limitations .............................. 5-175.6 Required Input for Spreadsheet Calculations . . . . . . . . . . . . . . . . . . 5-175.7 Cautions .............................................. 5-185.8 Summary .............................................. 5-185.9 References ............................................ 5-195.10 Additional Readings ..................................... 5-205.11 Problems .............................................. 5-21Chapter 6.Estimating the Ignition Time <strong>of</strong> a Target FuelExposed to a Constant Radiative Heat Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16.1 Objectives .............................................. 6-16.2 Introduction ............................................. 6-16.3 Ignition Sources and Fire Development . . . . . . . . . . . . . . . . . . . . . . . 6-36.4 Ignition Time for Thermally Thick Materials . . . . . . . . . . . . . . . . . . . . .6-36.4.1 Method <strong>of</strong> Tewarson ................................ 6-46.4.2 Method <strong>of</strong> Mikkola and Wichman . . . . . . . . . . . . . . . . . . . . . . 6-86.4.3 Method <strong>of</strong> Quintiere and Harkleroad . . . . . . . . . . . . . . . . . . . . 6-86.4.4 Method <strong>of</strong> Janssens ................................ 6-96.4.5 Method <strong>of</strong> Toal, Silcock, and Shields . . . . . . . . . . . . . . . . . . 6-126.5 Assumptions and Limitations .............................. 6-146.6 Required Input for Spreadsheet Calculations . . . . . . . . . . . . . . . . . . 6-146.7 Cautions .............................................. 6-146.8 Summary .............................................. 6-146.9 References ............................................ 6-156.10 Additional Readings ..................................... 6-156.11 Problems .............................................. 6-16viii


CONTENTS (continued)Chapter 7. Estimating the Full-Scale Heat Release Rate <strong>of</strong> a Cable Tray Fire . . . . . . . . 7-17.1 Objectives .............................................. 7-17.2 Introduction ............................................. 7-17.3 Cable Tray Fire Burning Mode Classification . . . . . . . . . . . . . . . . . . . 7-27.4 Cable Tray Heat Release Rate .............................. 7-37.5 Cable Failure Criteria (Critical Temperature and Critical Heat Flux) . . 7-57.6 Assumptions and Limitations ............................... 7-67.7 Required Input for Spreadsheet Calculations . . . . . . . . . . . . . . . . . . . 7-67.8 Cautions ............................................... 7-67.9 Summary ............................................... 7-67.10 References ............................................. 7-77.11 Additional Readings ...................................... 7-77.12 Problems ............................................... 7-8Chapter 8. Estimating Burning Duration <strong>of</strong> Solid Combustibles .................... 8-18.1 Objectives .............................................. 8-18.2 Introduction ............................................. 8-18.3 Burning Duration <strong>of</strong> Solid Combustibles . . . . . . . . . . . . . . . . . . . . . . . 8-18.4 Assumptions and Limitations ............................... 8-48.5 Required Input for Spreadsheet Calculations . . . . . . . . . . . . . . . . . . . 8-48.6 Cautions ............................................... 8-48.7 Summary ............................................... 8-48.8 References ............................................. 8-48.9 Problems ............................................... 8-5Chapter 9. Estimating the Centerline Temperature <strong>of</strong> a Buoyant Fire Plume . . . . . . . . . . 9-19.1 Objectives .............................................. 9-19.2 Introduction ............................................. 9-19.3 Fire Plume Characteristics ................................. 9-29.3.1 Plume Temperature................................. 9-49.4 Application for Centerline Fire Plume Correlation . . . . . . . . . . . . . . . . 9-79.5 Assumptions and Limitations ............................... 9-79.6 Required Input for Spreadsheet Calculations . . . . . . . . . . . . . . . . . . . 9-79.7 Cautions ............................................... 9-89.8 Summary ............................................... 9-89.9 References ............................................. 9-99.10 Additional Readings ...................................... 9-99.11 Problems .............................................. 9-10ix


CONTENTS (continued)Chapter 10. Estimating Sprinkler Response Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-110.1 Objectives ............................................. 10-110.2 Introduction ............................................ 10-110.3 Operating Principles <strong>of</strong> Automatic Sprinklers . . . . . . . . . . . . . . . . . . 10-310.3.1 Heat Transfer Characteristics for Heat-Sensitive Elements . 10-410.3.2 Sprinkler Dynamics ............................... 10-510.3.3 Temperature Ratings <strong>of</strong> Automatic Sprinklers . . . . . . . . . . . 10-610.3.4 Sprinkler Activation ............................... 10-910.3.5 Sprinkler Spray Interaction with Plume . . . . . . . . . . . . . . . 10-1110.4 Assumptions and Limitations ............................. 10-1210.5 Required Input for Spreadsheet Calculations . . . . . . . . . . . . . . . . . 10-1210.6 Cautions ............................................. 10-1310.7 Summary ............................................. 10-1310.8 References ........................................... 10-1310.9 Additional Readings .................................... 10-1410.10 Problems ............................................. 10-15Chapter 11. Estimating Smoke Detector Response Time . . . . . . . . . . . . . . . . . . . . . . . . 11-111.1 Objectives ............................................. 11-111.2 Introduction ............................................ 11-111.3 Characteristics <strong>of</strong> Smoke Production . . . . . . . . . . . . . . . . . . . . . . . . 11-211.4 Operating Principles <strong>of</strong> Smoke Detectors . . . . . . . . . . . . . . . . . . . . . 11-311.5 Smoke Detector Response ................................ 11-611.5.1 Method <strong>of</strong> Alpert.................................. 11-711.5.2 Method <strong>of</strong> Mowrer ................................ 11-911.5.3 Method <strong>of</strong> Milke ................................. 11-1011.6 Assumptions and Limitations ............................. 11-1111.7 Required Input for Spreadsheet Calculations . . . . . . . . . . . . . . . . . 11-1211.8 Cautions ............................................. 11-1211.9 Summary ............................................. 11-1211.10 References ........................................... 11-1311.11 Additional Readings .................................... 11-1311.12 Problems ............................................. 11-14x


CONTENTS (continued)Chapter 12. Estimating Heat Detector Response Time . . . . . . . . . . . . . . . . . . . . . . . . . . 12-112.1 Objectives ............................................. 12-112.2 Introduction ............................................ 12-112.3 Underwriters’ Laboratories, Inc., Listing Informationfor Heat-Detecting Automatic Fire Detectors . . . . . . . . . . . . . . . . . . 12-112.4 Operating Principle <strong>of</strong> Heat Detectors . . . . . . . . . . . . . . . . . . . . . . . . 12-212.4.1 Fixed-Temperature Heat Detectors . . . . . . . . . . . . . . . . . . . 12-312.4.1.1 Fusible-Element Type . . . . . . . . . . . . . . . . . . . . 12-312.4.1.2 Continuous Line Type . . . . . . . . . . . . . . . . . . . . 12-312.4.1.3 Bimetallic Type .......................... 12-312.4.2 Rate Compensation Heat Detectors . . . . . . . . . . . . . . . . . . 12-412.4.3 Rate-<strong>of</strong>-Rise Heat Detectors . . . . . . . . . . . . . . . . . . . . . . . . 12-412.4.4 Pneumatic Heat Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . 12-412.4.4.1 Line-Type Heat Detectors . . . . . . . . . . . . . . . . . 12-512.4.5 Combination Heat Detectors . . . . . . . . . . . . . . . . . . . . . . . . 12-512.4.6 Electronic Spot-Type Thermal Detectors . . . . . . . . . . . . . . . 12-512.5 Fixed-Temperature Heat Detector Activation . . . . . . . . . . . . . . . . . . 12-612.6 Assumptions and Limitations ............................. 12-1012.7 Required Input for Spreadsheet Calculations . . . . . . . . . . . . . . . . . 12-1112.8 Cautions ............................................. 12-1112.9 Summary ............................................. 12-1112.10 References ........................................... 12-1212.11 Additional Readings .................................... 12-1212.12 Problems ............................................. 12-13Chapter 13. Predicting Compartment Flashover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-113.1 Objectives ............................................. 13-113.2 Introduction ............................................ 13-113.3 Compartment Flashover .................................. 13-513.3.1 Method <strong>of</strong> Predicting Compartment Flashover . . . . . . . . . . 13-513.3.1.1 Method <strong>of</strong> McCaffrey, Quintiere, and Harkleroad(MQH)................................. 13-513.3.1.2 Method <strong>of</strong> Babrauskas . . . . . . . . . . . . . . . . . . . . 13-613.3.1.3 Method <strong>of</strong> Thomas ....................... 13-613.3.2 Method <strong>of</strong> Predicting Compartment Post-Flashover Temperature 13-713.4 Fire Severity ........................................... 13-813.4.1 Method <strong>of</strong> Margaret Law ........................... 13-813.5 Assumptions and Limitations ............................. 13-1013.6 Required Input for Spreadsheet Calculations . . . . . . . . . . . . . . . . . 13-1013.7 Cautions ............................................. 13-1013.8 Summary ............................................. 13-1013.9 References ........................................... 13-1113.10 Problems ............................................. 13-13xi


CONTENTS (continued)Chapter 14. Estimating Pressure Rise Attributable to a Fire in a Closed Compartment . 14-114.1 Objectives ............................................. 14-114.2 Introduction ............................................ 14-114.3 Definition <strong>of</strong> Pressure .................................... 14-214.4 Pressure Rise Calculations ................................ 14-314.5 Assumptions and Limitations .............................. 14-314.6 Required Input for Spreadsheet Calculations . . . . . . . . . . . . . . . . . . 14-414.7 Cautions .............................................. 14-414.8 Summary .............................................. 14-414.9 References ............................................ 14-414.10 Problems .............................................. 14-5Chapter 15.Estimating the Pressure Increase and Explosive Energy ReleaseAssociated with Explosions ....................................... 15-115.1 Objectives ............................................. 15-115.2 Introduction ............................................ 15-115.3 Explosion Hazard ....................................... 15-315.4 Explosive Range ........................................ 15-415.5 Backdraft Explosion ..................................... 15-415.6 Smoke Explosion ....................................... 15-415.7 Unconfined and Confined Explosions . . . . . . . . . . . . . . . . . . . . . . . . 15-515.8 Estimating the Effects <strong>of</strong> Explosions . . . . . . . . . . . . . . . . . . . . . . . . . 15-715.8.1 Estimating Explosive Energy Release in a Confined Explosion 15-915.8.2 TNT Mass Equivalent Calculations . . . . . . . . . . . . . . . . . . 15-1015.8.3 Blast Effects .................................... 15-1115.9 Effects <strong>of</strong> Pressure on Humans and Environments . . . . . . . . . . . . 15-1215.10 Effects <strong>of</strong> Pressure on Components . . . . . . . . . . . . . . . . . . . . . . . . 15-1315.11 Estimating the Pressure Increase Attributable to a Confined Explosion 15-1415.12 Assumptions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1515.13 Required Input for Spreadsheet Calculations . . . . . . . . . . . . . . . . . 15-1515.14 Cautions ............................................. 15-1515.15 Summary ............................................. 15-1615.16 References ........................................... 15-1715.17 Additional Readings .................................... 15-1715.18 Problems ............................................. 15-18xii


