Novel genetic and epigenetic alterations in ... - Ous-research.no

Novel genetic and epigenetic alterations in ... - Ous-research.no Novel genetic and epigenetic alterations in ... - Ous-research.no

ous.research.no
from ous.research.no More from this publisher
11.07.2015 Views

Neoplasia Vol. 10, No. 7, 2008 RAS Signaling in Colorectal Carcinomas Ahlquist et al. 685Some studies indicate an indirect interaction between RASSF1Aand KRAS through RASSF5 (previously annotated NORE1A)[12], whereas others argue for a direct binding between RASSF1Aand activated, farnesylated, KRAS [11]. Previous studies have alsoincluded RASSF1A when analyzing the impact of KRAS and BRAFmutations in colorectal tumorigenesis [13,15,16,40], and none ofthem found any co-occurrence between RASSF1A methylation andBRAF or KRAS mutation, in line with the present finding.When adding the data of the fourth component, NF1, of the RASsignaling pathway, we found that more than 70% of the sampleshad a hyperactive RAS signaling. As the effect of RASSF1A onRAS signaling is still unclear, the eight samples with the sole alterationbeing hypermethylation may not be important for an overactiveRAS signaling pathway. When we exclude the RASSF1A datafrom the combined analysis, 62% (40/65) of the samples had anoveractive RAS signaling network, all due to KRAS or BRAF mutations,as the sample with the NF1 missense mutations overlappedwith BRAF mutation. If we include the NF1 changes potentially affectingthe splicing, 77% of the tumors have a dysregulation of theRAS signaling pathway.In conclusion, we show that the RAS signaling network is extensivelydysregulated in colorectal carcinomas as more than 70% of thetumors have an alteration in one or more of the four components.References[1] Fang JY and Richardson BC (2005). The MAPK signalling pathways and colorectalcancer. Lancet Oncol 6, 322–327.[2] Hanahan D and Weinberg RA (2000). The hallmarks of cancer. Cell 100,57–70.[3] Santos E, Martin-Zanca D, Reddy EP, Pierotti MA, Della PG, and Barbacid M(1984). Malignant activation of a K-ras oncogene in lung carcinoma but not innormal tissue of the same patient. Science 223, 661–664.[4] Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J,Woffendin H, Garnett MJ, Bottomley W, et al. (2002). Mutations of the BRAFgene in human cancer. Nature 417, 949–954.[5] Cichowski K and Jacks T (2001). NF1 tumor suppressor gene function: narrowingthe GAP. Cell 104, 593–604.[6] Martin GA, Viskochil D, Bollag G, McCabe PC, Crosier WJ, Haubruck H,Conroy L, Clark R, O’Connell P, and Cawthon RM (1990). The GAP-relateddomain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell63, 843–849.[7] Xu GF, Lin B, Tanaka K, Dunn D, Wood D, Gesteland R, White R, Weiss R,and Tamanoi F (1990). The catalytic domain of the neurofibromatosis type 1 geneproduct stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell63, 835–841.[8] Fahsold R, Hoffmeyer S, Mischung C, Gille C, Ehlers C, Kucukceylan N,Abdel-Nour M, Gewies A, Peters H, Kaufmann D, et al. (2000). Minor lesionmutational spectrum of the entire NF1 gene does not explain its high mutabilitybut points to a functional domain upstream of the GAP-related domain. Am JHum Genet 66, 790–818.[9] Li Y, Bollag G, Clark R, Stevens J, Conroy L, Fults D, Ward K, Friedman E,Samowitz W, and Robertson M (1992). Somatic mutations in the neurofibromatosis1 gene in human tumors. Cell 69, 275–281.[10] Dammann R, Li C, Yoon JH, Chin PL, Bates S, and Pfeifer GP (2000). Epigeneticinactivation of a RAS association domain family protein from the lungtumour suppressor locus 3p21.3. Nat Genet 25, 315–319.[11] Donninger H, Vos MD, and Clark GJ (2007). The RASSF1A tumor suppressor.J Cell Sci 120, 3163–3172.[12] Hesson LB, Cooper WN, and Latif F (2007). The role of RASSF1A methylationin cancer. Dis Markers 23, 73–87.[13] Harada K, Hiraoka S, Kato J, Horii J, Fujita H, Sakaguchi K, and Shiratori Y(2007). Genetic and epigenetic alterations of Ras signalling pathway in colorectalneoplasia: analysis based on tumour clinicopathological features. Br J Cancer97, 1425–1431.