v2008.02.02 - Convex Optimization

v2008.02.02 - Convex Optimization v2008.02.02 - Convex Optimization

convexoptimization.com
from convexoptimization.com More from this publisher
11.07.2015 Views

456 CHAPTER 7. PROXIMITY PROBLEMS......❜..❜..❜..❜..❜..❜..❜.❜❜❜❜❜❜❜✧ ✧✧✧✧✧✧✧✧✧✧✧✧✧✧ 0 ✟✟✟✟✟✟✟✟✟✟✟EDM N❜❜ S N ❝ ❝❝❝❝❝❝❝❝❝❝❝h❜❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❜❜❜❜❜❜ K = S N .h ∩ R N×N+.❜... S N ❜.. ❜..❜.. ❜❜❜ ✧ ✧✧✧✧✧✧✧✧✧✧✧✧✧✧....... . . . ..R N×N........................Figure 114: Pseudo-Venn diagram: The EDM cone belongs to theintersection of the symmetric hollow subspace with the nonnegative orthant;EDM N ⊆ K (733). EDM N cannot exist outside S N h , but R N×N+ does.......7.0.1.2 Egregious input error under nonnegativity demandMore pertinent to the optimization problems presented herein whereC ∆ = EDM N ⊆ K = S N h ∩ R N×N+ (1137)then should some particular realization of a proximity problem demandinput H be nonnegative, and were we only to zero negative entries of anonsymmetric nonhollow input H prior to optimization, then the ensuingprojection on EDM N would be guaranteed incorrect (out of order).Now comes a surprising fact: Even were we to correctly follow theorder-of-projection rule and provide H ∈ K prior to optimization, then theensuing projection on EDM N will be incorrect whenever input H has negativeentries and some proximity problem demands nonnegative input H .

457HS N h0EDM NK = S N h ∩ R N×N+Figure 115: Pseudo-Venn diagram from Figure 114 showing elbow placedin path of projection of H on EDM N ⊂ S N h by an optimization problemdemanding nonnegative input matrix H . The first two line segmentsleading away from H result from correct order-of-projection required toprovide nonnegative H prior to optimization. Were H nonnegative, then itsprojection on S N h would instead belong to K ; making the elbow disappear.(confer Figure 126)

456 CHAPTER 7. PROXIMITY PROBLEMS......❜..❜..❜..❜..❜..❜..❜.❜❜❜❜❜❜❜✧ ✧✧✧✧✧✧✧✧✧✧✧✧✧✧ 0 ✟✟✟✟✟✟✟✟✟✟✟EDM N❜❜ S N ❝ ❝❝❝❝❝❝❝❝❝❝❝h❜❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❜❜❜❜❜❜ K = S N .h ∩ R N×N+.❜... S N ❜.. ❜..❜.. ❜❜❜ ✧ ✧✧✧✧✧✧✧✧✧✧✧✧✧✧....... . . . ..R N×N........................Figure 114: Pseudo-Venn diagram: The EDM cone belongs to theintersection of the symmetric hollow subspace with the nonnegative orthant;EDM N ⊆ K (733). EDM N cannot exist outside S N h , but R N×N+ does.......7.0.1.2 Egregious input error under nonnegativity demandMore pertinent to the optimization problems presented herein whereC ∆ = EDM N ⊆ K = S N h ∩ R N×N+ (1137)then should some particular realization of a proximity problem demandinput H be nonnegative, and were we only to zero negative entries of anonsymmetric nonhollow input H prior to optimization, then the ensuingprojection on EDM N would be guaranteed incorrect (out of order).Now comes a surprising fact: Even were we to correctly follow theorder-of-projection rule and provide H ∈ K prior to optimization, then theensuing projection on EDM N will be incorrect whenever input H has negativeentries and some proximity problem demands nonnegative input H .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!