CONTENTS (continued)Chapter 16. Calculating the Rate <strong>of</strong> Hydrogen Gas Generation in Battery Rooms . . . . . 16-116.1 Objectives ............................................. 16-116.2 Introduction ............................................ 16-116.3 Combustion <strong>of</strong> Hydrogen Gas .............................. 16-216.4 Ignition <strong>of</strong> Hydrogen Gas ................................. 16-416.4.1 Battery as an Ignition Source . . . . . . . . . . . . . . . . . . . . . . . . 16-516.4.2 Control <strong>of</strong> Hydrogen Gas Combustion . . . . . . . . . . . . . . . . . 16-516.5 Fire Protection Code Requirements for Battery Rooms . . . . . . . . . . 16-616.6 Method <strong>of</strong> Calculating the Rate <strong>of</strong> Hydrogen Generation in Battery Rooms 16-716.7 Method <strong>of</strong> Calculating Flammable Gas and Vapor ConcentrationBuildup in Enclosed Spaces ............................... 16-816.8 Method <strong>of</strong> Calculating Flammable Gas and Vapor ConcentrationBuildup Time in Enclosed Spaces........................... 16-916.9 Assumptions and Limitations ............................. 16-1016.10 Required Input for Spreadsheet Calculations . . . . . . . . . . . . . . . . . 16-1016.11 Cautions ............................................. 16-1116.12 Summary ............................................. 16-1116.13 References ........................................... 16-1216.14 Problems ............................................. 16-13Chapter 17. Calculating the Fire Resistance <strong>of</strong> Structural Steel Members............ 17-117.1 Objectives ............................................. 17-117.2 Introduction ............................................ 17-117.3 Fire Resistance <strong>of</strong> Buildings ............................... 17-317.4 Fire Resistance <strong>of</strong> Structural Members . . . . . . . . . . . . . . . . . . . . . . . 17-517.4.1 Fire Resistance and Temperature Limits <strong>of</strong> Steel Elements 17-517.4.2 Fire Resistance and Temperature Limits <strong>of</strong> Reinforced ConcreteElements........................................ 17-517.5 Failure Criteria for Structural Members . . . . . . . . . . . . . . . . . . . . . . . 17-617.6 Fire Walls and Fire Barrier Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-717.7 Fire Resistance Coatings for Structural Steel . . . . . . . . . . . . . . . . . . 17-817.8 Calculating Fire Resistance or Endurance . . . . . . . . . . . . . . . . . . . 17-1017.8.1 Equivalent Fire Resistance <strong>of</strong> Structural Steel . . . . . . . . . . 17-1017.8.2 Steel Column (Unprotected) . . . . . . . . . . . . . . . . . . . . . . . 17-1117.8.3 Steel Column (Protected with Gypsum Wallboard) . . . . . . 17-1217.8.4 Steel Column (with Low-Density Protection) . . . . . . . . . . . 17-1317.8.5 Steel Column (Protected with Spray-On Materials) . . . . . . 17-1417.8.6 Steel Column (Protected by Concrete) . . . . . . . . . . . . . . . 17-1517.8.7 Steel Beams.................................... 17-1617.8.7.1 Beam Substitution Correlation for Structural SteelBeams Protected by Spray-On Materials . . . . . . 17-1717.8.7.2 Column Substitution Correlation for Structural SteelColumns Protected by Spray-On Materials . . . . 17-18xiii


CONTENTS (continued)17.8.8 Numerical Method to Estimate the Temperature Increasein Structural Steel Elements . . . . . . . . . . . . . . . . . . . . . . . . 17-1817.8.8.1 Unprotected Structural Steel Sections . . . . . . . . 17-1917.8.8.2 Protected Structural Steel Sections . . . . . . . . . . 17-2117.9 Assumptions and Limitations ............................. 17-2317.10 Required Input for Spreadsheet Calculations . . . . . . . . . . . . . . . . . 17-2317.11 Cautions ............................................. 17-2317.12 Summary ............................................. 17-2317.13 References ........................................... 17-2417.14 Problems ............................................. 17-25Chapter 18. Estimating Visibility Through Smoke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-118.1 Objectives ............................................. 18-118.2 Introduction ............................................ 18-118.3 Smoke Obscuration...................................... 18-118.4 Effect <strong>of</strong> Smoke on Nuclear Power Plants . . . . . . . . . . . . . . . . . . . . 18-218.5 Estimating Visibility Through Smoke — Jin Method . . . . . . . . . . . . . 18-218.6 Assumptions and Limitations .............................. 18-518.7 Required Input for Spreadsheet Calculations . . . . . . . . . . . . . . . . . . 18-518.8 Cautions .............................................. 18-518.9 Summary .............................................. 18-618.10 References ............................................ 18-618.10 Problems .............................................. 18-7Index.................................................................Index-1xiv


AppendicesPageA. Nuclear Power Plant Electrical Cable Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . A-1A.1 Introduction ................................................... A-1A.2 Electrical Cable Construction ..................................... A-2A.3 Description <strong>of</strong> Cables ........................................... A-3A.4 Cable Materials ................................................ A-7A.4.1 Thermoplastic Materials ................................... A-7A.4.2 Thermoset Materials ...................................... A-8A.5 Cable Failure Threshold and Time to Damage . . . . . . . . . . . . . . . . . . . . . . . . A-9A.5.1 Theory ................................................. A-9A.5.2 Temperature Thresholds — Thermoset Cables . . . . . . . . . . . . . . . . . A-9A.5.3 Temperature Thresholds — Thermoplastic Cables . . . . . . . . . . . . . A-12A.5.4 Radiant Heating Failure Criteria — Cables . . . . . . . . . . . . . . . . . . . . A-14A.5.5 Basis for Cable Damage Timing Estimates . . . . . . . . . . . . . . . . . . . . A-15A.5.6 Temperature Exposures — Thermoset Cables . . . . . . . . . . . . . . . . . A-15A.5.7 Temperature Exposures — Thermoplastic Cables . . . . . . . . . . . . . . A-17A.5.8 Radiant Exposures — Thermoset and Thermoplastic Cables . . . . . A-19A.6 References .................................................. A-20A.7 Additional Readings ........................................... A-20B. Fundamentals <strong>of</strong> Fire Protection......................................... B-1B.12T-Squared (t ) Fire Power Law Heat Release Rate . . . . . . . . . . . . . . . . . . . . B-1B.1.1 Introduction ............................................. B-1B.1.22t Heat Release Rate...................................... B-1B.1.3 References ............................................ B-10B.2 Elements <strong>of</strong> Hydraulic and Electrical Systems . . . . . . . . . . . . . . . . . . . . . . . B-11B.2.1 References ............................................ B-12B.3 Classes <strong>of</strong> Fires .............................................. B-13B.3.1 References ............................................ B-13B.4 Classification <strong>of</strong> Hazards ....................................... B-14B.4.1 Light (Low) Hazard ...................................... B-14B.4.2 Ordinary (Moderate) Hazard ............................... B-14B.4.3 Extra (High) Hazard ..................................... B-14B.4.4 References ............................................ B-14B.5 Classes <strong>of</strong> Fires and Extinguishing Agents . . . . . . . . . . . . . . . . . . . . . . . . . . B-15B.6 Classification <strong>of</strong> Flammable and Combustible Liquids . . . . . . . . . . . . . . . . . B-17B.6.1 Flammable Liquid ....................................... B-17B.6.2 Combustible Liquid Classifications . . . . . . . . . . . . . . . . . . . . . . . . . . B-18B.6.3 Storage <strong>of</strong> Flammable and Combustible Liquids . . . . . . . . . . . . . . . B-20B.6.4 Flammable Combustible Storage Cabinets . . . . . . . . . . . . . . . . . . . . B-21B.6.5 Definitions ............................................. B-21B.6.6 Hazardous Materials ..................................... B-22B.6.7 References ............................................ B-23B.7 Classification <strong>of</strong> Flammable Gases................................ B-24B.7.1 Classification ........................................... B-24B.7.2 Definitions ............................................. B-24B.7.3 References ............................................ B-24xv


Appendices (continued)B.8 Flammability Hazards <strong>of</strong> Gases .................................. B-25B.8.1 Flammability Potential <strong>of</strong> Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-25B.8.2 Flammability Potential <strong>of</strong> Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . B-26B.8.3 Flammable Limits, Detonable Limits, and Potential forDeflagration-to-Detonation Transitions . . . . . . . . . . . . . . . . . . . . . . . B-26B.8.4 Flammable Gas Generation ............................... B-26B.8.5 Explosion Prevention Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-27B.8.6 References ............................................ B-28B.9 Combustion Properties <strong>of</strong> Pure Metals in Solid Form . . . . . . . . . . . . . . . . . . B-29B.9.1 Reference ............................................. B-30B.10 Extinguishing Agents for Metal Fires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-31B.10.1 References ............................................ B-32B.11 Occupancy Classification and Use Groups . . . . . . . . . . . . . . . . . . . . . . . . . . B-32B.11.1 Occupancy Classification ................................. B-32B.11.2 Special Use and Occupancy Requirements . . . . . . . . . . . . . . . . . . . B-34B.11.3 Code Advances/Changes ................................. B-34B.11.4 References ............................................ B-35B.12 Building Limitations and Types <strong>of</strong> Construction . . . . . . . . . . . . . . . . . . . . . . B-36B.12.1 Types <strong>of</strong> Construction .................................... B-36B.12.2 Five Construction Types .................................. B-37B.12.3 Fire Resistance Ratings .................................. B-38B.12.4 Reference ............................................. B-38B.13 Deep-Seated Fires in Class A Solid Materials . . . . . . . . . . . . . . . . . . . . . . . B-39B.13.1 General Information ..................................... B-39B.13.2 Deep-Seated Cable Fires ................................. B-40B.13.3 Deep-Seated Charcoal Fires............................... B-40B.13.4 References ............................................ B-40B.14 Special Hazard Gaseous Fire Extinguishing Agents . . . . . . . . . . . . . . . . . . B-41B.14.1 Introduction ............................................ B-41B.14.2 Halogenated Agent Extinguishing Systems . . . . . . . . . . . . . . . . . . . B-41B.14.3 Carbon Dioxide Fire Extinguishing Systems . . . . . . . . . . . . . . . . . . . B-53B.14.4 References ............................................ B-41B.15 Dry Chemical Extinguishing Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-55B.15.1 Hazards Associated with Dry Chemicals . . . . . . . . . . . . . . . . . . . . . B-57B.15.2 References ............................................ B-57B.16 Fire Protection Using Foam ..................................... B-58B.16.1 Properties <strong>of</strong> Foam ...................................... B-59B.16.2 Hazards Associated with Foam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-60B.16.3 Delivery Systems for Foam ................................ B-60B.16.4 Application <strong>of</strong> Foam ..................................... B-61B.16.5 Types <strong>of</strong> Foam ......................................... B-62B.16.6 References ............................................ B-65B.16.7 Additional Reading ...................................... B-65xvi


