11.07.2015 Views

An Ecological Characterization of the Tampa Bay Watershed

An Ecological Characterization of the Tampa Bay Watershed

An Ecological Characterization of the Tampa Bay Watershed

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Biological Report 90(20)December 1990<strong>An</strong> <strong>Ecological</strong> <strong>Characterization</strong><strong>of</strong> <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> <strong>Watershed</strong>Fish and Wildlife Service andMinerals Management Serviceu.s. Department <strong>of</strong> <strong>the</strong> Interior


Chapter 6. FaunaN. Scott Schomer and Paul Johnson6.1 IntroductionGenerally speaking, animal species utilize only alimited number <strong>of</strong> habitats within a restricted geographicrange. Factors that regulate habitat use andgeographic range include <strong>the</strong> behavior, physiology,and anatomy <strong>of</strong><strong>the</strong> species; competitive, trophic, andsymbiotic interactions with o<strong>the</strong>r species; and forcesthat influence species dispersion. Such restrictionsmay be broad, as in <strong>the</strong> ca.


station having a mixture <strong>of</strong>bottom types, vegetation,physical environments (pools, ponds, runs), andresulting current structures. Of<strong>the</strong> 143 taxa recorded,122 were insects, with Diptera (32 taxa), Odonata (28taxa), and Coleoptera (26 taxa) being <strong>the</strong> mostcommon orders. In quantitative benthic samples,oligochaetes, mollusks, and chironomids account for37.6%, 32.6%, and 25.7% <strong>of</strong> <strong>the</strong> total fauna, respectively.Densities in this study range from 25 to 3,303organisms/m 2 .Similar numbers <strong>of</strong>taxa (49-52) were recorded at<strong>the</strong> four river stations, with many taxa occurring atmore than one station. Samples taken in a Sphagnumbog <strong>of</strong>f <strong>the</strong> river yielded 25 taxa, 13 <strong>of</strong> which werefound nowhere else in <strong>the</strong> river system. In generalmayflies, mollusks, and dragonflies (Odonata) weremore numerous at upstream swamp forest stations,while damselflies (Odonata) and chironomids(Diptera) were more abundant downstream, especiallyin vegetation. As in <strong>the</strong> Peace River, <strong>the</strong> introducedpelecypod mollusk Corbicula manilensis wasabundant in <strong>the</strong> Hillsborough River. Corbicula is alsoabundant in <strong>the</strong> upper reaches <strong>of</strong> <strong>the</strong> Manatee Riverestuary (Culter and Mahadevan 1982).The effect <strong>of</strong>vegetation on invertebrate densities,though difficult to compare quantitatively, is quiteapparent in <strong>the</strong> data. Cowell et al. (1974) estimated a10- to 100-fold greater density <strong>of</strong>organisms collectedin vegetation than in benthic samples. In <strong>the</strong> Egeria­Hydrilla community, Beck (1974) estimated 3 x lOSto 11 x lOS grass shrimp per hectare, and Barnett(1972) estimated 2 x lOS to 4 x lOS mostly forage fishper hectare. These values are 2 to 3 orders <strong>of</strong>magnitudehigber than values from adjacent areas with novegetation.The species composition <strong>of</strong> <strong>the</strong> communitiesvaries as well. In <strong>the</strong> shaded, fast-flowing reaches <strong>of</strong><strong>the</strong> upper river, <strong>the</strong> Vallisneria grass-bed communityis an important source <strong>of</strong>invertebrates selVing as foodfor fish. Areas dominated by Ludwigia and Polygonumalso showed high densities <strong>of</strong> invertebrates,while Pontederia and Paspalum contained relativelyfew taxa and lower densities.Cowen et a1. (1974) reponed a zooplanktoncommunity in Lake Thonotosassa dominated by6. Fauna217small-bodied herbivores. A total <strong>of</strong> 23 species <strong>of</strong>rotifers, 5 <strong>of</strong> copepods, and 6 <strong>of</strong> cladocerans arerecorded. Species diversity was lowest in January,August, and September. Of <strong>the</strong> six cladocerans,Bosmina longirostris was <strong>the</strong> most common,comprising 93% <strong>of</strong><strong>the</strong> total.Rotifers were <strong>the</strong> only group to exhibit significanthoriwntal spatial patchiness in species composition.This patchiness correlated well with increasing waterdepth. At <strong>the</strong> same time, rotifer abundance showed aconsistent decrease with depth at each station, whilecopepod and cladoceran numbers tended to increase.Rotifers represented 90.3% <strong>of</strong> <strong>the</strong> individualssampled, copepod nauplii 7.8%, and adult copepodsand cladocerans only 1.9%. Rotifer populationsexhibited three distinct peaks during <strong>the</strong> year, one inwinter, ano<strong>the</strong>r (<strong>the</strong> largest) in late spring, and <strong>the</strong>third (<strong>the</strong> smallest) in late fail. Each population peakwas dominated by different species. In winter <strong>the</strong>dominant species were Polyarthra vulgaris, Keratellacochlearis, Conochiloides dossuarius, and<strong>An</strong>uraeopsisfissa. In late spring, seven species-K.serrulata, Brachionus angularis, B. calyciflorus andHexarthramira in addition to <strong>the</strong> first three abovedominated,making up 96% <strong>of</strong><strong>the</strong> total. The late fallpeak was dominated by P. vulgaris, A. lissa,Syncheata stylatam, Trichocera simi/is, B.havanaensis, and Microcodon clavus. Copepodpopulations showed typical spring and fall peaks.Cladoceran populations peaked in <strong>the</strong> spring only, anevent totally dominated by Bosmina longirostris.Benthic invertebrates in Lake Thonotosassa werenumerically dominated by oligochaetes (primarilytubificid worms--commonly called sewer wormsbecause <strong>the</strong>y flourish in <strong>the</strong> highly eutrophic sediments<strong>of</strong>sewers) (69.7%) and chironomids (24.7%).Shallow (i.e., better oxygenated) stations generallyyielded more invertebrate taxa than did deeper stations.Creek stations exhibited <strong>the</strong> most taxa as wellas <strong>the</strong> highest density <strong>of</strong>individuals (36,340/m2). Thedeepest station exhibited <strong>the</strong> lowest recorded density(l,581/m2). Density <strong>of</strong> individuals at creek stationsappeared to be lX'sitively correlated with <strong>the</strong> presence<strong>of</strong> organic effluent from sewage treatment plants.The only station not directly influenced by effluent


showed significantly lower densities, especially <strong>of</strong>tubificid worms, than o<strong>the</strong>r stations (Dye 1972;Cowell et al. 1974).The prevailing trends in zooplankton and benthicinvertebrate communities lead Cowell et al. (1974) tocharacterize <strong>the</strong> lake as eutrophic. Dominance <strong>of</strong>zooplankton by small-bodied rotifers, <strong>the</strong> occurrence<strong>of</strong> blue-green algae, high rates <strong>of</strong> productivity, andsignificant oxygen deficits in <strong>the</strong> summer hypolimnionall point to this conclusion. Dominance <strong>of</strong> <strong>the</strong>benthos by oligochaetes and two species <strong>of</strong> chironomids,Glyptotendipes paripes and Chironomus crassicandatus,also support this conclusion. These taxahave been linked to eutrophic conditions in o<strong>the</strong>rFlorida lakes receiving organic wastes and nutrientrun<strong>of</strong>f(provost 1958; Provost and Branch 1959; Beckand Beck 1969).In <strong>the</strong> Alana and Little Manatee Rivers, freshwaterbenthic faunas begin to dominate around 28 to 32 kmupstream <strong>of</strong> <strong>Tampa</strong> <strong>Bay</strong> (Dames and Moore 1975).Densities are typically low near <strong>the</strong> oligohaline wne<strong>of</strong> tnmsition from estuarine to freshwater conditions.Judging from <strong>the</strong> station-to-station variation in <strong>the</strong>group or taxa dominating at different times <strong>of</strong> <strong>the</strong>year, <strong>the</strong>re must be many localized controllingfactors. Common groups include <strong>the</strong> chironomids.beetles, oligochaetes, pelecypods, mayflies, andisopods. In comparing <strong>the</strong> two rivers, <strong>the</strong> LittleManatee tends to have higher species diversities than<strong>the</strong> Alalia, but lower densities <strong>of</strong> individuals. Theauthors (Dames and Moore 1975) relate this generalcondition to <strong>the</strong> relative enrichment <strong>of</strong> <strong>the</strong> Alafiasystem with municipal, industrial, and agriculturalwaste product".6.2.2 Estuarine Invertebratesa. Planktonic invertebrates. Macrozooplanktonhave been studied by Kelly and Dragovich (1967) in<strong>Tampa</strong>, Old <strong>Tampa</strong>, Hillsborough, Boca Ciega, andTerra Ceia <strong>Bay</strong>s. Weiss and Hopkins (1973) andDonaldson and Johanson (1977) report on zooplankton<strong>of</strong> <strong>the</strong> <strong>An</strong>clote estuary. Saloman (1974) present';data oI1l.Ooplankton <strong>of</strong>fSand Key in Pinellas Countyin association with o<strong>the</strong>r studies regarding beach restoration.Morris (1976) reports on macroinvertebrate<strong>Tampa</strong> <strong>Bay</strong> <strong>Ecological</strong> <strong>Characterization</strong>218plankton in upper <strong>Tampa</strong> <strong>Bay</strong>. Hopkins (1973)presents a general review <strong>of</strong> zooplankton in <strong>the</strong> easternGulf <strong>of</strong> Mexico, and Turner and Hopkins (1985)and Weiss and Phillips (1985) review zooplanktonand meroplankton studies, respectively, in <strong>Tampa</strong><strong>Bay</strong> in particular. The most authoritative study <strong>of</strong><strong>Tampa</strong> <strong>Bay</strong> zooplankton, however, is reported byHopkins (1977).Quarterly samples at 42 stations within <strong>the</strong> bayyielded 37 taxa <strong>of</strong> true planktonic (haloplankton)organisms (Hopkins 1977). These were divided intothree categories based on numerical abundance;group 1 (>1,OOO/m 3 ), group 2 (100-1,OOO/m 3 ), andgroup 3 «lOO/m 3 ).Group 1 consisted <strong>of</strong> four species, <strong>the</strong> cyclopoidcopepod Oithona colcarva (=0. breviconus), <strong>the</strong>calanoid copepods Acartia tonsa and Paracalanuscrassirostris, and a tunicate, Oikopleura dioica.These four species account for 60% and 38% <strong>of</strong> <strong>the</strong>zooplankton biomass and numbers, respectively.Although Oithooo colcarva generally outnumbers A.tonsa in <strong>the</strong> summer, <strong>the</strong> latter ranks first in biomassbecause <strong>of</strong>its greater size. In winterA tonsa is moreabundant than O. colcarva. Since copepod nauplii,which account for 29% <strong>of</strong> total zooplankton, are notidentified to species, <strong>the</strong> real population numbers <strong>of</strong><strong>the</strong>se four species are no doubt higher.Group 2 consists <strong>of</strong> six species <strong>of</strong> copepods,Evadne tergestioo, Oithooo 0000, Pseudodiaptomuscoronatus, O. simplex, Euterpioo acutifrons, andLabidocera aestiva. Group 3 consists <strong>of</strong> 22 speciesincluding 11 copepods (Eucalanus pileatus, Paracalanusquasimodo, Temora turbioota, Centropageshamatus, C. furcatus, Oncaea curta, O. venusta,Corycaeus amazonicus, C. americanus, C. qiesbrechti,Microsetella rosea); 2 c1adoceran.."i (Peniliaavirostris, Podon polyphemoides), 1 decapod (Luciferfaxoni),2 chaetognaths (Sagitta tenuis, S. hispida),4 tunicates (Oikopleura longicauda, O. fusiformis,Appendicularia sicula, DoUotum gegenbauri), 1siphonophore (Muggiacea kochi), and I trachymedusa(Liviope tetraphylla).Group 3 consists <strong>of</strong> a large number <strong>of</strong> relativelyuncommon species which will not be listed as agroup.


It is interesting to note that Kelly and Dragovich(1967) report Lucifer faxoni, porcellanid crab larvae,brachyuran crab larvae, and Sagitta hispida, alongwith copepods, as <strong>the</strong> most abundant macrozooplankton<strong>of</strong> <strong>Tampa</strong> <strong>Bay</strong>. Some if not all <strong>of</strong> <strong>the</strong>discrepancy could originate from <strong>the</strong> larger meshsizes <strong>of</strong> <strong>the</strong>ir sampling gear as well as from annualvariations in population makeup.Total zooplankton numbers were clearly higher in<strong>the</strong> spring, summer, and fall than in winter. Thedifference between <strong>the</strong> three warm se,l such as oyster reefs. In his recent review <strong>of</strong>benthiC invertebrates <strong>of</strong> <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> System,


<strong>Tampa</strong> <strong>Bay</strong> <strong>Ecological</strong> <strong>Characterization</strong>Simon and Mahadevan (1985) cite over 70 informa- organisms. These are <strong>the</strong> salinity, sediment compositionsources on invertebrates <strong>of</strong><strong>Tampa</strong> <strong>Bay</strong>, most <strong>of</strong> tion, and pollution gradients, which are most intense<strong>the</strong>m in <strong>the</strong> grey (unpublished) literature. The major- in <strong>the</strong> upper estuary and relatively moderate towardity <strong>of</strong>this worle has been conducted with reference to <strong>the</strong> lower estuary. It is believed that increases inspecific effects, usually associated with local activi- benthic species richness from upper bay to lower bayties such as <strong>the</strong>rmal effluents (Vimstein 1972; are due in large part to <strong>the</strong> moderation <strong>of</strong> salinityThorharg et al. 1977; Mahadevan and Patton 1979), changes and pollution in <strong>the</strong> lower bay. The thirddredging operations (Taylor and Saloman 1968; gradient, sediment composition, is discussed below.Sykes and Hall 1970; Godcharles 1971; Simon and In <strong>the</strong> upper bay, sediments are finer, relatively lessDyer 1972; Simon et a1. 1976), sewage and industrial consolidated, and <strong>of</strong> a higher organic content than indischarges (Taylor et al. 1970), and canal and seawall <strong>the</strong> lower bay, where sorting and flushing lead toconstruction (Hall and LindaU 1974). O<strong>the</strong>r major coarser, sandier sediment conditions and lowerwoIks have focused on one species or species groups organic content. Correlating with <strong>the</strong>se conditions,such as <strong>the</strong> polychactes (Taylor 1971; Santos 1972), deposit feeders (those organisms that feed within orpenaeid shrimp (Saloman 1964, 1965,1968; Eldredet upon <strong>the</strong> sediment/surface) are more abundant in <strong>the</strong>a1. 1965; Sykes and Finucane 1966) or mollusks upper bay than in <strong>the</strong> lower bay, while <strong>the</strong> reverse is(Dawson 1953; Sims and Stokes 1967; Finucane and true for filter feeders (those organisms which filterCampbell 1968). Although a considerable body <strong>of</strong> feed from <strong>the</strong> water column). Also, more individuals,knowledge has accumulated, relatively few studies though fewer species, tend to be found in <strong>the</strong> upperhave been baywide and inclusive <strong>of</strong> <strong>the</strong> full range <strong>of</strong> than <strong>the</strong> lower bay. However, it has been shown thatbenthic invertebrates. The numbers <strong>of</strong> <strong>the</strong> correlation is better for mobile species, bothmacroinvertebrate species reported from <strong>Tampa</strong> <strong>Bay</strong> deposit feeders and suspension feeders, in finer sedihasincreased from 82 species (Dragovich and Kelly ments and sedentary in sandier sediments. Mobile19Mb) to over I ,2(X) species (Simon and Mahadevan species suspend sediments while sedentary species1985). What portion <strong>of</strong>this increao;;e is attributable to consolidate <strong>the</strong>m.increasing population diversity or to improvedsampling techniques is unknown.Signiticant studies also exist on estuarine andcoastal locations out"ide <strong>Tampa</strong> <strong>Bay</strong> proper, such as<strong>the</strong> <strong>An</strong>dote River estuary and Sarasota, Roberts, andDona <strong>Bay</strong>s (Tiffany 1974; Lincer et a1. 1975).In broad terms, <strong>the</strong> eastern side <strong>of</strong><strong>the</strong> bay is betterknown than <strong>the</strong> western side and <strong>the</strong> shallow areas arebetter known than deep area". However, many areas<strong>of</strong><strong>the</strong> bay system have yet to be sampled because <strong>of</strong>alack <strong>of</strong>financial support, manpower, and proximity toperturbations(which usually generate <strong>the</strong> most impetusfor sampling).Simon and Mahadevan (1985) divide <strong>the</strong>ir discussion<strong>of</strong> invertebrates into three areas: generalities inbenthic community composition and abundance,variations in communities, and response and recovery<strong>of</strong> communities to various stress factors. Among <strong>the</strong>generalities, three environmental gradients arerecognized as influencing distributions <strong>of</strong> benthic220Development and pollution have reduced habitatdiversity by <strong>the</strong> loss <strong>of</strong> seagrass beds and mangroveforests. This in itself results in a loss <strong>of</strong> speciesrichness.Consistent with <strong>the</strong>se trends, <strong>the</strong> upper bay benthosappears to be dominated by what Simon andMahadevan (1985) call r-selected species, or opportunists.These species are generally short lived andthus capable <strong>of</strong> exploiting habitats quickly afterperiodic stresses. Such species also tend to be morecommon in <strong>the</strong> upper than <strong>the</strong> lower bay. The k­selected species, those that have more complex lifecycles, are longer lived, and hence more sensitive tostress. These species are more frequently found in <strong>the</strong>lower bay.Seagrass beds have been shown to support greaterspecies richness and abundance <strong>of</strong> benthic invertebratesthan open, unvegetated bottoms (Tabb andManning 1961; Dragovich and Kelley 1964b; Santosand Simon 1974; Brook 1975; Stoner 1980;


discharges <strong>of</strong> bacteria, nutrient." and potential toxinsfrom industry, municipal, and nonpoint-source run<strong>of</strong>f.Turbidity from run<strong>of</strong>f or dredging is obviouslycapable <strong>of</strong> smo<strong>the</strong>ring young oyster spat. A moresubtle effect is a relative increase in fine unconsolidatedsediments, especially in upper bay waters,making it less likely that oyster spat settle at all.Destabilization, orshoaling, <strong>of</strong>bottom sediments nearchannels, dredged canals, and seawalls may alsoreduce chances <strong>of</strong>oyster settling and sUlvival.Hydrologic flow-through modifications occurwhen <strong>the</strong> volume <strong>of</strong> water that a section <strong>of</strong> <strong>the</strong> baynonnally handles is increased, decreased, or o<strong>the</strong>rwisealtered. Increases may arise from constructionor deepening and widening <strong>of</strong> channels that bringmore saline waters upstream, as well as hastening <strong>the</strong>loss <strong>of</strong> freshwater downstream. Urban developmentalso tends to accelerate <strong>the</strong> rate and volume loss <strong>of</strong>freshwater via direct run<strong>of</strong>f. Without <strong>the</strong> urban developmentmore <strong>of</strong> <strong>the</strong> run<strong>of</strong>f would be shunted intogroundwater recharge or surface storage where itwould be released slowly. Canals and seawalls alsoincrea'iC <strong>the</strong> rate <strong>of</strong> exchange in some locations byremoving <strong>the</strong> storage capacity <strong>of</strong> native shorelineareas (e.g., mangroves and salt marshes). In o<strong>the</strong>rlocations, C


tend to be more physiologically tolerant <strong>of</strong> a wider.mge <strong>of</strong> osmotic conditions (euryhaline). Many <strong>of</strong><strong>the</strong> more common and abundant fishes <strong>of</strong> <strong>the</strong> areabelong to this group, including <strong>the</strong> mosquit<strong>of</strong>ish(Gambusia affinis), <strong>the</strong> sailfin molly (Poecilia latipinna),and <strong>the</strong> sheepshead minnow (Cyprinodonvariegatus).Were it not for human influence, <strong>the</strong>se threecategories would serve as a fairly complete list <strong>of</strong>biogeographic mechanisms influencing fish speciescomposition in an area. Strictly freshwater connectionsare envisioned for members <strong>of</strong> <strong>the</strong> principallyfreshwater families. These connections probablyexisted as former sea level (and freshwater tables),higher than at present, incrementally receded, andfreshwater species inched <strong>the</strong>ir way far<strong>the</strong>r south. Formembers <strong>of</strong> secondary families with some tolerancefor saline conditions, <strong>the</strong> connection is perhapsbroader because <strong>of</strong><strong>the</strong>ir ability to invade <strong>the</strong> brackishfringes <strong>of</strong> <strong>the</strong> receding seas. For members <strong>of</strong> thisgroup, as well as for <strong>the</strong> principally marine species, atleast two factors peculiar to Florida have been identifiedas facilitating invasion by marine avenues.In south Florida, where land slopes are low andrainfall seasonal, <strong>the</strong> estuarine tran~ition zone is bothbroad and seasonally transient. This creates a wnewhere <strong>the</strong> gradient <strong>of</strong>salinity (or chlorinity) is spreadout over a relatively wide area. In addition, <strong>the</strong> backgroundchiorinity <strong>of</strong>inland waters is frequently in <strong>the</strong>oligohaline (or near oligohaline) range, owing tocontact with residual salt from past invasions byshallow seas. These two factors (Le., distance toseawater over an extended gradient and high residualchiorinities) are believed to facilitate <strong>the</strong> invasion <strong>of</strong>freshwaters by euryhaline marine species (Odum1953). A second factor that may aid such invasions is<strong>the</strong> high concentration <strong>of</strong> calcium (Ca++) in Floridafreshwaters (Hulet et al. 1967). High levels <strong>of</strong>Carthave been found to inhibit salt loss and water gain inmarine fishes, helping <strong>the</strong>m osmoregulate in lesssaline environments.With <strong>the</strong> advent <strong>of</strong>man, <strong>the</strong> release <strong>of</strong>new speciesei<strong>the</strong>r by accident (aquarium rejects, fish fann escapees)or design (as weed controls, Le., white amur,Ctenopharyngodon idella) has become a new and6. Fauna223potentially powerful influence on fish species composition.Aquarium fish such as <strong>the</strong> oscar (Astronotusocellatus), blue acara (Aequidens pulcher), and goldfishhave been reported throughout south Florida.The incidence <strong>of</strong> releases in <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> watershedis heightened by <strong>the</strong> large number <strong>of</strong>fish farms,particularly in <strong>the</strong> Alafia and Manatee River basins(see Figure 97). Fish-farm escapees include manyaquarium species as well as <strong>the</strong> tilapia, cultivated forits food value. A long and healthy debate over <strong>the</strong>potential effects <strong>of</strong> releasing <strong>the</strong> white amur intoHydrilla-infested lakes has been going on for years.The final resolution has been <strong>the</strong> tightly controlledand monitored release <strong>of</strong> sterile hybrids. Thiscompromise solution arises from <strong>the</strong> fact that <strong>the</strong>white amur has reproductively established itself elsewherein <strong>the</strong> United States. Itis feared that ifit shoulddo so in Florida lakes, its voracious feeding habitswould soon result in <strong>the</strong> consumption <strong>of</strong> nativevegetation, to <strong>the</strong> eventual detriment <strong>of</strong>o<strong>the</strong>r fish andwildlife species.Significant studies <strong>of</strong> freshwater fishes in <strong>the</strong><strong>Tampa</strong> <strong>Bay</strong> area include Barnett (1972) and Cowell etal. (1974) in <strong>the</strong> Hillsborough River, and Dames andMoore (1975) in <strong>the</strong> Alafia and Little Manatee Rivers.Layne et al. (1977) especially provide one <strong>of</strong><strong>the</strong> morecomprehensive compilations <strong>of</strong> freshwater fishspecies to be expected in <strong>the</strong> entire watershed.Using museum collections, Layne et al. (1977) list66 species <strong>of</strong>fishes thatmay be found in <strong>the</strong> variety <strong>of</strong>aquatic habitats <strong>of</strong> <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> watershed(Appendix Table A-12). <strong>An</strong>o<strong>the</strong>r four species <strong>of</strong>exotic aquarium types believed to be established, butwhose habitat is unknown, are included. In watersnear fish farms still more species may be periodicallyreported due to escapes.Flowing-water habitats appear to support <strong>the</strong>richest freshwater fish fauna in <strong>the</strong> study area. Fiftysevenspecies are reported from <strong>the</strong> major riversystems, while forty-three species are reponed fromstreams and creeks. Although streams and creekssupport a large number <strong>of</strong> species, many unique tothis particular habitattype, many (1/4 <strong>of</strong> <strong>the</strong> speciesreported) are under <strong>the</strong> category <strong>of</strong>"Population StatusQuestionable" in Appendix Table A-12. Area lakes


also support a high diversity <strong>of</strong>fishes, with 42 speciesreported. Ponds (33), ditches (35), marsh~


from <strong>Tampa</strong> <strong>Bay</strong> (Huff 1975; Layne et a!. 1977). 'Dlisrecord represent


t'. Esocidae, Two sl')(':cics, <strong>the</strong>americafllts aTflcr,icQnu" l and <strong>the</strong> chain plcker,~lniger), repn~.sentin <strong>the</strong>area. 'I'he formertowater. Like all <strong>of</strong> <strong>the</strong>and redl1n pickerel arc yom·(~jousalmost any fishes smallenough to cal. Of<strong>the</strong> two. <strong>the</strong> redf1n is smaller. readl'a rnl,udmum <strong>of</strong> lllxmt 30 em. 'nrc chain(':rcj may reach 60 em.f. Cyprinidae. The Cyprinidae. or minnows, arerelJreselrned by eight <strong>the</strong> shiner(Nott:migonus<strong>the</strong>(Norropis harpt?ri). t.he tn)fl,color shiner<strong>the</strong> minnow (N.(N rru;lcukuus). <strong>the</strong> coastal (Nm'l~t;r.\:Ofl,n, <strong>the</strong> saHlin shiner (N. hypsdoptcrus), mrd<strong>the</strong> dusky shiner (N cUJnmittgsae). 'nl{~ <strong>of</strong> th{~is till: golden shiner. which IlUI)' reach25 enl 'Ille consul! shiner is II common or Iht:shore ZOfl{~ <strong>of</strong> <strong>the</strong> lliHsbmough. Alalia. Little Manatee. Mltnll!t:(:,llnd MYl(kk~\ Rivers elaLwhere it islbllnd to deposit on aqumlcIt k(~y ltlk in <strong>the</strong> <strong>of</strong>ma,t(~rillh within aquatic AsonlniVOrt:s t:onsumt; detritus, mIdIn turn, <strong>the</strong>y nn' upon<strong>Tampa</strong> <strong>Bay</strong> <strong>Ecological</strong> Charactarlzatlonlargclllouth b.lss imd snook (Wan,:Minnows nre not t~SiJICciaUy well adnptt:d 10 flut:tu·W1Ht:r and lend H) tJIC among <strong>the</strong>slJt~tk:s nwst fish killsidentified by226sulJsequent resurgence <strong>of</strong> <strong>the</strong>et aLand1979; Hardin and Aucrson 1980), Carp frC(lUC1'ltlyseck (Jut vegetation o<strong>the</strong>r than those '>, RT"'" (ilccnlCcJundesirable. leading to significant in ''''''''''11'',bmte fXlpulations, i1sh food. :md fish habitat Thesec!l::mg1es may in turn promote local in fishsm~cij::s composition and abundance andGaS


eclaimed phosphate pits (Holcomb 1965; Buntz1967; Buntz and Chapman 1971).i. Percichthyidae. Contrary to its name, <strong>the</strong>striped bass (Morone saxatilis) is not a member<strong>of</strong><strong>the</strong>true bass family (Centrarchidae). Although not nativeto <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> watershed, pure stripers andhybrids (striped bass X white bass (Moronechrysops) have been introduced into inland lakes <strong>of</strong>Polk and Hillsborough counties as a game species by<strong>the</strong> Rorida Game and Fresh Water Fish Commission(Langford 1974). The natural habitats <strong>of</strong>this anadromousfish are <strong>the</strong> nearshore to estuarine environs,where <strong>the</strong> fish spends its adult life, returning to freshwaterrivers to spawn (Carr and Goin 1955). Nowcommon in most lakes into which it has beenintroduced, initial stocking met with mixed successand in some cases poor rates <strong>of</strong>growth, possibly dueto <strong>the</strong> internal parasite Goezia (Langford 1974).Drastic reductions <strong>of</strong> shad populations have beenreported after introduction <strong>of</strong><strong>the</strong> striped bass (Stevens1975) and may indicate a useful means <strong>of</strong>controllingnumbers <strong>of</strong>this less desirable species in certain lakes.Because <strong>of</strong>its pelagic feeding habits, itis assumed notto compete significantly with <strong>the</strong> more littoral largemouthbass (Langford 1974). Stocking must continueto support populations <strong>of</strong> this bass, which is notexpected to reproduce in lakes <strong>of</strong> <strong>the</strong> watershed(Layne et al. 1977).j. Centrarchidae. The sunfish family (Centrarchidae)is <strong>the</strong> most numerous family <strong>of</strong>native freshwaterfishes in <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> watershed, with 11 representatives.These are <strong>the</strong> Everglades pygmy sunfish(Elassoma evergladei), <strong>the</strong> Okeefenokee sunfish (E.okeefenokee), <strong>the</strong> bluespotted sunfish (Enneacanthusgloriosus), <strong>the</strong> warmouth (Lepomis gulosus), <strong>the</strong> redbreastsunfish (L. auritus), <strong>the</strong> spotted sunfish (L.punctatus), <strong>the</strong> redear sunfish (L. microlophus), <strong>the</strong>bluegill (L. macrochirus), <strong>the</strong> dollar sunfish (L.marginatus), <strong>the</strong> largemouth bass (Micropterussalmoides), and <strong>the</strong> black crappie (Pomoxisnigromaculatus). Many <strong>of</strong><strong>the</strong> centrarchids are popularsport fishes <strong>of</strong>considerable commercial interest.The sunfishes are predators <strong>of</strong> o<strong>the</strong>r small fishes,crustaceans, insects, and benthic organisms. Theythrive in heavily vegetated ponds, canal margins, and6. Fauna227sloughs where prey tend to concentrate, as well as inopen waters (Texas Instruments 1978b). Shallowwaters are used fornesting by sunfish and bass. Nestingprobably peaks in late spring (TI 1978b). For <strong>the</strong>rest <strong>of</strong> <strong>the</strong>ir life cycle <strong>the</strong>y are dependent upon fairlydeep water <strong>of</strong> good quality. The sunfishes adapt t<strong>of</strong>luctuating water levels by retreating into deeperwaters. Consequently, as <strong>the</strong> dry season peaks,extremely high concentrations <strong>of</strong> bass and sunfishmay be found in shrinking canals and waterholes. Of<strong>the</strong> 11 species, <strong>the</strong> Everglades pygmy sunfish ranks as<strong>the</strong> most divergent form, reaching only about 4 cm inlength and living an exclusively benthic existence.Although <strong>the</strong> sunfish and bass are generally regardedas top carnivores, a truly accurate trophic categorizationmust take into account food habits at all stages <strong>of</strong><strong>the</strong>ir life histories (Chew 1974). Young bass (yearclass 1), for instance, feed heavily on insects, amphipods,and zooplankton. No fish are consumed by<strong>the</strong>se <strong>of</strong>ten-numerous young bass. For year class 2,fish become a progressively more important component<strong>of</strong><strong>the</strong>diet. Only by<strong>the</strong> time <strong>the</strong>y reach year class3 do bass consume o<strong>the</strong>r fish nearly exclusively.Similar life-history transitions are reported for <strong>the</strong>redear sunfish or "shellcrackers," which <strong>the</strong>y arecalled locally (Wilbur 1969). Tendipedids (midgeImvae) are generally <strong>of</strong> greater importance to largerindividuals, whereas copepods, corixoids (water boatmen),and Hyalella (amphipods) are consumed inlarge quantities by <strong>the</strong> smaller size groups.Ceratopogonids (biting midges) and gastropods(Goniobasis) are eaten mostly by <strong>the</strong> middle sizegroups. Seasonal variations in diet appear to be <strong>the</strong>result <strong>of</strong>variations in available food items ra<strong>the</strong>r thanclear-cut preferences. In areas where cichlids havebeen introduced, centrarchids may be outcompeted.k. Percidae. The swamp darter (E<strong>the</strong>ostoma jusiforme)is <strong>the</strong> only representative <strong>of</strong>this family in <strong>the</strong><strong>Tampa</strong> <strong>Bay</strong> watershed. It is a small, bottom-dwellingfish reported from lakes, ponds, impoundments,flowing waters, and marshes. Like all Percidae it ispredaceous, feeding on small insect'l and crustaceans(Eddy 1969).I. Aphredoderidae. This family is also representedby only one member, <strong>the</strong> pirate perch(Aphredoderus sayanus). Ware and Fish (1969)


