11.07.2015 Views

The CKM matrix and the Kobayashi-Maskawa mechanism - Physics

The CKM matrix and the Kobayashi-Maskawa mechanism - Physics

The CKM matrix and the Kobayashi-Maskawa mechanism - Physics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1ContentsA <strong>The</strong> facilities 11 <strong>The</strong> B-factories . . . . . . . . . . . . . . . . . . . . . 12 <strong>The</strong> detectors <strong>and</strong> collaborations . . . . . . . . . . . 13 Datataking <strong>and</strong> Monte Carlo production summary . 1B Tools <strong>and</strong> methods 14 Multivariate methods <strong>and</strong> analysis optimization . . . 15 Charged particle identification . . . . . . . . . . . . 16 Vertexing . . . . . . . . . . . . . . . . . . . . . . . . 17 B-meson reconstruction . . . . . . . . . . . . . . . .518 B-Flavor tagging . . . . . . . . . . . . . . . . . . . . 19 Background discrimination for B-decays . . . . . . . 110 Mixing <strong>and</strong> time-dependent analyses . . . . . . . . . 111 Maximum likelihood fitting . . . . . . . . . . . . . . 112 Angular analysis . . . . . . . . . . . . . . . . . . . . 113 Dalitz analysis . . . . . . . . . . . . . . . . . . . . . 114 Blind analysis . . . . . . . . . . . . . . . . . . . . . . 115 Systematic error estimation . . . . . . . . . . . . . . 1C <strong>The</strong> results <strong>and</strong> <strong>the</strong>ir interpretation 116 <strong>The</strong> <strong>CKM</strong> <strong>matrix</strong> <strong>and</strong> <strong>the</strong> <strong>Kobayashi</strong>-<strong>Maskawa</strong> <strong>mechanism</strong>. . . . . . . . . . . . . . . . . . . . . . . . . . 116.1 Historical Background . . . . . . . . . . . . . 1516.2 CP Violation <strong>and</strong> Baryogenesis . . . . . . . . 216.3 CP Violation in a lagrangian field <strong>the</strong>ory . . . 316.4 <strong>The</strong> <strong>CKM</strong> <strong>matrix</strong> . . . . . . . . . . . . . . . . 316.5 <strong>The</strong> Unitarity Triangle . . . . . . . . . . . . . 416.6 CP violation phenomenology . . . . . . . . . . 517 B-physics . . . . . . . . . . . . . . . . . . . . . . . . 617.1 V ub <strong>and</strong> V cb . . . . . . . . . . . . . . . . . . . 617.2 V td <strong>and</strong> V ts . . . . . . . . . . . . . . . . . . . . 617.3 Hadronic B to charm decays . . . . . . . . . . 617.4 Charmless B decays . . . . . . . . . . . . . . . 617.5 B-meson lifetimes, mixing, EPR correlations,<strong>and</strong> symmetry violation searches . . . . . . . . 617.6 φ 1, or β . . . . . . . . . . . . . . . . . . . . . 617.7 φ 2, or α . . . . . . . . . . . . . . . . . . . . . 617.8 φ 3, or γ . . . . . . . . . . . . . . . . . . . . . . 617.9 Radiative <strong>and</strong> electroweak penguin decays . . 63017.10 Leptonic decays, <strong>and</strong> B → D (∗) τν . . . . . . . 617.11 Rare, exotic, <strong>and</strong> forbidden decays . . . . . . . 617.12 Baryonic B decays . . . . . . . . . . . . . . . 618 Quarkonium physics . . . . . . . . . . . . . . . . . . 618.1 Conventional charmonium . . . . . . . . . . . 618.2 Exotic charmonium-like states . . . . . . . . . 618.3 Bottomonium . . . . . . . . . . . . . . . . . . 619 Charm physics . . . . . . . . . . . . . . . . . . . . . 619.1 Charmed meson decays . . . . . . . . . . . . . 619.2 D-mixing <strong>and</strong> CP violation . . . . . . . . . . . 619.3 Charmed meson spectroscopy . . . . . . . . . 619.4 Charmed baryon spectroscopy <strong>and</strong> decays . . 620 Tau physics . . . . . . . . . . . . . . . . . . . . . . . 