Appendices (continued)B.17 Harmful Properties <strong>of</strong> Toxic Gases Found in Fires . . . . . . . . . . . . . . . . . . . . B-66B.17.1 Introduction ............................................ B-66B.17.2 Smoke and Toxic Gases .................................. B-67B.17.3 Toxicity Data ........................................... B-69B.17.4 References ............................................ B-71B.18 Effects <strong>of</strong> Decomposition Products <strong>of</strong> Halogenated Fire Extinguishing Agents . . B-72B.18.1 Introduction ............................................ B-72B.18.2 Toxicity <strong>of</strong> Decomposition Products<strong>of</strong> Halogenated Fire Suppression Agents . . . . . . . . . . . . . . . . . . . . . B-73B.18.3 Physical Properties <strong>of</strong> Halon 1301 . . . . . . . . . . . . . . . . . . . . . . . . . . B-75B.18.4 Physical Properties <strong>of</strong> Halon 1211 . . . . . . . . . . . . . . . . . . . . . . . . . . B-76B.18.5 References ............................................ B-77B.19 An Introduction to Computer Fire Models . . . . . . . . . . . . . . . . . . . . . . . . . . . B-78B.19.1 Introduction ............................................ B-78B.19.2 Categories <strong>of</strong> Computer Fire Model . . . . . . . . . . . . . . . . . . . . . . . . . B-79B.19.3 Limitations and Uncertainties Associated with Computer Fire Modeling B-84B.19.4 Fire Models ............................................ B-85B.19.5 References ............................................ B-89B.19.6 Additional Readings ..................................... B-89C. Sources <strong>of</strong> Fire ...................................................... C-1C.1 Heat Sources ................................................. C-1C.2 Incident Heat.................................................. C-3C.3 Target Fuel ................................................... C-4C.4 Flame/Heat Growth ............................................. C-5C.5 Fire Resistance ................................................ C-6C.6 Fire Resistance/Endurance Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-8C.7 Fire Test Standards ........................................... C-15D. NRC Documents Related to Fire Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-1D.1 Code <strong>of</strong> Federal Regulations Related to Nuclear Regulatory CommissionFire Protection................................................. D-1D.2 Branch Technical Positions Related to Fire Protection . . . . . . . . . . . . . . . . . . D-2D.3 NRC Regulatory Guides Related to Fire Protection . . . . . . . . . . . . . . . . . . . . D-3D.4 NRC Generic Communications Related to Fire Protection . . . . . . . . . . . . . . . D-5D.4.1 NRC Administrative Letters Related to Fire Protection . . . . . . . . . . . . D-5D.4.2 NRC Bulletins Related to Fire Protection . . . . . . . . . . . . . . . . . . . . . . D-6D.4.3 NRC Circulars Related to Fire Protection . . . . . . . . . . . . . . . . . . . . . . D-7D.4.4 NRC Generic Letters Related to Fire Protection . . . . . . . . . . . . . . . . . D-8D.4.5 NRC Information Notices Related to Fire Protection . . . . . . . . . . . . . D-10D.4.6 NRC Regulatory Issue Summaries Related to Fire Protection . . . . . D-16D.5 Commission (SECY) Papers Related to Fire Protection . . . . . . . . . . . . . . . . D-17D.6 NRC Preliminary Notifications Related to Fire Incidents . . . . . . . . . . . . . . . . D-21D.7 NRC Miscellaneous Documents Related to Fire Protection . . . . . . . . . . . . . D-24D.8 NRR Staff Presentations and Publications Related to Fire Protection . . . . . D-27xvii


Appendices (continued)D.9 NRC Technical Reports in the NUREG Series Related to Nuclear Power PlantFire Protection <strong>Engineering</strong> Research and Development (R&D) . . . . . . . . . D-28D.10 Safety Evaluation Reports Related to License Renewalfor Operating Nuclear Power Plants ............................... D-45D.11 National Fire Protection Association (NFPA) Codes and Standardsfor Nuclear Facilities ........................................... D-46E. Current National Fire Protection Association (NFPA) Codes and Standards . . . . . . . E-1F. Glossary <strong>of</strong> Fire Protection Terms ....................................... F-1G. Abbreviations Used in Fire Protection <strong>Engineering</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . G-1H. Selected U.S. Commercial Nuclear Power Plant Fire Incidents . . . . . . . . . . . . . . . . . H-1H.1 Introduction ................................................... H-1H.2 San On<strong>of</strong>re Nuclear Generating Station, Unit 1,February 7 and March 12, 1968 ................................... H-6H.3 Browns Ferry Nuclear Power Plant, Unit 1, March 22, 1975 . . . . . . . . . . . . . H-8H.4 North Anna Power Station, Unit 2, July 3, 1981 . . . . . . . . . . . . . . . . . . . . . . H-11H.5 Rancho Seco, March 19, 1984 ................................... H-12H.6 Waterford Steam Electric Station, Unit 3, June 26, 1985 . . . . . . . . . . . . . . . H-13H.7 Fort St. Vrain Nuclear Generating Station, October 2, 1987 . . . . . . . . . . . . . H-14H.8 Oconee Nuclear Station, Unit 1, January 3, 1989 . . . . . . . . . . . . . . . . . . . . . H-15H.9 H.B. Robinson Steam Electric Plant, Unit 2, January 7, 1989 . . . . . . . . . . . H-16H.10 Calvert Cliffs Nuclear Power Plant, Unit 2, March 1, 1989 . . . . . . . . . . . . . . H-17H.11 Shearon Harris Nuclear Power Plant, October 9, 1989 . . . . . . . . . . . . . . . . H-18H.12 Salem Generating Station Unit 2, November 9, 1991 . . . . . . . . . . . . . . . . . . H-20H.13 Waterford Steam Electric Station Unit 3, June 10, 1995 . . . . . . . . . . . . . . . . H-21H.14 Palo Verde Nuclear Generating Station Unit 2, April 4, 1996 . . . . . . . . . . . . H-24H.15 San On<strong>of</strong>re Nuclear Generating Station, Unit 3, February 3, 2001 . . . . . . . H-26H.16 Point Beach Nuclear Plant, Unit 1, April 24, 2001 . . . . . . . . . . . . . . . . . . . . H-29H.17 Prairie Island Nuclear Generating Plant, Unit 1, August 3, 2001 . . . . . . . . . H-30H.18 Fort Calhoun Station, Unit 1, December 19, 2001 . . . . . . . . . . . . . . . . . . . . H-32xviii


Appendices (continued)I. Mathematics Review and System <strong>of</strong> Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-1I.1 Mathematics Review ............................................. I-1I.1.1 Units <strong>of</strong> Measurement ...................................... I-1I.1.2 Math Functions ........................................... I-6I.1.3 Solving Equations ......................................... I-8I.1.4 Caution with T Conversions ............................... I-10I.1.5 Miscellaneous Information ................................. I-11I.1.6 Reference .............................................. I-12I.2 Notation Conventions ........................................... I-13I.2.1 References ............................................. I-13I.3 System <strong>of</strong> Units................................................ I-14I.3.1 Length, Area, and Volume Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-14I.3.2 Mass and Density Units ................................... I-14I.3.3 Time Units .............................................. I-14I.3.4 Force and Pressure Units .................................. I-15I.3.5 Energy Units ............................................ I-15I.3.6 Power Units ............................................. I-15I.3.7 Temperature Units ....................................... I-16I.3.8 References ............................................. I-16I.4 Physical Constants for General Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-17I.4.1 References ............................................. I-17J. Practice Problems and Solutions ........................................ J-1xix


FiguresPage1-1 Physical Process <strong>of</strong> Combustion and Fire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-51-2 The Fire Triangle .................................................... 1-52-1 Typical Stages <strong>of</strong> Fire Development...................................... 2-22-2 Stages <strong>of</strong> Compartment Fire............................................ 2-22-3 Types <strong>of</strong> Mechanical Ventilation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-52-4 Smoke Filling In a Compartment Fire .................................... 2-152-5 General Representation <strong>of</strong> Heat Release Rate Histories for a Fuel Package . . . . . 2-183-1 A Simple Design Fire Curve ............................................ 3-23-2 Dynamic Features <strong>of</strong> a Pool Fire ........................................ 3-73-3 Temperature Distribution in the Flame <strong>of</strong> a Burning Candle . . . . . . . . . . . . . . . . . . . . 3-93-4 Diffusion Flame..................................................... 3-103-5 Premixed Flame .................................................... 3-103-6 Laminar Diffusion Flame.............................................. 3-103-7 Turbulent Premixed Flames ........................................... 3-113-8 Flame Extensions with a Free-Burning Flame and Under a Smooth Ceiling . . . . . . 3-133-9 Characteristics <strong>of</strong> Flame Height Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-164-1 Wall Fire Flame Configuration .......................................... 4-34-2 Line Fire Flame Against a Wall.......................................... 4-34-3 Corner Fire Flame Configuration ........................................ 4-45-1 Radiant Heat Flux from a Pool Fire to a Floor-Based Target Fuel (Point Source Model) . . 5-45-2 Solid Flame Radiation Model with No Wind and Target at Ground Level . . . . . . . . . . 5-55-3 Solid Flame Radiation Model with No Wind and Target Above Ground . . . . . . . . . . . 5-65-4 Cylindrical Flame Shape Configuration Factor Geometry for Vertical and HorizontalTargets at Ground Level with No Wind.................................... 5-85-5 Cylindrical Flame Shape Configuration Factor Geometry for Vertical and HorizontalTargets Above Ground with No Wind ..................................... 5-85-6 Solid Flame Radiation Model in Presence <strong>of</strong> Wind and Target Above Ground Level 5-115-7 Solid Flame Radiation Model in Presence <strong>of</strong> Wind and Target at Ground Level . . . 5-116-1 Ignition Processes for Liquid and Solid Fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16-2 External Radiation to a Solid Target from a Flame or Hot Surfaceat Evaluated Temperature ............................................. 6-29-1 A Buoyant Turbulent Plume Showing Air Entrainment . . . . . . . . . . . . . . . . . . . . . . . . 9-19-2 Three Zones <strong>of</strong> the Axisymmetric Buoyant Fire Plume . . . . . . . . . . . . . . . . . . . . . . . 9-39-3 Fire Plume with Virtual Origin ........................................... 9-5xx