eport it as rare in pools, runs and glides and commonin riffles in <strong>the</strong> Peace River. Pirate perch reach amaximum size <strong>of</strong>about 53 em. They are predaceous,feeding mostly on aquatic insects and o<strong>the</strong>r smallaquatic animals (Eddy 1969).m. Cyprinodontidae. Despite <strong>the</strong> fact that <strong>the</strong>cyprinodonts, or killifishes, are not an obligatoryfreshwater family, but secondary invaders, <strong>the</strong>y arerepresented by nine native species plus a fewaquarium escapees. 11l0se members <strong>of</strong> <strong>the</strong> killifishfamily found inhabiting freshwater habitat within <strong>the</strong>watershed include <strong>the</strong> sheepshead minnow (Cyprinodonvariegatu.."i), <strong>the</strong> golden topminnow (Funduluschrysotus), <strong>the</strong> banded topminnow (P. cingulatus),marsh killifish (P. confluentus), <strong>the</strong> Seminole killifish(P. seminolis), <strong>the</strong> starhead topminnow (F. notti(=lineolatus), <strong>the</strong> flagfish (.Iordanella jloridae), <strong>the</strong>goldspotted killifish (Floridichthys carpio), <strong>the</strong>pygmy killifish (Leptolucania ommata), <strong>the</strong> bluefinkillifish (Lucania goodei), <strong>the</strong> rainwater killifish (L.parva), and <strong>the</strong> diamond killifish (Adinia xenica).Three o<strong>the</strong>r srx:cies within <strong>the</strong> family, <strong>the</strong> gulf killifish(Fundulus grandis), <strong>the</strong> striped killifish (F.majalis), and <strong>the</strong> longnose killifish (F. similis), aregenerally restricted to more saline conditions <strong>of</strong> <strong>the</strong>bay and estuaries, but may be found well up <strong>the</strong> majortributaries as far as saline conditions extend. Thesheepshead minnow, marsh killifish, and diamondkillifish may also fall into this group.In addition to <strong>the</strong> generally euryhaline background<strong>of</strong><strong>the</strong> killifish family, <strong>the</strong>y also adapt well to fluctuatingwater levels. Because <strong>of</strong> <strong>the</strong>ir generally smallsize, <strong>the</strong>y exploit extremely shallow waters and mayeven invade underground channels in bedrocklimestone during dry conditions. The upturnedmouths <strong>of</strong> many <strong>of</strong> <strong>the</strong> killifishes allow <strong>the</strong>m toextract oxygen from <strong>the</strong> thin surface layers <strong>of</strong>shallowponds when deeper waters are o<strong>the</strong>rwise devoid <strong>of</strong>oxygen (Carr 1973; Kushlan 1974).Perhaps because <strong>of</strong> <strong>the</strong>ir success in exploitingmany aquatic habitats <strong>of</strong><strong>the</strong> study area, <strong>the</strong> killifishesreJ?resent a fundamental ecological link between primaryand tmphicaUy higher fish and wildlifespecies.Their diet consists <strong>of</strong> a mixture <strong>of</strong> plant and animaltissue ranging from periphyton to insect larvae. In<strong>Tampa</strong> <strong>Bay</strong> <strong>Ecological</strong> <strong>Characterization</strong>228tum, <strong>the</strong>y are heavily preyed upon by sport fishessuch as <strong>the</strong> sunfish and bass and wading birds such aswoodstOJ:K and white ibis. Since killifishes are rapidinvaders <strong>of</strong> newly flooded marshes, prairies, andmarginal wetlands, <strong>the</strong>y facilitate <strong>the</strong> ability <strong>of</strong> <strong>the</strong>seenvironments to feed and support fish and wildlife.n. Poeciliidae. The topminnows or live bearers(poeciliidae) are represented by three native species,<strong>the</strong> ubiquitous mosquit<strong>of</strong>ish (Gambusia qffinis), <strong>the</strong>least killifish (Heterandriajormosa), and <strong>the</strong> sailfinmolly (Poecilia latipinna); and four aquarium escapees,<strong>the</strong> swordtail molly (P. petenensis), liberty molly(P. sphenops), black molly (P. latipinna x velifera),and <strong>the</strong> guppy (Poecilia reticulata). Two <strong>of</strong> <strong>the</strong>sespecies, <strong>the</strong> mosquit<strong>of</strong>ish and sailfm molly, are euryhaline,occupying a range <strong>of</strong> habitats from lakemar!,rins to salt marshes. The least killifish is abundantin shallow marshes, prairies, and freshwaterpockets within mangrove swamps, but is seldomfound in brackish waters. According to Kushlan andLodge (1974), it prefers thick emergent or submergedvegetation.Along with <strong>the</strong> killifishes, members <strong>of</strong> <strong>the</strong>Poeciliidae family playa key role in <strong>the</strong> diet <strong>of</strong>birdsand sport fishes <strong>of</strong>central and sou<strong>the</strong>rn Florida. Theyfeed primarily on small insects, crustaceans, andattached periphyton. The size range and upturnedmouths are very similar among members <strong>of</strong> bothfamilies. Poecilids generally avoid <strong>the</strong> problem <strong>of</strong>losing eggs to desiccation by internal fertilization anddevelopment. The female carries <strong>the</strong> developing eggsuntil <strong>the</strong>y hatch and <strong>the</strong> young fish emerge alive.o. Clariidae. One species, <strong>the</strong> walking catfish(Clarias batrachus), makes up this secondary family<strong>of</strong>fish. Originally imported from South America as acuriosity for aquarium owners, <strong>the</strong> potential impact <strong>of</strong><strong>the</strong> spread <strong>of</strong> walking catfish in Florida is considerable.These fish are capable <strong>of</strong>moving overland fromdrying ponds to o<strong>the</strong>r bodies <strong>of</strong>water. They can alsoburrow into bottom sediments during periods <strong>of</strong>drought or cold wea<strong>the</strong>r and remain dormant formonths (Courtenay 1970). As <strong>the</strong>y congregate indrying ponds, <strong>the</strong>y may devourall animal life within afew weeks, leaving little food for native fish and wildlifespecies. However, <strong>the</strong> catfish itselfmay serve as afood source for larger species (Duever et al. 1979).


p. Cichiidae. Eight <strong>of</strong> <strong>the</strong> species <strong>of</strong> exotic fishcurrently established in south-central Florida aremembers <strong>of</strong><strong>the</strong> tropical secondary freshwater familyCichlidae. A highly diversified group, <strong>the</strong> cichlids areconsidered to be in many ways <strong>the</strong> tropical ecologicalcounterpart <strong>of</strong> <strong>the</strong> centrarchids (sunfish family).Members <strong>of</strong>this family are generally well adapted forsurvival, due to <strong>the</strong>ir ability to withstand drought,<strong>the</strong>ir highly developed system <strong>of</strong> parental care <strong>of</strong>young, and <strong>the</strong>ir general aggressiveness. The abilityto withstand drought makes <strong>the</strong>m especially competitivein south Florida. The Centrarchidae comprise afreshwater family that reaches <strong>the</strong> sou<strong>the</strong>rn limit <strong>of</strong>it,;;range in south Florida in habitats characterized byseasonal drought, to which <strong>the</strong> family is poorlyadapted (Kushlan 1974). It is anticipated that <strong>the</strong>spread <strong>of</strong>cichlids will be at <strong>the</strong> expense <strong>of</strong> <strong>the</strong> nativeeentrarchids. The range expansion <strong>of</strong> <strong>the</strong> jewel fish(Hemichromis bimaculatus), already widespreadthroughout sou<strong>the</strong>rn Florida, was aided by its tolerance<strong>of</strong> brackish water and its use <strong>of</strong> <strong>the</strong> extensivecanal system <strong>of</strong><strong>the</strong> interior. The interactions and fate<strong>of</strong><strong>the</strong> exotic and native fish fauna <strong>of</strong>sou<strong>the</strong>rn Floridashould be a matter <strong>of</strong> concern in <strong>the</strong> area <strong>of</strong> Floridajust south <strong>of</strong> <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> watershed. It is likelythat survival <strong>of</strong> cichlids far<strong>the</strong>r north will be increa'iinglylimited by <strong>the</strong>ir intolerance <strong>of</strong> cold. However,in spite <strong>of</strong>this, Texas Instruments (1978b) reports <strong>the</strong>mouth-breeding blue tilapia (Tilapea aurea) constitutinga,;; much as 30% <strong>of</strong> <strong>the</strong> fish biomass <strong>of</strong> openriver waters during an October sampling in <strong>the</strong> PeaceRiver.q. A;<strong>the</strong>rinidae. The silversides are a familyperiphe'ral to freshwaters. Only one <strong>of</strong><strong>the</strong> tWo speciesreported from <strong>the</strong> <strong>Tampa</strong> area, <strong>the</strong> brook silverside(Labides<strong>the</strong>s sicculus), is found in freshwaters. Thetidewater silverside (Menidia beryllina), as <strong>the</strong> namesuggests, is more estuarine in its habit,>. The formerfish occurs in open canals, lakes, clear-water ponds,and deep cypress sloughs throughout <strong>the</strong> study area.According to Layne et al. (1977), <strong>the</strong> brook silversideis an important biological indicator species <strong>of</strong>unpolluted conditiop.s. Brook silversides anchor <strong>the</strong>ireggs in gravel bottoms on long filaments (Texas Instruments1978b).6. Fauna229r. Clupeidae. The herring family is also peripheralto fresh waters; only two <strong>of</strong> four species found in <strong>the</strong>area are characterized as principally freshwaterdwellers. These are <strong>the</strong> gizzard shad (Dorosomacepedianum) and <strong>the</strong> threadfin shad (D. petenense).Ra<strong>the</strong>r large, <strong>the</strong>se omnivorous fish tend to frequentcanals, rivers, channels, and open waters, where <strong>the</strong>yfeed on plankton. Though considered a freshwaterspecies, <strong>the</strong>y may use brackish waters as well. Theshad prefer slow-moving or sluggish waters. Someauthorities regard gizzard shad as an indicator <strong>of</strong>poorwater-quality conditions. Attempts have been madeto selectively remove <strong>the</strong> less desirable shad fromarea lakes (Lake Tarpon) by rotenone treatments(phillippy 1964).s. Belonidae. The Atlantic needlefish (Strongyluramarina) is a primarily estuarine species thatoccasionally enters freshwaters. Ware and Fish(1969) report only rarely encountering this species inpool habitat,;; along water courses entering <strong>the</strong> estuary.t. <strong>An</strong>guillidae. Although <strong>the</strong> American eel (<strong>An</strong>guillarostrata) belongs to a family peripheral to freshwaters,it is a common inhabitant <strong>of</strong>area rivers (Wareand Fish 1969; Dames and Moore 1975). The eel is acatadromous species, living in freshwaters but spawningin marine waters. When <strong>the</strong> young migrate into<strong>the</strong> estuaries, <strong>the</strong> males remain in brackish waters,while only <strong>the</strong> females proceed upstream, mostlytraveling at night. The eels remain here 5 to 7 yearsuntil <strong>the</strong>y are sexually mature. Upon migratingdownstream, <strong>the</strong> mature females join <strong>the</strong> males andmove <strong>of</strong>fshore to spawn (Eddy 1969). Eels areomnivorous, feeding on all kinds <strong>of</strong>animal food, bothdead and alive.6.3.2 Estuarine and Marine FishesDuring <strong>the</strong> last 25 years, numerous studies havebeen conducted regarding <strong>the</strong> community structure,distribution, and migration <strong>of</strong><strong>the</strong> fishes in and around<strong>Tampa</strong> <strong>Bay</strong>. Investigations centered along coastal areasand in lower<strong>Tampa</strong> <strong>Bay</strong> include those <strong>of</strong>Moe andMartin (1965) <strong>of</strong>fshore <strong>of</strong>Pinella,;; County; Fable andSaloman (1974) along <strong>the</strong> coastal beaches in PinellasCounty; Saloman and Naughton (1979) betweenLong Key and Clearwater pass; and McNulty et al.


<strong>Tampa</strong> <strong>Bay</strong> <strong>Ecological</strong> CharaelfarlzaUol'lan (i;(C(;UenUIJIlu:mtlrydonbCtWti(1'H t1'StIIiU'il:141' hiilbil,U&dt;trUU(iOud COltSCjilll(::nt~~sIt hll.'; been that around 90'% <strong>of</strong> all <strong>the</strong>important. and Ihc Gulf <strong>of</strong>Mexico use estuaries al some time in <strong>the</strong>irFor manyare most vital as a nrO'ICCInurseryarea for larvae and The nurseryfunction from <strong>the</strong> high productivity <strong>of</strong> estuaries.which provides an abundant source <strong>of</strong> food tolarvae and juveniles. ll.s well as through restricting <strong>the</strong>numbers <strong>of</strong> predator species to those capable <strong>of</strong>withstanding <strong>the</strong> curyhaline conditions. 121<strong>of</strong> shows <strong>the</strong> distribution in <strong>Tampa</strong> <strong>Bay</strong> <strong>of</strong> <strong>the</strong>juveniles <strong>of</strong>some fish species.'nlC timing <strong>of</strong>splnllning in <strong>the</strong> Gulf<strong>of</strong> Mexico andsubsequent sea':;onal movement <strong>of</strong> <strong>the</strong> young into<strong>Tampa</strong> <strong>Bay</strong> coincidcs with summer. <strong>the</strong> period <strong>of</strong>highest estuarine production. A second peak innumbers <strong>of</strong> fish larvac occurs in late summer and falland involvcs [ewer "I"........'".One <strong>of</strong><strong>the</strong> major questions in this general model <strong>of</strong>t~stuarincdctx:ndcncc is how weak-swimming larvae<strong>the</strong>ir wuy into eSluaries against <strong>the</strong> nct outllov,i<strong>of</strong> water. Mimy investigators have s!'l()wn that larvaereglll~11ic <strong>the</strong>ir vcrti"u distribution in <strong>the</strong> wlltcr columnto advantage <strong>of</strong> differential now gmdicms thaiare tcmpomrily available in a two-layered systemoyer a tidld (Robison 1985). Given <strong>the</strong> physicalSililill10n. individuals out bouom watcrs at alllimes to have a greater probability <strong>of</strong> movingupper bay waters than those in <strong>the</strong> upper watercolumn. However, <strong>the</strong> ('act that many common cstua·exhibit distinct tx:havioral pref(~rences forSllv~"p('f('hlJay ltfKhavy5th,,, ,!tltll)'Sh'"9d1.,1td m!nMwPlnnllhSJXl'1Strlpm mu!ldJI'MAMJJAS(}N!)l\toolhFlgurel2L Sea-sona! distribution <strong>of</strong> selectedwirhin nursery areas <strong>of</strong> Ta.mpa <strong>Bay</strong>230


certain depths (not all on <strong>the</strong> bottom) stronglysuggests that o<strong>the</strong>r factors must be involved in <strong>the</strong>migratory process. Studies <strong>of</strong> circulation and <strong>the</strong>interaction <strong>of</strong> wind and current on smaller spatialscales are necessary to determine <strong>the</strong>se factors.The seasonal movement <strong>of</strong> adult fishes in and out<strong>of</strong><strong>the</strong> estuary is similarto those <strong>of</strong><strong>the</strong>juveniles in thatpeaks in relative aboodance generally occur in <strong>the</strong>spring and early fall (Comp 1985). Decreases inrelative abundance are apparent from <strong>the</strong> onset <strong>of</strong>lowwater temperatures in December through February,when many species apparently migrate to <strong>the</strong> gulforto <strong>the</strong> deeper areas <strong>of</strong><strong>the</strong> bay.Seasonal salinity variation is generally regarded as<strong>the</strong> main influence around which estuarine fishcommunities are organized. Temperature, substrate,and <strong>the</strong> influence <strong>of</strong> detritus have also been noted asimportant background factors (Odum et al. 1982).Based on <strong>the</strong>se factors, Odum et al. (1982) identify<strong>the</strong> following four characteristic fish assemblages insouth-west Florida estuaries (Figure 122):1. The basin mangrove forest community.2. The tidal stream and river community.3. The estuarine bay fringing community.4. The oceanic bay community.a. Basin mangrove forest community. The basinmangrove forest community occurs within <strong>the</strong> estuarinewetlands (salt marshes and mangroves) wheredepressions hold a combination <strong>of</strong> rainwater, run<strong>of</strong>f,tidal overflow, and saline groood water. The fishesthat occupy <strong>the</strong>se basin mangrove communitiesconsist largely <strong>of</strong><strong>the</strong> euryhaline killifishes (Cyprinodontidae)and livebearers (Poeciliidae) discussedpreviously for freshwater communities. Water depthis generally very low (0.3-1 m) and <strong>the</strong> mud substrateis generally high in hydrogen sulfide and low indissolved oxygen (0-2 mg/L). The selection pressurein such a setting obviously favors euryhaline characteristicsand high tolerance to low oxygen concentrations.Remarkably, <strong>the</strong> members <strong>of</strong> this community arepermanent residents, completing <strong>the</strong>ir life cycleswit.llln this harsh setting. Important members <strong>of</strong> thiscommunity are <strong>the</strong> mosquit<strong>of</strong>ish (Gambusia affinis),marsh killifish (Fundulus confluentus), sheepshead6. Fauna231minnow (Cyprinodon variegatus), sailfin molly(Poecilia latipinna), flagfish (Jordanella floridae),and rainwater killifish (Lucama parva).As a group, <strong>the</strong>se fishes represent an importanttrophic link for many o<strong>the</strong>r fish and wildlife. They areomnivorous, feeding on small invertebrates and huvalfishes as well as on mangrove debris and algae.During high water, members <strong>of</strong>this community maymove downstream where <strong>the</strong>y become <strong>the</strong> prey <strong>of</strong>larger fishes such as snook, tarpon, ladyfish, Floridagar, and mangrove snapper. During low water <strong>the</strong>community members tend to concentrate in recedingpools and ponds where wading birds such as herons,egrets, white ibis, and woodstork may feed upon<strong>the</strong>m.b. Tidal stream and river community. Wherecoastal streams provide a continuous connectionbetween upstream fresh (or fresher) waters and downstreamestuaries, a second fish community can bedefined. This is <strong>the</strong> tidal stream and rivercommunity;it supports a larger number and wider variety <strong>of</strong> fishspecies than <strong>the</strong> basin mangrove forest community.Seasonal oscillations <strong>of</strong>environmental conditions and<strong>the</strong> relative ease <strong>of</strong>movement between upstream anddownstream habitat,; create a diverse system habitableto a variety <strong>of</strong>species during one or more stagesin <strong>the</strong>ir life cycles (Odum et al. 1982).During <strong>the</strong> wet season <strong>the</strong> influx <strong>of</strong> freshwaterbrings with it many fishes that are characteristic <strong>of</strong>upstream marshes and sloughs. These include <strong>the</strong>Florida gar (Lepisosteus platyrhincus), severalmembers <strong>of</strong> <strong>the</strong> centrarchid family such as sunfish(Lepomis spp.), and largemouth bass (Micropterussalmoides), <strong>the</strong> yellow bullhead (lctalurus natalis),<strong>the</strong> tadpole madtom (Noturus gyrinus), <strong>the</strong> bluefinkillifish (Lucania goodei), and <strong>the</strong> rivulus (Rivulusmarmoratus) (Dames and Moore 1975, Odum et al.1982) Fish species which commonly spend a portion<strong>of</strong><strong>the</strong>ir life cycle in <strong>the</strong> mangrove-lined tidal streamsand rivers <strong>of</strong> <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> watershed include <strong>the</strong>killifishes (Cyprinodontidae), livebearers (Poeciliidae),silversides (A<strong>the</strong>rinidae), mojarras (Gerreidae),tarpon (Elopidae), snook (Centropomidae), snappers(Lutjculidae), sea catfishes (Ariidae), gobies (Gobiidae),porgys (Sparidae), mullet (Mugilidae), drums(Sciaenidae), and anchovies (Engraulidae).


I\)(",)I\).-tr.tQ.i~- ..... ~1 4~ ~7I: ::I 2- ~ o~ 8~sa~o 5Qe~3 6Q ~90~.c~Jilll'/IIlItr.t Black mangrove Riverine fringing Estuarine bayr.. basin..forest community community-High Salinity variabilityHigh~--Muddy, high organicRelative importance <strong>of</strong> mangrove detritus in food web--~SubstrateGradients---.,.------,.-~ ~1011~012Oceanic baycommunity--LowLowLargely sandyoj3'0 l»lXll»'


During <strong>the</strong> dry season, higher salinities force freshwaterfonns far<strong>the</strong>r upstream and allow marine fishesto invade <strong>the</strong> tidal stremns and rivers. Species thatcharacteristically move into <strong>the</strong>se areas at such timesinclude <strong>the</strong> nccdlefishes (family Belonidae), stingrays(Dasyatidae), jacks (Carangidae), and barracuda(Sphyrama barracuda). During <strong>the</strong> smne generalperiod <strong>of</strong> <strong>the</strong> year (December through May), lowtemperatures may induce some species sllch as <strong>the</strong>lined sole (Achirus lineatus) , <strong>the</strong> hogchoker(Trinectes maculatus), <strong>the</strong> bighead searobin(Prionotus tribulus), and <strong>the</strong> striped mullet (Mugilcephalus) to move <strong>of</strong>fshore where temperatures aremore moderate.In addition to temperature- ,md salinity-inducedfluctuations in fish species composition and abundance,<strong>the</strong> tidal streams and rivers provide a nurseryfbI' <strong>the</strong> Imvae and juveniles <strong>of</strong> numerous marine andbrackish-water species that spawn far<strong>the</strong>r <strong>of</strong>fshore(Darnes and Moore 1975; 1'1 1978b). Larval recruitmentgenerally peaks during late spring and earlysummerwhen salinity is reduced over relatively largearc,t" <strong>of</strong> <strong>the</strong> estuary. <strong>An</strong>o<strong>the</strong>r important contributingfactor to <strong>the</strong> nursery value <strong>of</strong> tidal streams and riversis <strong>the</strong> abund,mt detrital food source brought in duringlaic spring when freshwater run<strong>of</strong>f peaks.(\ Estuarine bay community. 'This communityconsists <strong>of</strong> <strong>the</strong> open estuarine waters (e.g., lower<strong>Tampa</strong> <strong>Bay</strong>, proper). The major environmentaldifference between <strong>the</strong> bay habitat


'~''''·


From <strong>the</strong>se records, a total <strong>of</strong> 94 species---27 amphibian,,>,including 8 salamanders and 19 frogs; and67 reptiles, including <strong>the</strong> alligator. 18 turtles. 1amphisbaenid, 17 lizards and 31 snakes-may beexpected to be found within <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> watershed.This diverse and complex assemblage <strong>of</strong> speciescomprise over 60% <strong>of</strong> <strong>the</strong> total herpet<strong>of</strong>aunarecorded for <strong>the</strong> State. The estimated distribution ,mdrelative abundance <strong>of</strong>each species by habitat, accordingto Layne et al. (1977), are shown for terrestrialreptiles in Appendix Table A-14. for wetl used as food (Auffenberg 1978).The gopher frog uses <strong>the</strong> tortoise burrows, so it also isa common inhabitant (Fogarty 1978). The short-tailedsnake. ano<strong>the</strong>r burrower, appears to be more commonin <strong>the</strong> yellow sands <strong>of</strong> longleaf pine habitat than <strong>the</strong>sand pine habitat (Campbell 1978). A speciesendemic to Rorida. this snake is thought to have anextremely narrow habitat tolerance, but little is known<strong>of</strong> its life history and ecology (Woolfenden 1983).O<strong>the</strong>r Florida endemics <strong>of</strong>this habitat are <strong>the</strong> Floridascrub lizard, blue-tailed mole skink. and sand skink.Aquatic habitats support many species, including<strong>the</strong> majority <strong>of</strong> turtles, snakes. and frogs listed inAppendix Tables A-14 through A-l7. It is here thatamphibians approach reptiles in species richness.Chara


<strong>Tampa</strong> <strong>Bay</strong> <strong>Ecological</strong> <strong>Characterization</strong>80..,...---------------------------,o AmphibiansII Reptiles----------------------------------Figure 123. Relative abundance <strong>of</strong>amphibian ,md reptile species in various habitat categories within<strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> watershed.requirement~, as for many amphibians and reptiles,may vary sea..'IDnaUy in response to behavioral anddevelopmental adaptations to perfonn reproductiveand <strong>the</strong>nnoregulatory functions. Forexample, amphibians,in general, require aquatic habitats toreproduce. Terrestrial species exemplified by toads(Bufo, Gastrophryne) and arboreal species <strong>of</strong> Hylatend to be dependent on <strong>the</strong> rains <strong>of</strong>late spring andsummer for reproduction and use <strong>the</strong> more ephemeralponds where predation and competition pressuresmay be lower (McDiarmid and Godly 1974).Riparian and semiaquatic frogs (e.g., Acris and Ranaspp.)<strong>of</strong>tcn use more pennanentwaters and tend tohave prolonged breeding and/or developmentalperiods.236As for o<strong>the</strong>r faunal and floral groups, <strong>the</strong> geologicalhistory <strong>of</strong> central Florida and <strong>the</strong> geographicalposition <strong>of</strong><strong>the</strong> peninsula in relation to <strong>the</strong> main contincntallandmass <strong>of</strong> North America affects <strong>the</strong> rate <strong>of</strong>invasion and <strong>the</strong> distribution <strong>of</strong> <strong>the</strong> herpet<strong>of</strong>auna.General discussions <strong>of</strong> geographical origins andaffinities <strong>of</strong> <strong>the</strong> Florida herpet<strong>of</strong>auna are included inCarr (1940), Neill (1954), Goin (1958), and Telford(1965). The majority <strong>of</strong><strong>the</strong> species have invaded <strong>the</strong>peninsula from <strong>the</strong> sou<strong>the</strong>astern Atlantic CoastalPlain. Not all <strong>of</strong> <strong>the</strong>se species that occur throughmuch <strong>of</strong>Florida have diverged morphologically frompopulations elsewhere. Examples <strong>of</strong> such species in<strong>the</strong> study area are <strong>the</strong> spadefoot toad, stinkpot turtle,six-lined racerunner lizard, sou<strong>the</strong>astern five-lined


skink, eastern hognose snake, and coachwhip snake.Boyles (1966) concludes that <strong>the</strong>se species have beenpresent on <strong>the</strong> GulfCoastal Plain and in Florida withoutprolonged geographic isolation.Many o<strong>the</strong>r species have invaded Florida from <strong>the</strong>west along <strong>the</strong> GulfCoastal Plain (Neill 1957). Theirclosest relationships are with species or larger taxonomicgroups now found in <strong>the</strong> southwestern UnitedStates, Mexico, and Central America. Examples <strong>of</strong>this group in <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> area include <strong>the</strong> groundskink, pine woods snake, eastern indigo snake, pinesnake, coral snake, and eastern diamondback rattlesnake.Still o<strong>the</strong>rspecies that have been recorded from <strong>the</strong>area are forms whose ranges extend throughout tropicalregions <strong>of</strong> <strong>the</strong> Western Hemisphere. Theseinclude <strong>the</strong> American crocodile, Atlantic green turtle,Atlantic loggerhead, Atlantic ridley, and Atlanticlea<strong>the</strong>rback.Of<strong>the</strong> seven exotics in <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> watershed,<strong>the</strong> greenhouse frog, Cuban treefrog, and <strong>the</strong> brownanole have West Indian affinities. These three speciesare fairly widely distributed in Florida and inhabitnatural as well as human-modified habitats.Duellman and Schwartz (1958) speculate that <strong>the</strong>invasion <strong>of</strong>natural habitats by <strong>the</strong>se species indicatesei<strong>the</strong>rthat<strong>the</strong>y have been present in Florida for longerthan o<strong>the</strong>rintroduced species orare more adaptable to<strong>the</strong> environmental conditions present. Neill (1957)suggest,> that <strong>the</strong>ir success may simply reflect <strong>the</strong>presence <strong>of</strong>near-tropical habitats that are unoccupiedby amppibians and reptiles <strong>of</strong> temperate stocks. Of<strong>the</strong> o<strong>the</strong>rexotic species, <strong>the</strong> giant toad may have beenintroduced from almost anywhere in <strong>the</strong> Caribbean orGulf <strong>of</strong> Mexico, while <strong>the</strong> gecko and <strong>the</strong> Mediterraneangecko are found in tropical regions around <strong>the</strong>world. The Texas homed lizard is native to <strong>the</strong> southwesternUnited States.All <strong>of</strong> <strong>the</strong> endemic Florida herpet<strong>of</strong>auna, with <strong>the</strong>exception <strong>of</strong> <strong>the</strong> rim rock crowned snake, occur inparts or all <strong>of</strong> <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> watershed. Theseendemic species are <strong>the</strong> Florida red-bellied turtle,Florida scrub lizard, sand skink, worm lizard, shorttailedsnake, and crowned snake. Two o<strong>the</strong>r species,<strong>the</strong> striped mud turtle and <strong>the</strong> striped swamp snake,6. Fauna237once endemic, are currently extending <strong>the</strong>ir rangesnorthward into sou<strong>the</strong>rn Georgia (Layne et al. 1977).O<strong>the</strong>r species that, although not endemic, underwentmuch <strong>of</strong> <strong>the</strong>ir evolution in <strong>the</strong> Florida peninsulabefore invading parts <strong>of</strong><strong>the</strong> sou<strong>the</strong>astern GulfCoastalPlain include <strong>the</strong> dwarf siren, pig frog, gophertortoise, Florida s<strong>of</strong>tshell turtle, mole skink, islandglass lizard, and black swamp snake.As <strong>the</strong> land in central Florida was periodicallyisolated during past fluctuations in sea level, <strong>the</strong> trueFlorida endemics and <strong>the</strong> "semi-endemics" thatmoved northward during a drop in sea level couldhave been isolated and differentiated from <strong>the</strong>irparental stocks, or <strong>the</strong>y may represent relict populations<strong>of</strong> species that were once widespread but nowextinct elsewhere. It is significant that most <strong>of</strong> <strong>the</strong>sespecies are burrowers in sand or mud, and that all <strong>of</strong><strong>the</strong> true endemics except <strong>the</strong> Florida red-bellied turtleare characteristic <strong>of</strong> sandhill and sand pine scrubhabitats.Populations <strong>of</strong> some species that invaded <strong>the</strong>Florida peninsula in earlier geologic times havedifferentiated to form new races, presumably as aresult <strong>of</strong> adaptation to subtropical environments, andprobably more importantly, isolation from parentstocks (Neill 1957). Species with peninsular subspeciesinclude <strong>the</strong> newt, snapping turtle, mud turtle,cooter, scarlet snake, king snake, mole skink, bandedwat,er snake, black swamp snake, rat snake,kingsnake, and crowned snake. These different races<strong>of</strong>ten possess subtle differences in habitat requirements.Of special significance is <strong>the</strong> fact that on <strong>the</strong>Lake Wales Ridge, part <strong>of</strong> which lies in Polk County,three reptiles have differentiated populations: <strong>the</strong>worm lizard, blue-tailed mole skink, and <strong>the</strong> peninsulacrowned snake.Florida has an unusually large marine and brackishwater herpet<strong>of</strong>auna. Reasons for this include its longcoast line and numerous islands; low, flat topography,which accounts for subtle stream gradients that mightallow inland species to gradually adapt to brackishwater conditions; repeated inundations during itshistory, forcing some species into saltwater habitUsand favoring <strong>the</strong> sUIVival <strong>of</strong> those that could adapt;oligohaline waters formed as a result <strong>of</strong> <strong>the</strong> gradual


solution <strong>of</strong> salt deposiL~ left in interglacial periods,which may serve a" wnes <strong>of</strong> evolutionary adaptiveexchan.ge between freshwater and saltwater (Odum1953); and <strong>the</strong> gcner&1 diversity <strong>of</strong> saltwater habitatsalong <strong>the</strong> coa"t, Funhennore. <strong>the</strong> rich and variednature <strong>of</strong><strong>the</strong> resident herpct<strong>of</strong>auna increases <strong>the</strong> like·Uh\xx! that some native species will adapt to saltwaterhabitats (Neill 1958).According to Layne et at (1977). almost one-third<strong>of</strong> <strong>the</strong> amphibil:ms and reptiles in <strong>the</strong> study area aR~known to occur in saline habitats (Appendix TabiesA-IS and A-I This list indudcK't 2 frogs, <strong>the</strong> Ameri·can ldligator, 11 turtles (inclUding 4 sea turtles and <strong>the</strong>btult" c()aon seritbnnes) as well a'i members <strong>of</strong><strong>the</strong> oniers Gallifonncs(turkey. bobwhite), Columbif()mleS (pigeons anddoves), Cuculiformcs (cuckoos and anis), Caprimulgilbrmes(nighthawk and chuck-wills-widow),Apodifonnes (swifts and hummingbirds), andPkifbmlcs (woodpeckers).The arlx)re.al avifauna <strong>of</strong><strong>the</strong> Tarnpa <strong>Bay</strong> watershed(Appendix Tables A-IS through :\-20) is cSlimated ;:uapproximately 165 species. 'ntis consists <strong>of</strong>a core.atxmt 47 yearcr\)UfKl tt1>1dt~nts as wen ali three o<strong>the</strong>r(I) <strong>the</strong> eXclusiVely winter residents,<strong>the</strong> exclusively summer resident';,


