11.07.2015 Views

Wind-tunnel interference effects on a 70° delta wing - CFD4Aircraft

Wind-tunnel interference effects on a 70° delta wing - CFD4Aircraft

Wind-tunnel interference effects on a 70° delta wing - CFD4Aircraft

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ALLAN ET AL WIND-TUNNEL INTERFERENCE EFFECTS ON A <strong>70°</strong> DELTA WING NUMBER● The presence of wind-<str<strong>on</strong>g>tunnel</str<strong>on</strong>g> side walls promotes vortex breakdown.● The amount of upwash generated (and therefore the mean effectiveincidence of the <strong>wing</strong>) increases as the model span to <str<strong>on</strong>g>tunnel</str<strong>on</strong>g>width ratio increases.● Despite the possible presence of an induced camber effect, sincebreakdown is promoted it is apparent that the increase in meaneffective incidence is the dominant factor.● The helix angle of the vortices increases due to the side wallinduced upwash. This is known to promote vortex breakdown.● The sec<strong>on</strong>dary separati<strong>on</strong> locati<strong>on</strong> moves towards the leadingedge when the <strong>wing</strong> is placed inside wind-<str<strong>on</strong>g>tunnel</str<strong>on</strong>g>s. This is due toan increase in cross flow momentum as the helix angle increases.● Downstream support structures have no effect <strong>on</strong> the flow structureprior to vortex breakdown.● The effect of downstream support structures is likely to bedependent <strong>on</strong> whether or not the core flow impinges <strong>on</strong> the structure.● With the support shape and flow c<strong>on</strong>diti<strong>on</strong>s c<strong>on</strong>sidered, vortexbreakdown was delayed due to blockage <str<strong>on</strong>g>effects</str<strong>on</strong>g>.● Such a result is likely to corresp<strong>on</strong>d to high Reynolds numberflows, and will therefore be Reynolds number dependent. Thisresult should be c<strong>on</strong>firmed experimentally with particular attenti<strong>on</strong>being paid to Reynolds number <str<strong>on</strong>g>effects</str<strong>on</strong>g>.Since turbulence modelling plays a significant role in the predicti<strong>on</strong>of vortical flows, the work presented should be c<strong>on</strong>sidered a qualitativeassessment of <str<strong>on</strong>g>tunnel</str<strong>on</strong>g> <str<strong>on</strong>g>interference</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g>. In order to improvethe accuracy and validate further the predicti<strong>on</strong>s, time-accuratesimulati<strong>on</strong>s and more advanced turbulence modelling (such asdetached eddy simulati<strong>on</strong>) should be employed.Figure 15. Pressure distributi<strong>on</strong> al<strong>on</strong>g a horiz<strong>on</strong>tal plane, support1c r from <strong>wing</strong> trailing edge.support thus it is possible that if the blockage effect is lowered, thestagnati<strong>on</strong> effect may become dominant and breakdown will bepromoted. To assess any possibility of this a narrower support wasplaced at 0⋅5c r from the trailing edge of the <strong>wing</strong>. The geometry isidentical to that described in Fig. 2, however the radius of the cylindricalsecti<strong>on</strong> was reduced from 0⋅09c r to 0⋅045c r . This effectivelyhalves the support fr<strong>on</strong>tal area blockage from approximately 12% to6%. The breakdown was observed to shift from 64⋅7%c r to 73⋅8%c r .Clearly despite the blockage being reduced the previous discussi<strong>on</strong>applies to thinner vertical support structures. Therefore as l<strong>on</strong>g as thevortex cores negotiate the support structure, breakdown can bedelayed. This seems to be the case for ‘streamlined’ <str<strong>on</strong>g>tunnel</str<strong>on</strong>g>-centredsupport structures at high Reynolds number. The effect of thefavourable pressure gradient at low Reynolds number is likely to belower.8.0 CONCLUSIONSA CFD investigati<strong>on</strong> of wind-<str<strong>on</strong>g>tunnel</str<strong>on</strong>g> <str<strong>on</strong>g>interference</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> a <strong>70°</strong><strong>delta</strong> <strong>wing</strong> has been c<strong>on</strong>ducted. The vortical flow predicti<strong>on</strong>s wereinitially verified and validated, and then used to analyse the various<str<strong>on</strong>g>effects</str<strong>on</strong>g> of test facility <str<strong>on</strong>g>interference</str<strong>on</strong>g>. From the current work thefollo<strong>wing</strong> has been observed:ACKNOWLEDGEMENTSThe authors wish to thank the participants of the RTO AVT-080Task Group <strong>on</strong> ‘Vortex breakdown over slender <strong>wing</strong>s’ for manyenlightening discussi<strong>on</strong>s. The financial support from QinetiQ(formerly DERA Bedford) is gratefully acknowledged.REFERENCES1. GARNER, H.C. and ROGERS, E.W.E. Subs<strong>on</strong>ic wind-<str<strong>on</strong>g>tunnel</str<strong>on</strong>g> wall correcti<strong>on</strong>s,AGARDograph 109, 1966.2. KAROU, A. Separated vortex flow over slender <strong>wing</strong>s between sidewalls — theoretical and experimental investigati<strong>on</strong>, 1980, Report LR-300, Dept of Aerospace Engineering, Delft University of Technology.3. Engineering Sciences Data Unit, Blockage correcti<strong>on</strong>s for bluff bodiesin c<strong>on</strong>fined flows, 1980, Item 80024, L<strong>on</strong>d<strong>on</strong>.4. WEINBERG, Z. Effect of <str<strong>on</strong>g>tunnel</str<strong>on</strong>g> walls <strong>on</strong> vortex breakdown locati<strong>on</strong> over<strong>delta</strong> <strong>wing</strong>s, AIAA J, June 1992, 30, (6).5. THOMPSON, S.A. and NELSON, R.C. wind-<str<strong>on</strong>g>tunnel</str<strong>on</strong>g> blockage <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong>slender <strong>wing</strong>s undergoing large amplitude moti<strong>on</strong>s, AIAA-92-3926,July 1992.6. PELLETIER, A. and NELSON, R.C. Factors influencing vortex breakdownover <strong>70°</strong> <strong>delta</strong> <strong>wing</strong>s, 1995, AIAA-95-3469-CP.7. VERHAAGEN, N.G., HOUTMAN, E.M. and VERHELST, J.M. A study ofwall effect <strong>on</strong> the flow over a <strong>delta</strong> <strong>wing</strong>, 1996, AIAA-96-2389.8. ALLAN, M.R., BADCOCK, K.J. and RICHARDS, B.E. A CFD Investigati<strong>on</strong>of wind-<str<strong>on</strong>g>tunnel</str<strong>on</strong>g> wall influences <strong>on</strong> pitching <strong>delta</strong> <strong>wing</strong>s, June 2002,AIAA-2002-2938.9. HUMMEL, D. Untersuchungenüber das Aufplatzen der Wirbel anschlanken Delta Flügeln, Zeitschrift für Flugwissenschaften, 1965, 13,(5), pp 158-168.10. TAYLOR, G., GURSUL, I. and GREENWELL, D. Static hysteresis of vortexbreakdown due to support <str<strong>on</strong>g>interference</str<strong>on</strong>g>, 2001, AIAA 2001-2452.11. STRAKA, W.A. Effect of fuselage <strong>on</strong> <strong>delta</strong> <strong>wing</strong> vortex breakdown, JAircr, 1994, 31, (4), pp 1002-1005.12. ERICSSON, L.E. Effect of fuselage geometry <strong>on</strong> <strong>delta</strong>-<strong>wing</strong> vortex breakdown,J Aircr, November-December 1998, 35, (6).13. ERICSSON, L.E. Further analysis of fuselage <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> <strong>delta</strong> <strong>wing</strong> aerodynamics,January 2000, AIAA 2000-0891.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!