Figures (continued)10-1 Heat Transfer Characteristics <strong>of</strong> the Heat-Sensitive Element <strong>of</strong> Sprinkler . . . . . . . . 10-410-2 Representative Arrangement <strong>of</strong> a Solder-Type Link-and-Lever Automatic Sprinkler 10-510-3 Ceiling Jet Flow Beneath an Unconfined Ceiling and Sprinkler Activation . . . . . . . 10-1111-1 Qualitative Relationship Between Time and Damage for Different Speeds <strong>of</strong> FireDevelopment and Average Detection, Reaction, and Fire Fighting . . . . . . . . . . . . . . 11-211-2 Illustration <strong>of</strong> the Photoelectric Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-411-3 Illustration <strong>of</strong> the Ionization Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-412-1 Ceiling Jet Flow Beneath an Unconfined Ceiling Showing a Heat Detector . . . . . . . 12-913-1 Flashover and Post-Flashover Compartment Fire . . . . . . . . . . . . . . . . . . . . . . . . . . 13-214-1 Overpressure Generated at a Fixed Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-115-1 Pressure Peaks <strong>of</strong> an Explosion Inside a Building . . . . . . . . . . . . . . . . . . . . . . . . . . 15-515-2 Propagation <strong>of</strong> Explosion Flame........................................ 15-615-3 Ideal Blast Wave Overpressure vs. Scaled Distance . . . . . . . . . . . . . . . . . . . . . . . 15-1116-1 Flammability Limits <strong>of</strong> Hydrogen in Air Diluted with Carbon Dioxide and Nitrogen . 16-316-2 Flammability Limits <strong>of</strong> Hydrogen in Air-Steam Mixtures . . . . . . . . . . . . . . . . . . . . . . 16-316-3 Spark Ignition Energies for Dry Hydrogen-Air Mixtures . . . . . . . . . . . . . . . . . . . . . . 16-416-4 Typical Flammability Diagram.......................................... 16-517-1 Standard Time-Temperature Curve (ASTM E119) . . . . . . . . . . . . . . . . . . . . . . . . . . 17-117-2 Typical Methods <strong>of</strong> Protecting Various Structural Steel Elements from Fire . . . . . . 17-417-3 Encasement <strong>of</strong> a Steel Beam by Monolithic Casting <strong>of</strong> Concrete Around the Beam 17-917-4 Spray-On Mineral Fibers and Noncombustible Protective Coatings . . . . . . . . . . . . . 17-917-5 Sections <strong>of</strong> Unprotected Steel Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-1117-6 Heated Perimeters for Common Column and Beam Shapes . . . . . . . . . . . . . . . . . 17-1217-7 Concrete-Protected Structural Steel Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-15A-1 Basic Electrical Cable Construction — Common Single- and Multi-ConductorArrangements ....................................................... A-4A-2 Thermoplastic Insulated Cable Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7A-3 Thermoset Insulated Cable Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-8A-4 Raw Time to Damage Chart for Thermoset XLPE Cables . . . . . . . . . . . . . . . . . . . . A-15A-5 Time to Damage Plot for Thermoset Cables with Linear Regression Curve . . . . . . A-16A-6 Raw Time to Damage Plot for Thermoplastic PE Cables . . . . . . . . . . . . . . . . . . . . . A-17A-7 Time to Damage Plot for Thermoplastic Cables with Linear Regression Curve . . . . A-18xxi


Figures (continued)B.1-12Fire Growth <strong>of</strong> t Fitted to Data ........................................ B-2B.1-22Growth Rate Curves for t Fire......................................... B-4B.1-32Comparison <strong>of</strong> t Heat Release Rate with Full-Scale Free-Burn Heat Release Rate . B-5B.1-42Relation <strong>of</strong> t Heat Release Rate to Some Fire Tests . . . . . . . . . . . . . . . . . . . . . . . B-5B.1-52Comparison <strong>of</strong> t Heat Release Rate with Full-Scale Furniture Heat Release Rate . . B-6B.1-62Three-Sided Work Station Heat Release Rate Curve Compared With t Curves . . B-8B.1-72Heat Release Rate Curve for Idle Pallets Compared with t Curves . . . . . . . . . . . . B-9B.1-82Heat Release Rate for Stacked Box Fires Compared with t Curves . . . . . . . . . . B-10B.14-1 Indication <strong>of</strong> Deep-Seated Fire and Reignition <strong>of</strong> Cables, Test # 60,IEEE-383-Qualified Cables, Horizontal Trays, 4-Minute Halon SoakAcceptor Tray Center Temperature .................................... B-44B.14-2 Soaking Time vs. Halon 1301 Concentration for Deep-Seated and Surface Fires B-45xxii


TablesPage1-1 Common Combustible and Hazardous Materials in NPPs . . . . . . . . . . . . . . . . . . . . . 1-62-1 Temperature Conversions ............................................. 2-72-2 Critical Temperatures for Different Exposure Conditions and Effects on Humans . . . 2-72-3 Thermal Properties <strong>of</strong> Compartment Enclosing Surface Materials . . . . . . . . . . . . . . 2-112-4 Measured Heat Release Rate Data for Cable Jacketing Material . . . . . . . . . . . . . . 2-202-5 Measured Heat Release Rate Data for Electrical Cabinets . . . . . . . . . . . . . . . . . . . 2-202-6 Measured Heat Release Rate Data for Transient Combustible Materials(Flammable/Combustible Liquids) ...................................... 2-212-7 Measured Heat Release Rate Data for Transient Combustible Materials (Trash) . . 2-212-8 Measured Heat Release Rate Data for Transient Combustible Materials(Plywood and Wood Pallet) ........................................... 2-222-9 Ignition Thresholds (Pilotless within 30 seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-222-10 Thermal Effects on Electronics ......................................... 2-223-1 Rough Measure <strong>of</strong> Heat Generated from Various Sources . . . . . . . . . . . . . . . . . . . . 3-23-2 Large-Pool Fire Burning Rate Data ...................................... 3-43-3 Pool Fire Burning Modes .............................................. 3-53-4 Burning Rates <strong>of</strong> Some Combustible Materials Found in Nuclear Power Plants . . . . 3-63-5 Flame Temperatures <strong>of</strong> Selected Fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-133-6 Adiabatic Flame Temperatures <strong>of</strong> Selected Fuels . . . . . . . . . . . . . . . . . . . . . . . . . . 3-156-1 Typical Heat Fluxes From Various Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-26-2 Typical Ignition Times <strong>of</strong> Thick Solid Fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-46-3 Critical Heat Flux and Thermal Response Parameters <strong>of</strong> Selected Materials . . . . . . 6-66-4 Ignition Temperature and Thermal Properties <strong>of</strong> Materials . . . . . . . . . . . . . . . . . . . . 6-76-5 Ignition and Flame Spread Properties <strong>of</strong> Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 6-106-6 Ignition and Flame Spread Properties <strong>of</strong> Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 6-127-1 Bench-Scale HRR <strong>of</strong> a Cable Tray Fire ................................... 7-47-2 Thermoplastic vs. Thermoset Cables ..................................... 7-58-1 Thermal Properties <strong>of</strong> Solid Combustible Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 8-310-1 Temperature Rating, Classification, and Color Coding <strong>of</strong> Automatic Sprinklers . . . . 10-610-2 Generic Sprinkler Temperature Rating (Tactivation) . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-710-3 Generic Sprinkler Response Time Index (RTI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-812-1 Time Constant <strong>of</strong> Any Listed Detector ................................... 12-712-2 Detector Response Time Index <strong>of</strong> Any Listed Detector . . . . . . . . . . . . . . . . . . . . . . 12-8xxiii


Tables (continued)15-1 Estimated Damage Attributable to Explosive Overpressure . . . . . . . . . . . . . . . . . . . 15-715-2 Heat <strong>of</strong> Combustion, Ignition Temperature, and Adiabatic Flame Temperature<strong>of</strong> Flammable Gases................................................ 15-1015-3 Pressure Effects on Humans ......................................... 15-1215-4 Typical Failure Pressures <strong>of</strong> Some Building Elements . . . . . . . . . . . . . . . . . . . . . . 15-1316-1 Hydrogen Flammability Limits in Air at Room Temperature . . . . . . . . . . . . . . . . . . . 16-216-2 Float Current Demand for Stationary Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-816-3 Mixing Efficiency for Various Ventilation Arrangements . . . . . . . . . . . . . . . . . . . . . 16-1017-1 Standard Time-Temperature Curve Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-217-2 Temperature Endpoint Criteria for Structural Members . . . . . . . . . . . . . . . . . . . . . . 17-617-3 Typical Fire Resistance <strong>of</strong> Walls........................................ 17-717-4 Resultant Emissivity for Different Types <strong>of</strong> Construction . . . . . . . . . . . . . . . . . . . . 17-1917-5 Spreadsheet Calculation for the Temperature <strong>of</strong> Steel Sections . . . . . . . . . . . . . . 17-2017-6 Thermal Properties <strong>of</strong> Insulation Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-2218-1 Proportionality Constants for Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-318-2 Specific Extinction Coefficient for Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-318-3 Smoke Particulate Yield .............................................. 18-4A-1 Designation <strong>of</strong> Electrical Rated Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3A-2 Failure Time-Temperature Relationship for Thermoset Cables . . . . . . . . . . . . . . . . A-16A-3 Failure Time-Temperature Relationship for Thermoplastic Cables . . . . . . . . . . . . . A-18A-4 Estimated Time to Damage for Radiant Heating Exposures for Thermoset Cables . A-19A-5 Estimated Time to Damage for Radiant Heating Exposures for Thermoplastic Cables . . A-19B.1-12Summary <strong>of</strong> t Fire Parameters ......................................... B-3B.1-2 Maximum Heat Release Rates <strong>of</strong> Warehouse Materials . . . . . . . . . . . . . . . . . . . . . . B-6B.2-1 Corresponding Elements <strong>of</strong> Hydraulic and Electrical Systems . . . . . . . . . . . . . . . . . B-11B.5-1 Fire Classes with Extinguishing Agents .................................. B-16B.6-1 Flammable Liquid Classifications ....................................... B-17B.6-2 Combustible Liquid Classifications ...................................... B-18B.6-3 Flash Points <strong>of</strong> Flammable and Combustible Liquids . . . . . . . . . . . . . . . . . . . . . . . . B-19B.6-4 Maximum Allowable Size <strong>of</strong> Containers and Portable Tanksfor Flammable and Combustible Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-20B.6-5 Hazardous Material Classification ...................................... B-22B.9-1 Melting, Boiling, and Ignition Temperatures <strong>of</strong> Pure Metals in Solid Form . . . . . . . B-30B.10-1 Extinguishing Agents for Metal Fires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-31xxiv


Tables (continued)B.12-1 Construction Classifications <strong>of</strong> the Model Codes and NFPA 220 . . . . . . . . . . . . . . . B-38B.14-1 Halogenated Hydrocarbons Commonly Used for Fire Protection . . . . . . . . . . . . . . . B-42B.15-1Dry Chemical Agents ................................................ B-55B.17-1Toxicity Data ....................................................... B-69B.18-1 Approximate Lethal Concentrations (ALCs) for PredominantHalon 1301 and Halon 1211 Decomposition Products . . . . . . . . . . . . . . . . . . . . . . . B-73B.18-2 Concentration <strong>of</strong> Hazardous Gases Attributable to Decomposition <strong>of</strong> Halon 1301in Industrial Baghouse Fire Situation .................................... B-74B.18-3 Halon 1301 Decomposition Produced by an n-Heptane Fires . . . . . . . . . . . . . . . . . B-76B.18-4 Selected Properties <strong>of</strong> Halon 1301, 1211, and 2402 . . . . . . . . . . . . . . . . . . . . . . . . B-76B.19-1 Computer Fire Models ............................................... B-85C.1-1 Common <strong>Engineering</strong> Terms Related to Heat Sources . . . . . . . . . . . . . . . . . . . . . . . C-2C.2-1 Incident Heat........................................................ C-3C.3-1 Target Fuel ......................................................... C-4C.4-1 Flame/Heat Growth................................................... C-5C.5-1 Common <strong>Engineering</strong> Terms Related to Fire Severity . . . . . . . . . . . . . . . . . . . . . . . . C-6C.5-2 Common <strong>Engineering</strong> Terms Related to Fire Performance . . . . . . . . . . . . . . . . . . . . C-7C.6-1 Fire-Resistance Test Standards for Building Materials . . . . . . . . . . . . . . . . . . . . . . . C-12C.6-2 Fire-Resistance Test Standards for Aerosol and Liquid Paints . . . . . . . . . . . . . . . . C-13C.6-3 Fire-Resistance Test Standards for Plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-14D.3-1 NRC Regulatory Guides Related to Fire Protection . . . . . . . . . . . . . . . . . . . . . . . . . . D-3D.4-1 NRC Administrative Letters Related to Fire Protection . . . . . . . . . . . . . . . . . . . . . . . . D-5D.4-2 NRC Bulletins Related to Fire Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-6D.4-3 NRC Circulars Related to Fire Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-7D.4-4 NRC Generic Letters Related to Fire Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-8D.4-5 NRC Information Notices Related to Fire Protection . . . . . . . . . . . . . . . . . . . . . . . . D-10D.4-6 NRC Regulatory Issue Summaries Related to Fire Protection . . . . . . . . . . . . . . . . . D-16D.5-1 Commission (SECY) Papers Related to Fire Protection . . . . . . . . . . . . . . . . . . . . . . D-18D.6-1 Preliminary Notifications Related to Fire Incidents . . . . . . . . . . . . . . . . . . . . . . . . . . D-21E.1-1 NFPA Codes and Standards ........................................... E-1H.1-1 Summary <strong>of</strong> Selected U.S. Commercial Nuclear Power Plant Fire Incidents . . . . . . . H-2I.1-1 Basic Units .......................................................... I-1I.1-2 Derived Units ........................................................ I-2I.1-3 SI Prefixes .......................................................... I-3I.1-4 Scientific Notations, Prefixes, and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-4I.1-5 Selected Unit Conversions .............................................. I-5I.4-1 Values <strong>of</strong> Constants for General Use ..................................... I-17xxv