6. FaunaTable 42. Amphibians and rl?ptiles (~fbiological sigfl!ficancc.AmphibiansLesser siren (Siren intermedia)Dwarf siren (Pseudobranchus striatus)Sou<strong>the</strong>rn dusky salamander(Desmognathus auriculatus)Slimy salamander (Plethodon glutinosus)Dwarf salamander (Eurycea quadridigitata)Eastern spadefoot toad(Scaphiopus holbrook,)Giant toad (Buto marinus)Cuban treefrog (Osteopilus septentrionatis)BUllfrog (Rana catesbeiana)Pig frog (Rana grylio)Green frog (Rana clamitans)Florida gopher frog (Rana capito)ReptilesAmerican alligator (Alligator mississippiensis)Sported turtle (Clemmys guttata)Box turtle (Terrapene carolina)Diamondback terrapin (Malac!emys terrapin)Suwannee cooter (Chrysemys floridana)Gopher tortoise (Gopherus polyphemus)Atlantic green turtle (Chelonia mydas mydas)Atlantic loggerhead (Caretta caretta caretta)Kemp's ridley (Lepidochelys kempi,)Atlantic lea<strong>the</strong>rback(Dermochelys coriacea coriacea)Florida s<strong>of</strong>tshell turtle (Trionyx terox)Green anoia (<strong>An</strong>olis carolinensis)Eastern fence lizard (Sceloporus undulatus)Florida scrub lizard (Sceloporus wood,)Broad-headed skink (Eumeces laticeps)Mole skink (Eumeces egregius)Blue-tailed mole skink(Eumeces egregius lividus)Sand skink (Neoseps reynolds,)Worm lizard (Rhineura flor/dana)Banded water snake (Nerodia tasciata tasciata)Striped crayfish snake (Regina alieni)Black swamp snake (Seminatr/x pygaea)Florida red·bellied snake(Storeria occipitomaculata obscura)Sou<strong>the</strong>rn hognose snake (Heterodon simus)Pine Woods snake (Rhadinaea flavilata)Eastern indigo snake(Drymarchon corais coupen)Short-tailed snake (Stilosoma extenuatum)Florida crowned snake (Tantilla relicta)Pigmy rattlesnake (Sistrurus miliarius) _Reason for status asAt sou<strong>the</strong>rn limit <strong>of</strong> its rangeTaxonomic uncertainty; wetland dependenceNarrow habitat requirements; at sou<strong>the</strong>rn limit <strong>of</strong> rangeNarrow habitat requirements; at sou<strong>the</strong>rn limit <strong>of</strong> rangeAt sou<strong>the</strong>rn limit <strong>of</strong> rangeNarrow habitat preference when not breedingPotentially negative effect on native faunaPotentially negative effect on native faunaAt sou<strong>the</strong>rn limit <strong>of</strong> rangeCommercially valuableAt or beyond sou<strong>the</strong>rn limit <strong>of</strong> known rangeListed by FCREPA as threatenedListed by FCREPA as threatenedListed by FCREPA as rare; at sou<strong>the</strong>rn range limitIntergradational populations taxonomically significantMangrove quality indicator speciesListed by FCREPA as threatenedListed by FCREPA as threatenedListed by FCREPA as endangeredListed by FCREPA as threatenedListed by FCREPA as endangeredListed by FCREPA as endangeredCommercially valuable; biological interest re: breathingphysiologyPresence <strong>of</strong> morphologically different populationsAt sou<strong>the</strong>rn range limitListed by FCREPA as rare; narrow habitat requirementAt sou<strong>the</strong>rn range limitListed by FCREPA as threatened; <strong>of</strong> evolutionary interestListed by FCREPA as threatened; <strong>of</strong> evolutionary interestListed by FCREPA as threatened; narrow habitat requirementsEndemic genus at sou<strong>the</strong>rn range limitWetland-quality indicator species; sensitiveWetland dependent, eats crayfish extensivelySou<strong>the</strong>rn and nor<strong>the</strong>m races intergradeAt extreme sou<strong>the</strong>rn limit <strong>of</strong> rangeAt sou<strong>the</strong>rn limit <strong>of</strong> rangeAt sou<strong>the</strong>rn range limit; habitat specificityListed by FCREPA as threatenedListed by FCREPA as endangered; endemiomonotypicgenusAt sou<strong>the</strong>rn range limit; two races present, habitat specificWet prairie indicator species239


with 9 species; and (3) <strong>the</strong> migrating ortransient birdswith 50 species. Robertson and Kushlan (1974) notethat approximately 60% <strong>of</strong> <strong>the</strong> total south Roridaavifauna is migratory.<strong>An</strong> additional 20 to 30 species <strong>of</strong>arboreal birds notlisted in Appendix Table A-16 are reported, butconsidered accidental in <strong>the</strong> study area. These includethose escapees (Le., exotic parrot


6. faunadiversity and bird density increase significantly. TheSouth Florida Research Center (1980) lists 44 species<strong>of</strong>winter-only residents.With regard to habitat use by both resident andmigratory species, <strong>the</strong> most commonly used communitiesappear to be pinelands and cypress or mixedswamp forests. This is probably a function <strong>of</strong> foodsupply (primarily insects and seeds) and structuraldiversity.In a quantitative study on bird communities in <strong>the</strong>watershed, Hirth and Marion (1979) record 49arboreal species from a flatwoods area north <strong>of</strong> <strong>the</strong>Manatee River. Vegetation was a mixture <strong>of</strong> slashpine, saw palmetto, and grassland, dotted with occasionalliveoak hammocks along small streams.Of<strong>the</strong> 49 species, 32 were permanent residents, 13were winter-only residents and 4 were summer-onlyresidents. Consistent with <strong>the</strong> above general trends,<strong>the</strong> total number <strong>of</strong> species was high in <strong>the</strong> fall andwinter and low in spring and summer.Trophically speaking, granivores dominatedduring <strong>the</strong> summer while insectivores dominated in<strong>the</strong> winter. Compared to granivores and insectivores,relatively few omnivores and carnivores wereobserved. Table 43 presents a list <strong>of</strong> species byseason and <strong>the</strong>ir trophic categories.The most important ground-feeding insectivoreduring all seasons was <strong>the</strong> eastern meadowlark.Canopy-feeding insectivores (e.g., pine and palmwarblers) were abundant in <strong>the</strong> winter. During <strong>the</strong>Table 43. Species andfeeding strategies <strong>of</strong>forest birds usingflatwoods in <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> area (adaptedfromHirth andMarion 1979)Species and feeding strategies SeasonS Species and feeding strategies SeasonSInsectivores (cont.)OmnivoresCommon grackle (Quiscafus quiscufa)Boat-tailed grackle (Q. major')Blue jay (Cyanocitta cristata)Nor<strong>the</strong>rn mockingbird (Mimus p<strong>of</strong>yglottos)American robin (Turdus migratorius)Brown-headed cowbird (Molothrus atei)InsectivoresEastern meadowlark (Stumella magna)Red-bellied woodpecker (Melanerpes carolinus)Common yellowthroat (Geothlypis trichas)Eastern bluebird (Sialia sialis)Carolina wren.(Thryothorus iudovicianus)Loggerhead shrike (Lanius iudovicianus)ppppWWPPPPPPPPPPWa P = Permanent Resident; W = Winter Resident; S =Summer Resident241


summer, woodpeckers and brown-headed nuthatchesbecame <strong>the</strong> second most abundant insectivores. Most<strong>of</strong><strong>the</strong> granivores were ground feeders (Le., bobwhite,dove) owing to <strong>the</strong> extent <strong>of</strong> grassland habitat.Cardinals and towhees were common in <strong>the</strong> brushierhabitats. Two birds, <strong>the</strong> rufous-sided towhee and <strong>the</strong>white-eyed vireo, are particularly abundant inscrubby flatwoods.6.5.2 Wading Birds<strong>Tampa</strong> <strong>Bay</strong> <strong>Ecological</strong> <strong>Characterization</strong>A total <strong>of</strong> 19 species <strong>of</strong> wading birds, mostlyherons (order Ciconiiformes) and some cranes and<strong>the</strong>ir allies (order Gruiformes), from this group arefound in <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> watershed (Appendix TableA-21). Like <strong>the</strong> arboreal avifauna, <strong>the</strong> interiorwetland-dependent avifauna is considered to have alow number <strong>of</strong>species. From <strong>the</strong> interior wetlands <strong>of</strong>nearby Cuba, 26 species are reported, as compared to19 species from south Horida. The explanation forthis phenomenon is similar to that for arboreal avifaunalimpoverishment. The long-term sea-level fluctuations<strong>of</strong> <strong>the</strong> Pleistocene have created, in <strong>the</strong> southHorida peninsula, an unreliable freshwater wetlandhabitat that has been both periodically submerged andconsiderably drier than at present. In contrast,saltwater and brackish wetlands have been muchmore constant. It is not surprising. <strong>the</strong>refore. thatRobertson and Kushlan (1974) speculate that this areais probably best exploited by mobile populations <strong>of</strong>wading birds. most <strong>of</strong> which arc also, and perhapsprimarily, estuarine. Consistent with this view is <strong>the</strong>fact that <strong>the</strong> coastal nnd estuarine avifauna is essentiaUyidentical to <strong>the</strong> coa


6. faunaTable 44. Number <strong>of</strong>wading birdnests by county in <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> watershedfrom 1976to 1978(adaptedfromNesbittetal.1982).County._-------Common name Pasco Pinellas Sarasota Manatee Hillsborough TotalCattle egret 450 1,237 35 3,200 12,300 17,222White ibis 17 1,250 9,230 10,497Wood stork 150 150Great egret 586 100 700 184 1,570Snowy egret + 100 200 502 802Great blue heron 79 29 88 47 243Little blue heron 25 100 349 474Tricolored heron + + 50 400 450Glossy ibis + 300 300Green heron 7 7Black-crownednight heron 400 400Yellow-crownednight heron 314 315Roseate spoonbill 15 15+ = present but uncounted.producing large populations <strong>of</strong> small fish and crayfish.In general, <strong>the</strong> biggest threats to this linkagebetween fish and birds are <strong>the</strong> mining <strong>of</strong>wetlands forphosphate rock, <strong>the</strong> draining <strong>of</strong> wetlands for agriculturaldevelopment, and suburban development in andaround wetlands. On <strong>the</strong> positive side, however, <strong>of</strong>20nesting sites identified in Polk County, 6 were locatedin reclaimed phosphate mines and 6 were located inwater impoundments. Only eight were located innatural habitats. This reflects a combination <strong>of</strong>forcesand responses by wading bird populations to adapt tochanging or altered situations. In order to survive inthis changing environment, wading-bird species mustpossess <strong>the</strong> flexibility to exploit <strong>the</strong>se new habitats.Although <strong>the</strong> relative species abundance and compositionmay be affected, it is encouraging that wadingbirds show sustained usage <strong>of</strong>mining sites reclaimedas wetlands (Nesbitt et al. 1982). Sites reclaimed todeep lakes or pastures do not exhibit <strong>the</strong> same degree<strong>of</strong>wildlife value.Far<strong>the</strong>rdownstream, in estuarine waters, Schreiberand Schreiber (1978) note a similar trend in <strong>the</strong> use <strong>of</strong>dredged-spoil islands by nesting waders. On older,243"mature" islands with trees and shrubs, <strong>the</strong> canopylayer may be heavily used by great blue herons, greategrets, and woodstorks. The subcanopy layeris moreattractive to green herons, little blue herons, tricoloredherons, reddish egrets, black- and yellow-crownednight herons, white ibis, glossy ibis, and roseatespoonbills. All <strong>of</strong><strong>the</strong>se species need to be left undisturbedduring <strong>the</strong>ir breeding seasons and many needshallow areas for feeding. Many spoil islands arelacking in one or both <strong>of</strong><strong>the</strong>se characteristics.65.3 Floating and Diving Water BirdsA list <strong>of</strong>46 floating and diving water birds that usehabitats <strong>of</strong> <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> watershed appears inAppendix Table A-22 (I11978c). Members <strong>of</strong> thisguild come from five taxonomic orders: <strong>the</strong> pelicansand <strong>the</strong>ir allies (Pelecanifonnes), <strong>the</strong> waterfowl(<strong>An</strong>serifonnes), <strong>the</strong> gallinules and coot (Gruiformes),<strong>the</strong> loons (Gaviifonnes), and <strong>the</strong> grebes (podicipedifonnes).The pelicans are represented by two species, <strong>the</strong>brown (?elecanus occidentalis) and <strong>the</strong> white (P. erythrorhynchos).Aside from <strong>the</strong> obvious morphologic


<strong>Tampa</strong> <strong>Bay</strong> <strong>Ecological</strong> <strong>Characterization</strong>differences between <strong>the</strong> two, <strong>the</strong> brown and white whistling duck, which feeds nocturnally on bothdiffer in <strong>the</strong>irmethods <strong>of</strong>feeding. The brown pelican aquatic and terrestrial vegetation. Like surfacedivesfrom a height <strong>of</strong> about 10 meters for small fish feeding ducks, <strong>the</strong>y tip and feed from <strong>the</strong> surface.in estuarine and nearshore waters. <strong>An</strong> accomplished <strong>Bay</strong> ducks (subfamily Aythyinae) include <strong>the</strong>glider, this bird is frequently seen skimming along scaup, redhead, ring necked duck, and bufflehead.only a few centimeters above <strong>the</strong> surface <strong>of</strong><strong>the</strong> water. These ducks seem to preferprotected coa


6. FaunaThe cranes and <strong>the</strong>ir allies (order Gruiformes) arerepresented by three <strong>of</strong> <strong>the</strong> most abundant floatingand diving water birds <strong>of</strong> <strong>the</strong> florida gulf coast, <strong>the</strong>common gallinule, <strong>the</strong> purple gallinule, and <strong>the</strong>American coot. These birds, which are permanentresidents, exhibit characteristics somewhat intermediatebetween wading birds and floating birds. It is notuncommon to see gallinules and coots feeding along<strong>the</strong> edges <strong>of</strong> shallow waters, sometimes wading,sometimes floating. Their diet consists <strong>of</strong> a mixture<strong>of</strong> aquatic insects, benthic infauna, and vegetation.As it is with <strong>the</strong> omnivorous ducks, Hydrilla proves tobe a very significant food source for <strong>the</strong> coot(Montalbano et al. 1979). The common and purplegallinules tend to be found in freshwaters only during<strong>the</strong> nesting season, moving to brackish waters during<strong>the</strong> winter months.<strong>An</strong>o<strong>the</strong>r resident floating and diving water bird is<strong>the</strong> pied-billed grebe (family Podicipediformes). Thepied-billed grebe is a small bird that prefers shallowfreshwaters and rarely moves into brackish areas. Itsdiet consists <strong>of</strong> about half fish and crayfish and <strong>the</strong>o<strong>the</strong>r half insects (Sprunt 1954). <strong>An</strong> accomplishedswimmer and ra<strong>the</strong>r JXX>r flyer, it frequently escapesdanger overhead by diving. The grebe nests frommid-April to September. Increased numbers <strong>of</strong> birdsin <strong>the</strong> winter indicates that <strong>the</strong>re is some migration <strong>of</strong><strong>the</strong> population.The last group <strong>of</strong> floating and diving birds is <strong>the</strong>family Gaviidae (loons), <strong>of</strong> which only one species,<strong>the</strong> common loon, occurs with any seasonal regularity.Arriving in late October or early November anddeparting by April or May, <strong>the</strong> common loon spendsmost <strong>of</strong> its time in coastal bays. <strong>An</strong> exceptionalswimmer, <strong>the</strong> loon spends nearly all its time in <strong>the</strong>water, where it feeds exclusively on fish. The looncharacteristically swims very low to <strong>the</strong> water givingits head and neck a roughly S-shaped pr<strong>of</strong>ile. Justbefore diving <strong>the</strong> loon hops upward to gain momentumas it lunges under <strong>the</strong> surface.6.5.4 Birds <strong>of</strong>PreyA total <strong>of</strong> 27 .species <strong>of</strong> birds from three orderscomprise <strong>the</strong> members <strong>of</strong> this guild within <strong>the</strong> studyarea (Appendix Tables A-23 through A-25). Twentyspecies <strong>of</strong> <strong>the</strong> order Falconiformes (hawks, eagles,and vultures) are included in this group, along with sixspecies <strong>of</strong>owls (order Strigiformes), and <strong>the</strong> magnificentfrigatebird (order Pelecaniformes).The vultures (family Cathartidae) are representedby two species, <strong>the</strong> turkey vulture and <strong>the</strong> blackvulture. Theirseemingly effortless gliding takes <strong>the</strong>movervirtually all habitats in search<strong>of</strong>carrion. Despite<strong>the</strong> fact that <strong>the</strong>y spend much<strong>of</strong><strong>the</strong>ir time cleaning uproad kills, <strong>the</strong>y are seldom <strong>the</strong> victim <strong>of</strong> such accidents.The turkey vulture is more abundant than <strong>the</strong>black vulture.<strong>An</strong>o<strong>the</strong>r species that frequently associates withvultures in south florida is <strong>the</strong> crested caracara(Polyborus planeus). This bird, a member <strong>of</strong> <strong>the</strong>Falconidae family, is a subtropical species having <strong>the</strong>greater part <strong>of</strong> its range far<strong>the</strong>r west in Mexico andCentral America. Like <strong>the</strong> vultures, it feeds oncarrion, though it flies much less and tends to restrictitself to open prairies, agricultural lands, and scrubhabitat~.<strong>An</strong>o<strong>the</strong>r group <strong>of</strong>predatory birds that uses a broadrange <strong>of</strong>habitats are <strong>the</strong> members <strong>of</strong><strong>the</strong> Accipitridaefamily (hawks and eagles). The swallow-tailed kite,<strong>the</strong> red-tailed hawk, <strong>the</strong> red-shouldered hawk, and <strong>the</strong>short-tailed hawk are primarily forest dwellers,preferring to nest in cypress, pine, or oak trees. Thelargest <strong>of</strong> <strong>the</strong> four, <strong>the</strong> red-tailed hawk, feedspredominantly upon small mammals (meadowmice),reptiles, insects, and crawfish. Small birds make upano<strong>the</strong>r 10% <strong>of</strong>its diet. As its prey suggests, this birdis a frequent visitor to upland prairies and marshes aswell as forests. The swallow-tailed kite prefers acombination <strong>of</strong> prairies, open pine glades, andcypress. Its food, primarily snakes, lizards, dragonflies,and grasshoppers, is taken on <strong>the</strong> wing. Therelatively small red-shouldered hawk is <strong>the</strong> mostabundant and widely distributed <strong>of</strong> <strong>the</strong> four. Its dietconsists <strong>of</strong>small mammals, snakes, lizards, frogs, andinsects. The short-tailed hawk, although a residentand breeder in Florida, is relatively uncommon. Thegreaterpart <strong>of</strong>its range is located in Central and SouthAmerica.Among predatory birds that restrict <strong>the</strong>mselves to anarrower range <strong>of</strong> upland habitats are <strong>the</strong> Cooper's245


hawk and <strong>the</strong> broad-winged hawk, which appear toprefer upland forests; <strong>the</strong> kestrel, which appears toprefer open uplands; and <strong>the</strong> Everglades kite, whichexclusively uses wet prairies and sawgra


plovers, turnstones, and surf-birds (familyCharadriidae); <strong>the</strong> sandpipers (family Scolopacidae);and <strong>the</strong> avocet'; (family Recurvirostridae).It has been suggested (Recher 1966; Green 1968)that among <strong>the</strong> probing shore birds, morphologicaldifferences in bill length and structure are an importantresource-partitioning factor. Such differences arebelieved to reduce competition between species byfunctionally segregating <strong>the</strong> infaunal food resourcesinto fractions for which different bill lengths andstructures are best suited. However, operation <strong>of</strong>thisprincipal for birds feeding in <strong>the</strong> same habitat, wherecompetition should be greatest, has not been demonstrated.In California, wintering shallow-feedingbirds (avocets, western sandpiper, dunlin, anddowitcher) all fed on <strong>the</strong> same things (Quammen1982). Itis unknown if<strong>the</strong> morphological differencesin bills evolved for breeding grounds or winteringareas.O<strong>the</strong>r factors such as feeding behavior, flexibilityin diet, and <strong>the</strong> use <strong>of</strong>o<strong>the</strong>r habitats also contribute tothis partitioning. Peterson and Peterson (1979) distinguishtwo categories <strong>of</strong> probers, <strong>the</strong> shallow-probingand surface-searching shorebirds, and <strong>the</strong> deepprobingshorebirds. This delineation is based onfundamental differences in feeding habits and diets.Shallow probers are generally very opportunisticfeeders, taking whatever prey presents itselfin greatestnumbers. Consequently, <strong>the</strong>ir diets may varywidely depending upon <strong>the</strong>ir location. Experimentsconducted elsewhere along <strong>the</strong> Atlantic coast(Schneider 1978) have shown that shallow proberscan have a very significant effect on <strong>the</strong> compositionand abundance <strong>of</strong> intertidal and beach fauna.Quammen (1982) found changes in intertidal andbeach faunal abundance but not species compositionon <strong>the</strong> Pacific coast. The importance <strong>of</strong> this effect inFlorida is unknown. Since many <strong>of</strong> <strong>the</strong>se birds arewinter-only residents or migratory species, <strong>the</strong>irpredatory effect is likely to be greatest in winter. Thisis <strong>the</strong> time <strong>of</strong> greatest abundance for many infaunalinvertebrate prey, such as polychaetes, amphipods,and bivalve mollusks.In addition to morphological differences, <strong>the</strong>shallow probers also differ among <strong>the</strong>mselves in6. Fauna247feeding strategies. Some, such as <strong>the</strong> plovers andsmaller sandpipers, feed by sight, commonly preyingupon surface fauna in sea wrack orsand. O<strong>the</strong>rs, suchas <strong>the</strong> semipalmated sandpiper and sanderling, feedby truly probing in <strong>the</strong> substrate. Their bills areintricately innervated with sensory nerves that facilitateprey capture. Preferences for prey organismsmay also playa role in resource partitioning by virtue<strong>of</strong> minimizing spatial overlap between species.Certain species, such as <strong>the</strong> ruddy turnstone, tend toprefer hard substrates that support <strong>the</strong>ir favorite prey.O<strong>the</strong>rs, such as <strong>the</strong> clapper rail, stick to <strong>the</strong> higherends <strong>of</strong> salt marshes, only occasionally venturing outonto mudflats at low tide.Two species, <strong>the</strong> longbilled and shortbilleddowitchers, belong somewhere between <strong>the</strong> shallowanddeep-probing categories. Although <strong>the</strong>ir bills arelong, <strong>the</strong>y <strong>of</strong>ten take <strong>the</strong> same food and frequentlyfeed more like <strong>the</strong> shallow probers than <strong>the</strong> deepprobers (Quammen 1982). <strong>An</strong>o<strong>the</strong>r species, <strong>the</strong>American oystercatcher, feeds when possible onoysters and o<strong>the</strong>r large mollusks. For this reason it ishard to place <strong>the</strong> oyster-catcher in ei<strong>the</strong>r category.The deep-probing shorebirds include such speciesas <strong>the</strong> willet, <strong>the</strong> marbled godwit, and <strong>the</strong> long-billedcurlew. Their long bills enable <strong>the</strong>m to reach deeperinto <strong>the</strong> sediment to obtain a different food source.Their generally greater size also allows <strong>the</strong>m to takelarger prey. The most common deep prober in <strong>the</strong>beach environment is clearly <strong>the</strong> willet. Although thisbird does probe for its own food, it more <strong>of</strong>ten exhibitsaggressive behavior toward o<strong>the</strong>r probing shorebirds,<strong>of</strong>ten appropriating <strong>the</strong>ir prey or chasing <strong>the</strong>maway.6.5.6 Aerially Searching BirdsAlthough <strong>the</strong> birds <strong>of</strong> this guild (Appendix TableA-27) are regarded as primarily estuarine, many <strong>of</strong><strong>the</strong>m frequent a variety <strong>of</strong>o<strong>the</strong>r habitaL~ as well. Onespecies, <strong>the</strong> belted kingfisher, prefers <strong>the</strong> freshwaterwetland habitat. The gull most commonly foundinland is <strong>the</strong> ringbilled gull. The herring, laughing,a."1d Bonapa.-rc's gulls tend to r..e strictly coastal andventure only occasionally around inland lakes,agricultural fields, or dump sites. The terns tend to


estrict <strong>the</strong>mselves to coastal habitat.