621 QED <strong>and</strong> initial state radiation studies . . . . . . . . 622 Two-photon physics . . . . . . . . . . . . . . . . . . 623 Υ (5S) physics . . . . . . . . . . . . . . . . . . . . . . 624 QCD-related physics . . . . . . . . . . . . . . . . . . 63524.1 Fragmentation . . . . . . . . . . . . . . . . . . 624.2 Pentaquark searches . . . . . . . . . . . . . . . 610202525 Global interpretation . . . . . . . . . . . . . . . . . . 625.1 Global <strong>CKM</strong> fits . . . . . . . . . . . . . . . . . 625.2 Benchmark “new physics” models . . . . . . . 626 Glossary of terms . . . . . . . . . . . . . . . . . . . . 6Chapter 16<strong>The</strong> <strong>CKM</strong> <strong>matrix</strong> <strong>and</strong> <strong>the</strong><strong>Kobayashi</strong>-<strong>Maskawa</strong> <strong>mechanism</strong>Editors:Adrian Bevan <strong>and</strong> Soeren Prell (BABAR)Boštjan Golob <strong>and</strong> Bruce Yabsley (Belle)Thomas Mannel (<strong>the</strong>ory)16.1 Historical Background<strong>The</strong> beginning of modern flavour physics was marked by<strong>the</strong> discovery of strange particles. <strong>The</strong>ir decays into nonstrangeparticles had lifetimes too long to be classified asstrong decays: this led to <strong>the</strong> introduction of <strong>the</strong> strangenessquantum number, which is conserved in strong decays butmay change in a weak decay. In turn, <strong>the</strong> small couplingstrength of strangeness-changing processes, compared tostrangeness-conserving processes, eventually led to <strong>the</strong> parameterizationof quark mixing by Cabibbo (1963). Inmodern language this implies that <strong>the</strong> up quark u couplesto a rotated combination d cos θ C + s sin θ C of <strong>the</strong> downquark d <strong>and</strong> <strong>the</strong> strange quark s. <strong>The</strong> value θ C ∼ 13 ◦for <strong>the</strong> Cabibbo angle explained <strong>the</strong> observed pattern ofbranching ratios in baryon decays.Experiments at that time only probed <strong>the</strong> three lightestquarks, <strong>and</strong> <strong>the</strong>re was no known reason for <strong>the</strong> branchingfraction of <strong>the</strong> flavour changing neutral current (FCNC)decay K + → π + l + l − to be extremely suppressed with respectto <strong>the</strong> charged current decay K + → π 0 l + ν. <strong>The</strong>resolution of this puzzle was found by Glashow, Iliopoulos,<strong>and</strong> Maiani (1970): one includes <strong>the</strong> charm quark, with<strong>the</strong> same quantum number as <strong>the</strong> up quark, but couplingto <strong>the</strong> orthogonal combination −d sin θ C + s cos θ C .FCNC processes are suppressed by this “GIM <strong>mechanism</strong>”.In fact, FCNC’s in <strong>the</strong> kaon system involve a transitionof an s quark into a d quark. This can be achievedby two successive charged current processes involving (in<strong>the</strong> two-family picture) ei<strong>the</strong>r <strong>the</strong> up or <strong>the</strong> charm quarkas an intermediate state. Taking Cabibbo mixing into account,<strong>the</strong>se amplitudes areA(s → d) = A(s → u → d) + A(s → c → d)= sin θ C cos θ C [f(m u ) − f(m c )]. (16.1.1)Hence, if <strong>the</strong> up <strong>and</strong> charm quark masses were degenerate,K 0 − K 0 mixing <strong>and</strong> o<strong>the</strong>r kaon FCNC processes wouldnot occur.However, <strong>the</strong> up <strong>and</strong> charm masses are not degenerate<strong>and</strong> thus K 0 − K 0 mixing can occur. Neglecting <strong>the</strong> small