xxvi


LIST OF FIRE DYNAMICS TOOLSThe NRC’s Office <strong>of</strong> Nuclear Reactor Regulation (NRR) developed the fire dynamics toolss ®(FDT ) using commercially available s<strong>of</strong>tware (Micros<strong>of</strong>t Excel 2000).FDTs02.1_Temperature_NV.xlsChapter and Related Calculation Method(s)Chapter 2. Predicting Hot Gas Layer Temperatureand Smoke Layer Height in a Room Firewith Natural VentilationMethod <strong>of</strong> McCaffrey, Quintiere, and Harkleroad (MQH)• Compartment with Thermally Thick/Thin Boundaries02.2_Temperature_FV.xlsChapter 2. Predicting Hot Gas Layer Temperaturein a Room Fire with Forced VentilationMethod <strong>of</strong> Foote, Pagni, and Alvares (FPA)• Compartment with Thermally Thick/Thin BoundariesMethod <strong>of</strong> Deal and Beyler• Compartment with Thermally Thick/Thin Boundaries02.3_Temperature_CC.xls03_HRR_Flame_Height_Burning_Duration_Calculation.xls04_Flame_Height_Calculations.xlsChapter 2. Predicting Hot Gas Layer Temperature in a RoomFire with Door ClosedCompartment has Sufficient Leaksto Prevent Pressure Buildup; Leakage is IgnoredMethod <strong>of</strong> BeylerChapter 3. Estimating Burning Characteristics<strong>of</strong> Liquid Pool Fire, Heat Release Rate,Burning Duration and Flame HeightChapter 4. Estimating Wall Fire Flame Height,Line Fire Flame Height Against the Wall,and Corner Fire Flame Heightxxvii


LIST OF FIRE DYNAMICS TOOLS (continued)FDTs05.1_Heat_Flux_Calculations_Wind_Free.xls05.2_Heat_Flux_Calculations_Wind.xls05.3_Thermal_Radiation_From_Hydrocarbon_Fireballs.xls06_Ignition_Time_Calculations.xlsChapter and Related Calculation MethodChapter 5. Estimating Radiant Heat Flux from Fireto a Target FuelWind-Free Condition• Point Source Radiation Model (Target at Ground Level)• Solid Flame Radiation Model (Target at Ground Level)• Solid Flame Radiation Model(Target Above Ground Level)Presence <strong>of</strong> Wind• Solid Flame Radiation Model (Target at Ground Level)• Solid Flame Radiation Model (Target Above Ground Level)Estimating Thermal Radiation from Hydrocarbon FireballsChapter 6. Estimating the Ignition Time <strong>of</strong> a Target FuelExposed to a Constant Radiative Heat Flux• Method <strong>of</strong> Estimating Piloted Ignition Time<strong>of</strong> Solid Materials Under Radiant ExposuresMethod <strong>of</strong> (1) Mikkola and Wichman,(2) Quintiere and Harkleroad, and (3) Janssens• Method <strong>of</strong> Estimating Piloted Ignition Time <strong>of</strong> SolidMaterials Under Radiant ExposuresMethod <strong>of</strong> Toal, Silcock and Shields• Method <strong>of</strong> Estimating Piloted Ignition Time <strong>of</strong> SolidMaterials Under Radiant ExposuresMethod <strong>of</strong> Tewarson07_Cable_HRR_Calculations.xls08_Burning_Duration_Soild.xls09_Plume_Temperature_Calculations.xlsChapter 7. Estimating Full-Scale Heat Release Rate<strong>of</strong> a Cable Tray FireChapter 8. Estimating Burning Duration <strong>of</strong> SolidCombustiblesChapter 9. Estimating Centerline Temperature<strong>of</strong> a Buoyant Fire Plumexxviii


LIST OF FIRE DYNAMICS TOOLS (continued)FDTs10_Detector_Activation_Time.xlsChapter and Related Calculation MethodEstimating Detector Response TimeChapter 10.Chapter 11.Chapter 12.Estimating Sprinkler Response TimeEstimating Smoke Detector Response TimeEstimating Heat Detector Response Time13_Compartment_ Flashover_Calculations.xlsChapter 13.Predicting Compartment Flashover• Compartment Post-Flashover Temperature:Method <strong>of</strong> Law• Minimum Heat Release RateRequired to Compartment Flashover:Method <strong>of</strong> (1) McCaffrey, Quintiere, and Harkleroad(MQH); (2) Babrauskas; and (3) Thomas14_Compartment_Over_Pressure_Calculations.xlsChapter 14.Estimating Pressure RiseAttributable to a Fire in a Closed Compartment15_Explosion_Claculations.xls Chapter 15. Estimating the Pressure Increaseand Explosive Energy ReleaseAssociated with Explosions16_Battery_Room_Flammable_Gas_Conc.xlsChapter 16.Calculating the Rate <strong>of</strong> Hydrogen GasGeneration in Battery Rooms• Method <strong>of</strong> Estimating Hydrogen Gas GenerationRate in Battery Rooms• Method <strong>of</strong> Estimating Flammable Gas and VaporConcentration Buildup in Enclosed Spaces• Method <strong>of</strong> Estimating Flammable Gas and VaporConcentration Buildup Time in Enclosed Spacesxxix


LIST OF FIRE DYNAMICS TOOLS (continued)FDTsChapter and Related Calculation MethodChapter 17.Calculating the Fire Resistance<strong>of</strong> Structural Steel Members17.1_FR_Beams_Columns_Substitution_Correlation.xls• Empirical Correlations17.2_FR_Beams_Columns_Quasi_Steady_State_Spray_Insulated.xls• Beam Substitution Correlation (Spray-Applied Materials)• Column Substitution Correlation (Spray-Applied Materials)• Heat Transfer Analysis using Numerical MethodsProtected Steel Beams and Columns (Spray-Applied)17.3_FR_Beams_Columns_Quasi_Steady_State_Board_Insulated.xls• Heat Transfer Analysis using Numerical MethodsProtected Steel Beams and Columns (Board Materials)17.4_FR_Beams_Columns_Quasi_Steady_State_Uninsulated.xls• Heat Transfer Analysis using Numerical MethodsUnprotected Steel Beams and Columns18_Visibility_Through_Smoke.xls Chapter 18. Estimating Visibility Through Smokexxx


DISCLAIMERThe calculation methods presented in this NUREG-series report and programmed in the FiresDynamics Tools (FDT ) spreadsheets include scientific calculations, as well as material physicaland thermal properties relevant to fire hazard analyses. Each spreadsheet on the CD-ROM hasbeen protected and secured to avoid calculation errors attributable to invalid entries in the cell(s).Although each calculation in each spreadsheet has been verified with the results <strong>of</strong> handcalculations, there is no absolute guarantee <strong>of</strong> the accuracy <strong>of</strong> these calculations.The first-time analyst should read the text in this report in its entirety before making an analysis.Most <strong>of</strong> the equations and correlations in the spreadsheets are simple mathematical expressionscommonly used in fire protection engineering. The mathematical expressions are not limited,however, and they sometimes give physically impossible values. Where we have encountered thisproblem, or where a value exceeds known limits, we have added red warning flags to thespreadsheets. For example a red flag appears when an equation increases the hot gas layertemperature as a result <strong>of</strong> a fire that goes well beyond those that are physically possible.Finally, with respect to any errors, omissions, or oversights that may still exist in the text, we are<strong>of</strong> one mind. Any shortcomings are the results <strong>of</strong> something the other one <strong>of</strong> us did or did not do. No oneelse can share them.The publication <strong>of</strong> this NUREG-series report completes the initial effort by the NRC’s Office <strong>of</strong>Nuclear Reactor Regulation to produce an Introduction to Fire Dynamics for NRC Inspectors.sFuture updates or corrections, or new FDT spreadsheets will be posted on the NRC’s publicWeb site in the Fire Protection section <strong>of</strong> the Reactor Operating Experience page athttp://www.nrc.gov/reactors/operating/ops-experience/fire-protection.html.sTo <strong>of</strong>fer any questions, comments, or suggestions, or to report an error in the NUREG or FDT ,please send an email message to NXI@nrc.gov or MXS3@nrc.gov, or write to:Naeem IqbalOffice <strong>of</strong> Nuclear Reactor RegulationU.S. Nuclear Regulatory CommissionMail Stop O11-A11Washington, DC 20555-0001orMark Henry SalleyOffice <strong>of</strong> Nuclear Regulatory ResearchU.S. Nuclear Regulatory CommissionMail Stop T10-E50Washington, DC 20555-0001xxxi