6. FaunaCommon nameOystercatcherSnowy ploverWi Ison's ploverKilldeer aWilletBlack-necked stilt aLaughing gullGull-billed ternCommon ternRoseate ternLeast ternRoyal ternCaspian ternBlack skimmerMonthJan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dect::::::A4itt>;\i3tl#ili::::i:4~::!:~:!:1:::4l::::::4:~::::::+~:;:::::::


<strong>Tampa</strong> <strong>Bay</strong> <strong>Ecological</strong> <strong>Characterization</strong>Table 45. Bird~ designated as endangered (E), threatened (T), rare (R), or <strong>of</strong>special concern(1978).by KaleCommon NameStatusWood stork (Mycteria americana)EFlorida Everglade kite (Rostrhamus sociabilisplumbeus)EPeregrine falcon (Falco peregrinus)ECuban snowy plover (Charadrius alexandrinustenuirostris)EIvory-billed woodpecker (Campephilus principalis) ERed-cockaded woodpecker (Picoides borealis) EFlorida grasshopper sparrow (Ammodramussavannarum floridanus)ECape Sable seaside sparrow (Ammospizamaritimus mirabilis )EEastern brown pelican (Pelt/canus occidentaliscarolinensis)TMagniHcent frigatebird (Fregata magnificens) TBald eagle (Haliaeetus leucocephalus) TOsprey (Pandion haliaetus)TSou<strong>the</strong>astern American kestrel (Falco sparveriuspaulUS)TCrested caracara (Polyborus planeus)TFlorida sandhill crane (Grus canadensis pratensis) TAmerican oystercatcher (Haematopus pal/iatus) TLeast tern (Sterml antilfarum)TFlorida scrub jay (Aphelocoma coerulescenscoerulescens)TReddish egret (DichromamlSsa rufoscens) RRoseate spoonbill (Aja/a ajaja)RWhite,tailed kite (Elanus leucurus)RCommon NameShort-jailed hawk (Buteo brachyurus)Mangrove cuckoo (Coccyzus minor)Black-whiskered vireo (Vireo altiloquus)Great egret (Casmerodius albus)Little blue heron (Florida caerulea)Snowy egret (Egretta thula)Tricolored heron (Hydranassa tricolor)Black-crowned nighj heron (Nycticoraxnycticorax)Yellow-crowned night heron (Nyctanassaviolaceus)Least bittern (/xobrychus exilis exilis)Glossy ibis (Plegadis falcinel/us)White ibis (Eudocimus albus)Cooper's hawk (Accipiter coopedi)Limpkin (Aramus guarauna)Piping plover (Charadrius melodus)Royal torn (Sterna maxima)Sandwich tern (Sterna sandvicensis)Black skimmer (Rynchops niger)Florida burrowing owl (A<strong>the</strong>ne cuniculariafloridana)Sou<strong>the</strong>rn hairy woodpecker (Picoides villosusauduboni)Marian's marsh wren (Cistothorus palustrismarianae)Florida prairie warbler (Dendroica discolorpaludicola)StatusRRRseseseseSCseseseseseseseseseseseSCseseall <strong>of</strong> <strong>the</strong> native species listed are <strong>of</strong> North AmericaOligin. This essentially unimpaired range extension<strong>of</strong>a temperate fauna into <strong>the</strong> subtTOpics accompanieswhat appears to be an extensive differellliation <strong>of</strong>some species populations into many races. Suchdifferentiation is believed to result from <strong>the</strong> frequentisolation <strong>of</strong> j"JOpulations and subsequent genetic driftduring fluctuating sea levels <strong>of</strong> <strong>the</strong> late Pleistocene(Layne 1974, 1(78), ra<strong>the</strong>r than adaptation resuhingfrom invasion into uncxploited subtropical habitats.According to Layne et al. (1977), <strong>the</strong> mammalhmfauna <strong>of</strong><strong>the</strong> \vatershed is <strong>of</strong> interest in severalrespects. A portion <strong>of</strong> <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> area formspm1 <strong>of</strong><strong>the</strong> Central Florida .Highland biogeographicregion, one <strong>of</strong> seven major biogeographic regions250<strong>of</strong> Florida recogn ized by Neill (1957). This region,which includes <strong>the</strong> ridge section <strong>of</strong> Polk County,is characterized by endemic species restricted to<strong>the</strong> xeric sand pine scrub and sandhill habitats. TheFlorida mouse (Peromyscusfloridanus) is a member<strong>of</strong> this endemic species group.A ra<strong>the</strong>r large number <strong>of</strong>species (20%) reach <strong>the</strong>irsoutbem limits in western peninsular Rorida within<strong>the</strong> study area. ll1cse include <strong>the</strong> sou<strong>the</strong>astem shrew,Rat1nesquc's big-eared bat, big brown bat, sou<strong>the</strong>asternj"JOckct gopher, eastern harvest mouse, Roridamousc·, golden mOllse, and eastern woodrat.Two subspecies, <strong>the</strong> mole (Sealopus aquaticusbassi) and cotton mouse (Peromyscus gossypinus


estrictus), were originally described from <strong>the</strong> <strong>Tampa</strong><strong>Bay</strong> area. The type localities are Englewood andChadwick Beach (Sarasota County), respectively.The 01adwick Beach cotton mouse is known onlyfrom that locality, and its present status is uncertain.Part <strong>of</strong><strong>the</strong> range <strong>of</strong>ano<strong>the</strong>r coastal subspecies with agreatly restricted distribution, <strong>the</strong> insular cotton rat(Sigmodon hispidus insulieola), also extends into <strong>the</strong><strong>Tampa</strong> <strong>Bay</strong> area. The zone <strong>of</strong>intergradation betweenSherman's fox squirrel (Sciurus niger shermani) and<strong>the</strong> mangrove fox squirrel (S. niger avieennia) mayalso lie in <strong>the</strong> study area. Finally, <strong>the</strong> seven-countyregion <strong>of</strong> Layne et al. 's (1977) study area is in <strong>the</strong>transition 7..one between north Florida with relativelymany bat species and south Florida with relativelyfew.Regarding <strong>the</strong> exotic species <strong>of</strong> <strong>the</strong> region, apparently<strong>the</strong> only established population <strong>of</strong> coyotes inFlOlida exists in Polk County, and nutria colonies indairy farm ponds near Brandon, HillsboroughCounty, may represent <strong>the</strong> densest populations <strong>of</strong>thisintroduced species in <strong>the</strong> state.In addition to land mammals, two species <strong>of</strong>aquatic marine mammals are also considered part <strong>of</strong><strong>the</strong> total mammalian fauna. The first <strong>of</strong> <strong>the</strong>se, <strong>the</strong>manatee, frequents both fresh and estuarine waters. <strong>An</strong>umber <strong>of</strong> factors determine whe<strong>the</strong>r a particular siteis suitable for manatee use, induding availability <strong>of</strong>vascular aquatic vegetation for food, proximity tochannels at least 2 m deep, recourse to warm waterduring cold snaps, and a source <strong>of</strong>freshwater.Estimates <strong>of</strong> <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> manatee populationvary from 40 to 55 animals, with <strong>the</strong> highest numbersreported in <strong>the</strong> winter months (Hartman 1974; Patton1980; Irvine et al. 1981). <strong>An</strong> additional 14 to 35manatees may remain outside <strong>the</strong> bay, widely scatteredin <strong>the</strong> surrounding coastal area.Patton (1980) demonstrated that most <strong>of</strong> <strong>the</strong> baypopulation aggregated around artificial warm-waterareas in winter (e.g., power plant <strong>the</strong>rmal dischargesites), with many individuals being found in <strong>the</strong>Alafia, Manatee, and Little Manatee Rivers. Descriptions<strong>of</strong> this winter aggregation have resulted in <strong>the</strong>Alafia River being designated as a sanctuary under<strong>the</strong> Florida Manatee Sanctuary Act <strong>of</strong> 1980.6. Fauna251Reynolds and Patton (1985) recently reviewedmanatee-related research and conservation efforts for<strong>the</strong>se protected animals in <strong>Tampa</strong> <strong>Bay</strong>. Specificprograms and study needs are outlined which, in <strong>the</strong>iropinion, are needed to better understand and manage<strong>the</strong> manatee population in <strong>the</strong> area.The manatee is a strict herbivore with no knownpredators. It appears that cold wea<strong>the</strong>r, shorelinedevelopment, injuries from boat collisions, and possiblypollution are among <strong>the</strong> major factors 1in1iting <strong>the</strong>survival <strong>of</strong>manatees in Florida.The bottle-nosed dolphin is strictly marine andestuarine in its distribution. Its primary source <strong>of</strong>foodis mullet. Offshore <strong>of</strong> <strong>Tampa</strong> <strong>Bay</strong>, Reynolds andPatton (1985) estimate a population <strong>of</strong>78 year-roundresidents with ano<strong>the</strong>r 200 individuals just north andsouth <strong>of</strong> <strong>the</strong> bay area. These animals appear to be inherds <strong>of</strong> two to three animals that are fairly evenlydistributed from nearshore to 24 km <strong>of</strong>fshore. In<strong>Tampa</strong> <strong>Bay</strong>, numbers appear to be lower (around 23),although <strong>the</strong> survey coverage was admittedly inadequate.Irvine et aI. (1981) note that dolphin numbersin and adjacent to <strong>Tampa</strong> <strong>Bay</strong> increase from July toNovember. A localized herd <strong>of</strong>around 102 individualsis reported from Sarasota <strong>Bay</strong> (Wells et al. 1980;Irvine et al. 1982). Reynolds and Patton (1985) notethat <strong>Tampa</strong> <strong>Bay</strong> dolphins commonly harbor a parasitethat rarely appear in dolphins elsewhere in Florida.O<strong>the</strong>rmarine mammals not considered residents <strong>of</strong><strong>the</strong> study area, but occasionally observed alive orfound stranded in <strong>Tampa</strong> <strong>Bay</strong> and nearby waters,include 10 species <strong>of</strong>whales and 8 species <strong>of</strong>dolphins(fable 46). Two <strong>of</strong><strong>the</strong> eighteen species listed (fable47), <strong>the</strong> humpback whale and <strong>the</strong> sperm whale, arecurrently on <strong>the</strong> federal endangered species list.These pelagic animals, more commonly associatedwith deeper oceanic waters adjacent to or beyond <strong>the</strong>Continental Shelf, are generally considered rare in <strong>the</strong>nor<strong>the</strong>astern gulf.Increased interest and research efforts have, however,shown that some species are more common thanpreviously thought. For example, <strong>the</strong> pygmy spermwhale, once considered to be very rare, has beenstranded several times around <strong>Tampa</strong> <strong>Bay</strong>, and is nowconsidered to be <strong>the</strong> second most commonly stranded


<strong>Tampa</strong> <strong>Bay</strong> <strong>Ecological</strong> <strong>Characterization</strong>Table 46. Marine nwmmals sighted or stranded in <strong>Tampa</strong> <strong>Bay</strong> and in Gulf<strong>of</strong>Mexico coastal waters betiveenPasco and Sarasota counties. Nwnbers represent events, not total number <strong>of</strong> animaL,> involved (fromSchmidly 1980, SEAN1980-1982, Reynolds and Patton 1985).aCommon NameBryde's whale (Bafaenoptera edem)Humpback whale b (Megaptera novaeangliae)S~rm whale b (Phy,seter catodon)Pygmy killer whale (Faresa attenuata)False killer whale (Psaudorca crass/dens)Killer whale (Ore/nus orca)Number <strong>of</strong>1o15121oo71oNumber <strong>of</strong>IS50sop In rampus gnseusBridled dolphin (Stenella frontalis) 0 1Atlantic spotted dolphin Wplagiodon) 3 1co1oo o oo111o1cetacean in Florida, after <strong>the</strong> tXHlle-nosed dolphin(Odell et al. 1(81). Additional infornlation on marinemammal strandings and sightings from !lIe <strong>Tampa</strong><strong>Bay</strong> area may be found in Schmidley (l980) and <strong>the</strong>SEAN (Scientific Event Alert Network) reports1975,1982.L.lync (1978) lists nine taxa <strong>of</strong> mammals from <strong>the</strong>study area ,l"l eil11cr endangered, threatened, rare, <strong>of</strong>special concern, Or status undcternlined Crable 47).Notable among <strong>the</strong>se arc four <strong>of</strong> <strong>the</strong> larger mammals,<strong>the</strong> pan<strong>the</strong>r, <strong>the</strong> black bear, and two s~cics <strong>of</strong> wea."'cl(Muslda). Due probably to food requirements andterritorial im~ratives, <strong>the</strong>se four taxa generally l11riveonly where mere is a large amount <strong>of</strong> open spacesupporting a mixturc <strong>of</strong>appropriate habitats. Besides111cse 9, an additional 24 species arc considered <strong>of</strong>commercial value or s~cial biological significance(Neill 1957).252


6. FaunaTable 47. Mammals <strong>of</strong>special concern in <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> watershed (adaptedfromLayne 1978).Common nameVirginia opossumSou<strong>the</strong>astern shrewShort-tailed shrewBig brown batNor<strong>the</strong>rn yellow batRafinesque's big-eared batNine-banded armadilloMarsh rabbitEastern cottontailGray squirrelSherman's fox squirrelSou<strong>the</strong>astern pocket gopherEastern harvest mouseFlorida mouseGolden mouseEastern wood ratRoundtailed muskratNutriaBottle-nosed dolphinCoyoteRed foxGray foxFlorida black bearRaccoonFlorida long-tailed weaselStriped skunkRiver otterFlorida pan<strong>the</strong>rBobcatManateeWild hogWhite-tailed deerReason for status as significantCommercially valuable fur.Rare (FCREPA).Biological indicator <strong>of</strong> forested wetlands.Rare (FCREPA).Indicator <strong>of</strong> open woodlands with mature trees.Rare (FCREPA).Rapidly spreading invader.Game species.Game species.Game species.Threatened (FCREPA).Reaches sou<strong>the</strong>rn range limit.Reaches sou<strong>the</strong>rn range limit.Threatened (FCREPA).Habitat specificity.Reaches sou<strong>the</strong>rn range limit; forested wetlandsindicator species.Species <strong>of</strong> special concern (FCREPA).Rapidly spreading invader.Estuarine quality indicator.New invader with unknown potential.New invader with unknown potential.Sport and commercial fur-bearing species.Threatened (FCREPA).Game species; commercial fur-bearer.Rare (FCREPA).Commercially valuable fur-bearer.Protected fur-bearer.Endangered (FCREPA).Indicator organism.Endangered (FCREPA).Game species.Game species.253


Literature CitedAd


Lake Tarpon fluctuation schedule. Southwest Fla.Water Manage. Dist., Environ. Sect. Tech. Rep. 1977­3. Brooksville. 89 pp.Bartos, L.F., T.F. Rochow, and W.D. Courser. 1978. LakeTarpon fluctuation study 1973-1978. Southwest Fla.Water Manage. Dist., Environ. Sect. Tech. Rep. 1978­6. Brooksville. 131 pp.Bauersfeld, P., RR Kifer, N.W. Durant, and J.E. Sykes.1969. Nutrient content <strong>of</strong> turtle grass (Thalassistestudinum). Proc. Inti. Seaweed Symposium. 6: 637­645.Bcach, M.L., W.M. Wiley, J.M. Van Dyke, and D.M.Riley. 1976. The effect <strong>of</strong> <strong>the</strong> Chinese grass carp(Ctenopharyngodon idella [vaL]) on <strong>the</strong> ecology <strong>of</strong>four Florida lakes, and its use for aquatic weed control.Florida Department <strong>of</strong> Natural Resources, Tallahassee.247pp.Beaman, B. 1973. Plant community structure and vegetationalzones on spoil islands. New College, Sarasota,Florida. 69 pp.Beck, E.C., and W.M. Beck, Jr. 1969. The Chironomidae<strong>of</strong>Florida, VoU!. The nuisance species. Fla. Entomol.52: 1-11.Beck, J.T. 1974. Some aspects <strong>of</strong> <strong>the</strong> life history andecology <strong>of</strong> <strong>the</strong> fresh-water caridean shrimp, Palaemonetespaludosis. M.A. Thesis. University <strong>of</strong> SouthFlorida, <strong>Tampa</strong>. 50 pp.Beck, W.M., Jr. 1965. The streams <strong>of</strong>Florida. Bull. Fla.State Mus. 10(3): 91-126.Bedient, P.B. 1975. Hydrologic land use interactions in aFlorida river basin. Ph.D. Dissertation. University <strong>of</strong>Florida, Gainesville.Berner, L. 1950. The mayflies <strong>of</strong> Florida. Univ. Fla.,BioI. Sci. Ser. 4(4): 1-267.Beyers, C.F. 1930. A contribution to <strong>the</strong> knowledge <strong>of</strong>Florida odonata. Univ. Fla., BioI. Sci. Ser. 1: 1-327.Bird,K.T.,CJ.Dawes,andJ.T.Romeo. 1980. Patterns<strong>of</strong>non-photosyn<strong>the</strong>tic carbon fixation in dark-held respiringthalli <strong>of</strong>Gracilaria verrucosa. Z. Pflanzenphysiol.98: 359-364.Bird, K.T., C.J. Dawes, and J.T. Romeo. 1981. Lightquality effects on carbon metabolism and allocation inGracilaria verrucosa. Mar. BioI. 64: 219-223.Blair, T.A., and RC. Fite. 1965. Wca<strong>the</strong>r elements: a textin elementary meteorology. 5th ed. Prentice Hall Inc.,Englewood Cliffs, N.J.Blaney, RF., and W.D. Criddle. 1962. Determiningconsumptive uses and irrigation water requirement".Agric. Tech. Bull. 1275.References255Bock, J.H. 1966. <strong>An</strong> ecological study <strong>of</strong> Eichhorniacrassipes with special emphasis on its reproductivebiology. Ph.D. Dissertation. University <strong>of</strong> California,Berkeley. 175 pp.Bowman, RD. 1977. Evaluation <strong>of</strong>ambient air monitoringfor total suspended particulates and sulfur dioxidein Hillsborough County, Florida. HillsboroughCounty.Boyle, RH., and K.M. Mechem. 1982. <strong>An</strong>atomy <strong>of</strong> aman-made drought. Sports mus. 56(11): 46-54.Boyles, J.M. 1966. Zoogeography <strong>of</strong> <strong>the</strong> herpet<strong>of</strong>auna <strong>of</strong>central Florida. Ph.D. Thesis. University <strong>of</strong> Alabama,Tuscaloosa. 164 pp.Bradley, J.T. 1972. Climatography <strong>of</strong> <strong>the</strong> United StatesNo. 60-8: climate <strong>of</strong> Florida. U.S. Dep. Comm.,NOAA. 31 pp.Bradley,J.T. 1974. Theclirnate<strong>of</strong>Florida. In Climates<strong>of</strong><strong>the</strong> States, Vol. I: Eastern States (including Puerto Ricoand <strong>the</strong> U.S. Virgin Islands). National Oceanic andAtmospheric Administration, Water Center, Washington,D.C. 480 pp.Brezonik, P.L., C.D. Hendry, Jr., E.S. Edgerton, R.L.Schultze, and TL. Crisman. 1982. Acidity. nutrientsand minerals in atmospheric precipitation over Florida:deposition patterns, mechanisms and ecological effects.Final report to U.S.E.P.A., Project 805560. NationalEnvironmental Research Center, Corvallis, Or.Briggs, J.C. 1958. A list <strong>of</strong>Florida fishes and <strong>the</strong>ir distribution.Bull. Fla. State Mus. 2(8): 223-318.Brook, LM. 1975. Some aspects <strong>of</strong> <strong>the</strong> trophic relationshipsamong <strong>the</strong> higher consumers in a seagrasscommunity (Thalassia testudinum konig) in CardSound, Florida. Ph.D. Dissertation. University <strong>of</strong>Miami. 133 pp.Brooks, H.K. 1968. The Plio-Pleistocene in Florida.Pages 3-42 in RD. Perkins, ed. Late Cenozoic stratigraphy<strong>of</strong> sou<strong>the</strong>rn Florida-a reappraisal. MiamiGeological Society, Miami.Brooks, H.K. 1973. Geological Oceanography. Pages E­1 to 49 in J.I. Jones, RE. Ring, M.O. Rinkel, and R.E.Smith, cds. A summary <strong>of</strong> knowledge <strong>of</strong> <strong>the</strong> EasternGulf <strong>of</strong> Mexico - 1973. State University System Institute<strong>of</strong> Oceanography, St. Petersburg, FL.Brooks, H.K. 19813. Geologic map <strong>of</strong> Florida. University<strong>of</strong>Fla., Institute <strong>of</strong>Food and Agricultural Science,Gainesville.Brooks, H.K. 1982b. Physiographic map <strong>of</strong> Florida.University <strong>of</strong> F1a., Institute <strong>of</strong> Food and AgriculturalScience, Gainesville.


Brown, D.P. 1982a. Effect,> <strong>of</strong>effluent spray irrigation onground wa!Cr at a test site ncar Tarpon Springs, Florida.O.s. Gwl. Surv. Opcn-FileRcp. 81-1197. Tallahassee.Brown, D.P. 1982b. Water resources and dala - networkassessment <strong>of</strong> <strong>the</strong> Manasota basin, Manatee andSarasola countie..


Carter, M.R, LA Burns, T.R Cavinder, K.R. Dugger,D.L. Fore, D.B. Hicks, H.L. Revells, and T.W.Schmidt. 1973. Ecosystems analysis <strong>of</strong> <strong>the</strong> BigCypress Swamp and estuaries. U.S. Environ. Prot.Agency, Fla. Bcol. Study DI-SFEP-74-51. EPA 90419­74-002. 375 pp.Cathcart, J.B., L.V. Blade, D.F. Davidson, and K.B.Ketner. 1953. The geology <strong>of</strong> <strong>the</strong> Florida land-pebblephosphate deposit". Pages 77-91 in C.R Algiers, ed.Nineteenth International Geological Congress, Sec. II,Fasc. II.Causseaux, K.W., and J.D. Fretwell. 1982. Position <strong>of</strong><strong>the</strong>saltwater- freshwater interface in <strong>the</strong> upper part <strong>of</strong> <strong>the</strong>Floridan aquifer, southwest Florida, 1979. U.S. Geo!.Surv., Wat.-Resour. Invest. Open-File Rep. 82-90.Tallahassee.Causseaux, K.W., and J.D. Fretwell. 1983. Chlorideconcentrations in <strong>the</strong> coastal margin <strong>of</strong> <strong>the</strong> Floridanaquifer, southwest Florida. U.S. Geo!. Surv., Wat.­Resour. Invest. Rep. 82-4070. Tallahassee.Chapman, P. 1973. Pollution investigation - Peace Riverand Whidden Creek, Cities Service Company Incident,Dec. 3, 1971. Florida Game and Fresh Water FishCommission, Tallahassee. 51 pp.Chapman, P. 1974. Lake Tarpon fish management area,Pinellas County, review and status report. FloridaGame and Fresh Water Fish Commission, Tallahassee.31 pp.Chapman, P. 1975. Lake Tarpon fish management area,Pinellas County, status report. Florida Game and FreshWater Fish Commission, Tallahassee. 22 pp.Chen, C.S. 1965. The regional lithostratigraphic analysis<strong>of</strong> Paleocene and Eocene rocks <strong>of</strong> Florida. Fla. Dep.Nat. Resour., Geo!. Bull. 45. Tallahassee.Cheney, D.P., and J.P. Dyer. 1974. Deep-water benthicalgae <strong>of</strong> <strong>the</strong> Florida Middle Ground. Mar. BioI. 27:185-190.Cherry, R.N., J.W. Stewart, and J.A. Mann. 1970.General hydrology <strong>of</strong> <strong>the</strong> Middle Gulf Area, Florida.Fla. Dep. Nat. Resour., Bur. Geo!., Rep. Invest. 56. Tallahassee.96 pp.Chew, R.L. 1974. Early life history <strong>of</strong> <strong>the</strong> Florid largemouthbass. Fla. Game Fresh Water Fish Comm. BulL7. 76pp.Christiansen, J.E. 1966. Estimating evaporation andevapotranspiration from climatic data. Utah WaterResearch Laboratory, Logan.References257Clapp, R.B., D. Morgan-Jacobs, and RC. Banks. 1983.Marine birds <strong>of</strong><strong>the</strong> sou<strong>the</strong>astern United States and Gulf<strong>of</strong> Mexico. Part 3: Charadriiformes. U.S. Fish Wildl.Serv., FWS OBS-83/30. 853 pp.Coastal Zone Resources Corporation. 1977. A comprehensivestudy <strong>of</strong> successional patterns <strong>of</strong> plants andanimals at upland disposal areas. Environ. Effects Lab.,U.S. Army Eng. Waterways Exp. Stn., Contract Rep.D-77-2. Vicksburg, Miss. 395 pp.Cohen, A.D., and W. Spackman. 1974. The petrology <strong>of</strong>peats from <strong>the</strong> Everglades and coastal swamps <strong>of</strong>sou<strong>the</strong>rnFlorida. Pages 233-255 in P.J. Gleason, ed.Environments <strong>of</strong> south Florida: present and past. MiamiGeoI. Soc., Mem. 2.Collard, S.B., and CN. D'Asaro. 1973. Benthic invertebrates<strong>of</strong> <strong>the</strong> eastern Gulf <strong>of</strong> Mexico. Pages III G-l toIIIG-27 in J.J. Jones, RE. Ring, M.O. Rinkel, and RE.Smith, eds. A summary <strong>of</strong> knowledge <strong>of</strong> <strong>the</strong> easternGulf <strong>of</strong> Mexico. State University System <strong>of</strong> Florida,Institute <strong>of</strong> Oceanography. St. Petersburg.Colle, DE., J.V. Shireman, and RW. Rottmann. 1978.Food selection by grass carp fingerlings in a vegetatedpond. Trans. Am. Fish Soc. 107(1): 149-152.Collins, ME., and R.E. Caldwell. 1982. Soil taxonomy ­<strong>the</strong> system <strong>of</strong> soil classification. Pages 29-36 in V.W.Carlisle and R.B. Brown, cds. Florida soil identificationhandbook. University <strong>of</strong>Florida, Soil Science Department,Gainesville, and U.S. Department <strong>of</strong>Agriculture,Soil Conservation Service.Comp, G.S. 1985. A survey <strong>of</strong><strong>the</strong> distribution and migration<strong>of</strong> <strong>the</strong> fishes in <strong>Tampa</strong> <strong>Bay</strong>. Pages 393-425 in S.F.Treat, J.L. Simon, RR. Lewis III, and R.L. Whitman,Jr., cds. Proceedings, <strong>Tampa</strong> <strong>Bay</strong> Area Scientific InformationSymposium, May 1982. Burgess PublishingCo., Inc., Minneapolis, MN. Available from <strong>Tampa</strong>BASIS, P.O. Box 290197, <strong>Tampa</strong>, R.. 33687.Conover, C.S., and S.D. Leach. 1975. River basin andhydrologic unit map <strong>of</strong>Florida. Fla. Dep. Nat. Resour.,Bur. Goo!. Map Ser. 72. Tallahassee.Conservation Consultants, Inc. 1975. A survey <strong>of</strong>vegetationand animal life, W.R Grace and Company FourComers Mine, sou<strong>the</strong>astern Hillsborough County andnor<strong>the</strong>astern Manatee County, Florida. WR. Graceand Company, Mulberry, FL.Continental Shelf Associates, Inc. 1983a. <strong>An</strong>notatedbibliography <strong>of</strong> seagrass research conducted in <strong>Tampa</strong><strong>Bay</strong>, Florida. Florida Department <strong>of</strong> EnvironmentalRegulation, Tallahassee.


Continental Shelf A'isociates, Inc. 1983b. Report on <strong>the</strong>21 and 22 June 1983 scagrass bed ground truthingsurvey in <strong>Tampa</strong> <strong>Bay</strong>, Florida. Contract No. SP-91.Florida Department <strong>of</strong> Environmental Regulation,Tallaha'isce. 17 pp.Cooke, C.W. 1939. Scenery <strong>of</strong> Horida interpreted by ageologist. Fla. Dep. Nat Resour., Bur. Geol., Bull. 17.TaHah,a'iscc. 118 pp.Cooke, CW. 1945. Geology <strong>of</strong> Florida. FI.1.. Ceo!. SurY.Bull. 29: 1-339.Copela.nd, C.E. 1973. The prediction <strong>of</strong> storm run<strong>of</strong>fquantity and qml1ity for <strong>the</strong> Tarnpa <strong>Bay</strong> region. M.S.Thesis. University <strong>of</strong> South Florida, <strong>Tampa</strong>.Coordinating Council (m <strong>the</strong> Restoration <strong>of</strong><strong>the</strong> KissimmeeRiver Valley and Taylor Creek-Nubbin Slough Ba'!in.1978. Field trip guide for <strong>the</strong> N~\tional Symposium onw(:tlands, Nov. 10, 1978. Lak(~ Buena Vista, FL.Am(~ric.m Water Resources Association and NationalWetlands T(x~hnical Council, Washington, D.C. 36 pp.Course.r, W.D., P.M. Dooris, and S.A. Putnam. 1974.Progress report - 1973 - moniwring <strong>of</strong> Lake TarponHUCUlUioll scheduk. Southw(~st Fla. Wat(~r Manage.DiSl., Environ. Sect Tech. Rep .. 1975-3. Brooksville.67 pp.COUrl.tmay, W.R., Jr. 1970. Florida's walking call1sh.Ward's Bull. HI: ICowell, B.C., D.O. Bun;;.h, L.N. Brown, ROW. McDiarmid,and G.E. W(x)lfen


Dawes, C.J, K. Bird, M. Durako, R. Goddard, W.H<strong>of</strong>fman, and R. McIntosh. 1979. Chemical fluctuationsdue to seasonal and cropping effects on an algalseagrasscommunity. Aquat. Bot. 6: 79-86.Dawes, C.J., R.E. Moon, and M.A. Davis. 1978. Thephotosyn<strong>the</strong>tic and respiratory rates and tolerances <strong>of</strong>benthic algae from a mangrove and salt marsh estuary:a comparative study. Estaur. Cstl. Mar. Sci. 6: 175­186.Dawson, C.E., Jr. 1953. A survey <strong>of</strong><strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> area.Fla. State Board Conserv. Mar. Lab. Tech. Ser. 8. 39pp.Deuerling,RJ.,Jr.,andP.L.MacGill. 1981. Environmentalgeology series - Tarpon Springs sheet. Ra. Dep.Nat. Resour., Bur. Geol., Map Ser. 99. Tallahassee.Dineen, J.W. 1974. The fishes <strong>of</strong> <strong>the</strong> Everglades. Pages375-385 in P.1. Gleason, ed. Environments <strong>of</strong> southFlorida: present and past. Miami Gool. Soc. Mem. 2.Dinsmore, J.1., and R.W. Schreiber. 1974. Breeding andannual cycle <strong>of</strong> laughing gulls in <strong>Tampa</strong> <strong>Bay</strong>, Rorida.Wilson Bull. 86: 419-427.Donaldson, H.A., andJ.O.R. Johansson. 1977. Plankton.In Vol. 2, Section 4: Post-operational ecologicalmonitoring program. Final Report, <strong>An</strong>clote Unit No.1,Rorida Power Corporation.Dohrenwend, R.E. 1977. Evapotransporation patterns inRorida. Fla. Sci. 40(2): 184-193.Donn, W.L. 1975. Meteorology, 4th ed. McGraw-HillBook Co., New York.Dooris, P.M. 1975. Evaluation <strong>of</strong> <strong>the</strong> chloride status <strong>of</strong>Lake Tarpon, Pinellas County, Rorida. Southwest Ra.Water Manage. Dist., Environ. Sect. Tech. Rep. 1975­2. Brooksville. 21 pp.Dooris, P.M. 1979. Sawgrass Lake: data summary.Southwest Ra. Water Manage. Dist., Brooksville. 56pp.Dooris, P.M., and G.M. Dooris. 1985. Surface flows to<strong>Tampa</strong> <strong>Bay</strong>: quantity and quality aspects. Pages 88­106 in S.P. Treat, J.L. Simon, R.R. Lewis III, and R.L.Whitman, Jr., eds. Proceedings, <strong>Tampa</strong> <strong>Bay</strong> AreaScientific Information Symposium, May 1982. BurgessPublishing Co., Inc., Minneapolis, MN. Availablefrom <strong>Tampa</strong> BASIS, P.O. Box 290197, <strong>Tampa</strong>, FL33687.Dragovich, A., J.H. Finucane, and B.Z. May. 1961.Counts <strong>of</strong>red tide organisms, Gymnodinium breve, andassociated oceanographic data from Rorida west coast,References2591957-59. U.S. Fish Wildl. Servo Spec. Sci. Rep. Fish.369. 175 pp.Dragovich, A., J.H. Finucane, and B.Z. May. 1963.Counts <strong>of</strong>red tide organisms, Gymnodinium breve, andassociated oceanographic data from Florida west coast,1960-61. U.S. Fish Wildt Serv. Spec. Sci. Rep. Fish.455.40pp.Dragovich, A., and J.A. Kelly, Jr. 1964a. Preliminaryobservations on phytoplankton and hydrology in<strong>Tampa</strong> <strong>Bay</strong> and <strong>the</strong> immediate adjacent <strong>of</strong>fshorewaters. Pages 4--22 in A collection <strong>of</strong>data in referenceto red tide outbreaks during 1%3. Rorida Board <strong>of</strong>Conservation. St. Petersburg. (Mimoo).Dragovich, A., and J.A. Kelly, Jr. 1964b. <strong>Ecological</strong>observations <strong>of</strong> macroinvertebrates in <strong>Tampa</strong> <strong>Bay</strong>,Florida, 1%1-1962. Bull. Mar. Sci. Gulf Caribb.14:74-102.Dragovich, A., and J.A. Kelly, Jr. 1966. Distribution andoccurrence <strong>of</strong>Gymnodiniwn breve on <strong>the</strong> westcoast <strong>of</strong>Florida, 1964-65. U.S. Fish Wildl. Servo Spec. Sci.Rep. Fish. 541. 15 pp.Dmgovich, A.,].A. Kelly, Jr., and R.D. Kelly. 1%5. Redwater bloom <strong>of</strong> a din<strong>of</strong>lagellate in Hillsborough <strong>Bay</strong>,Florida. Nature 207(5002): 1209-1210.Drda, M., and M. Knox. 1981. Aquaculture Project 1980­81 <strong>An</strong>nual Report. Florida Game and Fresh WaterFishCommission, Lakeland. 37 pp.DSP. See Florida Division <strong>of</strong>State Planning.Duellman, W.E., and A. Schwartz. 1958. Amphibians andreptiles <strong>of</strong> sou<strong>the</strong>rn Florida Bull. Fla. State Mus. 3(5):181-324.Duerr, A.D., and J.W. Stewart. 1980. Hydrologic data forEureka Springs landfill and adjacent area, north-rentralHillsborough County, Florida, 1969-73. U.S. Geol.Surv. Open-File Rep. 80-70. 83 pp.Duerr, A.D., andJ'w. Stewart. 1981. Hydrogeologic datafor Rocky Creek Landfill and adjacent area, northwestHillsborough County, Florida, 1%9-73. U.S. Geol.Surv. Open-File Rep. 80-1291. 72 pp.Duerr, A.D., and J.T. Trommer. 1981. Estimated wateruse in Southwest Florida Water Management Districtand adjacent areas, 1979. U.S. Gool. Surv. Open-FileRep. 81-56. Tallahassee. 58 pp.Duever, MJ. J.E. Carlson, J.F. Meeder, L.C. Duever, L.R.Gunderson, LA Riopelle, T.R. Alexander,R.F. Myers,and D.P. Spangler. 1979. Resource inventory andanalysis <strong>of</strong> <strong>the</strong> Big Cypress National Preserve. Final