2up-quark mass, <strong>the</strong> mixing amplitude turns out to beA(K → K) ∝ sin 2 θ C cos 2 θ C . m2 cMW2 . (16.1.2)suppression factors of <strong>the</strong> form<strong>CKM</strong> Factor × 116π 2 m 2 t − m 2 uM 2 W(16.1.3)40455055606570758085This implies that a mass difference ∆m K appears in <strong>the</strong>neutral kaon system. From this mass difference (an expressionanalogous to Eq. (??)) Gaillard <strong>and</strong> Lee (1974) couldextract <strong>the</strong> prediction that <strong>the</strong> charm-quark mass shouldbe about m c ∼ 1.5 GeV, <strong>and</strong> it was one of <strong>the</strong> great triumphsof particle physics when narrow resonances withmasses of about 3 GeV were discovered a few monthslater (Aubert et al., 1974; Augustin et al., 1974): <strong>the</strong>sewere identified as cc bound states. This discovery completed<strong>the</strong> second particle family <strong>and</strong> introduced a 2 × 290quark mixing <strong>matrix</strong> into <strong>the</strong> phenomenology of weak interactions.Almost ten years before <strong>the</strong> discovery of charm, CPviolation was observed in <strong>the</strong> study of rare kaon decaysby Christenson, Cronin, Fitch, <strong>and</strong> Turlay (1964). Thiseffect is difficult to accommodate for two families, but anextension to three families yields a natural way to accountfor CP violation. <strong>The</strong> “six-quark model” was proposed by<strong>Kobayashi</strong> <strong>and</strong> <strong>Maskawa</strong> (1973), extending Cabibbo’s 2×2quark mixing <strong>matrix</strong> into <strong>the</strong> 3 × 3 Cabibbo-<strong>Kobayashi</strong>-<strong>Maskawa</strong> (<strong>CKM</strong>) <strong>matrix</strong>. <strong>The</strong> GIM <strong>mechanism</strong> for <strong>the</strong> sixquark model is implemented by <strong>the</strong> unitarity of <strong>the</strong> <strong>CKM</strong><strong>matrix</strong>.While <strong>the</strong> observation of decays K 0 L→ 2π meant thatCP was violated, <strong>the</strong> data at that time only required CPviolation in mixing (see Sec. 16.6 for <strong>the</strong> classification ofCP -violating effects). <strong>The</strong> observed strength of CP violationin mixing, ε K ≃ 2.3 × 10 −3 , was consistent with <strong>the</strong> 100<strong>Kobayashi</strong>-<strong>Maskawa</strong> (KM) <strong>mechanism</strong>. However, this didnot constitute a proof that <strong>the</strong> KM <strong>mechanism</strong> was really<strong>the</strong> origin of <strong>the</strong> observed CP violation; <strong>the</strong> measurementof <strong>the</strong> single parameter ε K could not be used to test <strong>the</strong>KM <strong>mechanism</strong>. Such a test was performed for <strong>the</strong> first 105time by <strong>the</strong> measurement of sin 2φ 1 (sin 2β) at <strong>the</strong> B Factories.Without this, alternative explanations of <strong>the</strong> originof ε K were still possible.