[14] McIntyre A, Summersgill B, Spendlove HE, Huddart R, Houlston R, andShipley J (2005). Activating mutations and/or expression levels of tyrosinekinase receptors GRB7, RAS, and BRAF in testicular germ cell tumors. Neoplasia7, 1047–1052.[15] Oliveira C, Velho S, Domingo E, Preto A, Hofstra RM, Hamelin R, YamamotoH, Seruca R, and Schwartz S Jr (2005). Concomitant RASSF1A hypermethylationand KRAS/BRAF mutations occur preferentially in MSI sporadic colorectalcancer. Oncogene 24, 7630–7634.[16] Miranda E, Destro A, Malesci A, Balladore E, Bianchi P, Baryshnikova E,Franchi G, Morenghi E, Laghi L, Gennari L, et al. (2006). Genetic and epigeneticchanges in primary metastatic and nonmetastatic colorectal cancer. Br JCancer 95, 1101–1107.[17] Lothe RA, Peltomäki P, Meling GI, Aaltonen LA, Nystrom-Lahti M, PylkkanenL, Heimdal K, Andersen TI, Moller P, and Rognum TO (1993). Genomic instabilityin colorectal cancer: relationship to clinicopathological variables andfamily history. Cancer Res 53, 5849–5852.[18] Meling GI, Lothe RA, Børresen AL, Hauge S, Graue C, Clausen OP, andRognum TO (1991). Genetic alterations within the retinoblastoma locus incolorectal carcinomas. Relation to DNA ploidy pattern studied by flow cytometricanalysis. Br J Cancer 64, 475–480.[19] De Luca A, Schirinzi A, Buccino A, Bottillo I, Sinibaldi L, Torrente I, CiavarellaA, Dottorini T, Porciello R, Giustini S, et al. (2004). Novel and recurrent mutationsin the NF1 gene in Italian patients with neurofibromatosis type 1. HumMutat 23, 629.[20] Koul S, Houldsworth J, Mansukhani MM, Donadio A, McKiernan JM, ReuterVE, Bosl GJ, Chaganti RS, and Murty VV (2002). Characteristic promoterhypermethylation signatures in male germ cell tumors. Mol Cancer 1, 8.[21] De Luca A, Bottillo I, Dasdia MC, Morella A, Lanari V, Bernardini L, DivonaL, Giustini S, Sinibaldi L, Novelli A, et al. (2007). Deletions of NF1 gene andexons detected by multiplex ligation-dependent probe amplification. JMedGenet 44, 800–808.[22] Wang Q, Montmain G, Ruano E, Upadhyaya M, Dudley S, Liskay RM,Thibodeau SN, and Puisieux A (2003). Neurofibromatosis type 1 gene as amutational target in a mismatch repair–deficient cell type. Hum Genet 112,117–123.[23] Alotaibi H, Ricciardone MD, and Ozturk M (2008). Homozygosity at variantMLH1 can lead to secondary mutation in NF1, neurofibromatosis type I andearly onset leukemia. Mutat Res 637, 209–214.[24] Cawkwell L, Lewis FA, and Quirke P (1994). Frequency of allele loss ofDCC, p53, RBI, WT1, NF1, NM23 and APC/MCC in colorectal cancerassayed by fluorescent multiplex polymerase chain reaction. Br J Cancer 70,813–818.[25] Leggett B, Young J, Buttenshaw R, Thomas L, Young B, Chenevix-Trench G,Searle J, and Ward M (1995). Colorectal carcinomas show frequent allelic losson the long arm of chromosome 17 with evidence for a specific target region.Br J Cancer 71, 1070–1073.[26] Forbes S, Clements J, Dawson E, Bamford S, Webb T, Dogan A, Flanagan A,Teague J, Wooster R, Futreal PA, et al. (2006). COSMIC 2005. Br J Cancer94, 318–322.[27] De Luca A, Buccino A, Gianni D, Mangino M, Giustini S, Richetta A, DivonaL, Calvieri S, Mingarelli R, and Dallapiccola B (2003). NF1 gene analysis basedon DHPLC. Hum Mutat 21, 171–172.[28] Upadhyaya M, Han S, Consoli C, Majounie E, Horan M, Thomas NS, Potts C,Griffiths S, Ruggieri M, von Deimling A, et al. (2004). Characterization of thesomatic mutational spectrum of the neurofibromatosis type 1 (NF1) geneinneurofibromatosis patients with benign and malignant tumors. Hum Mutat23, 134–146.[29] Perucho M (1996). Cancer of the microsatellite mutator phenotype. Biol Chem377, 675–684.[30] Ĉaĉev T, Radosevic S, Spaventi R, Pavelic K, and Kapitanovic S (2005). NF1gene loss of heterozygosity and expression analysis in sporadic colon cancer. Gut54, 1129–1135.[31] Dhillon AS, Hagan S, Rath O, and Kolch W (2007). MAP kinase signallingpathways in cancer. Oncogene 26, 3279–3290.[32] Kawasaki T, Nosho K, Ohnishi M, Suemoto Y, Kirkner GJ, Fuchs CS, andOgino S (2007). IGFBP3 promoter methylation in colorectal cancer: relationshipwith microsatellite instability, CpG island methylator phenotype, and p53.Neoplasia 9, 1091–1098.[33] Shen L, Toyota M, Kondo Y, Lin E, Zhang L, Guo Y, Hernandez NS, Chen X,Ahmed S, Konishi K, et al. (2007). Integrated genetic and epigenetic analysis