Report to <strong>the</strong> Department <strong>of</strong> <strong>the</strong> Interior, National ParkService. Center for Wetlands, University <strong>of</strong> Florida,Gainesville, and National Audubon Society, Naples,FL.Duever, M.J., J.E. Carlson, and L.A. Riopelle. 1975.Ecosystems analysis at Corkscrew Swamp. Pages 627­725 in H.T. Adam, K.C. Ewel,J.W. Ordway, and M.K.Johnston, eds. Cypress wetlands for water management,recycling, and conservation. Second <strong>An</strong>nualRep., National Science Foundation and RockefellerFoundation Center for Wetlands, University <strong>of</strong>Florida,Gainesville.Duever, M.J., J.E. Carlson, L.A. Riopelle, and L.C.Duever. 1978. Ecosystem analysis at CorkscrewSwamp. Pages 534-570 in H.T. Odum and K.C. Ewel,cds. Cypress wetlands for water management, recycling,and conservation. 4th <strong>An</strong>nual Rep. NationalScience Foundation and <strong>the</strong> Rockerfeller FoundationCenter for Wetlands, University <strong>of</strong>Florida, Gainesville.Duke, R.W., and R.B. Chabreck. 1976. Waterfowl habitatin lake..


eport. Florida Electric Power Coordinating Group,<strong>Tampa</strong>. 39 pp.Environmental Science and Engineering, Inc. 1982b.Florida Acid Deposition Study: Source attributionevaluation: Phase II summary report. Florida ElectricPower Coordinating Group, <strong>Tampa</strong>. 46 pp.Environmental Science and Engineering, Inc. 1984.Florida Acid Deposition Study: Phase III report.Florida Electric Power Coordinating Group, <strong>Tampa</strong>.518 pp.EPA. See U.S. Environmental Protection Agency.ESE. See Environmental Science and Engineering, Inc.Estevez, E.D. 1981. A review <strong>of</strong> scientific information:Charlotte Harbor (Florida) estuarine ecosystemcomplex. Final Rep. Southwest Florida Regional PlanningCouncil, Fort Myers. Mote Mar. Lab. Rev. Ser. 3.1,077 pp.Evans, M., and T. Brungardt. 1978. Shoreline analysis <strong>of</strong>Sarasota County bay systems with regard to revegetationactivities. Pages 193-206 in D.P. Cole, ed. Fmc.5th <strong>An</strong>nual Conferenceon restomtion <strong>of</strong>coastal vegetationin Florida. Environmental Studies Center,Hillsborough Community College, <strong>Tampa</strong>Ewel, J., R. Myers, L. Conde, and B. Sedlik. 1976. Studies<strong>of</strong> vegetation changes in south Florida. ResearchAgreement No. 18-492. University <strong>of</strong> Florida,Gainesville, and U.S. Forest Service.Fable, W.A., Jr., and C.R. Saloman. 1974. The recreationalfishery on three piers near St. Petersburg,Florida during 1971. Mar. Fish. Rev. 36(10): 14-18.FEC. See Florida Board <strong>of</strong>Conservation.FDER. SeeFlorida Department<strong>of</strong>Environmental Regulation.FDNR. See Florida Department <strong>of</strong>Natural Resources.Federal Water Pollution Control Administmtion (FWP­CA). 1%9. Problems and management <strong>of</strong> water qualityin Hillsborough <strong>Bay</strong>, Florida. Federal Water PollutionControl Administmtion. Washington, D.C.Fernandez. M., Jr. 1978. Water quality data from a landfill,Pinellas County, Florida U.S. Goo!. Surv. Open­File Rep. 78-822.Fernandez. M., Jr. 1983. Municipal solid-waste disposaland groundwater quality in a coastal environment:west-central Florida. U.S. Goo!. Surv., Wat.-Resour.Invest. 83-4072, Tallahassee, FL. 29 pp.Fernandez, M.,Jr. andR.R. Hallbourg. 1978. Waterqualitydata for landfills, Hillsborough County, Florida,References261January 1974 - October 1977. U.S. Goo!. Surv. Open­File Rep. 78-820.Fernandez, M., Jr., c.L. Goetz, and J.E. Miller. 1984.Evaluation <strong>of</strong>future base-flow wateT-quality conditionsin <strong>the</strong> Hillsborough River, Florida. U.S. Geol. Surv.,Wat.-Resour. Invest. 83-4182. Tallahassee, FL. 1 pp.Fernandez-Partaga~,J. and C.N.K. Mooers. 1975. A subsynopticstudy <strong>of</strong> winter cold fronts in Florida.Monthly Wea<strong>the</strong>r Rev. 103(8): 742-744.Finucane, J.R. and R.W. Campbell II. 1968. Ecology <strong>of</strong>American oysters in Old<strong>Tampa</strong><strong>Bay</strong>, Florida. Q. J. Fla.Acad. Sci. 31: 37-46.Finucane, J.H. and A. Dmgovich. 1959. Counts <strong>of</strong>red tideorganisms Gymnodinium breve and associated oceanographicdata from Florida west coast, 1954-1957. U.S.Fish Wildt Servo Spec. Rep. 289. 220 pp.Finucane, J.R. and A. Dmgovich. 1966. Hydrographicobservations in <strong>Tampa</strong> <strong>Bay</strong>, Florida, and adjacent Gulf<strong>of</strong> Mexico waters-l%3. U.S. Fish Wildl. Serv., DataRep. 14.Florida Board <strong>of</strong>Conservation (FBe). 1954. Summary <strong>of</strong>observed minfall on Florida to 31 December 1952. Fla.BoardConserv., Div. Water Surv. Res. Pap. 11.Florida Bureau <strong>of</strong>Geology. 1980. Evaluation <strong>of</strong>pre-July1975 disturbed phosphate lands. Florida Department<strong>of</strong>Natural Resources, Tallahassee.Florida Department <strong>of</strong> Environmental Regulation(FDER). 1977. Ambient air quality. FDER, Bureau <strong>of</strong>Air Quality Management, Tallahassee. 116 pp.Florida Department <strong>of</strong> Environmental Regulation(FDER). 1978. Proposed revision to <strong>the</strong> State implementationplan for nonattainment areas. TalIahasee.Florida Department <strong>of</strong> Environmental Regulation(FDER). 1979a. Revision to <strong>the</strong> State implementationplan for nonattainment areas; attachment 4, HillsboroughCounty, transportation control plan. Tallahassee.24pp.Florida Department <strong>of</strong> Environmental Regulation(FDER). 1979b. Revision to <strong>the</strong> State implementationplan for nonattainment areas; attachment 5, PinellasCounty, transportation control plan. Tallahassee. 59pp.Florida Department <strong>of</strong> Environmental Regulation(FDER). 1980. 1980 water quality inventory for <strong>the</strong>State <strong>of</strong> Florida. Bureau <strong>of</strong> Water <strong>An</strong>alysis, Tallahassee.294pp.Florida Department <strong>of</strong> Environmental Regulation(FDER). 1982. 1982 water quality inventory for <strong>the</strong>


State <strong>of</strong> Florida. Bureau <strong>of</strong> Water <strong>An</strong>alysis, Tallahassee.334 pp.Florida Department <strong>of</strong> Environmental Regulation(FDER). 1983. Nonpoint a


Carolina,RPI/R/82rm-15. Florida Department <strong>of</strong>Veteranand Community Affairs, Tallahassee.Gilbert, C.R. 1976. Atlantic sturgeon. Pages 275-281 inInventory <strong>of</strong> rare and endangered biota <strong>of</strong> Florida.Florida Audubon Society and Florida Defenders <strong>of</strong> <strong>the</strong>Environment, University Presses <strong>of</strong> Florida, Gainesville.Gilbert, T. 1977. Florida phosphate mine reclamation andwildlife: an overview, preliminary findings. Jobprogress report mimeo. Florida Game and Fresh WaterFish Commission, Bureau <strong>of</strong> Environmental Protection,Tallahassee. 81 pp.Gilbert, T., T. King, and B. Barnett. 1981. <strong>An</strong> assessment<strong>of</strong> wetland habitat establishment at a central Floridaphosphate mine site. U.S. Fish WildI. Serv., BioI. ServoProgram FWSIOBS-81/38. 95 pp.Giovanelli, RF. 1981. Relation between freshwater flowand salinity distributions in <strong>the</strong> Alafia River, BullfrogCreek, and Hillsborough <strong>Bay</strong>, Florida. U.S. GeoI.Surv., Wat.-Resour. Invest. 80-102. 62 pp.Godcharles, M.F. 1971. A study <strong>of</strong> <strong>the</strong> effects <strong>of</strong> acommercial hydraulic clam dredge on benthic communitiesin estuarine areas. Fla. Dep. Nat. Resour. Mar.Res. Lab., Tech. Ser. No. 64. 51 pp.Goetz, c.L. and C.R Goodwin. 1980. Water quality <strong>of</strong><strong>Tampa</strong> <strong>Bay</strong>, Florida, June 1972-M:ay 1976. U.S.Geol.Surv. Wat-Resour. Inv. 80-12. 49 pp.Goin, C.J. 1958. Comments upon <strong>the</strong> origin <strong>of</strong> <strong>the</strong>herpet<strong>of</strong>auna<strong>of</strong>Florida. Q. J. Fla. Acad. Sci. 21(1): 61­70.Goodell, RG. and D.S. Gorsline. 1961. A sedimentologicalstudy <strong>of</strong><strong>Tampa</strong> <strong>Bay</strong>, Florida Pt. 23, Pages 75-88 in21st Intemation Geological Congress, Copenhagen,1960.Goodins, J.W., R.F. Fisher, W.S. Garbett, and V.W.Carlisle. 1982. Interpreting soils for pine production.Pages 91-102 in V.W. Carlisle and RB. Brown, eds.Florida soil identification handbook. University <strong>of</strong>Florida, Soil Science Department, Gainesville, and U.S.Department <strong>of</strong> Agriculture, Soil Conservation Service.Goodwin, C.R 1977. Circulation patterns for historical,existing, and proposed channel configurations inHillsborough <strong>Bay</strong>, Florida. International NavigationCongress, 24th Proceedings. 13 pp.Goodwin, C.R. 1980. Preliminary simulated tidal flowand circulation patterns in Hillsborough <strong>Bay</strong>, Florida.U.S. Geol. Surv. Open-File Rep. 80-1021. 25 pp.References263Goodwin, C.R. 1981. Effective channel dredging andtidal flow in <strong>Tampa</strong> <strong>Bay</strong>. Seminar, Florida Department<strong>of</strong>Environmental Regulation, Tallahassee.Goodwin, C.R, J.S. Rothshein, and D.M. Michaelis.1974. Water quality <strong>of</strong> <strong>Tampa</strong> <strong>Bay</strong>, Florida. Drywea<strong>the</strong>r conditions, June 1971. U.S. GeoI. Surv. Open­File Rep. 74-026. 85 pp.Gorelick, S. 1975. Southwest Florida regional hydrologyand water supply. New College Environmental StudiesProgram, University <strong>of</strong> South Florida, Sarasota. 115pp.Grady, J.R 1981. Properties <strong>of</strong> seagrass and sandflatsediment for <strong>the</strong> intertidal zone <strong>of</strong> St. <strong>An</strong>drews <strong>Bay</strong>,Florida. Estuaries 4: 335-344.Green,J. 1968. Thebiology <strong>of</strong>estuarine animals. University<strong>of</strong> Washington Press, Seattle. 401 pp.Gruber, A. 1%8. The energy budget and climatologicaldescription <strong>of</strong> <strong>the</strong> atmosphere over <strong>the</strong> Florida peninsulawhen a convective regime dominates. Ph.D.Dissertation. Florida State University, Tallahassee.Gruber, A. 1969. Energy budget and climatology <strong>of</strong> <strong>the</strong>atmosphere over <strong>the</strong> Florida peninsula. U.S. ArmyElect. Comm., Tech. Rep. ECOM-04367-F. 64 pp.Guimond, RJ. and S.T. Windham. 1975. Radioactivitydistribution in phosphate products, by-products,effluents, and waters. U.S. Environ. Prot Agency,Criteria Stand. Div., Tech. Note ORP/CSD 75-3: 1-32.Gutfreund, P.D. 1978. Florida sulfur oxides study no. 2­dispersion, meteorology, and climatology. Dames andMoore, Inc., Atlanta. 3 vols.Haddad, K. 1982. Hydrographic factors associated withwest Florida toxic red blooms: an assessment for satelliteprediction and monitoring. M.S. Thesis. University<strong>of</strong>South Florida, <strong>Tampa</strong>.Haddad, K. and K.D. Carder. 1979. Oceanic intrusion:one possible initiation mechanism <strong>of</strong>red tide blooms on<strong>the</strong> west coast <strong>of</strong>Florida. Pages 269-274 in D.L. Taylorand RR Selinger, cds. Toxic din<strong>of</strong>lagellate blooms.Elsevier, New York.Hafer, FL. and CE. Palmer. 1978. Southwest FloridaWater Management District Atlas. Southwest FloridaWater M:anagement District, Brooksville. 58 pp.Hall, J.R., and W.N. LindalI, Jr. 1974. Benthicmacroinvertebrates and sediments from upland eanalsin <strong>Tampa</strong> <strong>Bay</strong>, Florida. Nat .Mar. Fish. Serv., Data Rep.94. Seattle. 221 pp.Haller,W.T. 1977. Hydrilla. Univ.F1a.,InstFood Agric.Sci. Cire. S-245. Gainesville.


Hamm, D., and HJ. Humm. 1976. Benthic algae <strong>of</strong> <strong>the</strong><strong>An</strong>clote Estuary. n. Bottom-dwelling species. F1or.Sci. 39: 209-229.Hand, J., and D. Jackman. 1984. Water quality inventoryfor <strong>the</strong> State <strong>of</strong> Florida. Florida Department <strong>of</strong> EnvironmentalRegulation, Bureau <strong>of</strong> Water <strong>An</strong>alysis, Tallahassee.Hardin, S. and J. Atterson. 1980. E.cological effect,> <strong>of</strong>grass carp introduction in Lake Wales, Florida. FloridaGame and Freshwater Fish Commission, Tallahassee.95pp.Harper, R.M. 1927. Natural resources <strong>of</strong>sou<strong>the</strong>rn Florida.Fla. Gool. Surv., 18th <strong>An</strong>n. Rep.: 125-206.Harris, B.A., K.D. Haddad, K.A. Steidinger, and J.A. Huff.1983. Assessment <strong>of</strong> fisheries habitat: CharlotteHarbor and Lake Worth, florida. Final report forcontract period Nov. 18 through Nov. 30, 1982. FloridaDepartment <strong>of</strong> Natural Resources, Bureau <strong>of</strong> MarineResearch Laboratory, St. Petersburg. 211 pp.lbrtigan, J.P. and SA Hanson-Walton. 1984. Tributarystream flows and pollut.1nt loadings


ReferencesHickey,J.J.andG.L.Barr. 1979. Hydrogeologic data foru'1e Bear Creek subsurface injection test site, St. Petersburg,Florida. U.S. Geol. Surv. Open-File Rep. 78-853.104 pp.Hickey, U. and R.M. Spechler. 1979. Hydrogeologicdata for <strong>the</strong> southwest subsurface injection test site, St.Petersburg, Florida. U.S. Geot Surv. Open-File Rep.78-852.Hickey,J,J. and WE. Wilson. 1982. Results<strong>of</strong>deep-wellinjection testing at Mulberry, Florida. U.S. Geot Surv.Wa1.-Resour. Inv. 81-75. 15 pp.Hicks, D.B. and LA Burns. 1975. Mangrove metabolicresponse to alterations <strong>of</strong>natural freshwater drainage tosouthwestern Florida estuaries. Pages 238-255 in G.Walsh, S. Snedaker, and H. Teas, eds. Proceedings <strong>of</strong><strong>the</strong> international symposium on <strong>the</strong> biology and management<strong>of</strong> mangroves. University <strong>of</strong> Florida,Gainesville.Hillsborough County Environmental Protection Commission(HCEPC). 1982. Environmental Quality, 1980:Hillsborough County, Florida. HCEPC Rep. <strong>Tampa</strong>,FL.Hillsoorough County Environmental Protection Commission(HCEPC). 1983. Environmental Quality, 1981:Hillsborough County, Florida. HCEPC Rep. <strong>Tampa</strong>,FL.Hillsborough County Environmental Protection Commission(HCEPC). 1984. Environmental Quality, 1982:Hillsborough County, Florida. HCEPC Rep. <strong>Tampa</strong>,FL.Hilmon, J.B. and CEo Lewis. 1962. Effects <strong>of</strong>burning onsouth Florida range. U.S. Forest Service, Sou<strong>the</strong>astResearch Station. 12 pp.HirtJl, D.H. and W.R Marion. 1979. Bird communities <strong>of</strong>a soup"! Florida flatwoods. Fla. Sci. 42(3): 142-151.Ho, F.P., R.W. Schwerdt, and H.Y. Goodyear. 1975.Some climatological characteristics <strong>of</strong> hurricanes andtropical stonns, Gulf and east coasts,<strong>of</strong> <strong>the</strong> UnitedStates. Nat. Ocean. Atmos. Admin. Tech. Rep. NWS15.Hobbs, H.B., Jr. 1942. The crayfishes <strong>of</strong> Florida. Univ.Fla., BioI. Sci. Ser. 3(2): 1-179. Gainesville.H<strong>of</strong>fman, W.E. and CJ. Dawes. 1980. Photosyn<strong>the</strong>ticrates and primary production by two Florida benthic redalgal species from a salt marsh and a mangrove community.Bun. Mar. Sci. 30: 358-364.Holcomb, D. 1965. A study <strong>of</strong> stocking rations <strong>of</strong> warmwater fishes, management research. Florida Game andFresh Water Fish Commission, Tallahassee.265Holle, RL. 1971. Effects <strong>of</strong> cloud condensation nucleidue to fires and surface sources during south Floridadroughts. J. Appl. Meteorol. 10: 62-69.Hopkins, T.L. 1973. Zooplankton. Pages IIIF-1-IIIF-1Oin J.l. Jones, et al., cds. Asummary <strong>of</strong>knowledge <strong>of</strong><strong>the</strong>eastern Gulf <strong>of</strong> Mexico. Martin Marietta Aerospace,Orlando, FL.Hopkins, TL. 1977. Zooplankton distribution in surfacewaters <strong>of</strong> <strong>Tampa</strong> <strong>Bay</strong>, Florida. Bull. Mar. Sci. GulfCaribb. 27(3): 467-478.Hosler, C.R. 1%1. Low-level inversion frequency in <strong>the</strong>contiguous United States. Monthly Wea<strong>the</strong>r Rev. 89:319.Huff, J.A. 1975. Life history <strong>of</strong>Gulf <strong>of</strong>Mexico sturgeon,Acipenser oxyrhynchus desotoi. in Suwannee River,Florida. Flor. Dep. Nat. Resour., Mar. Res. Lab., Flor.Mar. Res. Publ. 16. 32 pp.Hughes, R.H. 1974. Management and utilization <strong>of</strong>pineland threeawn range in south Florida. J. RangeMange. 27(3): 186-192.Hughes, M.A., and J. Parks. 1977. A study <strong>of</strong> <strong>the</strong> effects<strong>of</strong> entrainment and <strong>the</strong>rmal discharge on <strong>the</strong> phytoplanktoncommunity at Big Bend, <strong>Tampa</strong> <strong>Bay</strong> (Florida).Pages 3-i --3-108 in RD. Garrity, W.J. TiffanyIII, and S. Mahadevan (cds.) <strong>Ecological</strong> studies at BigBend Steam Electric Station. <strong>Tampa</strong> Electric Company.Hulet, W.H., SJ. Masel, L.B. Jodrey, and R.G. Wehr.1967. The role <strong>of</strong> calcium in <strong>the</strong> survival <strong>of</strong> marineteleosts in dilute seawater. Bull. Mar. Sci. 17: 677-688.Humm, H,J. 1956. Seagrasses <strong>of</strong> <strong>the</strong> nor<strong>the</strong>rn gulfcoast.Bull. Mar. Sci. 6: 305-308.Humm, HJ. 1973. Seagrasses. Pages IIIC1-IIIClO in J.l.Jones, RE. Ring, M.O. Rinkel, and RE. Smith, cds. Asummary <strong>of</strong> knowledge <strong>of</strong> <strong>the</strong> eastern Gulf <strong>of</strong> Mexico1973. State University System Institute <strong>of</strong> Oceanography,St. Petersburg, FL.Humm, HJ., RC. Baird, KL. Carder, TL. Hopkins, andT.E. Pyle. 1971. <strong>An</strong>cloteenvironmental project annualreport, 1970. Univ. South Fla., Mar. Sci. lnst., Contrib.No. 29. S1. Petersburg.Hunn, J.D. 1974. Hydrology <strong>of</strong>Lake Tarpon near TarponSprings. Fla. Dep. Nat. Resour., Bur. Geol. Map Ser.No. 60.Hunter, M.E. 1978. What is <strong>the</strong> Caloosahatehee Marl? InSou<strong>the</strong>astern Geological Society guidebook No. 20;Hydrogeology <strong>of</strong> south-central Flonda. 22nd FieldConference, Sou<strong>the</strong>astern Geological Society, WestPalm Beach, FL.


BUliChinson. C.B. AppraIsal <strong>of</strong> $!laUow li[1U\mowaterresoun::c,'1andin <strong>the</strong>uppt'\tPeac~ andflorida.U.S. Gool.Invt\"lt. n·t24. 57 pp.HUlchirlSOO, C.B. and J.W. Stewart 1978. GelclhydrolOiticevaluation <strong>of</strong>alandfIll in acoa'ltal area, St. Petersburg,Florida. U.S. Gent Surv., Wat.·Resour. InvC$l. 77·78.4Opp.Hutehinson, 1967. A treatise ol1limnology. Vol. 2:Introduction to lake biology and <strong>the</strong> limnopl'l11kton.lohn Wiley and Sons, Inc.• New York.l,l15 pp.Hutton, R.F.,B. Idled, KO. Woodburn, and R.M. Ingle.1956. 'l1le ecology <strong>of</strong> Boca Ciega <strong>Bay</strong> with specialref«ence to dredging and filling operations. F1a. StateBoard Ctmlre.rv., Tech. No. 17. 87 pp.Hyd~ience Research Group. Inc. 1980. Preliminaryevaluation <strong>of</strong><strong>the</strong> water supplies in <strong>the</strong> Cow PenSI()Ugharea. S()ulhwestFltxlda Water MMagemelllDI$trict. H)'droscicnce Resean::h Group, Inc.• Lukeland.l:lL.Inglc.J.C. 1962. The mov


Kurz, H. 1942. Florida dunes and scrub vegetation andgeology. Fla. State Geol. Surv. Bull. 23. 154 pp.Kurz, H., and K.A. Wagner. 1953. Factors in cypressdome development. Ecology 34: 157-164.Kurz, H., and K. Wagner. 1957. Tidal marshes <strong>of</strong><strong>the</strong> Gulfand Atlantic coasts <strong>of</strong>nor<strong>the</strong>rn Florida and Charleston,SC. Fla. State Univ. Stud. No. 24. 168 pp.Kushlan, JA 1974. Effects <strong>of</strong> a natural fish kill on <strong>the</strong>water quality, plankton and fish population <strong>of</strong>a pond in<strong>the</strong> Big Cypress Swamp, Florida. Trans. Am. Fish. Soc.103: 235-243.Kushlan, lA., and T.E. Lodge. 1974. <strong>Ecological</strong> anddistributional notes on <strong>the</strong> freshwater fish <strong>of</strong> sou<strong>the</strong>rnFlorida. Fla. Sci. 37(2): 110-128.Kushlan, JA, and D.A. White. 1977. Nesting wadingbird populations in sou<strong>the</strong>rn Florida. Fla. Sci. 40: 65­72.Laessle, A.M. 1942. The plant communities <strong>of</strong> <strong>the</strong>Welaka area. Univ. Fla., BioI. Sci. Ser. 4(1): 1-143.Lane, E. 1980. Environmental geology series - West PalmBeach sheet. Fla. Dep. Nat. Resour., Bur. Geo!., MapSer. 100. Tallahassee.Lane, E., M.S. Knapp, and T. Scott. 1980. Environmentalgeology series - Fort Pierce sheet. Fla. Dep. Nat.Resour., Bur. Geol., Map Ser. 80. Tallahassee.Langford, F. 1974. Striped bass program status report ­1974 Fish Management Report, South Florida Region.Florida Game and Freshwater Fish Commission, Tallahassee.II pp.Lanquist, E.E. 1953. Peace and Alafia rivers streamsanitation studies 1950-1953. Vol. 2, Suppl. 2: Abiological survey <strong>of</strong> <strong>the</strong> Peace River, Florida. FloridaState Board <strong>of</strong> Health, Jacksonville. 75 pp.LaPoint RE., L.D. Williams, J.C. Goldman, and J.H.Ry<strong>the</strong>r. 1976. The mass outdoor culture <strong>of</strong> macroscopicmarine algae. Aquaculture 8: 3-21.Layne, IN. 1974. The land mammals <strong>of</strong> south Florida.Pages 386-413 in Gleason, P.J., ed. Environments <strong>of</strong>south Florida: present and past. Miami Geo!. Soc.Mem.2.Layne, J.N. 1978. Rare and endangered biota <strong>of</strong> Florida.Vol. 1: Mammals. University Presses <strong>of</strong> Florida,Gainesville. 52 pp.References267Layne, J.N., J.A. Stallcup, G.E. Woolfenden, M.N.McCauley, and DJ.Worley. 1977. Fish and wildlifeinventory <strong>of</strong> <strong>the</strong> seven county region included in <strong>the</strong>central Florida phosphate industry areawide environmentalimpact study. U.S. Fish and Wildlife Service,Washington, D.C. 3 vols.Lazor. 1973. Aquatic plants <strong>of</strong>principal concern,Chapter5. In RL. Lyerly, N.W. Walls, and M.T. Sweeney, cds.<strong>An</strong> evaluation <strong>of</strong> aquatic weed control methods forpower plant coding reservoir. Fla. Power Light Co.,Environ. Eng. Tech. Rep. Ser.73-3. Miami.Leendertse, J.J. 1967. Aspects <strong>of</strong>a computational modelfor long period water wave propagation. Rand Corporation,Santa Monica, Calif.Lehman, M.E. 1976. Collier County: Growth pressure ina wetlands wilderness. Florida Bureau <strong>of</strong> ComprehensivePlanning. Tallahassee. 59 pp.Lewis, R.R., M.J. Durako, M.D. M<strong>of</strong>fler, and R.C.Phillips. 1985. Seagrass meadows <strong>of</strong> <strong>Tampa</strong> <strong>Bay</strong> - areview. Pages 210-246 in S.F. Treat, J.L. Simon, R.R.Lewis III, and RL. Whitman, Jr., cds. Proceedings,<strong>Tampa</strong> <strong>Bay</strong> Area Scientific Information Symposium,May 1982. University <strong>of</strong> South Florida, <strong>Tampa</strong>.Lewis, RR, and E. Estevez. 1988. Theecology <strong>of</strong><strong>Tampa</strong><strong>Bay</strong>, Florida: <strong>An</strong> estuarine pr<strong>of</strong>ile. U.S. Fish Wildl.Servo BioL Rep. 85(7.18). 132 pp.Lewis, RR, and C.S. Lewis. 1978. Colonial bird use andplant succession on dredged material islands in Florida,Vol. 2: Patterns <strong>of</strong> plant succession. U.S. Army CorpEng., Waterways Exp. Sta. Tech. Rep. D-78-14.Vicksburg, Miss. 169 pp.Lewis, RR and RC. Phillips. 1980. Seagrass mappingproject, Hillsborough County, Florida. <strong>Tampa</strong> PortAuthority. 30 pp.Lewis, RR and R.C. Phillips. 1981. Occurrence <strong>of</strong>seedand seedlings <strong>of</strong>Thalassia testudinum Banks ex Konigin <strong>the</strong> Florida Keys (U.S.A.) Aquat. Bot. 9:377-380.Lewis, RR, and RL. Whitman. 1985. A new geographicdescription <strong>of</strong> <strong>the</strong> boundaries and subdivisions <strong>of</strong><strong>Tampa</strong> <strong>Bay</strong>. Pages 10-18 in SF. Treat, J.L. Simon,RR Lewis III, and R.L. Whitman, Jr., cds. Proceedings,<strong>Tampa</strong> <strong>Bay</strong> Area Scientific Information Symposium,May 1982. University <strong>of</strong>South Florida, <strong>Tampa</strong>.Lincer,J.L.,etal. 1975. Theccologica1status<strong>of</strong>DonaandRobert's <strong>Bay</strong>s and its relationship to Cow Pen Sloughand o<strong>the</strong>r possible perturbations. Board <strong>of</strong> CountyCommissioners, Sarasota County. Mote Marine Lab.,Sarasota, FL.Lindall, W.N., Jr., W.A. Fable, Jr., and L.A. Collins. 1975.Additional studies <strong>of</strong> <strong>the</strong> fishes, macroinvertebrates,and hydrological conditions <strong>of</strong>upland canals in <strong>Tampa</strong><strong>Bay</strong>, Florida. U.S. Natl. Mar. Fish. Servo Fish. Bull. (1):81-85.