(One such explanation was offered by <strong>the</strong> superweakmodel of Wolfenstein (1964), where CP violation was dueto a new, very weak four-fermion interaction that changedstrangeness by 2 units (∆S = 2). However, this possibilitywas ruled out by <strong>the</strong> observation of direct CP violationin K L → ππ decays, Re(ε ′ K /ε K) = (1.65 ± 0.26) × 10 −3(Alavi-Harati et al., 1999; Burkhardt et al., 1988; Fantiet al., 1999).)After <strong>the</strong> discovery of <strong>the</strong> bottom quark <strong>and</strong> <strong>the</strong> τlepton <strong>the</strong> third generation remained incomplete, since <strong>the</strong>top quark turned out to be quite heavy. <strong>The</strong> first hintof <strong>the</strong> large top-quark mass was <strong>the</strong> discovery of B 0 −oscillations by ARGUS (Albrecht et al., 1987). <strong>The</strong>measured ∆m d implied a heavy top with a mass m t above50−70 GeV, if <strong>the</strong> st<strong>and</strong>ard six quark model was assumed 115(Bigi <strong>and</strong> S<strong>and</strong>a, 1987; Ellis, Hagelin, <strong>and</strong> Rudaz, 1987).B 0In fact, if <strong>the</strong> top mass had been significantly smaller,ARGUS could not have observed B 0 −B 0 oscillations. <strong>The</strong>GIM <strong>mechanism</strong> for down-type quarks leads generally to95110<strong>and</strong> hence <strong>the</strong> GIM suppression for <strong>the</strong> bottom quark ismuch weaker than in <strong>the</strong> up-quark sector, where <strong>the</strong> correspondingfactor is<strong>CKM</strong> Factor × 1 m 2 b − m2 d16π 2 . (16.1.4)M 2 WHence FCNC decays of B-mesons have branching ratiosin <strong>the</strong> measurable region, while FCNC processes for D-mesons are heavily suppressed.16.2 CP Violation <strong>and</strong> BaryogenesisParticle physics experiments of <strong>the</strong> past thirty years haveconfirmed <strong>the</strong> st<strong>and</strong>ard model (SM) even at <strong>the</strong> quantumlevel, including quark mixing <strong>and</strong> CP violation. However,<strong>the</strong> observed matter-antimatter asymmetry of <strong>the</strong> universeindicates that <strong>the</strong>re must be additional sources ofCP violation, since <strong>the</strong> amount of CP violation impliedby <strong>the</strong> <strong>CKM</strong> <strong>mechanism</strong> is insufficient to create <strong>the</strong> observedmatter-antimatter asymmetry.In fact, <strong>the</strong> excess of baryons over antibaryons in <strong>the</strong>universe∆ = n B − n B(16.2.1)is presumably non-zero, but still small compared to <strong>the</strong>number of photons: <strong>the</strong> ratio is measured to be ∆/n γ ∼10 −10 . Although it is conceivable that <strong>the</strong>re might be regionsin <strong>the</strong> universe consisting of antimatter, just as ourneighborhood consists of matter, no <strong>mechanism</strong> is knownwhich could, from <strong>the</strong> Big Bang, produce regions of matter(or antimatter) as large as we observe today.<strong>The</strong> conditions under which a non-vanishing ∆ canemerge dynamically from <strong>the</strong> symmetric situation ∆ =0 have been discussed by Sakharov (1967). He identifiedthree ingredients1. <strong>The</strong>re must be baryon number violating interactionsH eff (∆B ≠ 0) ≠ 0.2. <strong>The</strong>re must be CP violating interactions. If CP wereunbroken, <strong>the</strong>n we would have for every process i → fmediated by H eff (∆B ≠ 0) <strong>the</strong> CP conjugate one with<strong>the</strong> same probabilityΓ (i → f) = Γ (i → f) (16.2.2)which would erase any matter-antimatter asymmetry.3. <strong>The</strong> universe must have been out of <strong>the</strong>rmal equilibrium.Under <strong>the</strong> assumption of locality, causality, <strong>and</strong>Lorentz invariance, CP T is conserved. Since in an equilibriumstate time becomes irrelevant on <strong>the</strong> globalscale, CP T reduces to CP , <strong>and</strong> <strong>the</strong> argument of point2 applies.


