26.11.2012 Views

(BAT) Reference Document for the Production of Chlor-alkali ...

(BAT) Reference Document for the Production of Chlor-alkali ...

(BAT) Reference Document for the Production of Chlor-alkali ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

List <strong>of</strong> Figures<br />

Figure 1.1: Share per region <strong>of</strong> world chlorine production capacities in 2008 ........................................ 2<br />

Figure 1.2: Development <strong>of</strong> chlorine production in western Europe and utilisation ratio <strong>of</strong> plant<br />

capacity in EU and EFTA countries ...................................................................................... 3<br />

Figure 1.3: <strong>Chlor</strong>-<strong>alkali</strong> production sites in EU-27 and EFTA countries as <strong>of</strong> January 2011<br />

Geographic distribution <strong>of</strong> chlor-<strong>alkali</strong> plants within <strong>the</strong> European Union 1999 .................. 4<br />

Figure 1.4: Annual chlorine production capacities in EU-27 and EFTA countries in 2010 <strong>Chlor</strong>ine<br />

production in western Europe in 1999................................................................................... 5<br />

Figure 1.5: Share <strong>of</strong> cell techniques to chlorine production capacity in EU-27 and EFTA countries...... 7<br />

Figure 1.6: <strong>Chlor</strong>ine applications in EU-27 and EFTA countries in 2010 western Europe ..................... 9<br />

Figure 1.7: Caustic soda applications in EU-27 and EFTA countries in 2010....................................... 11<br />

Figure 1.8: Caustic potash applications in EU-27 and EFTA countries in 2009.................................... 12<br />

Figure 2.1: Flow diagram <strong>of</strong> <strong>the</strong> three typical main chlor-<strong>alkali</strong> techniques processes.......................... 18<br />

Figure 2.2: Simplified scheme <strong>of</strong> chlorine electrolysis cells.................................................................. 19<br />

Figure 2.3: Schematic view <strong>of</strong> a mercury electrolysis cell with horizontal and vertical decomposer<br />

Flow diagram <strong>of</strong> mercury cell technology ........................................................................... 23<br />

Figure 2.4: View <strong>of</strong> a mercury cell room ............................................................................................... 25<br />

Figure 2.5: Flow diagram <strong>of</strong> <strong>the</strong> integration <strong>of</strong> <strong>the</strong> membrane or mercury and <strong>the</strong> diaphragm cell<br />

techniques ............................................................................................................................ 27<br />

Figure 2.6: Sectional drawing <strong>of</strong> a typical monopolar diaphragm electrolysis cell ............................... 29<br />

Figure 2.7: View <strong>of</strong> an open-air diaphragm cell room equipped with monopolar electrolysers ............ 29<br />

Figure 2.8: Flow diagram <strong>of</strong> <strong>the</strong> integration <strong>of</strong> <strong>the</strong> membrane and mercury cell techniques ................. 32<br />

Figure 2.9: Exploded view <strong>of</strong> a monopolar membrane electrolyser Sectional drawing <strong>of</strong> a typical<br />

bipolar membrane electrolysis cell ...................................................................................... 33<br />

Figure 2.10: View <strong>of</strong> a membrane cell room equipped with bipolar electrolysers................................... 34<br />

Figure 2.11: View <strong>of</strong> a membrane cell room equipped with monopolar electrolysers............................. 34<br />

Figure 2.12: Sectional drawing <strong>of</strong> a membrane ....................................................................................... 35<br />

Figure 2.13: Simplified scheme <strong>of</strong> monopolar and bipolar electrolysers................................................. 36<br />

Figure 2.14: Electrolyser architecture ...................................................................................................... 36<br />

Figure 2.15: Flow diagram <strong>of</strong> a possible layout <strong>for</strong> <strong>the</strong> brine purification system used in <strong>the</strong><br />

membrane cell technique process ........................................................................................ 41<br />

Figure 2.16: View <strong>of</strong> polishing filters in a secondary brine purification system...................................... 42<br />

Figure 2.17: View <strong>of</strong> chelate resin towers in a secondary brine purification system ............................... 43<br />

Figure 2.18: View <strong>of</strong> a chlorine absorption unit ...................................................................................... 56<br />

Figure 2.19: View <strong>of</strong> caustic production and storage............................................................................... 59<br />

Figure 3.1: Cell voltage and specific electrical energy consumption versus cell current density <strong>for</strong><br />

<strong>the</strong> mercury cell technique................................................................................................... 73<br />

Figure 3.2: Specific electrical energy consumption versus cell current density <strong>for</strong> <strong>the</strong> different<br />

chlor-<strong>alkali</strong> electrolysis techniques...................................................................................... 76<br />

Figure 3.3: Trend <strong>of</strong> mercury emissions (weighted averages) from mercury cell chlor-<strong>alkali</strong> plants<br />

in Western Europe (OSPAR countries) as reported by Euro <strong>Chlor</strong> ................................... 109<br />

Figure 3.4: Trend <strong>of</strong> mercury emissions (weighted averages) from mercury cell chlor-<strong>alkali</strong> plants<br />

in EU-27 and EFTA countries as reported by Euro <strong>Chlor</strong>................................................. 110<br />

Figure 3.5: Major solid waste sources in mercury cell chlor-<strong>alkali</strong> plants Solid waste sources in <strong>the</strong><br />

mercury process................................................................................................................. 123<br />

Figure 3.6: Trend <strong>of</strong> <strong>the</strong> average difference to balance <strong>for</strong> chlor-<strong>alkali</strong> plants in OSPAR countries ... 128<br />

Figure 4.1: Mercury cell plant conversion to a membrane cell plant technology ................................ 148<br />

Figure 4.2: Deposition <strong>of</strong> an asbestos-free diaphragm on a cathode.................................................... 173<br />

WORKING DRAFT IN PROGRESS<br />

Figure 4.3: Continuous improvement in an EMS model...................................................................... 183<br />

Figure 4.4: Impact <strong>of</strong> technological development <strong>of</strong> <strong>the</strong> membrane cell technique on specific<br />

electricity consumption and maximum current densities................................................... 196<br />

Figure 4.5: Choice <strong>of</strong> current density based on capital costs and electricity prices ............................. 198<br />

Figure 4.6: Flow diagram <strong>of</strong> brine recirculation and once-through brine processes ............................ 206<br />

Figure 4.7: Schematic Flow diagram <strong>of</strong> a catalytic decomposition reduction fixed-bed reactor<br />

process ............................................................................................................................... 240<br />

Figure 4.8: Effect <strong>of</strong> pH value on <strong>the</strong> location <strong>of</strong> iron hydroxide precipitation in membranes............ 245<br />

Figure 4.9: Flow diagram <strong>of</strong> acidic chlorate reduction ........................................................................ 246<br />

Figure 4.10: Flow diagram <strong>of</strong> <strong>the</strong> on-site <strong>the</strong>rmal desorption system used at a chlor-<strong>alkali</strong> site in<br />

Taipei (Taiwan) ................................................................................................................. 262<br />

Figure 4.11: Flow diagram <strong>of</strong> a soil washing system............................................................................. 264<br />

TB/EIPPCB/CAK_Draft_1 December 2011 xi

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!