T'he OCCllrre:m:.e (1«' .4UYI'I~.• l!', cbm:aS amd UJfmRi(l"HI..md JR 1972,C'uu,mne mvenlJnry andllbll~ i:<strong>An</strong>,"Ji Nat, Mltr.:~, 126pp,M""l~lrill:~n SJ%. 197 1 ), L.Mlid CO'ltt:tarea, l'Cntfw fk'Jrida.•·1M(ridith,zmd W.S. We.tu~fhall 1961f'klfida. Fla.w41L- ~~e·!i{'tlf, In\'es't. :2:'L Till


Metcalf & Eddy, Inc. 1983. <strong>Tampa</strong> Nationwide UrbanRun<strong>of</strong>f Program. Final Summary Report. Department<strong>of</strong>Public Works, City <strong>of</strong> <strong>Tampa</strong>, FL.Michewicz, JE., DL Sutton, and RD. Blackburn. 1972.The white amur for aquatic weed control. Weed Sci.20: 106-110.Miley, W.W. II, AJ. Leslie, Jr., andJ.M. Van Dyke. 1979.The effects <strong>of</strong> grass carp (Ctenopharyngodon idellaval.) on vegetation and water quality in three centmlFlorida lakes. Florida Department <strong>of</strong> Natural Resources,Mimoo. 119 pp.Miller, J., and J. Morris. 1981. The Peace River. Chapter4 in E.D. Estevez, ed. A review <strong>of</strong> scientific infonnation:Charlotte Harbor (Florida) estuarine ecosystemcomplex. Report to Southwest Florida Regional PlanningCouncil, Fort Myers. Mote Mar. Lab. Rev. Ser. 3.1077 pp.Miller, RE., and H. Sutcliffe, Jr. 1982. Water-quality andhydrogeologic data for three phosphate industry wastedisposalsites in central Florida, 1979-80. U.S. Gool.Surv., Wat.-Resour. Invest. Rep. 81-84. Tallahassee,FL. 77 pp.Mills, L.R and c.P. Laughlin. 1976. Potentiometricsurface <strong>of</strong> Floridan aquifer, May 1975, and change <strong>of</strong>potentiometric surface 1969 to 1975, Southwest FloridaWater Management District and adjacent areas. U.S.Geo!. Surv., Wat.-Resour. Invest. 76-80. Tallahassee,FL. 1 p.Missimer,T.M. 1973. The depositional history <strong>of</strong>SanibelIsland, Florida. M.S. Thesis. Florida State University,Tallahassee.Mitzner, L. 1978. Evaluation <strong>of</strong>biological control <strong>of</strong>nuisanceaquatic vegetation by grass carp. Tmns. Am.Fish. Soc. 107(1): 135-145.Moe, M.A. 1964. A note on a red tide fish kill in <strong>Tampa</strong><strong>Bay</strong>, Florida during April 1%3. Pages 122-125 in AcolleCtion <strong>of</strong> data in reference to red tide outbreaksduring 1963. Fla. State Board Conserv. Mar. Res. Lab.St. Petersburg.•Moe, M.A., Jr., and G.T. Martin. 1965. Fishes taken inmonthly trawl samples <strong>of</strong>fshore <strong>of</strong> Pinellas County,Florida, with new additions to <strong>the</strong> fish fauna <strong>of</strong> <strong>the</strong><strong>Tampa</strong> <strong>Bay</strong> area. Tulane Stud. Zool. 12(4): 129-151.Monk, C.D. 1968. Successional and environmental relationships<strong>of</strong> <strong>the</strong> forest vegetation <strong>of</strong> north-centralFlorida. Am. MidI. Nat. 79(2): 411-457.Monk, C.D., and J.T. McGinnis. 1%6. Tree speciesdiversity in six forest types in north-central Florida. 1.Ecol. 54: 341-344.References269Montalbano, E, W.M. Hetrick, and T.C. Hines. 1978.Duck food habits in central Florida phosphate settlingponds. Pages 247-255 in D.E. Samuel, J.R. Stauffer,c.H. Hocutt, and W.T. Mason, eds. Proceedings <strong>of</strong>Symposium on Surface Mining and Fish/WildlifeNeeds in <strong>the</strong> Eastern U.S. West Virginia Universityand <strong>the</strong> U.S. Fish and Wildlife Service. 386 pp.Montalbano, F., S. Hardin, and W.M. Hetrick. 1979.Utilization <strong>of</strong> Hydrilla by ducks and coot in centralFlorida. Proc. <strong>An</strong>n. Conf. Sou<strong>the</strong>ast. Assoc. FishWildl. Agencies 33: 36-42.Mooers, C.N.K., J. Fernandez-Partagas, and J.F. Price.1975. <strong>An</strong> evaluation <strong>of</strong> meteorological data fromseveral buoys <strong>of</strong> <strong>the</strong> NOAA data buoy <strong>of</strong>fice, easternGulf<strong>of</strong> Mexioo (1973-1974). Univ. Miami, RosenstielSchool Mar. Atmos. Sci. UM-RSMNS - No. 75030.Miami, FL.Morrill, S., and J. Harvey. 1980. <strong>An</strong> environmentalassessment <strong>of</strong> North Captiva Island. New CollegeEnviron. Stud. Program Pub!. 23. Sarasota, FL.Morrill, J.B., R Gasser, C.B. Morrill, and S. Baker. 1977.Final water quality report <strong>of</strong> <strong>the</strong> Lemon <strong>Bay</strong> complexstudy area. New College Environment Studies ProgramReport. SardSOta, FL. 30 pp.Morris, J. 1974. <strong>An</strong> ecological study <strong>of</strong> Upper Myakkalake with a special focus on water hyacinth andHydril/a. Unpublished <strong>the</strong>sis. New College EnvironmentalStudies Progmrn. Sarasota, FL.Morris, C.A. 1976. Macroinvertebrates and fish assampled by trawls and seines. Chapter 5 in <strong>Ecological</strong>surveys <strong>of</strong> <strong>the</strong> Big Bend area. <strong>Tampa</strong> ElectricCompany, Marine Research Laboratory,Morris, J., and J. Miller. 1977. Estuaries affected by phosphatemining. M.S. Archbold Biological Station,University <strong>of</strong>Florida, Gainesville.Morris, J., J. Miller, W.K. Byle, and J.B. Morrill. 1978.Survey <strong>of</strong> <strong>the</strong> natural systems <strong>of</strong> Gasparilla Island,Florida, with special references to conservation, protection,restoration, and public use. Sarasota, FL.Mote Marine Laboratory. 1975. The ecological status <strong>of</strong>Dona and Robert's bays and its relationship to Cow PenSlough and o<strong>the</strong>r possible perturbations. Board <strong>of</strong>County Commissioners, Sarasota County, FL.Motz, L.H. 1975. Hydrologic Effects <strong>of</strong> <strong>the</strong> <strong>Tampa</strong>Bypass Canal System. Fla. Bur. Gool. Rep. Inv. 82.Tallahassee. 42 pp.Murphy, W.R, Jr. 1968. Causes <strong>of</strong> flooding <strong>of</strong> LittleChariey Bowlegs Creek upstream <strong>of</strong> HighlandsHammock State Park, Florida. U.S. Geo!. Surv. Open­File Rep. 68-004. Tallaha..


Murray. G.E. 1963. Geologic history and fnul1cwork <strong>of</strong>Gulf.Atlantic geosyncline (abstract). Am. Assoc.Petro!. Geol. Bull. 47: 364-365.Myers. R.t. 1975. The relationship <strong>of</strong> site conditions to<strong>the</strong> invading capability <strong>of</strong> Melaleuca quinquenervitl insouthwest Horida. M.S. Thesis. University <strong>of</strong>Horida.Gainesville.Myers, R.L. 1976. Mda/(tw;a field slHdics. In J. Ewe!. R.Me~\d()r, R. Myers, L Conde, ,md B. Sedlik, cds. Stud·ies <strong>of</strong> vcgetadon changes in south Florida. U.S. ForestServk:e, Rese.an:h Agreement 18-492.Myers, V.B.. and H.L. Edmiston. 1983. Florida lakeclassification and prioritization projC'~t #S004388:Final rCjx)f1,. Aa. Dep. Environ. Regul., Tallahassee.18pp.Neill. W:r. 1954. Ranges and taxonomic allcx.1ltions <strong>of</strong>amphibians and reptiks in <strong>the</strong> sou<strong>the</strong>~SlCm UnitedState,s. Publ. Res. Div., Ross Allen Rept. Inst. 1(1): 75··96. Ocala. FL.Neill, W:r. 1957. Historical biogeography <strong>of</strong>pn.:sent dayFlorida. Bull. Ha. SUite Mus. 2(7): 175·220.Neill, w:1'. 1958. 'I1l(~


Peek, H.M. 1959. The artesian water <strong>of</strong><strong>the</strong> Ruskin area <strong>of</strong>Hillsborough County, Florida. U.S. Geol. Surv., Bull.1092. 111 pp.Penfound, W.T., and T.T. Earle. 1948. The biology <strong>of</strong><strong>the</strong>water hyacinth. Ecol. Monogr. 18: 447-472.Penman, H.L. 1948. Natural evaporation from openwater, bare soil, or gra'>S. Proc. Roy. Soc., Ser. A. 193:120-145.Perkins, RD., and P. Enos. 1968. Hurricane Bel,>y in <strong>the</strong>Florida-Bahama,> area: gc,ologic effects and comparisonwith Hurricane Donna. J. Geol. 76: 710-717.Peterson, C.H., and N.M. Peterson. 1979. The ecology <strong>of</strong>intertidall1aL'> <strong>of</strong> North Carolina: a community pr<strong>of</strong>ile.U.S. Fish WildI. Servo BioI. Servo Program. f


i9n~ni~IU.W lil~(inrl wl~r in!) ~di~~la.'t~ ~'«'lm.lllia,rbkJ.jt Gnmnd W~',!.==,=~e"-~_~'f,,,",__ ~! Ki~gmnlJe~dt>\ln;\~~eM."'If~","",,"','" ,,", TllUft,,'iiI."cC,212


RounsefeU, G.A., and W.R Nelson. 1966. Red tideresearch summarized to 1964 including an annotatedbibliography. U.S. Fish Wildt Servo S}XX:. Sci. Rep.535. 85 pp.Roush, RB. 1985. Terraces and soils <strong>of</strong> <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong>area. Pages 33-52 in S.P. Treat, J.L. Simon, RRLewis ill, and R.L. Whitman, Jr., eds. Proceedings,<strong>Tampa</strong> <strong>Bay</strong> Area Scientific Information Symposium,May 1982. Burgess Publishing Co., Inc., Minneapolis,MN. Available from <strong>Tampa</strong>BASIS, P.O. Box 290197,<strong>Tampa</strong>, FL 33687.Ryder, P.D. 1978. Model evaluation <strong>of</strong><strong>the</strong> hydrogeology<strong>of</strong> <strong>the</strong> Cypress Creek well field in west-central Florida.U.S. Geol. Surv., Wat.-Resour. Invest. 78-79. 68 pp.Saloman, C.R. 1964. The shrimp Trachypenaeus similisin <strong>Tampa</strong> <strong>Bay</strong>. Q. J. Fla. Acad. Sci. 27: 165.Saloman, C.H. 1%5. Bait shrimp (Penaeus duorarum) in<strong>Tampa</strong> <strong>Bay</strong>, Florida - biology, fishery economics, andchanging habitat. U.S. Fish Wildl. Servo Spec. Sci.Rep. Fish. 561. 6 pp.Saloman, C.R. 1%8. Diel and seasonal occurrence <strong>of</strong>pink shrimp Penaeus duorarum Barkenroad, in twodivergent habitats <strong>of</strong> <strong>Tampa</strong> <strong>Bay</strong>, Florida. U.S. FishWildt Spec. Sci. Rep. Fish. 561. 6 pp.Saloman, C.H. 1974. Physical, chemical, and biologicalcharacteristics <strong>of</strong>nearshore zone <strong>of</strong> Sand Key, Florida,prior to beach restoration. National Marine FisheriesService, Gulf Coastal Fisheries Center, Panama CityLaboratory, Panama City, FL. ISA No. CERC 73-27,Vol. 1 and 2.Saloman, C.R., and S.P. Naughton. 1979. Fishes <strong>of</strong> <strong>the</strong>littoral zone, Pinellas County, Florida. Fla. Sci. 42(2):85-93.Saloman, C.H., and J.L. Taylor. 1972. Hydrographicobservations in <strong>Tampa</strong> <strong>Bay</strong>, Florida - 1969. Nat Mar.Fish. Serv., Data Rep. 73: 1-82.Santos, S.L. 1972. Distribution and abundance <strong>of</strong> <strong>the</strong>polychaetous annelids in Lassing Park, $t Petersburg,Florida M.A. Thesis. University <strong>of</strong> South Florida,<strong>Tampa</strong>. 67 pp.


pn)'!UCt~viIIY 0( (k::,~ntbl(: fi'lht'::ririiLBun'~~i,l <strong>of</strong>' Fi:~~·\\lii!dbi~_ \\fli,1itiltrl~ton, r»,


ReferencesSprinkle, C.L. 1982. Dissolved-solids concentration inwater from <strong>the</strong> upper permeable zone <strong>of</strong> <strong>the</strong> Tertiarylimestone aquifer system, sou<strong>the</strong>astern United States.U.S. Geol. Surv., WaL-Resour. Invest., Open-File Rep.82-94 (map). Atlanta.Spmnt, A., Jr. 1954. Florida bird life. Coward-McCann,Inc., New York. 527 pp.Stahl, L.E. 1970. The marine geology <strong>of</strong> <strong>Tampa</strong> <strong>Bay</strong>.M.S. Thesis. Florida State University, Tallahassee. 70pp.Steidinger, KA. 1973. Phytoplankton ecology: a conceptualreview base,d on eastern Gulf <strong>of</strong> Mexico research.eRC Crit. Rev. MicrobioI. 3(1): 49-68.Steidinger, KA. 1975a. Basic factors influencing redtides. Pages 153-162 in V.R. LoCicero, ed. Proceedings<strong>of</strong> <strong>the</strong> first international conference on toxicdin<strong>of</strong>lagellate blooms. Massachusetl


(Je\l'e:I01Pf1'Wint in"""'V~'f. 153· 156,Po]tycl)~~)Ull :uulell1i1 andootllhicetlvin'ml'tlOOt~ in TwnpaPh,D,Unlvtl'Sit" <strong>of</strong>f"kJritbl Gainesvil.le, pp,IUId inv~~mo;"'rM'tpaHlftx)fPrc}~t, U,S. <strong>An</strong>'ny (;()ff~ <strong>of</strong>" EI,gin


Turner, J.F., Jr. 1979. Streamflow simulation studies <strong>of</strong><strong>the</strong> Hillsborough, Alafia, and <strong>An</strong>clote Rivers, westcentralHorida. U.S. Gool. Surv., Water Resour. Invest78-102, Tallahassee. 161 pp.Turner, J.T. 1972. The phytoplankton <strong>of</strong> <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong>system, Florida. M.S. Thesis. University <strong>of</strong> SouthHorida, <strong>Tampa</strong>. 188 pp.Turner, J.T., and T.L. Hopkins. 1985. The zooplankton <strong>of</strong><strong>Tampa</strong> <strong>Bay</strong>: a review. Pages 328-344 in S.F. Treat,JL. Simon, RR. Lewis III, and R.L. Whitman, Jr., eds.Proceedings, <strong>Tampa</strong> <strong>Bay</strong> Area Scientific InformationSymposiwn, May 1982.Twilley, RR., W.M. Kemp, K.W. Stager, J.C. Stevenson,and W.R. Boynton. 1985. Nutrient enrichment <strong>of</strong>estuarine submersed vascular plant communities. 1.Algal growth and effects on production <strong>of</strong> plants andassociated communities. Mar. Ecol. Prog. Ser. 23:179-191.USACE. see U.S. Army Corps <strong>of</strong>Engineers.USAFETAC. 1974. NOAA military climatic summaryfor MacDill Air Foree Base, <strong>Tampa</strong>, Horida, for <strong>the</strong>period from May 1941 to July 1972. AWS Climaticbrief, National Climatic Center, Asheville, NC.U.S. Air Force. 1982. Wea<strong>the</strong>r for aircrews. Air ForceManual AFM 51-12, Vol. 1. Headquarters, Washington,D.C.U.S. Army Corps <strong>of</strong> Engineers. 1966. Beach erosioncontrol study on Pinellas County, Florida. JacksonvilleDistrict. Serial No. 14.U.S. Army Corps <strong>of</strong> Engineers. 1974. Final environmentalstatement; C-13S and lower Hillsborough Riverbasin; four river basins, Florida. Jacksonville DistrictU.S. Army Corps <strong>of</strong> Engineers. 1978. Preliminary guideto wetlands <strong>of</strong> peninsular Horida. Major associationsand communities identified. U.S. Army EngineerWaterways Experiment Station, Environmental EffectsLaboratory, Vicksburg, MS. Tech. Rept Y-78-2. FinalRepOrt. 92pp. .U.S. Bureau <strong>of</strong> Mines. 1982. The Florida phosphateindustry's technological and environmental problems,a review. U.S. Bur. Mines, Info. Cire. 8914. TuscaloosaResearch Center, AL.USDA. See U.S. Department <strong>of</strong> Agriculture.U.S. Department <strong>of</strong>Agriculture, Soil Conservation Service.1958. Soil survey <strong>of</strong> Hillsborough County, Florida.Gainesville, FL.U.S. Department <strong>of</strong> Agriculture, Soil ConservationService. 1959. Soil survey <strong>of</strong> Sarasota County,Florida. Gainesville, FL.References277U.S. Department <strong>of</strong> Agriculture, Soil ConservationService. 1972. Soil survey <strong>of</strong>Pinellas County, Florida.Gainesville, FL.U.S. Department <strong>of</strong> Agriculture, Soil ConservationService. 1981. Soil surveys in Horida - a status reportReport FY-73-80. Gainesville, FL.U.S. Department <strong>of</strong> Agriculture, Soil ConservationService. 1982. Soil survey <strong>of</strong> Pasco County, Florida.Gainesville, FL.U.S. Department <strong>of</strong> Agriculture, Soil ConservationService. 1983. Soil survey <strong>of</strong> Manatee County,Horida. Gainesville, FL.USDC. See U.S. Department <strong>of</strong>Commerce.U.S. Department <strong>of</strong>Commerce (USDC). 1953. Climaticswnmary <strong>of</strong> <strong>the</strong> U.S. - supplement for 1931 through1952,Florida. (Bulletin W Supplement). U.S. Wea<strong>the</strong>rBur., Climatol. U.S., No. 11-6. 36 pp.U.S. Department <strong>of</strong>Commerce (USDC). 1957. Survey<strong>of</strong>meteorological factors pertinent to reduction <strong>of</strong>loss <strong>of</strong>life and property in hurricane situations. Nat HurricaneRes. Proj. Rep. No.5.U.S. Department <strong>of</strong>Commerce (USDC). 1964. Climaticsummary <strong>of</strong> <strong>the</strong> U.S. - supplement for 1951 through1960, Florida. (Bulletin W Supplement). U.S. Wea<strong>the</strong>rBur., Climatog. O.S., No. 86-6. 61 pp.U.S. Department <strong>of</strong> Commerce (USDC). 1978. Localclimatological data 1977: annual summary withcomparative data-Lakeland. National Oceanic andAtmospheric Administration (NOAA). NationalClimate Center, Asheville, NC. 4 pp.U.S. Department <strong>of</strong> Commerce (USDC). 1981. Localclimatological data 1980: annual summary withcomparative data-<strong>Tampa</strong>. National Oceanic andAtmospheric Administration (NOAA). NationalClimate Center, Asheville, NC. 4 pp.U.S. Environmental Protection Agency (EPA). 1972.Identification <strong>of</strong> plan. 40CPR 52.520.U.S. Environmental Protection Agency (EPA). 1976.Detailed source emission data for 1976 for phosphateindustry sources. Region IV, Atlanta, GA.U.S. Environmental Protection Agency (EPA). 1977.Compilation <strong>of</strong> air }X>llutant.emission. factors. AP-ZPts. A and B. 2nd ed. Office <strong>of</strong> Air and Waste Management.Washington, DC.U.S. Environmental Protection Agency (EPA). 1977.Reporton Lake Tarpon,·PinellasCol.iritY,· Florida.National Eutrophication Survey. National EnvironmentalResearch Center, Corvallis, OR.


Atlintll.U.S, EnviroRlfl(tnll! J~~;fk,ni,"lI;()


ReferencesWilson, W.E., and J.M. Gerhart. 1980. Simulated effect<strong>of</strong> ground-water development on potentiometricsurface <strong>of</strong> <strong>the</strong> Floridan aquifer, west-eentral Florida.U.s. Geo!. Surv., Wat.-Resour. Invest. Open-File Rep.79-127 L Tallahassee.Wilson, W.E., D.C. Parsons, and RM. Spechler. 1979.Hydrologic data for a subsurface waste-injection site atMulberry, Florida, 1972-1977. U.S. Geo!. Surv. Open­File Rep. 79-683. 33 pp.Wolansky, RM., L.R. Mills, W.M. Woodham, and C.P.Laughlin. 1978. Potentiometric surface <strong>of</strong> Floridanaquifer, Southwest Florida Water Management Districtand adjacent areas, May 1978. U.S. Goo!. Surv. Open­File Rep. 78-720. 1 p.Wolansky, RM., G.L. Barr, and RM. Spechler. 1979.Generalized configuration <strong>of</strong><strong>the</strong> bottom <strong>of</strong><strong>the</strong> FloridanAquifer, Southwest Florida Water ManagementDistrict. U.S. Geol. Surv., Wat.-Resour. Invest. 79­1490.Wolansky, RM., F.P. Haeni, and RE. Sylvester. 1983.Continuous seismic-reflection survey defining shallowsedimentary layers in <strong>the</strong> Charlotte Harbor and Veniceareas, southwest Florida. U.S. Geol. Surv., Wat.­Resour. Invest. 82-57.Wood, D.A. 1989. Official lists <strong>of</strong>endangered and potentiallyendangerd fauna and flora in Florida, 1July 1989.Florida Game and Fresh Water Fish Commission,Tallahassee. 19 pp.Woodall, S. 1978. Melaleuca in Florida. U.S. ForestService, Lehigh Acres, FL. 27 pp.Woodall, S.L. 1982. Seed dispersal in Melaleucaquinquenervia. Fla. Sci. 45(2): 81-93.Woodburn, KD. 1961. Summary <strong>of</strong>seagrass and marinealgae studies and seagrass cultures as performed byRonald C. Phillips for <strong>the</strong> Florida State Board <strong>of</strong>Conservaton Marine Laboratory. Pages 432-434 inD.S. Gosline (00), Proc. first national coastal and shallowwater research conference, National Science Foundationand Office <strong>of</strong>Naval Research.Woodburn, KD. 1959. Survey <strong>of</strong>proposed Papys <strong>Bay</strong>oudredge and fill, P.L. Bartow Power Plant area, PinellasCounty, Florida. Fla State Board Conserv. Mar. Res.Lab. Bull. No. 59-3. 9 pp.Woodburn, KD. 1962. Marine life and conservation in<strong>the</strong> Johns Pass Zone <strong>of</strong> Boca Ciega <strong>Bay</strong>, PinellasCounty. Fla. State BoardConserv. Mar. Res. Lab. Bull.No. 62-3. 20 pp.Woodley, W.L. 1970. Precipitation results from a pyrotechniccumulus seeding experiment. J. Appl. Meteor.9: 242-257.Woodley, W.L., A. Olsen, A. Herndon, and V. Wiggert.1974. Optimizing <strong>the</strong> measurement <strong>of</strong>convective rainfallin Florida. Nat. Ocean. Atmos. Admin., Tech.Memo. ERL WMPO-18. 98 pp.Wooley, C.M. and EJ. Crateau. 1985. Movement, microhabitatexploitation, and management <strong>of</strong> Gulf <strong>of</strong>Mexico sturgeon, Apalachicola River, Florida. N.Amer. J. Fish. Manage. 5(4): 590-605.Woolfenden, G.E. 1983. Rare, threatened, and endangeredvertebrates <strong>of</strong> southwest Florida and potentialOCS activity impact. U.S. Fish Wildl. Servo FWS/OBS-82103. 64 pp.Wright, A.P. 1974. Environmental geology and hydrology,<strong>Tampa</strong> area, Florida. Fla. Dep. Nat. Resour., Bur.Goo!., Spec. Publ. No. 19. Tallahassee. 94 pp.Wyllie, M. 1981. Final report-evapotranspiration studyfor Southwest Florida Water Management District.Southwest Florida Water Management District,Brooksville. 142 pp.Yobbi, DK 1982. Trends and fluctuations in <strong>the</strong> potentiometricsurface <strong>of</strong> <strong>the</strong> Floridan aquifer, west-centralFlorida, 1961-80. U.S. Geo!. Surv., Wat.-Resour.Invest. 82-4086, Tallahassee.Young, EN. 1954. The water beetles <strong>of</strong>Florida. Univ. <strong>of</strong>Fla., Stud. BioI. Sci. Sec. 5: 1-237.Zellars-Williams, Inc. 1980. Evaluation <strong>of</strong> Pre-July I,1975 disturbed phosphate lands. Florida Department <strong>of</strong>Natural Resources, Bureau <strong>of</strong>Geology, Tallahassee.Zieman, J.e. 1972. Origin <strong>of</strong> circular beds <strong>of</strong> Thalassia(Spermatophyta: Hydrocharitaeeae) in south Biscayne<strong>Bay</strong>, Florida, and <strong>the</strong>ir relationship to. mangrovehammocks. Bull. Mar. Sci. 22(3): 559-574Zieman, J.e. 1982. Theecology <strong>of</strong><strong>the</strong> seagrasses <strong>of</strong>southFlorida: a community pr<strong>of</strong>ile. U.S. Fish Wildt ServoOff. BioI. Servo FWS/OBS-82/25. 150 pp.279


280


AppendixAppendix Table A-I. Concluded.Miocene Hawthorne Highly variable mixture <strong>of</strong>silts, clays, sands, Nor<strong>the</strong>rn boundary from1.5,10,11,12,14,15, limestone, dolomite, and phosphate. Typically Dunedin to N. Old <strong>Tampa</strong>16,17,18,19,20,21. a silty, sandy, phosphatic dolomite; yellowish- <strong>Bay</strong> to middle Hillsboroughgray to white; microcrystalline to very fine. <strong>Bay</strong> to Polk City. Dips toLimestone white or occasionally yellowish- south, sou<strong>the</strong>ast andgray to very pale orange, calcilutitesouthwest; max heightcrytocrystalline to microcrystalline, sandy, exceeds 100ft MSL in SEclayey, phosphatic and dolomitic. Clay; Hillsborough County, andyellowish-gray to light green to moderately dips to greater than -100ftdark gray, quartz silt and sand, micritic, MSL around <strong>Tampa</strong> <strong>Bay</strong>dolomitic, phosphatic. Sand, light gray to very Harbor mouth. Generallypale orange to dusky yellow-green; very fine to thickens to south, thickest inmedium, angular to subangular, silty,band from Sarasota to ENEphosphatic. As many as three units recognized county line.in <strong>the</strong> <strong>Tampa</strong> area. <strong>An</strong> upper sand unit, amiddle phosphatic clay unit, and a lowerlimestone unit Middle unit is <strong>of</strong>ten combinedwith upper, lower, or both. Brooks(1982a)identified 5 facies statewide, three <strong>of</strong> whichexist in <strong>the</strong> <strong>Tampa</strong> area.Miocene <strong>Tampa</strong> (S1. Marks) Quartz sand limestone; s<strong>of</strong>t to hard; white, Underlies most <strong>of</strong> <strong>the</strong> study1.5,10,11,12,14,15, light yellow, tan to gray; occasionally <strong>the</strong> area. Pinched out to north16,17,18,19, upper portion contains calcareous sands and where Suwannee limestone20,21,22,23. clays which grade downward to unconsolidated surfaces. Dips to WSW;or loosely cemented lime mud; upper portion attains maximum elevationcontains chert layers, silicified fossils, and in extreme NE study areaoccasional phosphate nodules or pebbles; very (50' MSL), minimumporous. Sandy, green and gray clay. Fine to elevation (-350' MSL) invery fine quartz sand. High density and vicinity <strong>of</strong><strong>Tampa</strong> Harbora References1) Brooks 1982a2) Davis 19463) Doyle 19824) Cooke 19455) Heath and Smith 19546) Hunter 19787) Cathcartetal.19538) Altschuler eta!. 1964diversity <strong>of</strong> fossils; includes corals, echinoids,ostracods, foraminiferans and mollusks.9) Puri and Vernon 196410) Vernon and Puri 1964'11) Wright 197412) Dames and Moore 197513) TI 1978a14) Knapp 198015) Scott and MacGill198116) Carr and Alverson 1959mouth and City <strong>of</strong>Sarasota.Surfaces in NWHillsborough, N Pinellas,and SE Pasco County.Outcrops in HillsboroughR., Ballast Pt, and InterbayPeninsula. Few feet to 200ft thick.17) Peek 195918) Menke et al. 196119) Hutchinson and Stewart 197820) King and Wright 197921) Deuerling and MacGill198122) Wetterhalll96423) Mann 197224) Brown 1982b281


282us


AppendixAppendix Table A-3. Summary <strong>of</strong>point- and areal-source emissions in west-central Florida (after TI 1978a).QTotal emissions (tIyr)1974 1976County Partlculates(T5P) 5°2 Partlculales(T5P) 5°2Hillsborough Areal sources 12,382 2,559 12,865 2,695Point sources 29,358 267,620 7,909 238,649Manatee Areal sources 3,091 326 3,121 348Point sources 399 746 614 5,593Polk Areal sources 10,983 841 11,199 901Point sources 31,125 119,010 8,127 45,080Sarasota Areal sources 2,806 328 2,901 349Point sources 115 175 115 175Total Areal sources 35,297 4,332 36,176 4,580Point sources 61,095 387,790 16,863 289,736All sources 96,392 392,122 53,039 294,316§Pinellas County was not included in this survey.283


H~Ui1154161241'I'6745234569'0Continued,284


AppendixAppendix Table A-4. Concluded.1974 1976TSP S02 TSP S02-----Source categ0'Y_____lIYi-___-!on/yr t/yr ton/yr t/yr ton/yr t/yr ton/yrPolk CountyMobile sourcesHighway 1,121 (1,233) 355 (390) 1,189 (1,308) 376 (414)Aircraft 3.6 (4) 1.8 (2) 4.5 (5) 2.7 (3)VesselsRailroad 61 (67) 140 (154) 68 (75) 155 (170)Off- highway 43 (47) 51 (56) 46 (51 ) 54 (59)Stationary fuel combustionNatural gasFuel oilCoal 116 (128) 225 (248) 124 (136) 245 (270)Liquid petroleum gasWoodBurningTrash Incineration 4.5 (5) 1.8 (2) 4.5 (5) 1.8 (2)Forest fires, agriculture1,705 (1,876) 1,705 (1,876)O<strong>the</strong>r sourcesCitrus heating 345 (380) 66 (73) 345 (380) 61 (73)Fugitive dust 5,478 (6,026) 5,478 (6,026)Paved roads 2,106 (2,317) 2,235 (2,458)Total 10,983 (12,083) 841 (925) 11,199 (12,320) 895 (991 )Sarasota CountyMobile sourcesHighway 514 (565) 163 (179) 545 (599) 173 (190)AircraftVesselsRailroad 1.8 (2) 4.5 (5) 1.8 (2) 4.5 (5)O1f- highway 22 (24) 27 (30) 23 (25) 29 (32)Stationary fuel combustionNatural gasFuel oilCoal 65 (71) 132 (145) 69 (76) 141 (155)~Liquid petroleum gas -WoodBurningTrash Incineration 4.5 (5) 1.8 (2) 4.5 (5) 1.8 (2)Forest fires, agriculture 544 (599) 544 (599)O<strong>the</strong>r sourcesCitrus heating 1.8 (2) 1.8 (2)Fugitive dust 688 (757) 688 (757)Paved roads 965 (1,061 ) 1,024 (1,126)Total 2,806 (3,086) 328 (361 ) 2,901 (3,191) 349 (384)285