120125130135140145150155In order to illustrate <strong>the</strong> first two Saharov conditions,we employ a very simplistic example. Assume that in <strong>the</strong>early universe, <strong>the</strong>re was a particle X that could decay toonly two final states |f 1 〉 <strong>and</strong> |f 2 〉, with baryon numbersN (1)B<strong>and</strong> N(2)Brespectively, <strong>and</strong> decay ratesΓ (X → f 1 ) = Γ 0 r <strong>and</strong> Γ (X → f 2 ) = Γ 0 (1 − r) ,(16.2.3)where Γ 0 is <strong>the</strong> total width of X. Taking <strong>the</strong> CP conjugate,<strong>the</strong> particle X decays to <strong>the</strong> state f 1 with baryon number−N (1)B <strong>and</strong> f 2 with baryon number −N (2)B; <strong>the</strong> rates areΓ (X → f 1 ) = Γ 0 r <strong>and</strong> Γ (X → f 2 ) = Γ 0 (1 − r),160(16.2.4)where Γ 0 is <strong>the</strong> same as for X due to CP T invariance.<strong>The</strong> overall change ∆N B in baryon number inducedby <strong>the</strong> decay of an equal number of X <strong>and</strong> X particles is∆N B = rN (1)(2) (1)B+ (1 − r)NB− rNB()= (r − r) N (1)B − N (2)B− (1 − r)N(2)B(16.2.5)Thus ∆N B ≠ 0 means that we have to have CP violation(r ≠ r) <strong>and</strong> a violation of baryon number (N (1)B ≠ N (2)B ),illustrating <strong>the</strong> first two conditions.165Sakharov’s paper remained mostly unnoticed until <strong>the</strong>first formulation of Gr<strong>and</strong> Unified <strong>The</strong>ories (GUTs). In<strong>the</strong>se <strong>the</strong>ories, for <strong>the</strong> first time, all <strong>the</strong> necessary ingredientswere present. In particular, baryon number violationappears naturally since quarks <strong>and</strong> leptons appear in <strong>the</strong> 170same multiplets of <strong>the</strong> GUT symmetry group. Fur<strong>the</strong>rmore,<strong>the</strong>re are additional sources of CP violation, <strong>and</strong> aphase transition takes place at <strong>the</strong> scale M GUT , which hasto be quite high to prevent proton decay.One may also consider electroweak baryogenesis. <strong>The</strong>electroweak interaction provides CP violation through <strong>the</strong><strong>CKM</strong> <strong>mechanism</strong>, <strong>and</strong> <strong>the</strong> electroweak phase transitionhas been thoroughly studied. <strong>The</strong> first ingredient is alsopresent, as <strong>the</strong> current corresponding to baryon numberis conserved only at <strong>the</strong> classical level: electroweak quantumeffects violate baryon number, but still conserve <strong>the</strong>difference B − L of baryon <strong>and</strong> lepton number. However,although all <strong>the</strong> ingredients are present, this cannot explain∆. In particular, <strong>the</strong> <strong>CKM</strong> CP violation is too smallby several orders of magnitude.Given <strong>the</strong> firm evidence for non-vanishing neutrinomasses, <strong>the</strong>re could be new sources of CP violation in <strong>the</strong>lepton sector, <strong>and</strong> even (although <strong>the</strong>re is no evidence forthis as yet) lepton-number violation. This could lead toviolation of baryon number via leptogenesis, with <strong>the</strong> surplusof leptons transferred to <strong>the</strong> baryonic sector through(B − L)-conserving interactions.In any case, an additional source(s) of CP violation isneeded, beyond <strong>the</strong> phase of <strong>the</strong> <strong>CKM</strong> <strong>matrix</strong>, in order toexplain <strong>the</strong> matter-antimatter asymmetry of <strong>the</strong> universe.