xxxii


THE AUTHORSNaeem IqbalNaeem Iqbal is a Fire Protection Engineer in the NRC’s Office <strong>of</strong> Nuclear Reactor Regulation(NRR). He holds a Master <strong>of</strong> Science degree in fire protection engineering from the University <strong>of</strong>Maryland at <strong>College</strong> Park and a Bachelor <strong>of</strong> Science degree in mechanical engineering from NEDUniversity <strong>of</strong> <strong>Engineering</strong> and Technology in Pakistan. Mr. Iqbal is a member <strong>of</strong> the Society <strong>of</strong> FireProtection Engineers (SFPE); National Fire Protection Association (NFPA); American Society <strong>of</strong>Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE); and International Association<strong>of</strong> Fire Safety Science (IAFSS).Mr. Iqbal has been actively involved in fire hazard analysis, computer and mathematical firemodeling, smoke spread and fire growth, fire code review and compliance, and fire risk assessmentprojects for U.S. commercial nuclear power plants. He also reviews and prepares safety evaluationreports for power reactors. Mr. Iqbal is currently involved in preparing safety evaluation reports tosupport renewal <strong>of</strong> licenses for extended operation <strong>of</strong> the Nation’s operating nuclear power plantsunder Title 10, Part 54, <strong>of</strong> the Code <strong>of</strong> Federal Regulations (10 CFR Part 54). He has also beeninvolved in research and development projects in fire protection engineering, with a particular focuson fundamental and applied aspects <strong>of</strong> fire safety science, engineering, and technology.In addition, Mr. Iqbal has authored several publications and technical reports on flame spread,burning rate, fire growth on materials, and fire hazard analysis.Prior to joining the NRC, Mr. Iqbal worked for Hughes Associates, Inc., a leading engineeringconsulting firm specializing in engineering design, research and development, and advancedtechnology related to fire protection engineering. There, he was responsible for performingtechnical studies <strong>of</strong> a wide range <strong>of</strong> fire protection problems, as well as fire hazard and risk analysis<strong>of</strong> unusual and unique situations in commercial and industrial facilities and Department <strong>of</strong> Energy(DOE) nuclear processing facilities problems involving model building codes and fire codes that failto adequately address a particular situation.Mark Henry Salley, P.E.Mark Henry Salley currently serves as Fire Research Team Leader in the NRC’s Office <strong>of</strong> NuclearRegulatory Research (RES); however, he prepared much <strong>of</strong> this publication as a Fire ProtectionEngineer in NRR. Mr. Salley holds Master and Bachelor <strong>of</strong> Science degrees in fire protectionengineering, both from the University <strong>of</strong> Maryland at <strong>College</strong> Park. He is a registered pr<strong>of</strong>essionalengineer in fire protection engineering and a member <strong>of</strong> the NFPA, SFPE, and American NuclearSociety (ANS).Prior to joining the NRC, Mr. Salley was the Corporate Fire Protection Engineer for the TennesseeValley Authority Nuclear (TVAN) program. There, he was responsible for the overall TVAN FireProtection and Fire Safe-Shutdown Program (under 10 CFR Appendix R). Mr. Salley worked onthe restart <strong>of</strong> Sequoyah Nuclear Plant, Units 1 and 2, as well as Browns Ferry Nuclear Plant,Units 2 and 3. He also played an integral role in the completion <strong>of</strong> construction, licensing, andstartup <strong>of</strong> Watts Bar Nuclear Plant, Unit 1.xxxiii


Mr. Salley has also served as a Principle Project Engineer for Parsons-Main Inc. in Charlotte, NorthCarolina. There, he supported the restart <strong>of</strong> the K-reactor at the DOE Savannah River Siteand the site-wide fire protection upgrade.Mr. Salley has an extensive background in fire protection engineering, including firefighting, designengineering, fire testing, and analytical analysis. He has also authored papers in the area <strong>of</strong> fireprotection engineering.xxxiv


ACKNOWLEDGMENTSThe authors gratefully acknowledge Dr. Frederick Mowrer and the University <strong>of</strong> Maryland,Department <strong>of</strong> Fire Protection <strong>Engineering</strong>. Both authors have attended Dr. Mowrer’s AdvancedFire Modeling course (ENFP 625) as a part <strong>of</strong> their postgraduate studies, and the general conceptssused in creating and developing the FDT spreadsheets are similar to those taught by Dr. Mowrer.The authors also thank Mr. Sunil Weerakkody, the NRC Project Manager and Fire ProtectionSection Chief who spearheaded this project. We also gratefully acknowledge the contributions <strong>of</strong>our colleagues and managers at NRC Headquarters who supported us throughout this project, aswell as the NRC’s regional managers and fire protection inspectors who <strong>of</strong>fered valuablecontributions, support, and suggestions. The regional inspectors also contributed valuable advicesduring quarterly fire protection seminars to improve the quality <strong>of</strong> the FDT spreadsheets.We developed the final product with them in mind as the end users.The authors also extend our thanks to Tanya Mensah and James Downs, Fire Protection Engineerswith NRR/DSSA/SPLB, as well as the NRR Nuclear Safety Interns (Matthew Yoder, JasonDreisbach, Joel Rivera-Oritz, and Alexander Velazquez-Lozada) who assisted us in preparing thissreport and the FDT spreadsheets. We deeply appreciate their invaluable assistance. We alsogratefully acknowledge George Hausman, a Reactor Inspector in Region III, for assisting in makingsthe FDT spreadsheets more user-friendly. We also extend special thanks to Ms. Paula Garrity,a Technical Editor with the Program Management, Policy Development and Analysis Staff <strong>of</strong> theNRC’s Office <strong>of</strong> Nuclear Regulatory Research (RES), for providing editorial support, navigating usthrough the formal requirements, and assisting us in setting the style and appearance <strong>of</strong> the text.We are also indebted to Mr. Lionel Watkins and Ms. Monique King, two talented Visual InformationSpecialists in the Information and Records Services Division, Publishing and Distribution ServicesBranch, <strong>of</strong> the NRC’s Office <strong>of</strong> Chief Information Officer (OCIO), who designed the cover and many<strong>of</strong> the graphics for this report. In addition, we greatly appreciate the support <strong>of</strong> Gary Lauffer(Chief <strong>of</strong> the Publishing Services Branch), Guy Beltz, (the agency’s Printing Specialist), andLinda Stevenson (the agency’s publications specialist), whose invaluable support and expertisewere critical to ensuring the quality <strong>of</strong> the published manuscript.Our sincere thanks also go to Mr. Gerald Haynes, a Fire Protection Engineer, with the Bureau <strong>of</strong>Alcohol, Tobacco, Firearms, and Explosives (ATF&E) in Washington, DC, who identified theconcept <strong>of</strong> spreadsheets used in the ATF&E fire and arson investigation program. The ATF&E’sspreadsheets served as a conceptual model for the NRC’s effort. Mr. Haynes, Mr. Stephen Hill,and numerous Certified Fire Inspectors (CFIs) at the ATF&E also provided valuable comments onthe development <strong>of</strong> the NRC’s spreadsheets.Finally, the authors thank the NRC inspectors and external stakeholders who took the timeto provide comments, suggestions, and words <strong>of</strong> encouragement on the first draft <strong>of</strong> this documentwhen it was published in the Federal Register (Vol. 68, No. 140, Page 43400). The following pagesacknowledge these contributors.Naeem IqbalMark Henry Salleyxxxv


Internal StakeholdersNRC Regional InspectorsRegion I:Region II:Richard BarkleyCharles CastoRam BhatiaCharles OgleChristopher Cahill Charles PayneLeonard CheungReinaldo RodriguezEugene CobeyWalter RogersAniello DellaGreca Robert SchinHarold Eichenholz Caswell SmithRoy FuhrmeisterNecota StaplesJames LinvilleMcKenzie ThomasGlenn MeyerGerald WisemanJohn RoggeLarry SchollJames TrappRichard UrbanTracy WalkerDavid WerkheiserKeith YoungRegion III:Sonia BurgessDoris ChyuRobert DaleyZelig FalevitsRonald GardnerJohn GrobeGeorge HausmanDavid HillsBenny JoseRonald LangstaffJulio LaraKenneth O’BrienMichael ParkerCynthia PedersonDarrell SchrumRegion IV:Lawrence EllershawPaula GoldbergClaude JohnsonCharles MarschallJohn MateychickTimothy McConnellWilliam McNeillRaymond MullikinRebecca NeaseNeil O’KeefeCharles PaulkTroy PruettLinda SmithJoseph TaylorJohn WhittemoreNRC HeadquartersSPLBFire Protection:Richard DipertDaniel FrumkinRaymond GallucciAlexander KleinPaul LainPhillip QuallsRobert RadlinskiNRR:Suzanne BlackJohn HannonMichael JohnsonPeter KoltayGeorge MorrisRobert PerchMark ReinhartSee-Meng WongRES:Monideep DeyJ.S. HyslopWilliam RaughleyNathan SiuACRS:Dana PowersStephen RosenJohn SieberGraham WallisExternal Stakeholders (Significant Public Comments)Rashid Abbas (TVA)Vytenis (Vyto) Babrauskas, PhD(Fire Science and Technology Inc.)Nick Barilo (Bechtel Hanford, Inc.)Thomas F. Barry, P.E. (Fireriskforum)John Bryan, EdD, Pr<strong>of</strong>essor Emeritus(Fire Protection Eng., University <strong>of</strong> MD)Brad Dolan (Robinson NPP PSA Engineer)Tom Fernandez (DE Design, A&E)Wayne D. Holmes, P.E., FSFPE(HSB Pr<strong>of</strong>essional Loss Control)Morgan J. Hurley, P.E. (SFPE)James R. Hutton, PE, CSP(National Nuclear Security Administration)David J. Icove, PhD, PE(U.S. Tennessee Valley Authority Police)Peter Jackman (International Fire Consultants, Ltd.)Moonhak Jee(KEPRI in Korea)Francisco Joglar (SAIC)Alex Marion (Nuclear Energy Institute)Leong Poon(Warrington Fire Research in Australia)Deggary N. Priest (Omega Point Laboratories)Robert Toth(International Association <strong>of</strong> Arson Investigators)Woody Walker (Arkansas Nuclear One)Ulf Wickström, SP (Sweden)xxxvi


EXECUTIVE SUMMARYThe U.S. Nuclear Regulatory Commission (NRC), Office <strong>of</strong> Nuclear Reactor Regulation (NRR),Division <strong>of</strong> Systems Safety and Analysis (DSSA), Plant Systems Branch (SPLB), Fire Protection<strong>Engineering</strong> and Special Projects Section, has developed quantitative methods, known ass“Fire Dynamics Tools” (FDT ), to assist regional fire protection inspectors in performing fire hazardanalysis (FHA). These methods have been implemented in spreadsheets and taught at the NRC’squarterly regional inspector workshops conducted in 2001–2003. The goal <strong>of</strong> the training is toassist inspectors in calculating the quantitative aspects <strong>of</strong> a postulated fire and its effects on safesnuclear power plant (NPP) operation. FDT were developed using state-<strong>of</strong>-the-art fire dynamics®equations and correlations that were preprogramed and locked into Micros<strong>of</strong>t Excel spreadsheets.sThese FDT will enable the inspector to perform quick, easy, first-order calculations for the potentialsfire scenarios using today’s state-<strong>of</strong>-the-art principles <strong>of</strong> fire dynamics. Each FDT spreadsheetalso contains a list <strong>of</strong> the physical and thermal properties <strong>of</strong> the materials commonly encounteredin NPPs.sThe FDT are intended to assist fire protection inspectors in performing risk-informed evaluations<strong>of</strong> credible fires that may cause critical damage to essential safe-shutdown equipment, as required*by the new reactor oversight process (ROP) defined in the NRC’s inspection manual . In the newROP, the NRC is moving toward a more risk-informed, objective, predictable, understandable, andfocused regulatory process. Key features <strong>of</strong> the new program are a risk-informed regulatory**framework, risk-informed inspections, a significance determination process (SDP) to evaluateinspection findings, performance indicators, a streamlined assessment process, and more clearlydefined actions that the NRC will take for plants based on their performance.sThis NUREG-series report addresses the technical bases for FDT , which were derived from theprinciples developed primarily in the Society <strong>of</strong> Fire Protection Engineers (SFPE) Handbook <strong>of</strong> FireProtection <strong>Engineering</strong>, National Fire Protection Association (NFPA) Fire Protection Handbook, andother fire science literature. The subject matter <strong>of</strong> this report covers many aspects <strong>of</strong> fire dynamicsand contains descriptions <strong>of</strong> the most important fire processes. A significant number <strong>of</strong> examples,reference tables, illustrations, and conceptual drawings are presented in this report to expandthe inspector’s appreciation in visualizing and retaining the material and understanding calculationmethods.sThe content <strong>of</strong> the FDT encompasses fire as a physical phenomenon. As such, the inspectorneeds a working knowledge <strong>of</strong> algebra to effectively use the formulae presented in this report andsthe FDT . Acquired technical knowledge or course background in the sciences will also prove helpful.The information contained in this report is similar to, but includes less theory and detail than,an undergraduate-level university curriculum for fire protection engineering students.***NRC Inspection Manual, Chapter 0609F, Appendix F, “Determining Potential Risk Significance<strong>of</strong> Fire Protection and Post-Fire Safe Shutdown Inspection Findings,” February 27, 2001.NRC Inspection Manual, Chapter 0609F, Appendix F, Section F.5, “Fire Protection RiskSignificance Screening Methodology—Phase 2, Step 4: Integrated Assessment <strong>of</strong> DID Findings(Excluding SSD) and Fire Ignition Frequency,” February 27, 2001.xxxvii