AppendixAppendix Table A-7. Industrial dischargers in <strong>the</strong> Alafia River watershed (qfter Priede-Sedgwick, Inc. 1980;Hartigan and Hanson-Walton 1984).NameDesign/ADF (mgd)8Florida Dairy b. I .Gardinier, Inc. - 166.3Agrico Chemical Company - I -Agrico Chemical Company . I -Borden, Inc. - 14.26Borden, Inc. • I -Brewster Phosphate 0.005/-Brewster Phosphate - 114.57C.F. Chemicals, Inc. - 13.32Conserv - 114.0Electro-Phosphate Corp. - I -Estech General Chemical Corp. - 11.8Farmland industries - 13.27W.R. Grace & Company - 110.09W.R. Grace & Company - 14.67W.R. Grace & Company - 16.68Hopewell land Corp. - 14.42IMC Corporation - 11.44IMC Corporation - 16.70Mid-Florida Phosphate Corp. - I -Mobile Chemical Company - 112.9Mobile Chemical Company - I .Seaboard Coastline Railroad - 10.017TIA Minerals - I -(1.4)(43.7)(5.5)(4.6)(3.6)(N.D.)(2.9)(22.9)(6.0)(0.6)(19.1 )Royster (0.43)Amax (1.84)IMC Corporation (10.7)aData from Hartigan and Hanson-Walton (1984) survey.b(_) =not reportedimmediateFacility activityFeed lotChemical manufacturerPhosphate millingMineBig Four MineCoronet MineHaynesworth MineFort Lonesome MinePhosphate complexMineChemical manufacturerSilver City MineChemical manufacturerChemical manufacturerChemical manufacturerChemical manufacturerRecovery plantChemical manufacturerKingsford MineChemical manufacturerNichols MineChemical manufacturerFreight car yardSands and rock miningChemical manufacturerBig Four MineNoralynlPhosphoria MineReceiving WatersHillsborough <strong>Bay</strong>Hillsborough <strong>Bay</strong>Alafia River - North ProngAlafia River - South ProngAlafia River - South ProngEnglish CreekAlafia River - South ProngAlafia River - South ProngAlafia RiverThirty Mile CreekAlafia River - North ProngAlafia River - South ProngAlafia River· North ProngAlafia River - South ProngAlafia RiverAlafia River - North ProngAlafia RiverAlafia River - South ProngAlafia River - South ProngAlafia River - North ProngThirty Mile BranchThirty Mile BranchWinston CreekAlafia River - North ProngAlafia River - South ProngAlafia River - South ProngAlafia River - South Prong287


BODTC(PtweoCond. (SUrf.) 3~J3(xl0(0)o.pth(fNt)Light 'oneff.flon(irW:M~)'WOfIMeqold.htNttfOOMNttnlt.2112414·34,117·4,2144t539·5413·1454tH)8·1619·1842131L3IU}1.2·1 ,411,l},1,11,311 ,2CL9·1,6fO.8·1 ,14, 8l3, 13.5·6,3r.tS·5,QIUl17.44,7·7.1/5,2,·11,0391340133~4312·66164·atJ-849/4167·lt1;oo·1101,211.01,1·L3IU),1.10,0610,06O.OfHl01IOJ.>S·(1090.4210,60OrgllrdcHltrogMTot••Hhtoo·n00 (top)0,43/0,6100(bohom)pHTot.,Pho5f,dmto$artntty (top)(Wt)$aUnlty (bottom)(Wt)Temp (middle)(1,17/112032/3024/24288


AppendixAppendix Table A-9. Aquatic macrophytes collectedfrom <strong>the</strong> Alafla and little Manatee Rivers (adaptedfromDames andMoore 1975).Sampling Statlons 8 ,bCommon nameScientific nameAlgaeStonewortCharasp.BryophytesFissidensFissidens sp.Vascular PlantsCattailTyphasp.Bur reedSparganium sp.Water-thread pondweedPotamogeton diversifoliusBushy pondweedNajas flexilisDwarf burheadEchinodorus parvulusWater plantainAlismasp.ArrowheadSagittaria sp.WaterweedElodea canadensisSpiker'ushEleocharis acicularisMinute duckweedLemna perpusillaWater-hyacinthEichhornia crassipesAlafla River-> Upstream ->A2 A3 A4 A5 A60(1 )0(1) 0(1)0(2) 0(3)0(2) 0(1) 0(2)little Manatee River-> Upstream ->lM2 lM3 lM4 lM5 lM60(2) 0(1)0(2) 0(2)0(1) 0(1) 0(1)oSou<strong>the</strong>rn pickerelweedPontederia cordata var.lanceolataContinued.0(2)289


CommonMmeScIMtlfic mimeA!·ef. Rt"'e'-'ilo Upstrom-.Uttle Mana!" R!ver-> lJpstrea.m ->A2 A3 A4 AS AS LM2 LM3 LM4 LMS lMS290


AppendixAppendix Table A-10. Bloom species <strong>of</strong>algae detected in <strong>Tampa</strong> <strong>Bay</strong> during1981 (adaptedjromHCEPC 1982).MonthJanuaryFebruaryMarchAprilMayJuneJulyAugustSeptemberlocationHillsborough <strong>Bay</strong>Hillsborough RiverMcKay <strong>Bay</strong><strong>Tampa</strong> Bypass CanalRocky CreekUpper <strong>Tampa</strong> <strong>Bay</strong>Hillsborough <strong>Bay</strong>McKay <strong>Bay</strong>Alafia RiverHillsborough <strong>Bay</strong>Hillsborough RiverMcKay <strong>Bay</strong><strong>Tampa</strong> Bypass CanalDouble Branch CreekChannel "A"Rocky CreekEdgewater Creeklittle Manatee RiverHillsborough <strong>Bay</strong>Hillsborough RiverMcKay <strong>Bay</strong><strong>Tampa</strong> Bypass Canal<strong>Tampa</strong> Bypass CanalHillsborough <strong>Bay</strong><strong>Tampa</strong> Bypass CanalContinued.291Species detectedProrocentrum triestinumP. triestinumEuglena elasticaE. elasticaE. elasticaGymnodinium splendensProrocentrum triestinumProrocentrum triestinumCryptomonas sp.Torodinium robustumNo blooms detected.Gyrodinium fissumLepocinclis playfairianaGyrodinium fissumGymnodinium sp.Lepocinclis playfairianaGymnodinium coeruleumLepocinclis playfairianaProrocentrum sp.Gymnodinium sp.Euglenasp.Gymnodinium sp.Gymnodinium sp.Prorocentrum sp.Gyrodinium sp.Gymnodinium sp.Prorocentrum sp.Lepocinclis playfairianaGymnodinium coeruleumGonyaulax diacanthaLepocinclis playfairianaGyrodinium fissumGlenodinium sp.Prorocentrum triestinumGymnodinium sp.Blue-green filamentousalgaeEuglena proximaGymnodinium coetuleumProrocentrum triestinumGonyaulax sp.Euglena proxima


NovemOOfDeoomoorMcKay <strong>Bay</strong>TwnpaCanalAlatlaRiwrDoublEt BrMch CrEtekenanoel ~A"Roc.ky CreekMcKay <strong>Bay</strong>GymflOdinium Sip~GymflOdinium Sip ..GymflOdinium Sip~Bloo-green filamentousPror~ntrlJm triest/flumGonyaulax diac:ar:tlhaGynrUWt.1IniL(m Sip.No bloomll> det0Ctl$


Appendix Table A-11. Rare, threatened, and endangered plant species in <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> watershed; <strong>the</strong>ir status and distribution among majorhabitats (adaptedfromMcCoy 1980).$peclesAcrostichum danaeifoliumAdiantum tenerumAgalinis purpurea carten<strong>An</strong>dropogon arctatus<strong>An</strong>non. mcom Uc:: m1i)3tn'ii u E 't'lmo'ii tn_ 3ftn"-tn.c ... c4=:l!c ~Q..:.etno~mEm:::s~.:.e:::sV'l:" c- m -> ...... -Uo"imi -m°:lQ.o_cn~mo... ;: .s::: .... Q..! U ~ E ~.ll!.! I ~ E E ...tn ~ ... II) 't) cn-... V'IIl'" c::.... - (I)Source • ~ c :::s fCC:: >. Q. m ; m tii 8. :l E Gi .s:::CITES FCREPA FDACS SI FS FWS 0 a: ~.e ~ .s -a is ~ :: 8 f£ 0 u: i! c7j 0TTT 1E 2':;:T---TT T : "tIR· !ET • • e:)(ETSCTTT T 2TU/I T •IIIIIITTTTTE 2Continued.•


Took A.-J !.~Cfres-fCREPA "FOACS-srFS "i::wSIiIIESowe.-TETT" TTNTi U TifE!'.o~1Jsttacyi T TEm


Appendix Table A-iI. Continued.SpeciesHarriselra porrectaHelianthus debilis vestitusHexaJeqtris spicataHypolepis repens/lex ambigua/lex cas'sinellex deciduaI\,) llex opaca opaca~ llex vomitoria ...Continued.


Ij~IOpunowU·W, '1:JOWW8HI 'ISJIltW ....M&lG.,,::j1!....dAt) qn..t) edQ•II pU......e d~IItWI·.·80t)Iti !dWU••,,(:ueue.,:ii, OJ dWeMS ..! dwlltM dAo'180 :»AA'Id-o".X/GUrd J"l6uo1qNOS turd JWqlSe.tOIourd 'f"1S U.-...nOSlPOOMl.fJ auldpU........fU'OO•. ... ....•"'•.. " . . .. ... ... ..... ..• •.. . "'•..•• •• •.. .I! u.ṁ'2 ::=.e-guill......14:IIl~ = ==- _......... - ........_._---


Appendix Table A-ll. Continued.SpeciesSalviniai rotundifoliaScaevola plumieriSchizacnyrium niveumSchizaea germaniiSelaginjflla apodaSelagin~l/a arenicolaSida ruqromarginataN Sml1ax sma/Iii~ Spiran<strong>the</strong>s brevilabris brevilabrisSpirantftes brevilabris f10ridanaSpiran~es cetnua odorataSpirant1)es cranichoidesSpiran<strong>the</strong>sgracl1isSpiran<strong>the</strong>sgrayiSpiran<strong>the</strong>s laciniataSpiran<strong>the</strong>s lanceolata lanceolataSpiran<strong>the</strong>sfanctiolata paludicolaSpiran<strong>the</strong>s longilabrisSpirantftes polyanthaSpirantf)es praecoxSpiran<strong>the</strong>s vernalisThelypten's augescensThelypt~ris.dentataThelyptttris interruptaCITESIIIIIIIIIIIIIIIIIIIIIIIIIISource-FCREPA FDACS SI FS FWSTTT 1RE 1TTTT TTTTTTTTTT E 1TT T 2TTTTTCIlHabitat b.5 2 c.. :.r:.Q..cCll c. E ~af!'0 II) oS 2 ~ E 1'!!' ~.r:. ~ >- ~C~'" CIl w:: -UE~o..!!! ~.5 ;CIlIl)f!:.c .. ~.t:l:l!1I) CIlC..¥1I)6C1l~E~:::JCIl.¥:::JfIl.s:;C c-~ -> "tit;uoiG..!!!i Q.:o=Q.2iG~fIl::oE1il ': :: 1il '0 "6> ~ ~ 5 C)c 1il i: 8.': 'i EE = ;0~"':::SCllCC~ .... '" ~'; CIl CIl.r:.0.5 06 ~ o.r:.o>-::~o .. o" (G.r:.~0Q.0_0..1Q. 0 .... uQ. LL::J:0v••~t~~?t:~!((:}(••••.•. ~••.••.•••II). \~~.••....;::H~:::::::::


j.JiIJ.... •••....- ,I 'Q. I '0 • .0-8i£fiI)! , .3 i. r; .ISoun;eatts"""~FCREPA~~fOACs~irFS-FViSTTI. eA.,DO Q.i_ ..• ", 2 i i•.' .",.''Oc,-. I'X i;!o -.¥ .. '0C C - - .....li; 11 .'8 ~i I !IIa. '0IiE .'C: >. ~Ii jo.. s; I.·e t ...,. 'I.'••0- c.l s 0._ ~ -"". .•. .!::.!. ..• .!.' Elilte ,. c;;:is&: ••It!~s; ~,. A:i 5iIIIIIITTTE 1TT .. . •T • ..E 3C· . ..-T T 3C •T Ta Citatl


AppendixAppendix Table A-J2. Habitat distribution and relative abundance <strong>of</strong>freshwater fzsh in <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong>watershed (adaptedfrom Layne etal. 1977)..:iHabitat Type a1:1~6"tl1:1 !Il= .c:0 .!!l OIlC\, Cll =6 1:1 .s~ ell CZl!Il !Il!Il ~ C\,S1:1 .:::l..'"'...C\, CllCll'"'~CZl ...:l ~ CZl CZl-; U •!Il .~ !Il ;g !Il S ~ .c:Common Name (Species Name) .5 ] "tl..~ .c: !Il~:cAcipenseridae (Peripheral)Atlantic sturgeon (Acipenser oxyrhynchus)i. ~.... ....is ~Lepisosteidae (Primary)Longnose gar (Lepisosteus osseus) U U S CFlorida gar (L. platyrhincus) A A C A C C C CAmiidae (Prim.ary)Bowfin (Amia calva) C C C C C U UElopidae (Peripheral)Tarpon (Megalops atlanticus) R R REsocidae (Primary)Redfin pickerel (Esox americanus americanus) C U S R SChain pickerel (E. niger) C C SCyprinidae (Primary)Grass carp (Ctenopharyngodon idel/a) C (see text)Redeye chub (Notropis harpert) C SGolden shiner (Notemigonus crysoleucas) C C C C C S CIroncolor shiner (Notropis chalybaeus)UDusky shiner (N. cummingsae)VPugnose minnow (Notropis emiliae) R RSailfin shiner (N. hypselopterus) C VCoastal shiner (N. petersom) R A ATaillight shiner (N. maculatus) C U C U U VCatostomidae (Primary)Lake chubsucker (Erimyzon sucetta) A A C U U U U UIctaluridae (Primary)White Catfish (lctalurus catus) U U C S S VYellow bullhead (I. natalis) C C U C C C UBrown bullhead (I. nebulosus) A A C C C C CChannel Catfish (I. punctatus) U U C S VTadpole rriadfurri (N()iiirus gyrinus) C U R UContinued.299S


cssuvuusC A C C CS S S SV RC S lJ (' S RR R R VP.iflJ U tJ tJSS C C C C CSSSCRuCsuContinued.300


AppendixAppendix Table A-l2. Concluded.Common Name (Species Name) ~Poeciliidae (Secondary)Mosquito fish (Gambusia affinis)Least killifish (Heterandriaformosa)Sailfm molly (Poecilia latipinna)Black molly (P. latipinna x velifera)Swordtail molly (P. petenensis)Guppy (P. reticulata)Liberty molly (P. sphenops)Clariidae (Secondary)Walking Catfish (Clarias batrachus)Cichlidae (Secondary)Blue acara (Aequidens pulcher)Jack Dempsey (Cichlasoma oct<strong>of</strong>asciatum)Rio Grande cichlid (C. cyanoguttatum)Jewelfish (Hemichromis bimaculatus)Blue tilapia (Tilapia aurea)Blackchin tilapia (T. melano<strong>the</strong>ron)Mozambique tilapia (T. mossambica)Congo tilapia (T. sparmannt)A<strong>the</strong>rinidae (peripheral)Brook silverside (Labides<strong>the</strong>s sicculus)Inland stlverside (Menidia beryllina)Clupeidae (Peripheral)Gizzard Shad (Dorosoma cepedianum)Threadfin Shad (D. petenense)Belonidae (peripheral)Atlantic needlefish (Strongylura marina)II= ~e"0Habitat TypeaI;fl= .cl0 .fQ CIJl:l. ~e = oS=.... ~00-a u .I;fl . I;fl I;flCJI;fl= "0 l:~00 ~ < 00 00.... I;fl ~~ el:l.I;fl.cl'C .:.c: ~= -.::: ~...~ elll:l. ell...~A A C A AC A A ACASAAcue uEstablished but habitat unknownEstablished but habitat unknownEstablished but habitat unknownEstablished but habitat unknownf~ .cle~:::~ is ~<strong>An</strong>guillidae (peripheral)American eel (<strong>An</strong>guilla rostrata) cue u u uSSSSSa Relative abundance categories and abbreviations: abundant (A), common (C), uncommon (U), rare (R), very rare (V),population status questionable (S).cuuSAuRRSCuACSSCcuURRSSSScRAACSSuccuSRRCCU301


a_ ChondrichthyesFamily ()reaolobidaefJ~ {(ilrIR~),,'m)SI(mulr cin'arwll)Family RhlncooontidaeWhale.'amily ()dtmta.ididaeSand (Odonta.fpLt «JIlI"USIF'arnih,; l.atnnidaeMOrder SemfonotlformesOrder EloplformesIi'atnily ElopidaeI"a•.olly (:.n:harbinid~B~ ~ (Corcha',hlrl:u,t Q('ro~Jtl"i)lJuUOrder <strong>An</strong>gul1nformes'amil)' <strong>An</strong>guUlida...Mf'amily OphkhthidaeM'*(echi{IJ"his ifll(~rtbtctusl M"Order RaJUorm••'amtly .lriltl.~SmalJt()(,AA ~Iwfl~h IE ",un J.ltJ"lilkl1ill.'amU, Rhl:nobaU_Order CiupeiformesClulX>cldaeMF"Maasa OsteichthyesOrder Acfpen$ertformesOrder Myclophltormes302


AppendixAppendix Table A-13. Continued.Species Habitat TypeR Species Habitat TypeaOrder SiluriformesFamily Cyprinodontidae (continued)Family Ariidae Marsh killifish (Fundulus confluentus) EHardhead catfish (Ariusjelis) M,E Gulf killifish (F. grandis) EGafftopsail catfish (Bagre marinus) M,E Seminole killifish ( F. seminolis) F*Family IctaluridaeLongnose killifish (F. similis)ERainwater killifish (Lucania parva)EBrown bullhead (/ctalurus nebulosus) F*Family PoeciliidaeOrder BatracholdlformesMosquit<strong>of</strong>ish (Gambusia qffi.nis)F,EFamily BatrachoididaeSailfin molly (Poecilia latipinna)EGulftoadfish (Opsanus beta)M,ELeopard toadfish (0. pardus) M Family A<strong>the</strong>rinidaeAtlantic midshipman (Porichthys plectrodon) M,E Rough silverside (Membras martinica) EOrder Goblesoclformes Tidewater silverside (Menidia peninsulae) EFamily GobiesocidaeOrder lamprldlformesSkilletfish (Gobiesox strumosus)M,EFamily RegalecidaeOrder Lophllformes Oarfish (Regalecus glesne) M*Family OgcocephalidaeOrder GasterostelformesPancake batfish (Halieutichthys aculeatus) M*Family SyngnathidaePolka-dot batfish (Ogcocephalus radiatus,) M,ELined seahorse (Hippocampus erectus) EOrder Gadlformes Dwarf seahorse (H. zosterae) EFamily Gadidae Fringed pipefish (Micrognathus criniger) ESou<strong>the</strong>rn hake (Urophycis floridana) M,E Dusky pipefish (Syngnathus jloridae) EChain pipefish (S.louisianae)EFamily OphidiidaeGulf pipefish (S. scovel/i)ELongnose cusk-eel (Ophidion beanO M*Blotched cusk-eel (0. grayi) M Order PerclformesCrested cusk-eel (0. welshi) M Family CentrarchidaeOrder A<strong>the</strong>rlnlformesBluegill (Lepomis macrochirus) F*Largemouth bass (Micropterus salmoides) F*Family ExocoetidaeBallyhoo (Hemiramphus brasiliensis) M* Family CentropomidaeHaltbeak (Hyporhamphus unifa.sciatus) M,E Snook (Centropomus undecimalis) M,EFamily BelonidaeFamily CichlidaeAtlantic needlefish (Strongylura marina) M* Blackchin tilapia (Yilapia melano<strong>the</strong>ron) ERedfin needlefish (S. notata)M,EFamily SerranidaeTimucu (S. timucu)M,EBlack sea ba~s (Centropristis striata) M*Houndfish (Tylosurus crocodilus) M*Sand perch (Diplectrumjormosum)MFamily Cyprinodontidae Jewfish (Epinephelus itajara) M,EDiamond killifish (Amnia xenica) E Red grouper (E. morio) M*SheePshead minnow (Cyprinodon variegatus) E Gag (Mycteropercamicrolepis) MGoldspotted killifish (Floridichthys carpio) E Belted sandfish (Serranus subligarius) M*Continued.303


<strong>Tampa</strong> <strong>Bay</strong> <strong>Ecological</strong> <strong>Characterization</strong>Appendix Table A-13. Continued.Species-----_•.._----Family GrammistidaeGreater soapfish (Rypticus saponaceus)Family ApogonidaeBronze cardinalfish (Astrapogon alums)Family PomatomidaeBluefish (Pomatomus saltatrix)Family RachycentridaeCobia (Rachycentron canadum)Family EcheneidaeSharksucker (Echeneis naucrates)Remora (Remora remora)M*M*M,EM,EM,EM,EFamily CarangidaeBlue runner (Caranx crysos)MCrevalle jack (C. hippos)M,EHorse-eye jack (C. latus) E*Atlantic bumper (Chloroscombrus chrysurus) M,EBluntnose jack(Hemicaranx amblyrhyncus) M*Lea<strong>the</strong>ljacket (Oligoplites saurus)M,EAtlantic moonfish (Selene setapinnis) M*Lookdown (Selene vomer)MRorida pompano (Trachinotus carolinus) M,EPermit (T.falcatus)M,EPalometa (T. goodei)MFamily LutjanidaeSchoolma.'\ter (Lutjanus apodus)Gmy snapper (L. griseus)Lane snapper (L. syoogris)Family LobotidaeTripletail (Lobotes surinamensis)Family GerreidaeIrish pompano (Diapterus auratus)Striped mojam (D. plumieri)Spotfm mojam (Eucinostomus argenteus)Silverjenny (E. gula)Yellowfin mojarra (Gerres cinereus)Family PomadasyidaeTommte (Haemulon aurolineatum)White grunt (H. plumieri)Pigfish (Orthopristis chrysoptera)M*M,EM,EM,EM*EM,EM,EE*M*MM,EContinued.304Species _Habitat Type aFamily SparidaeSheepshead (Archosargus probatocephalus) M,EGrass porgy (Calamus arctifrons)M*Family Sparidae (continued)Spottail pinfish (Diplodus holbrooki)MPinfish (Lagodon rhomboides)M,EFamily SciaenidaeSilver perch (Bairdiella chrysoura)Sand seatrout (Cynoscion areoorius)Spotted seatrout (C. nebulosus)High-hat (Equetus acuminatus)Cubbyu (E. umbrosus)Spot (Leiostomus xanthurus)Sou<strong>the</strong>rn kingfish (Menticirrhus americanus)Gulfkingfish (M.littoralis)Nor<strong>the</strong>rn kingfish (M. saxatilis)Atlantic croaker (Micropogonias undu!atus)Black drum (Pogonias cromis)Red drum (Sciaenops ocellatus)Family MullidaeSpotted goatfish (Pseudupeneus maculatus)Family KyphosidaeBermuda chub (Kyphosus sectatrix)Family EphippidaeAtlantic spadefish (Chaetodipterus faber)Family LabridaeSlippery dick (Halichoeres bivittatus)Hogfish (Lachnolaimus maximus)Family ScaridaeEmerald parrotfish (Nicholsioo usta)Family MugilidaeStriped mullet (MugU cephalus)White mullet (M. curema)Fantail mullet (M. trichodon)Family SphyraenidaeGreat barmcuda (Sphyraena barracuda)Nor<strong>the</strong>rn sennet (S. borealis)Guagrianche (S. guachancho)M,EM,EM,EM,*M*M,EM,EMM,EEM,EM,EM*M*M,EM*M*MM,EM,EM,EM,EM*M*


..AppendixAppendix Table A-I3. Concluded.HabitatFamily Pol~'nemidaeAtlantic threadfin (Polydacrylus octonemus) M*Family OpistognathidaeMoustache jawfish (Opistognatlzus lonclzurus) M*Family DactyloscopidaeSand stargazer (Dactyloscopus tridigitatus) M*Family UranoscopidaeSou<strong>the</strong>m stargazer (Astroscopus y-graecum)M,EFamily ClinidaeBanded blenny (Paraclinusfasciatus) E*Marbled blenny (P. marmoratus) E*Striped blenny (Clzasmodes bosquianus) M*Florida blenny (C. saburrae)M,ECrested blenny (Hypleuroclzilus geminatus) M*Fea<strong>the</strong>r blenny (Hypsoblennius !zentzi) M,EHighfin blenny (Lupinoblennius nic!zolsi) M*Seaweed blenny (Blennius mamwreus) M*Family EleotridaeFat sleeper (Dormitator maculatus) F*Family GobiidaeFrillfin goby (Bat!zygobius soporator)EDarter goby (Gobionellus boleosoma)ESharptail goby (G. lzastatus)ENaked goby (Gobiosoma bosci)ETwoscale goby (G. longipala) E*Tiger goby (G. macrodon)M,ECode goby (G. robustum)EGown goby (Microgobius gulosus)EGreen goby (M. tlzalassinus)EFamily TrichiuridaeAtlantic cutla.'isfish (Trichiurus lepturus)Family ScombridaeKing mackerel (Scomberomorus caval/a)Spanish mackerel (8. maculatus)MMM,EFamily StromateidaeHatvestfish (Peprilus alepidotus) M*Butterfish (P. triacanthus) M*-, -. ~Species- - - ._-----_.. _- -, -_. - - --,Family ScorpaenidaeBarbfish (Scorpal~na brasiliensis)Family TriglidaeHorned scarobin (Bel/ator militaris) M*Bluespotted searobin (Prionotus roseu.s) M*Blackfin scarobin (P. rubio) M*Leopard scarobin (P. scitulus)M,EBighead searobin (P. tribulus)M,EOrder PleuronectlformesFamily BothidaeOcellated flounder (<strong>An</strong>cylopsettaquadrocellata) M*Spotted whiff (Citharichthys macropsy M*Fringed flounder (Etropu.s crossotu.s)MGulf flounder (Paraliclzthys albigutta) M,EDusky flounder (Syacium papillosum) M*Family SoleidaeLined sole (Aclzirus lineatu.s)Hogchokcr (Trinectes maculatu.s)Family OstraciidaeScrawled cowfish (Lactophrys quadricornis) M,ETrunkJish (L. trigonu.sjM,E*Smooth trunkfish (L. triqueter) M*Family TetraodontidaeSmooth puffer (Lagocephalu.'1laevigatus)Sou<strong>the</strong>rn puffer (Sphoeroides neplzelus)M,EM,EFamily CynoglossidaeBlackchcck tongucfish (Symp!zurus plagiu.sa) M,EOrder TetraodontlformesFamily BalistidaeOrange filcfish (Aluteru.s schoepfi)Fringed filefish (Monacanthu.s ciliatu.~')Planehcad filcfish (M. hispidu.\')Habitat TypeRM*MM,EM,EM,E*M,EFamily DiodontidaeStriped burrfish (Chilomyeterus schoepfi) M,EBalloonfish (Diodon h()locanth~') M*aM =marine, E =estuarine, F =freshwater, * =uncommon to mre305


<strong>Tampa</strong> <strong>Bay</strong> <strong>Ecological</strong> <strong>Characterization</strong>Appendix Table A-14. Habitat distribution and relative abundance <strong>of</strong>terrestrial reptiles in <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong>watershed (adaptedfrom Layne et at. 1977).Habitat TypeSCommon Name (Species Name)Box turtle (Terrapene carolina)Chicken turtle (Deirochelys reticularia)Gopher tortoise (Gopherus polyphemus) C C>ty Florida scrub lizard (Sceloporus woodl) R C ·R···-Texas horned lizard (Phrynosoma cornutwn)Six-lined mcerunner(CnemitkJphorus sex/ineatus) C cc·t.rJ.lgEug g ~ 't:l'"j u::: fa> '" e ~ g g ~ -eOJ;:J ::g 0 r:l:l ;:J~U,;.-.;.;.;.-.;.;.p JJ' tV R>R -c··c. C· U -US.· -......;. ··.R·RRuc u u U U .. R U· U - RR R - .- -R R .~.vU U UR RU U U -Eastern hognose snake(Heterodon plaryrhinos)Sou<strong>the</strong>rn hognose snake (Heterodon simus)Ringnecksnake (Diadophispunctatus)Pine woods snake (Rhadinaea/laVilata)u ­R ­U -R -Continued.306R ­;. ... U C.R··U ­R. -......i::U·" U.•. U RRRU U C U ­U C C -u .....·U- . R.· S


AppendixAppendix Table A-14. Concluded).Mud snake (Farancia abacura) .. _.. CRacer (Coluber constrictor) C CiC C> U A DC - C· ~( ACoachwhip (Masticophis flagellum) U U un u .RUR&Rough green snake (Opheodrys aestivus) U uti Hi U U· R. ... U -" "'Eastern indigosnake:(Drymarchon corais couperi) U • URat snake (Elaphe obsoleta) U U U U U 0 C .•MiIksnake (Lampropeltis triangulum) U - R U R RScarlet snake (Cemophora coccinea) R - .Florida crowned snake (Tantilla relicta) R RV R •........".... ... " ..•Eastern coral snake (Micrurusfulviusfulvius) U -,..·Ii U UlJR ~ ..Cottonmouth (Agkistrodon piscivorus) -Ri Up.··..·;.····· ·..UPigmy rattlesnake (Sistrurus miliarius) U -R/V U .>...>t{(Eastern diamondback mttlesnake:::/:::::';;::::>:;:::::::(Crotalus adamanteus) U UC< C U U un C COPa Relative abundance categories and abbreviations: Abundant (A), Common (C), Uncommon (0), Rare (R).Very rare (V), Breeding population (B), Population status questionable (S)307


~« ~ < u ot:~ Vviu


Appendix! II I>I I I I ii I II ::> I I..&(:: qSJtlW Itlpmuy.....S:a qs.rew J:lIP.MqsaJdl:'O=:=I I I II I U:::> II I I I et: i I I I I U I:::>U ::>::> I! IUU I I I I II I:::>:::> I I I I I I I I I I IdWUMS Il!pmuy I I I I I I1l):jIUI II:::JI II II IIdumMS SSOJdA;)dweMS (XX)MPJtlH309


IIamml Type aColi)"'"R U AU U C A UC C C"" - UQ~....:"_..'"- - - S~.gGilu -f~U U U C CUU U R RU U CC U C U A U - CSaboodaoc-e categoriesPopu~tion status questiooable (5)Breeding population (B).