686 RAS Signaling in Colorectal Carcinomas Ahlquist et al. Neoplasia Vol. 10, No. 7, 2008identifies three different subclasses of colon cancer. Proc Natl Acad Sci USA 104,18654–18659.[34] Higuchi T and Jass JR (2004). My approach to serrated polyps of the colorectum.J Clin Pathol 57, 682–686.[35] Jass JR (2005). Serrated adenoma of the colorectum and the DNA-methylatorphenotype. Nat Clin Pract Oncol 2, 398–405.[36] Kambara T, Simms LA, Whitehall VL, Spring KJ, Wynter CV, Walsh MD,Barker MA, Arnold S, McGivern A, Matsubara N, et al. (2004). BRAF mutationis associated with DNA methylation in serrated polyps and cancers of thecolorectum. Gut 53, 1137–1144.[37] Makinen MJ (2007). Colorectal serrated adenocarcinoma. Histopathology 50,131–150.[38] Wynter CV, Walsh MD, Higuchi T, Leggett BA, Young J, and Jass JR (2004).Methylation patterns define two types of hyperplastic polyp associated with colorectalcancer. Gut 53, 573–580.[39] Goel A, Nagasaka T, Arnold CN, Inoue T, Hamilton C, Niedzwiecki D, ComptonC, Mayer RJ, Goldberg R, Bertagnolli MM, et al. (2007). The CpG islandmethylator phenotype and chromosomal instability are inversely correlated insporadic colorectal cancer. Gastroenterology 132, 127–138.[40] Derks S, Postma C, Moerkerk PT, van den Bosch SM, Carvalho B, HermsenMA, Giaretti W, Herman JG, Weijenberg MP, de Bruine AP, et al. (2006). Promotermethylation precedes chromosomal alterations in colorectal cancer development.Cell Oncol 28, 247–257.

686 RAS Signal<strong>in</strong>g <strong>in</strong> Colorectal Carc<strong>in</strong>omas Ahlquist et al. Neoplasia Vol. 10, No. 7, 2008identifies three different subclasses of colon cancer. Proc Natl Acad Sci USA 104,18654–18659.[34] Higuchi T <strong>and</strong> Jass JR (2004). My approach to serrated polyps of the colorectum.J Cl<strong>in</strong> Pathol 57, 682–686.[35] Jass JR (2005). Serrated ade<strong>no</strong>ma of the colorectum <strong>and</strong> the DNA-methylatorphe<strong>no</strong>type. Nat Cl<strong>in</strong> Pract Oncol 2, 398–405.[36] Kambara T, Simms LA, Whitehall VL, Spr<strong>in</strong>g KJ, Wynter CV, Walsh MD,Barker MA, Ar<strong>no</strong>ld S, McGivern A, Matsubara N, et al. (2004). BRAF mutationis associated with DNA methylation <strong>in</strong> serrated polyps <strong>and</strong> cancers of thecolorectum. Gut 53, 1137–1144.[37] Mak<strong>in</strong>en MJ (2007). Colorectal serrated ade<strong>no</strong>carc<strong>in</strong>oma. Histopathology 50,131–150.[38] Wynter CV, Walsh MD, Higuchi T, Leggett BA, Young J, <strong>and</strong> Jass JR (2004).Methylation patterns def<strong>in</strong>e two types of hyperplastic polyp associated with colorectalcancer. Gut 53, 573–580.[39] Goel A, Nagasaka T, Ar<strong>no</strong>ld CN, I<strong>no</strong>ue T, Hamilton C, Niedzwiecki D, ComptonC, Mayer RJ, Goldberg R, Bertag<strong>no</strong>lli MM, et al. (2007). The CpG isl<strong>and</strong>methylator phe<strong>no</strong>type <strong>and</strong> chromosomal <strong>in</strong>stability are <strong>in</strong>versely correlated <strong>in</strong>sporadic colorectal cancer. Gastroenterology 132, 127–138.[40] Derks S, Postma C, Moerkerk PT, van den Bosch SM, Carvalho B, HermsenMA, Giaretti W, Herman JG, Weijenberg MP, de Bru<strong>in</strong>e AP, et al. (2006). Promotermethylation precedes chromosomal <strong>alterations</strong> <strong>in</strong> colorectal cancer development.Cell Oncol 28, 247–257.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!