The goal <strong>of</strong> this report is to develop a common body <strong>of</strong> knowledge <strong>of</strong> fire protection and fire scienceto enable the inspector to acquire the understanding, skills, and abilities necessary to effectivelyapply principles <strong>of</strong> fire dynamics to analyze the potential effects <strong>of</strong> a fire in a commercial NPP.sThe FDT will advance the FHA process from an approach that is primarily qualitative to one thatsis more quantitative. The development <strong>of</strong> this report, the FDT , and the quarterly inspectorworkshops conducted in 2001–2003 is the NRC’s first step in achieving that goal.Toward that end, on November 22 and 23, 2004, the NRC conducted a 2-day public meeting at theagency’s headquarters in Rockville, Maryland, with the sole purpose <strong>of</strong> sharing an “advanced copy”<strong>of</strong> NUREG-1805 with all interested stakeholders. The meeting was well-received, and theparticipants identified numerous suggestions to further refine both the advanced copy and thespreadsheets. We thank those stakeholders for their involvement and have made every attemptto include their valued comments in preparing the final files for the publication <strong>of</strong> this report.Fire is a complex subject and transfer <strong>of</strong> its concepts to useful pursuits is a challenge. We hopesthat this report and the FDT can make a difference in the NRC’s fire protection inspection program,specifically risk-informed fire protection initiatives such as the SDP and risk-informed inspection<strong>of</strong> circuits.xxxviii


HOW TO USE THIS NUREG AND THE FDT SsThis NUREG-series report and the related Fire Dynamics Tools (FDT ) provide first-orderquantitative methods (i.e., traditional approaches, correlations, computations, closed formapproximations or exact solutions, and hazard models) to assess the potential fire hazarddevelopment in commercial nuclear power plants (NPPs). This report is divided into chapterssthat correspond to FDT . First-time users should read this report in its entirety before performingsan analysis. Once the basic principles are understood, the FDT can be used to perform firedynamics calculations. As explained in this report, appropriate care must be exercised to applysthe FDT within the limits <strong>of</strong> their validity.The CD-ROM that accompanies this report provides separate folders containing the FDT sspreadsheets. This text exclusively uses the spreadsheets in the “English Units” folder. The folderslabeled “SI Units” contains the same FDT spreadsheets but requires all user inputs to bein SI units.The chapters and appendices <strong>of</strong> this report provide basic text on fire protection engineering,to provide inspectors with an overview <strong>of</strong> the basic characteristics and behavior <strong>of</strong> fire, fire hazards<strong>of</strong> materials and buildings, and an overview <strong>of</strong> the fundamental methods <strong>of</strong> fire protection.Appendix F to this report contains a glossary <strong>of</strong> terms used in the field <strong>of</strong> fire protection engineering.Appendix I, “Mathematics Review and System <strong>of</strong> Units,” is included to refresh the inspector’sunderstanding <strong>of</strong> mathematical functions, dimensional consistency in equations, and variables usedsin the FDT . Each chapter contains practice problems for the inspector to apply the principlesslearned with the FDT program. Appendix J provides additional problems for added practice.Each chapter in this report has one or more spreadsheet(s) based on the method discussed in thechapter. Each spreadsheet is designed to make the calculation method understandable, and all<strong>of</strong> them are in the same format. The input parameter cells in each spreadsheet are identifiedin yellow. The user needs to enter data by typing (on the keyboard) and making selections throughthe use <strong>of</strong> pull-down menus and dialog boxes. The spreadsheets also bundle many materialproperties to enable the user to select a single input from a table, instead <strong>of</strong> entering all <strong>of</strong> theassociated parameters. The user simply needs to select the material from the provided list(pull-down menu), and the spreadsheet will automatically place the associated property data in thecorresponding green input cells. For example, an inspector can simply click on “concrete” in theproperty table, and the correct parameters will appear in the input parameter cells. This will alsoeliminate errors in manually entering the properties in the input parameter cells. Where materialproperties are not available in the spreadsheet table, the user will have to enter the values manuallywithout selecting any material from the material properties data table.The spreadsheets explicitly show the calculation methods — in detail and step-by-step — so thatthe inspector can follow the application <strong>of</strong> the FHA methods. The example problems at the end<strong>of</strong> each chapter, and practice problems in Appendix J, have been designed to be solved mainlysswith the FDT ; however, in some cases, simple calculations are required before using the FDT .The results <strong>of</strong> the calculations are designated by the word “ANSWER” in the spreadsheets.xxxix


sThe FDT spreadsheets are programmed with mathematical equations that can produce “numerical”accuracy to any number <strong>of</strong> decimal places. For consistency, the authors generally chosetwo decimal places; however, the user should focus on the magnitude <strong>of</strong> the results and not attemptto solve problems by placing critical emphasis on decimal values. For example if a componentis “damaged” at 700°F (371.11°C) and the calculated results indicate 699.99°F (371.10°C), only aninexperienced user would argue that damage is not probable. In many cases, a resultant close to690°F (365.55°C) is close enough to suggest damage.Fire dynamics is a constantly evolving science and rarely dictates a single answer as to how a fire burns.The user is encouraged to perform bounding calculations as a part <strong>of</strong> the FHA. This will form awindow <strong>of</strong> possible, credible solutions. An example <strong>of</strong> this concept would be to vary ventilationrates (door open vs. door closed, mechanical ventilation system on vs. <strong>of</strong>f, different vent locations,etc.).A final word <strong>of</strong> caution is in order for users <strong>of</strong> this report and the accompanying spreadsheets. AnFHA can <strong>of</strong>ten be a complex series <strong>of</strong> calculations and evaluations that are necessary to gain acomprehensive understanding <strong>of</strong> the fire risk and its potential effects on NPP safety. This reportprovides one important element <strong>of</strong> that process, namely assisting the user in understanding firedynamics; however, this report was never intended to be the “end-all” text for a completeunderstanding <strong>of</strong> fire risk. Experience, engineering judgment, peer review, and other sources <strong>of</strong>information will be necessary for a complete understanding <strong>of</strong> the risk. For example, this reportdoes not attempt to answer two important questions: “How accurate are the equations in this text?“Are they ±10%, or do they always over-predict the results?At the time <strong>of</strong> this writing, the NRC’s Office <strong>of</strong> Nuclear Regulatory Research, in cooperation withthe Electric Power Research Institute (EPRI), is subjecting this report to “verification and validation”(V&V) against another fire dynamics method and three fire models to answer those very questions.Their final product should help reduce calculation uncertainties and provide additional insights tothe methods and models. Another program that has been recommended is the development <strong>of</strong> afire modeling user’s guide. Such a guide would compile in a usable format the lessons learned fromthe V&V exercise, as well as field experience from the use <strong>of</strong> this report, the accompanyingspreadsheets, and other methods. As such, a user’s guide would help to further improve the overallquality <strong>of</strong> fire risk assessments.xl


ABBREVIATIONSABSACRSADAMSADSAFFFAFTAFWAGAAHJAISIALALCANSANSIAPIASCEASCOSASETASHRAEASMEASMETASTMATATF&EAWGBFCBFNPBFRLBLBLEVEBOCABREAK1BSBTPBTUBWRCCWCFASTCFDCFICFOCFRCHFAcrylonitrile Butadiene StyreneAdvisory Committee on Reactor Safeguards (NRC)Agencywide Documents Access and Management System (NRC)Automatic Depressurization SystemAqueous Film Forming FoamAdiabatic Flame TemperatureAuxiliary FeedwaterAmerican Gas AssociationAuthority Having JurisdictionAmerican Iron and Steel InstituteAdministrative LetterApproximate Lethal ConcentrationAmerican Nuclear SocietyAmerican National Standards InstituteAmerican Petroleum InstituteAmerican Society <strong>of</strong> Civil EngineersAnalysis <strong>of</strong> Smoke Control SystemsAvailable Safe Egress TimeAmerican Society <strong>of</strong> Heating, Refrigeration, and Air Conditioning EngineersAmerican Society <strong>of</strong> Mechanical EngineersAtria Smoke Management <strong>Engineering</strong> ToolsAmerican Society for Testing and MaterialsAuxiliary TransformerAlcohol, Tobacco, Firearms, and ExplosivesAmerican Wire GaugeBromochlorodifluoro-methaneBrowns Ferry Nuclear Power PlantBuilding and Fire Research LaboratoryBulletinBoiling Liquid, Expanding Vapor ExplosionBuilding Officials & Code Administration InternationalBerkeley Algorithm for Breaking Window Glass in a Compartment FireBritish StandardBranch Technical PositionBritish Thermal UnitBoiling-Water ReactorComponent Cooling WaterConsolidate Model <strong>of</strong> Fire Growth and Smoke TransportComputational Fluid DynamicsCertified Fire InspectorChief Financial Officer (NRC)Code <strong>of</strong> Federal RegulationsCritical Heat Fluxxli


CIBConseil Internationale du BatimentCIBSI Chartered Institution <strong>of</strong> Building Services EngineersCIOChief Information Officer (NRC)CL.S.PE Chlorosulfonated PolyethyleneCOCarbon MonoxideCO2Carbon DioxideCPConstruction PermitCPCV Chlorinated PolyvinylchlorideCPEChlorinated PolyethyleneCPSC Consumer Product Safety CommissionCRCircular or Neoprene or Chloroprene RubberCSNI Committee on the Safety <strong>of</strong> Nuclear InstallationsCSP®Chlorosulfonated Polyethylene Rubber (Kel-F )CSR Cable Spreading RoomCTEF ChlorotrifluoroethyleneDDTDETACT-QSDETACT-T2DIDDOEDOTDSSAECCSEDGEDOELVACEMI/RFIEPAEPREPRIEQESFRETFEEVAFAAFDIFDMFDSsFDTFEMFEMAFEPDeflagration to Detonation TransitionDetector Actuation Quasi-SteadyDetector Actuation Time SquareDefense-in-DepthU.S. Department <strong>of</strong> EnergyU.S. Department <strong>of</strong> TransportationDivision <strong>of</strong> Systems Safety and Analysis (NRC)Emergency Core Cooling SystemEmergency Diesel GeneratorExecutive Director for Operations (NRC)Elevator EvacuationElectromagnetic or Radio-Frequency InterfaceEnvironmental Protection AgencyEthylene-Propylene RubberElectrical Power Research InstituteEquipment QualificationEarly Suppression Fast ResponseEthylenetetrafluoroethylene (Tefzel®)Ethylvinyl AcetateFederal Aviation AdministrationFire Detection InstituteFire Demand ModelFire Dynamics SimulatorFire Dynamics ToolsFinite Element MethodFederal Emergency Management AgencyFluorinated Polyethylene Propylene (Teflon®)xlii