<strong>The</strong> search for this new interaction is one of <strong>the</strong> mainmotivations for flavor-physics experiments.16.3 CP Violation in a lagrangian field <strong>the</strong>ory<strong>The</strong> SM is formulated as a quantum field <strong>the</strong>ory based ona Lagrangian derived from symmetry principles. To thisend, <strong>the</strong> (hermitian) Lagrangian of <strong>the</strong> SM is given interms of scalar operators O i with couplings a iL(x) = ∑ )(a i O i (x) + a ∗ i O † i (x) , (16.3.1)iwhere <strong>the</strong> O i are composed of <strong>the</strong> SM quark, lepton, <strong>and</strong>gauge fields. It is straightforward to verify that CP conservationimplies that all couplings a i can be made realby suitable phase redefinitions of <strong>the</strong> fields composing <strong>the</strong>O i . In turn, CP is violated in a lagrangian field <strong>the</strong>ory if<strong>the</strong>re is no choice of phases that renders all a i real.In <strong>the</strong> SM <strong>the</strong>re are in principle two sources of CPviolation. <strong>The</strong> so-called “strong CP violation” originatesfrom special features of <strong>the</strong> QCD vacuum, resulting in acontribution of <strong>the</strong> formL strong CP = θ α s8π Gµν,a ˜Ga µν (16.3.2)where G µν ( ˜G µν ) is <strong>the</strong> (dual) field strength of <strong>the</strong> gluonfield. This term is P <strong>and</strong> CP violating due to its pseudoscalarnature. However, experimentally it turns out that<strong>the</strong> coupling parameter θ is extremely small; <strong>the</strong> reasonfor this has not yet been discovered. This is known as <strong>the</strong>“strong CP problem” (see for example Cheng, 1988; Kim<strong>and</strong> Carosi, 2010); we shall ignore this in what follows bysetting θ = 0.<strong>The</strong> second source of CP violation is <strong>the</strong> <strong>CKM</strong> <strong>matrix</strong>.It turns out that all terms in <strong>the</strong> SM Lagrangian are CPinvariant except for <strong>the</strong> charged current interaction termH cc =g √2(uL c L t L)V<strong>CKM</strong> γ µ ⎛3⎝ d LsL ⎠ W µ + . (16.3.3)bL⎞Under a CP transformation we have⎛( )uL c L t L V<strong>CKM</strong> γ µ ⎝ d LsL ⎠ W µ + (16.3.4)⎞bL⎛CP−→ ( )d L s L b L VT<strong>CKM</strong> γ µ ⎝ u ⎞LcLtL⎠ W − µ (16.3.5)<strong>and</strong> hence <strong>the</strong> combination H cc +H † cc appearing in <strong>the</strong> SMlagrangian is CP invariant, ifV T <strong>CKM</strong> = V † <strong>CKM</strong> or V <strong>CKM</strong> = V ∗ <strong>CKM</strong>. (16.3.6)This statement refers to a specific phase convention for<strong>the</strong> quark fields; in general terms it means that in <strong>the</strong>CP -invariant case, <strong>the</strong> <strong>CKM</strong> <strong>matrix</strong> can be made real byan appropriate phase redefinition of <strong>the</strong> quark fields.


417518018519019520016.4 <strong>The</strong> <strong>CKM</strong> <strong>matrix</strong><strong>The</strong> <strong>CKM</strong> <strong>matrix</strong> V <strong>CKM</strong> appearing in (16.3.3) is explicitlywritten as⎛V <strong>CKM</strong> = ⎝ V ⎞ud V us V ubV cd V cs V cb⎠ . (16.4.1)V td V ts V tbV <strong>CKM</strong> =Here <strong>the</strong> V ij are <strong>the</strong> couplings of quark mixing transitionsfrom an up-type quark i = u, c, t to a down-type quarkj = d, s, b.205In <strong>the</strong> SM <strong>the</strong> <strong>CKM</strong> <strong>matrix</strong> is unitary by construction.Using <strong>the</strong> freedom of phase redefinitions for <strong>the</strong> quarkfields, <strong>the</strong> <strong>CKM</strong> <strong>matrix</strong> has (n − 1) 2 physical parametersfor <strong>the</strong> case of n families. Out of <strong>the</strong>se, n(n − 1)/2 are(real) rotation angles, <strong>and</strong> ((n − 3)n + 2)/2 are phases,which induce CP violation. For n = 2, no CP violationis possible, while for n = 3 a single phase appears. Thisis <strong>the</strong> unique source of CP violation in <strong>the</strong> SM, once <strong>the</strong>possibility of strong CP violation is ignored.