Appendix TableA~17,Wetland and aquatic habitat distribution and relative abundmu:e tfamphibians in <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> watershed (adaptedf!om!!fYne et ai. 1977).Species0. 0.m ~ ~ g-~ ~ ~ ;'0 Vl ~ r.n8 r.n :> , ~ t::.__~::t:,-_U tC. «Two-toed amphiuma (Amphiuma means) U U - UGreater siren (Siren lacertina) U ULesser siren (Siren inlermedia) C CDwarf siren (Pseudobranchus stria/us) R REastern newt (Notopltlhalmus viridescensJ U USou<strong>the</strong>rn dusky salamander (Desmognalhus auriculalus) UwDw.ufs;:uamander (Eurycea quadridigiuua)Ea..~rn .spadefoot (ScaphWpus holbrooki)UUUU:: Greenhouse frog (EleuJherodactyJus planirostris)Sou<strong>the</strong>rn toad (Bufo terrestris)Oak toad (Bufo quercicusJAAUUUGiant toad (Bufo marinus)Sou<strong>the</strong>rn cricket frog (Acris gryllus)Green ueefrog (Hyla cinerea)Barking treefrog (Hyla graliosa)Pine woods treefrog (Hylajemoralis)Squirrel.treefrog (llyla squirdla)UURRACuban 1lTeefrog (Hyla seple11lrionalis)uuuuUUUHabitat Type a ~ ~ -• . '" ~ 'C~ ~ ~ ~c at> ~ '?s Vl ~ ~"'" e ~ ~ ..c: Vl ~ Vl ";5; ~ ... 0 e '0 d ~ >,:s 'C ~ I;;; ~ c ~ ...... ~~ ! ~ ! ~ ~ a ~ '" ! ~ ~o ~ ~ ~ ~ ~ ~ e.Q 5 0I;;; ~!.C ~ ~ ~. c!.c Vj..c:~ ..... '" ,,.., .... c "'" ~ 'C .,.., c:l ~~ ~ .~. ~ ~ 8 j .~ br ~ 0 "~ ~~. .__.~_"_._~~. . _. C"L.__.,"~..CCUUUCUU u- - cu u CC C u- - cu - ALittle grass frog (Limnaoedus ocularis) R U - - U C C U - - A CChorus frog (Pseudacris nigrita) U C - - - B B B - - B BEastern narrow-mou<strong>the</strong>d toad (Gastrophryne caroliJlensis) C u- . U eBB - - - B BBullfrog (Rana cmesbeiana) U U - - U U U C - - C CPig frog(Ranagrylio) U U - - U C C C - - c CGreen frog (Rana clamitans) S .S . - - - - - - - - - SCBBAUBB13CRRBRBACBBBRRBC U -U R - UU U - VR R UU U U UB - - BSou<strong>the</strong>rn leopard frog (Rana sphe1lOcephaia) A . C. . •R C· U A A C U - A C U AFlorida $opberfrog (Rana areolata aesopus) --- .. _. - B 13 - - - B - - 13 - -.• Relative abundance categories and abbreviations: Abundant (A), Common (c). Uncommon (U), Rare (R), Vcry rare (V), Breeding population (B), Population slalUsquestionable (5),B13BACBBBUABB13UAB1313AC13.13BBC13BCCf :::JQ.Sf


<strong>Tampa</strong> <strong>Bay</strong> <strong>Ecological</strong> Characterllallol1Apperuiix Table .4,,18. Terrestrial hahitats in which forest (arboreal) birds in <strong>the</strong>lourui. including distrilmtiiJn. rclmive abundann:, andTl1978c).ocCurrence (w..tap.tctijlWhite-winged dove (Zlmaida asiatica)f\louming dove (Zenaida macroura)Commmon ground..(}ove (Colu.mbinaYdlow~bmed CUl;K(;~)WPPHlack··bilkd cuckoo t'rythropthalmus) .1\1Nonhem bobwhite (Colinlls virginiaruJs)PpC:huck·wiH'swidow (C'aptimulgus carolinensL\) SWhip poor· willWC'OlrmtlOt1 nig:l1t!ta\\,'k (


AppendixAppendix Table A-18. Continued.SpeciesBlue jay (Cyanocitta cristata)(Florida) Scrub jay(Aphelocorna eoerulescens eoerulescens) P UCaroililachlckadee(Paruicar(jITnensL~)' ········p····U··_·····RA(j"CUHabitat type bOIl.>- ~i::' i::'r;r.; ii: V) E-< U ::;E ::J Q QP C C C C C U····u···UC CR RR ····RBrown creeper (Certhia americana) W R R R R RFIoi.lsc·wren(Troglod§ie.~ae·aoii5···-········_····W···Tr· U "'0 Tf ·u· ··tT··UCRR···u·RWinter wren (T. troglodytes) W R R R R R RBewick's wren (Thryornanes bl.'Wickii) W R R R RCiiroHna··wren(TfiryotJi.Orii.~liidOvT(:Tanii.~r·p·CtcA··A·CShort-billed marsh wren (Cistot!wrus platensis) W UNor<strong>the</strong>rn mockingbird (Mimus polyglottos) P A A ACe C C AGrayCiitbfrd (DumeteUa carr:)llnen.\i"iY· . "P'C "'TrTr"C'c' ····e ··c·· UBrown thrasher (Toxostorna rufum) P C U U C C C C UAmerican robin (Turdus migratorius) wee C C C C C AWoOd·thrush(flylo(,!'chlamu."iietliia) . W D . R 'R U'O ....'UR"Hermit thrush (Catharus guttatus) W U R R U U U RSwainson's thrush (c. ustulatus) M R R R R R R RGriiY~heekeathrusfi(C.mlnlmu:~r· M-··R·· ····RR ···_·R····R···lf·-RVeery (c;.fuseeseens) M R R R R R R REastern bluebird (Sialia sialis) P U U UBIUe~griiygniitciitchcr(Poliopilla'caeruTea)"15'·'(' ·····U· 'U ·········eGolden-crowned kinglet (Regulus satrapa) W U R R URuby-crowned kinglet (R. calendula) W C U U CWater·plplt(Arithi.i.~sji{noleiiaf-·".. ······WCedar waxwing (Bombycilla cedrorum) W ULoggerhead skrike (Lanius ludovicianus) P CEuro~an·starrrng(SiUrnus·vulgarl."iY.. p····UWhite-eyed vireo (Vireo griseu.~) P CYellow-throated vireo (V.flavifrons)MSoIriary..vIreoTVsolliarliiS5·········· .. · -··W·· ····U·Continued.313C 'C '0U U RC C U····eR U U U R RA C A'0'· U ·······U·'UU"Uu C C C C UU U u·D··UO "UU


<strong>Tampa</strong> <strong>Bay</strong> <strong>Ecological</strong> Characterlt,alionAppendix Table A·,Continlu~d,Red,eyed vin.x) (VIr('o o!iwU'('us)Philadelphia (V philaddphicus)gilvus)\\J."rhlint' vireoSMMtJRRURRlJRRW0I111-


AppendixAppendix Table A-lB. Continued.Habitat type bSpeciesC'iltil::I...........C'il ~ '"til-;.B~I:I:> 0 Itil ~C'il c:~tZlCl:Mourning waIbler (Oporornis philadelphia) MCommon yellowthroat (Geothlypis trichas) P C C CYellow-breasted chat (Icteria virens)MHooded warbler (Wilsonia citrina)MWilson's waIbler (W. pusilla)MCanada warbler (W. canadensis)MAmerican redstart (Setophaga ruticilla)MBobolink (Dolichonyx oryzivorus)MEastern meadowlark (Sturnella magna) P U A A"'R-ed·--wt ..·n-g-ed .......b·la-c·k·bl,-·rd.:..--r(A·g-e·la-;ius-p'hoi"-e-m,-·c-eus~) -------.-:P- U U UOrchard oriole (Icterus spurius) S R R RNor<strong>the</strong>rn oriole (I. galbula) W R R RRusty blackbird (Euphagus carolinus) -W----------------------U----U-----u----UBrewer's blackbird (E. cyanocephalus) W R R R RBoat-tailed grackle (Quiscalus major) P U UCommon grackle (Q. quiscula) P U UBrown-headed cowbird (Molothrus ater) W U U U UScarlet tanager (Piranga olivacea) M R R RSummer tanager (P. rubra) S R U U U U UNor<strong>the</strong>rn cardinal (Cardinalis cardinalis) P C R R C C C URose-breasted grosbeak (Pheueticus ludovicianus) M"'B·lu-e-gr-os·,be----.ak-'(7;G"u..ic-ra-c-a-'c-a-er-u·le-a"')------.:.--M....-·R R RU--------------U-U--lJ------Indigo bunting (Passerina cyanea) W U U U UPainted bunting (P. ciris) M R R R RDickcissel (Spiza americana) W -'-'-TAmerican goldfinch (Carduelis tristis) W U U U C C C CRufous-sided towhee (Pipilo erythrophthalmus) P A A A C C C A <strong>An</strong>S-av-ann-ah-'-s-p-arro--w-:(""P:-'-as-s..o...e-rc-u·lus-=-s-a-ndw~i"-ch"--e-ns-l"--·s):--~W'-;-;-· U C C-----------_·--CGrasshopper sparrow (Ammodramus savannarum) W U(Florida) Grasshopper sparrow (A. s.floridanus) P R RTiHr:-ens=-::i"lo:-::w:-:";-:-s-=sp::-:a=rro==w~(;;-:;A-.heT-:-ns-:-/aw'-:""ii")--=----:..---.W.,------ ··--------··..·------·-·····--R·Lark sparrow (Chondestes grammacus) W RBachman's sparrow (Aimophila aestivalis) P C C CContinued.315UUAU


hynmlJis)ChiI'lping SmlJnlW Vf}piz('l,ia Ihl..tw:rimJ)Wllitc'Cf1(lWned spamlw {l,.{)'llllirrlt'hit1lc/J,cophrvslWhite,thrm:llcd (if)ilimlWHabihl!V'::.\<strong>of</strong>,


AppendixAppendixTable A-19. Wetland habitats in whichforest (arboreal) birds arefound in <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong>watershed,including relative abundance and seasonal occurrence (adaptedfrom Layne ct. at. 1977, TI1978c).Habitat type b ..cCl:JMourning dove (Zenaida macroura) P UMangrove cuckoo (Coccyzus minor) S RYellow-billed cuckoo (C. americanus) S C C CBlack-billed cuckoo (C. erythropthalmus) M R R'~"-R--'---~-'---'---~-Nor<strong>the</strong>rn bobwhite (Colinu.'l virginianus) P UWild turkey (Meleagris gallopavo) P U UChuck-will's-widow (Caprimulgus carolinensis) S C C-C-_·~----Whip-poor-will (C. vociferus) W U U URuby-throated hummingbird (Archilochus colubris) S U U UNor<strong>the</strong>rn flicker (Colaptes auratus) P UC------tJPileated woodpecker (Dryocopus pileatus) P U U URed-bellied woodpecker (Melanerpes carolinus) P C C CRed-headed woodpecker (M. erythrocephalus) P U U_.~-~----~---,---Yellow-bellied sapsucker (Sphyrapicus varius) W C C UHairy woodpecker (Picoides villosus) P U U UDowny woodpecker (P. pubescens) P C C CEastern kingbird (Tyrannus tyrannus) S C U U C C UGray kingbird (T. dominicensis) S CGreat crested flycatcher (Myiarchus crinitus) P C C CEastern phoebe (Sayornis phoebe) W U U U U C CYellow-bellied flycatcher (Empidonaxflaviventris) M R R RAcadian flycatcher (E. virescens) M U U ULeast flycatcher (E. minimus) M U U U UTraill's flycatcher* (E. traillii) M U U UOlive-sided flycatcher (Nuttallornis borealis) M R REastern wood-pewee (Contopus virens) M U U UTree swallow (lridoprocne bicolor)~W A ABank swallow (Riparia riparia) M U --tT----Sou<strong>the</strong>rn rough-winged swallow(Stelgidopteryx ruficollis) S U UBam swallow (Hirundo rustica) M --'-~-----'-------~--'----------TJ---u-----Cliffswallow (Petrochelidon pyrrhonota) M U UPurple martin (Progne subis) S C CBlue jay (Cyanocitta cristata) P CCarolina chickadee (Parus carolinensis) P U U UContinued.317~C---C---=---'-~-'::----~-::-----"-::'----"--


p c c cP R R RW R it RW lJ lJ lJ lJW R R R RP A A A ('W U U UWp' C CUp C C C C lJw C (' C A Uw c c c uw c cf)cJ;> u u uwsuuuContinued.318u


AppendixAppendix Table A-19. Continued.SpeciesHabitat~peb~~ "'0"'0 I: -g .c"8~fa fa .§ .:g.ca ~';:lg ~ ';:l ~ "£3 5 ~0 "'0~0 5~!a "'0 ~ ~ ~ '1:: ~ea .cfa~~~·S~I: ~0 "'0 ....... 0 ~ ~~ S- l:l..~ .c ~~.c ~~ ...... ~0 S ..... ~~ fa 0~lZl I=Q ~ U ~ tr.l U:: tr.l~~-Swainson's warbler (Limnothlypis swainsonii) M R R RWonn-eating warbler (Helmi<strong>the</strong>ros vermivorus) M R RLawrence's warbler (Helminthophaga lawrencei) M RBrewster's warbler (H.leucobronchialis) M RGolden-winged warbler (Vermivora chrysoptera) M RBlue-winged warbler (V. pinus) M RTennessee warbler (V. peregrina) M R R ROrange-crowned warbler (V. celata) W U U UNashville warbler (V. ruficapilla) M R R RNor<strong>the</strong>rn parula (Parula americana) P C C C UYellow warbler (Dendroica petechia) M U U U RMagnolia warbler (D. magnolia) M R R RCape May warbler (D. tigrina) M U U UBlack-throated blue warbler (D. caerulescens) M U U UYellow-romped warbler (D. coronata) W A A A CBlack-throated green warbler (D. virens) M U U UCerulean warbler (D. cerulea) M R R RBlackburnian warbler (D.fusca) M R R RYellow-throated warbler (D. dominica) P U U UChestnut-sided warbler (D. pensylvanica) M R R R<strong>Bay</strong>-breasted warbler (D. castanea) M R R RBlackpoll warbler (D. striata) M R R RKirtland's warbler (D. kirtlandii) M R R RPine warbler (D. pinus) P R R UPrairie warbler (D. discolor) W U U U(Florida) Prairie warbler (D. discolor paludicola) p CPalm warbler (D. paimarum) W C C C COvenbird (Seiurus aurocapillus) W U U UNor<strong>the</strong>rn waterthrush (S. noveboracensis) M R R RLouisiana waterthrush (S. motacilla) M R R RKentucky warbler (Oporornisformosus) M R R R RConnecticut warbler (0. agilis) M R R R RMourning warbler (0. philadelphia) M R R R RCommon yellowthroat (Geothlypis tricliGs) P C C C C C CYellow-breastedchat(lcteria virens) M R R R RHooded warbler (Wiisonia citrina) M U U U UContinued.319


Appentii,x TableA·19. Concluded.,Wil'lOt'l's wwbler{WlLfmuapuslll(()C.lada warbler (W. tYl~lUls))HabhatIP6 b -gjl!.c·lii ... S ~ t2't:I~ ~ e~ eM R RM R RM C C~.0 $J;i.~'i3 i;I')U U .A .AR RW U U UW R R RU U U UU U US U U UJ} C C C UM U U R RW C C C IIRRRW U U UW R R RW C CWM320


AppendixAppendix Table A-20. Aquatic habitats in whichforest (arboreal) birds are found in <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> watershed,including relative abundance and seasonal occurrence (adaptedfrom Layne et. al.1977, TI1978c)...ttlE5ttlHabitat type b-attlttlc bI:)-attl ttlSpecies0 c ~ ....Q) '1::lttlttlro.\::ro~cQ) 0 P< ~ 0CI:l ...J 0.. CZl CZl U-------~_._---Gray kingbird (Tyrannus dominicensL~) S CScissor-tailed flycatcher (T.forjicatus) W UEastern phoebe (Sayornis phoebe) W C CTree swallow (lridoprocne bicolor) W A --·A-----·- ABank swallow (Riparia riparia) M U U USou<strong>the</strong>rn rough-winged swallow (Stelgidopteryx rujicollis) S U U UBam swallow (Hirundo rustica) -----.-.-- M .---- U-----O----·--·U·---~·Cliff swallow (Petrochelidon pyrrhonota) M U U UPulple martin (Progne subis) S C C CCarolina wren (Thryothorus ludovicianus) .p-----.-..-----.-..--...----.--..--..--.....--......Long-billed marsh wren (Cistothorus palustris) W U U U(Marian's) Marsh wren (C. palustris marianae) P R R RWater pij)lt (<strong>An</strong>thus spinoletta)" ----·-·......---..- ....- ....-W·..·..·..·--C·-·....--··C---·--·---..·-.............,C.........----Nor<strong>the</strong>rn waterthrush (Seiurus noveboracensis) M R R RLouisiana waterthrush (S. motaeilla)Common yellowthroat (Geothlypis trichas)M R R·----..----p..··-----C-··-·C-----:::--RCAmerican redstart (Setophaga ruticilia) M C C CRed-winged blackbird (Agelaius phoeniceus) P C C C"Boat-tailedgrnckle«(2UiscaliiSmexicanus) -.-- P A'---A' CCommon grackle (Q. quiscula) P C Ca P =Permanent resident; S =Summer resident (visitor); W =Winter resident (visitor); M =Migrant.b A =Abundant; C =Common; U =Uncommon; and R ~ Rare.321


Tam~ 8ayEcologicai <strong>Characterization</strong>Appendix Table A~21 ..lfabiwdistribution, relative abundance, and seasonal (JCcurrence <strong>of</strong>wading birds in <strong>the</strong>Tl1lfIPa <strong>Bay</strong> If.lQte,.,.;hed (aliaptedfrom ulyne et 11/97&).Habitat type bOre~lt bhre heron(Arf/c


Appendix Table A~21,SpeciesScarlet ibis(Eudocimus ruber)Concluded,Appendix-,;:l~"::1 ~ "Cl"Cl..c:.. '8 ~ ij~ ~ ~0Habitat type b.c0g -= ~ "::1:E 8 ~.... ~~ 'E '" .... S("$'"~ ~ 'C £ ....7a "Cl ..c: >Vl«lc:: «l~ c. ~ '[ ~ ~/:)Ij~ 3~ -,;:l ~~~..c: ~>


<strong>Tampa</strong> <strong>Bay</strong> ecological <strong>Characterization</strong>AppeNiix lQble A~22. Habitat distributkm, relative abundatu'e, and,feasonal occurrence <strong>of</strong>jk;ating anddivingwaterbirds tft <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> wlllershed (adaptedfrom Layne et 1977, TI1978c).SpeciesCommon loon (Oavta immer) W - URed-throated loon (0. stella/a) W - RRed-necked grebe (Podicep$ gr/segena) W - RIlornc,rgreootP:'tiiiTliiLir-'''"''''''''·''''''''''''''''w''"..,:,.,~~~,,;.H:"'~""'"":""N"":"'·""':"-'-'''R~''"":'''''''''':'~'''''R''-''''C'''''N:''''Pied-billed grebe (Podilymbus podlceps)pee uAmerican white pelican(PeleciVUl.$ erythroruCA\"'.'-'!!I'''''' columbianul;)CaNitk:n.lj~")RRRAmeric3U black duck (A. rubripe.r)Mottled duckNol"<strong>the</strong>rn pintail (A. acuul)(A. crecca)Arne-riCin Wigeon (1\, americana)Nm<strong>the</strong>rn shoveler (A,Redhead (Aythya americana)Ritlil·neckl~ duckGreater scaup (A. marifa) W RLe.~rscaup(A. affinis) W ~ . U • C C . CA.commori"gotdeneye{liiICepliiJa"c!tiitgI41iifW""":""'"''''''''--''''':" ""':' """"":""""'::-""':""':"""":"""'Ir'""":Bufflehead (8. albeola) W R R RW .. R RcContinued.324


Appendix Table A·22. Concluded.Appendix~ 'g "0 ..c::.a(I'l §g 0 :2~(I'ltil sl;I)~0 e 0~~ ~ ~.I:>:~ £ ...Species ~l:..c::0l;I)White·winged sooter (Melanitta deglandl) WSurfscoter (M. perspicillata)WBlack sooter (M. nigra) ~ iBi >! ill~Habitat type b..c::i~~(I'l(I'l~(I'lbtl... ~ l:til~'C::~0 0 I:~ Q., ~l;I) ~ ~ l;I) &, l;I) l;I) u~ga~ ~0Common merganser (Mergus merganser)Red-breasteda P =Pennanent Resident; S(visitor); andb A =Abundant; C =Common; U =Unoommon; and R =Rare.Appendix Table A-23. Aquatic habitat distribution, relative abundance, and seasonal occurrence <strong>of</strong>birds <strong>of</strong>prey in <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> watershed (adaptedfrom Layne et al. 1977, T/1978c).Habitat types b__.§peci~ ~tatusa Lakes Ponds Springs Streams CoastalShort e~red owl (Asi<strong>of</strong>lammeus) W RBald eagle (Haliaeetus leucocephalus) W U U U UNor<strong>the</strong>rn harrier (Circus cyaneus) W_. . .__._. _._._..__.__.._. ....-f__ ~Osprey (Pandion haliaetus) P U U UPeregrine falcon (Falco peregrinus) W RMerlin (F. columbarius) W RAmerican kestrel (F. sparverius)-----Vr----------·_---·-------····------·--------"-"......·-·_"--------_...·---_·-·C---(Sou<strong>the</strong>ast) American kestrel(F. sparverius paulus) PMagnificent frigatebird(Fregata magnificens) P Ra P = Pennanent resident; W = Winter resident (visitor).b C =Common; U = Uncommon; and R =Rare.325RUU


<strong>Tampa</strong> <strong>Bay</strong> ecological <strong>Characterization</strong>Appendix Table A~24. Wetlond habitat distribution. relative abundance. and seasOfra[ occurrence <strong>of</strong> birdsprey in <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> water.wu!d(adapted/rom Layne 1977. Tl1.978c).SpeciesCOlnlnc)n bam owl (l"to alba)PA~tem screech owl (Oew 4Vt(»(A<strong>the</strong>na c,.nlcukuiajlorlt,iana)\\'IIIiHabitat tYPe b't:l 't:l .ci t ~ ~ ~§'=' ~a: ""I ~ )~ ~ j e:1! siii~u ,; ~'d~ J:J l It Iii 8- ~PPPPsW/Xl V)Barred owl (Strlx varia) pee C * - - - -§ii;;iewi"'owr'(ASiO'~teU3r""'"'''''''''''''''0''''''''''''''''''''''' '""',,1""'''''''''.''''''''''''''''''''''''''''''''''''''.'-'''''''''''''---"'-''''''''--'-''''-''''''-'ii-'-'''''''''---''''''''''''Turkey vultum (ea/harter (Ma) P CPCu u u u u UR(RfAftrhamu,r s(»ciabilLr pillmbeu.'i) PR R~t!~~t",~(!lY::!).',,,,,,, "," ,,,,,,~W,.. ",~~".,~~,,, .•••.,,,,,,,.~~,,,,,•..,,,,,..:.,.,.*,,.,.,,,,.:".,.,",.".,,,.~"'''''''",.,,'",,.,::,,''',.,, ..,''''''''',:,,..,pROO·caiJed hawk (lJutIU» jm,liflicen.ds) P Up CCBm&f·wiule(f'i)UStK>rt·ttilled hawk (fJ" !:mlChyuru.s')P RRWR.cNortbem hamer (Circw C)ltV'lftllJ')camcardPeregrine falcon (l


AppendixAppendix Table A-25. Terrestrial habitat distribution, relative abundance, and seasonal occurrence <strong>of</strong>birds <strong>of</strong>prey in <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> watershed (adaptedfrom Layne etal. 1977, T1 1978c).SpeciesTerrestrial habitat type bgECommon barn owl (Tyto alba) P U UEastern screech owl (Oms asio) P C C C CGreat homed owl (Bubo virginianus) P C C C(Florida )Burrowing Owl(A<strong>the</strong>na cuniculariafloridana) P UBarred owl (Strix varia) P C C CShort eared owl (Asi<strong>of</strong>lamm.eus) W RTurkey vulture(Cathartes aura) P C A C C CBlack vulture (Coragyps atratus) P C A C _._-_.._-----C CAmerican swallow-tailed kite(Elanoidesforjicatus) S U U U UMississippi kite (1ctinia mississippiensis) W R R R R RSharp-shinned hawk (Accipiter striatus) W U U UCooper's hawk (A. cooperii) P U U URed-tailed hawk (Buteo jamaicensis) P U U U U URed-shouldered hawk (B. lineatus) P C C C C CBroad-winged hawk (B. platypterus) W U URough-legged hawk (B.lagopus) W R RNor<strong>the</strong>rn harrier (Circus cyaneus) W C C CCrested caracara (Polyborus plancus) P R R RAmerican kestrel (Falco sparverius) W C C(Sou<strong>the</strong>ast) American kestrel(F. sparverius paulus) P U Ua P =Pennanent resident; S =Summer resident (visitor); W =Winter resident (visitor).b A =Abundant; C =Common; U =Uncommon; and R =Rare.~..c::E~Il)1?Jl~327


<strong>Tampa</strong> <strong>Bay</strong> ecological <strong>Characterization</strong>Appendix 1ableA *26, Habitat dLvtribution., relati:vt abulUumce, andseasonal occurrence <strong>of</strong>probing shorebirdsin. <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> water.fhed (adapted/rorn Layne et ai, 1977, Tl1978c).SpeciesRuddy turnstone interpres)American wood.oock (StYJlopaxs minor)(Numen.iu.s americanus)Whiimbl'el (N. phtUUJpus)cuusee foomote CC CccRUpCordlnued.c328


AppendixAppendix Table A-26. Concluded.~00 .c::Species c.. ~Oapper rail (Rallus longirostris)(Florida) Oapper rail (R.longirostris scottii) fVirginia rail (R.limicola)Sora (Porzana c.arolinq)Yellow rail (Coturnicops noveboracensis)Black rail (LateraIlusjamaicensis)American oystercatcher (Haematopus palliatus) .Common ringed plover (Charadrius hiaticula)Semipalmated plover (c. semipalmatus)~~~Habitat typeb~en ea.>"'"S'G ~~en en.... en~ '8 ·2~~e~ If1U') \.L. Ui Ui Ui 0PPWWwPPAcSWUURRuURR'"' ~C'Il bOfij sgj ~CCUURRRc.. (3~l~!.~lover (C. melodus)(Cuban) Snowy plover(c. alexandrinus tenuirostris) P RWilson's plover (C. wi/sonia) P - - - - - - - --;-C.-__KIlIdeer(C:~voCife;:ii.~yr·--~--'·-----'·_-----------pC-----C- --:-----.-.-C----.::----:-----:-.Lesser golden-plover (Pluvialis dominica) M RBlack-bellied plover (P. squatarola) P R Ca P=Permanent Resident; S =Swnmer Resident (visitor); W=Winter Resident (visitor); M=Migrant; andAc = Accidental (vagrant).b A =Abundant; C =Common; U =Uncommon; and R=Rare.c rare in mixed hardwood wetlands and swamp brushlandd rare in dry prairiese also common in mangrove wetlandsf also common in mangrove wetlandsg also uncommon in dry brushlandRCUU1t1329


<strong>Tampa</strong> <strong>Bay</strong> EcclJogJctl.l cttalrac!erh~tk.nApJ;'etmU Table A*27, dil;lribulian, ff!lt:;lti'llt~ (JblU~J!lm('e, i:IJ'1d !;i!?(I.~'{)fUJJ Ilrl"IJP,.j.,'I"U','bird-fin thtt<strong>Tampa</strong> <strong>Bay</strong> wfltcnihl'dl (adaptedjr(1tn 14)'1UtRRUccARURAA330


AppendixAppendix Table A-28. Terrestrial habitatdistribution and relative abundance <strong>of</strong>mammals known orexpected tooccur in <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> watershed (Layne etal.1977, TI1978c).Habitat types aSpeciesVirginia opossum (Didelphis virginiana)Sou<strong>the</strong>rn short-tailed shrew (Blarina carolinensis)Least shrew (Cryptotis parva)Eastern mole (Sea/opus aquaticus)Sou<strong>the</strong>astern myotis (Myotis austroriparius)Big brown bat (Eptesicusfuscus)Red bat (Lasiurus borealis)Seminole bat (L. seminalus)Nor<strong>the</strong>rn yellow bat (L. intermedius)Evening bat (Nycticeius humeralis)Rafinesque's big-eared bat (Plecotus rafinesquii)Nine-banded annadillo(Dasypus novemcinctus)bMarsh rabbit (Sylvilagus palustris)Eastern cottontail rabbit (S.floritianus)Black-tailed jack rabbit (Lepus californicus)bGray squirrel (Sciurus carolinensis)Sherman's fox squirrel (S. niger shermani)Sou<strong>the</strong>rn flying squirrel (Glaucomys volans)Sou<strong>the</strong>astern pocket gopher (Geomys pinetus)Marsh rice rat (Oryzomys pa/ustris)Eastern harvest mouse (Reithrodontomys humulis)Oldfield mouse (Peromyscus polionotus)Cotton mouse (P. gossypinus)Florida mouse (P.jloridanus)Golden mouse (Ochrotomys nutta/li)Hispid cotton rat (Sigmodon hispidus)Eastern woodrat (Neotomajloridana)House mouse (Mus musculus)b .Coyote (Canis latrans)bRed fox (Vulpes vulpes)bGray fox (Urocyon cinereoargenteus)Florida blackbear(Ufsus'americanusjl<strong>of</strong>idanus).!!.l 1€ '2 ~ Il.>~ is::C is::cU C AU C Uu C CU U CX XR CU UURRUU A AU C UU C CRUR::::::::::::::::>~:::::>~::::"''','.~jij~uI.1)


332


AppendixAppendix Table A-29. Wetland habitat distribution and relative abundance <strong>of</strong>mammals known or expected tooccur in <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> watershed (Layne et at. 1977; Tl1978c).Habitat typesaSpeciesVirginia opossum (Didelphis virginiana)Sou<strong>the</strong>astern shrew (Sorex longirostris)Sou<strong>the</strong>rn short-tailedEastern mole (Scalopus aquaticus)Sou<strong>the</strong>asternaw'troirimuiu~\")uu'g "'t:liiI i ~.r::~ te '"'& ~ Q.~~Q.~ ... ~~i~~ ca 0u V) rt V) u~~E~.r::~~C UBig brown bat (Eptesicusfusc~'i)Red batHoary (L.Rafmesque's big-eared bat (Plecom'i rafinesquii)free-tailedMarsh rabbit (Sylvilagus palustris)Eastern cottontailgraySherman's fox squirrel (S. niger shermani)Sou<strong>the</strong>rnCCC(Ochrotomys nuttalli)Round-tailed muskrat (Nt~<strong>of</strong>i,beralleni)NutriaURRed fox (Vulpes vulpes)bRaccoon (Procyon lotor)Horida long-tailed weasel (Mustelafrenata peninsulae)UCContinued.333


Appendix Table A~29.Concluded.SpeciesRc Ram. X II:: SWUS Unknown.Appendix Tobie Aquatic habi«u tJi:;tribltlilm and relative abluu/ance <strong>of</strong>mmnmaLf kmJWn ortt'(ptiCuJd l(J occur in <strong>the</strong> <strong>Tampa</strong> <strong>Bay</strong> watershed (l..aylIC et aJ..1971; ff 1971k).Spttdes~ ~~l CI)R R R RR R~U U U C

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!