FFFPFHAFIGARO IIFIPECFIRES-T3FIVEFMRCFPAFPEFPETOOLFPPFPSFRFRPFRXPEFSSDFTAFTMSGDCGLGSAGSIH2OHBrHCIHCNHEPAHFHPCIHRRHTGRHVACIAFSSIBCICBOICSICSDTSIEIECIEEEININEELIPEEEISOFilm-Forming Fluoroprotein FoamFire Hazard AnalysisFire and Gas Spread in Room (model)Fire Performance <strong>of</strong> Electrical CablesFire Response <strong>of</strong> Structures-Thermal Three (model)Fire Induced Vulnerability EvaluationFactory Mutual Research CorporationFoote, Pagni, and AlvaresFire Protection Engineer(ing)Fire Protection <strong>Engineering</strong> ToolFire Protection ProgramFire Protection SystemFire-RetardantFiberglass Reinforced Polyester (Plastic)Fire-Retardant Crosslinked PolyethylenePost-Fire Safe-ShutdownFederal Transit AuthorizationFederal Test Method StandardGeneral Design CriteriaGeneric LetterGeneral Service AdministrationGeneric Safety IssueWaterHydrogen BromideHydrogen ChlorideHydrogen CyanideHigh-Efficiency Particulate Air FilterHydrogen FluorideHigh Pressure Cooling InjectionHeat Release RateHigh-Temperature Gas-Cooled ReactorHeating, Ventilation, and Air ConditioningInternational Association <strong>of</strong> Fire Safety ScienceInternational Building CodeInternational Conference <strong>of</strong> Building OfficialsIntegrated Control SystemInternational Committee for the Study and Development <strong>of</strong> Tubular StructuresInitiative EventsInternational Electrotechnical CommissionInstitute <strong>of</strong> Electrical and Electronic EngineersInformation NoticeIdaho National <strong>Engineering</strong> and Environmental LaboratoryIndividual Plant Examination <strong>of</strong> External EventsInternational Organization for Standardizationxliii


LAVENTLCLCLLDLDLLELLERLFLLIFTLLNLLNGLOCLOCALPGLWRMCCMCRMESGMOVMQHNBCNBRNBSNEANEINEMANFCNFPANIOSHNISTNO2NOUNNPPNRCNRRNUREGOCIOOLORNLOSHAOSULink Actuation VentsLethal ConcentrationLethal Concentration LowLethal DoseLethal Dose LowLower Explosive LimitLicensee Event ReportLower Flammability LimitLateral Ignition and Flame Spread (ASTM E 1321 Standard Test Method)Lawrence Livermore National LaboratoryLiquified Natural GasLimiting Oxidant ConcentrationLoss-<strong>of</strong>-Coolant AccidentLiquid Propane GasLight-Water ReactorMotor Control CenterMain Control RoomMaximum Experimental Safe GapMotor-Operated ValveMcCaffrey, Quintiere, and HarkleroadNational Building CodeNitrileNational Bureau <strong>of</strong> StandardsNuclear Energy AgencyNuclear Energy InstituteNational Electrical Manufacturers AssociationNational Fire CodeNational Fire Protection AssociationNational Institute <strong>of</strong> Occupational Safety ad HealthNational Institute <strong>of</strong> Standards and TechnologyNitrogen DioxideNotification <strong>of</strong> Unusual EventNuclear Power PlantU.S. Nuclear Regulatory CommissionOffice <strong>of</strong> Nuclear Reactor Regulation (NRC)NUclear REGulatory GuideOffice <strong>of</strong> Chief Information Officer (NRC)Operating LicenseOak Ridge National LaboratoryOccupational Safety and Health AdministrationOhio State Universityxliv


PASSPCPDAPEPEFPESPFAPMMAPPPPEPRAPSPTEFPUPVCPVFRCPRESRGRHRRISRMVROPRTECSRTIRWFDS/GSBCSBCCISBDGSBRSCBASDPSERSFPESISNLSOLASSONGSSPLBSRPSSCPersonal Alert Safety SystemPolycarbonatePrimary Disconnect AssemblyPolyethylenePolyethylene FluoridePolyethersulphonePerfluoroalkoxy Branched PolymersPolymethylmethacrylatePolypropylenePolytetrafluoroethyleneProbabilistic Risk AssessmentPolystyrenePolytetrafluoroethylene (Teflon®)PolyurethanePolyvinylchloridePolyvinylfluorideReactor Coolant PumpOffice <strong>of</strong> Nuclear Regulatory Research (NRC)Regulatory GuideResidual Heat RemovalRegulatory Issue SummaryRespiratory Minute VolumeReactor Oversight ProcessRegistry <strong>of</strong> the Toxic Effects <strong>of</strong> Chemical SubstanceResponse Time IndexRed Wing Fire DepartmentSteam GeneratorStandard Building CodeSouthern Building Code Congress InternationalStandby Diesel GeneratorStyrene Butadiene RubberSelf-Contained Breathing ApparatusSignificance Determination ProcessSignificant Event ReportSociety <strong>of</strong> Fire Protection EngineersSystem InternationalSandia National LaboratoriesSafety <strong>of</strong> Lives at SeaSan On<strong>of</strong>re Nuclear Generating StationPlant Systems Branch (NRC)Standard Review Plan (NUREG-0800)Structure, System, and/or Componentxlv


TASEFTCLTDLTFETLCTLVTNTTRPTSCTTCTVATVANUBCUELUFCUFLULUPSUSFAUVCEV&VVRLAW/DXLPEXLPOTemperature Analysis <strong>of</strong> Structure Exposed to FireToxic Concentration LowToxic Dose LowTetrafluoroethylene (Teflon®)Toxic Concentration LowThreshold Limit ValueTrinitrotolueneThermal Response ParameterTechnical Support CenterTime-Temperature CurveTennessee Valley AuthorityTennessee Valley Authority Nuclear ProgramUniform Building CodeUpper Explosive LimitUniform Fire CodeUpper Flammability LimitUnderwriters LaboratoriesUninterruptible Power SupplyUnited States Fire AdministrationUnconfined Vapor Cloud Explosionverification and validationValve-Regulated Lead AcidWeight-to-Heated Perimeter RatioCrosslinked PolyethyleneCrosslinked Polyolefinxlvi


NOMENCLATUREAAAAAAAcefHsTvbCccicpcscvCHFDDDSCEEFFFTPFcgGhhhchhighkhvHHHgHfHHHefff(wall)f(wall,line)f(corner)Compartment floor areaSurface <strong>of</strong> elementHorizontal burning area <strong>of</strong> fuelAmpere hoursCross sectional areaArea <strong>of</strong> compartment enclosing surfaces (excluding vent areas)Area <strong>of</strong> ventilation openingsFlame spread parameterGas concentration by volumeThermal capacitySpecific heat <strong>of</strong> insulationSpecific heatSpecific heat <strong>of</strong> steelSpecific heat at constant volumeCritical heat flux for ignitionDiameterHeated parameterScaled distanceEmissive powerExplosive energy releasedConfiguration or shape factorFire resistance timeFlux time productFloat Current per 100 AHAcceleration <strong>of</strong> gravityGas discharge rateThickness <strong>of</strong> insulationHeat flux time product indexCompartment heightEffective heat transfer coefficientHeat transfer coefficient at ignitionConvective heat transfer coefficientHeight <strong>of</strong> ventilation openingThermal capacity <strong>of</strong> steel section at ambientHeightHydrogen gas generationFlame heightWall flame heightLine fire flame heightCorner fire flame heightxlvii


kkikcKKlcLLFLmmfmfmpThermal conductivityThermal conductivity <strong>of</strong> insulationThermal inertiaMixing efficiency factorProportionality constantCompartment lengthLengthLower flammability limitMassMass <strong>of</strong> fuel vaporMass <strong>of</strong> fuel burnedMass concentration <strong>of</strong> particulateMass flow rateMass entrainment rateMass flow rate <strong>of</strong> fuelMass flow rate out <strong>of</strong> enclosurePlume mass flow rateMpNNPMass loss rate per unit areaMass <strong>of</strong> particulates producedNumber <strong>of</strong> cells (batteries)Number <strong>of</strong> theoretical air changesPressureHeat fluxCritical heat fluxExternal heat fluxMinimum heat flux required for ignitionQQtotalRadiative heat fluxVolume <strong>of</strong> airTotal energy releaseHeat release rate or energy release rateConvective energy release rateEnergy release rate to cause flashoverFull-scale energy release rateBench-scale energy release ratexlviii


RRRTISttbtDtigtptrtttTTaTfTTgTsTjetTTactivationFO(max)p(centerline)activationRadiusRadial distanceFire ResistanceResponse time indexVisibilityTimeBurning durationDetection timeIgnition timeThermal penetration timeDetector response timeSmoke transit timeSprinkler activation timeTemperatureAmbient temperatureFire temperaturePost-flashover compartment temperatureGas temperatureSteel temperatureCeiling jet temperaturePlume centerline temperatureActivation temperatureujetCeiling jet velocityuwWind velocityuoGas velocityu* Nondimensional wind velocityVVdefwwcWWypzzoZpHHtTTTNTcc,effgigVolumeVolume <strong>of</strong> gas for deflagrationFuel exposed widthCompartment widthWeight <strong>of</strong> steel column per linear footWeight <strong>of</strong> TNTParticulate yieldHeight <strong>of</strong> smoke layer interface above floorHypothetical virtual origin <strong>of</strong> fire sourceFireball flame heightHeat <strong>of</strong> CombustionEffective heat <strong>of</strong> combustionTime stepGas temperature above ambientIgnition temperature above ambientHeat transfer coefficient for steelxlix


accFgiomYield (fraction <strong>of</strong> available energy participating in blast wave generation)Specific extinction coefficientFraction <strong>of</strong> total energy radiatedThicknessFlame emissivityVentilation factorFlame title or angle <strong>of</strong> deflectionDensityDensity <strong>of</strong> Ambient AirDensity <strong>of</strong> combustion productsDensity <strong>of</strong> concreteDensity <strong>of</strong> fuel vaporDensity <strong>of</strong> gasDensity <strong>of</strong> insulationStafan-Boltzmann constantDetector time constantRegression rateSubscriptsabsccccDdefeeeffeffff(corner)f(wall)f(wall,line)FOfsgHIigjetmminoAmbientBench-scaleCompartmentCombustionConcreteCurrentDetectionDeflagrationConvectiveExternalEffectiveEntrainmentFireFlameFuelCorner flameWall flameLine fire flameFlashoverFull-scaleGasHoursInsulationIgnitionCeiling jetExtinctionMinimumOutl


pppprrSCsTtotaltTNTvvwSpecificParticulatePlumePenetrationRadiativeResponseScaleSteelTotalTotalTransientTrinitrotolueneVentVolumeWindSuperscripts() Per unit time()” Per unit area()” Per unit are, per unit time* Nondimensionalli

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!