<strong>The</strong> <strong>CKM</strong> <strong>matrix</strong> for 3 families may be represented bythree rotations <strong>and</strong> a <strong>matrix</strong> generating <strong>the</strong> phase⎡U 12 = ⎣ c ⎤12 s 12 0−s 12 c 12 0 ⎦ ,0 0 1210⎡U 13 = ⎣ c ⎤13 0 s 130 1 0 ⎦ ,−s 13 0 c 13⎡U 23 = ⎣ 1 0 0⎤0 c 23 s 23⎦ ,0 −s 23 c 23⎡U δ = ⎣ 1 0 0⎤0 1 0 ⎦ , (16.4.2)0 0 e −iδ13where c ij = cos θ ij , s ij = sin θ ij , <strong>and</strong> δ is <strong>the</strong> complexphase responsible for CP violation; by convention <strong>the</strong> mixingangles θ ij are chosen to lie in <strong>the</strong> first quadrant so that<strong>the</strong> s ij <strong>and</strong> c ij are positive. <strong>The</strong>n (Chau <strong>and</strong> Keung, 1984)V <strong>CKM</strong> = U 23 U † δ U 13U δ U 12⎛⎞c 12c 13 s 12c 13 s 13e −iδ= ⎝ −s 12c 23 − c 12s 23s 13e iδ c 12c 23 − s 12s 23s 13e iδ s 23c 13⎠ ;s 12s 23 − c 12c 23s 13e iδ −c 12s 23 − s 12c 23s 13e iδ c 23c 13(16.4.3)this is <strong>the</strong> representation used by <strong>the</strong> PDG (Nakamura,2010).<strong>The</strong> elements of <strong>the</strong> <strong>CKM</strong> <strong>matrix</strong> exhibit a pronouncedhierarchy. While <strong>the</strong> diagonal elements are close to unity,<strong>the</strong> off-diagonal elements are small, such that e.g. V ud ≫V us ≫ V ub . In terms of <strong>the</strong> angles θ ij we have θ 12 ≫θ 23 ≫ θ 13 . This fact is usually expressed in terms of <strong>the</strong>Wolfenstein parameterization (Wolfenstein, 1983), whichcan be understood as an expansion in λ = |V us |. It readsup to order λ 3⎛⎝1 − λ 2 /2 λ Aλ 3 (ρ − iη)−λ 1 − λ 2 /2 Aλ 2Aλ 3 (1 − ρ − iη) −Aλ 2 1⎞⎠ + O(λ 4 ).(16.4.4)<strong>The</strong> parameters A, ρ <strong>and</strong> η are assumed to be of orderone. When using this parameterization, one has to keepin mind that unitarity is satisfied only up to order λ 4 . Asit turns out that both ρ <strong>and</strong> η are also of order λ, <strong>the</strong>extension to higher orders becomes non-trivial, <strong>and</strong> onehas to consider redefining <strong>the</strong> parameters accordingly; thishas been studied by Ahn, Cheng, <strong>and</strong> Oh (2011).One can obtain an exact parameterization of <strong>the</strong> <strong>CKM</strong><strong>matrix</strong> in terms of A, λ, ρ, <strong>and</strong> η, for example, by following<strong>the</strong> convention of Buras, Lautenbacher, <strong>and</strong> Ostermaier(1994), whereλ = s 12 , (16.4.5)A = s 23 /λ 2 , (16.4.6)Aλ 3 (ρ − iη) = s 13 e −iδ , (16.4.7)<strong>and</strong> substituting Eqs (16.4.5) through (16.4.7) into Eq. (16.4.3),<strong>and</strong> noting that sin 2 θ = 1 − cos 2 θ. Such a parametrizationis described in Sec. ?? to illustrate CP violation in<strong>the</strong> charm sector.Sometimes a slightly different convention for <strong>the</strong> Wolfensteinparameters is used, with parameters denoted ρ <strong>and</strong> η.<strong>The</strong>se parameters are defined (Buras, Lautenbacher, <strong>and</strong>Ostermaier, 1994; Charles et al., 2005) such thatρ + iη = − V udVub∗V cd Vcb∗ . (16.4.8)<strong>The</strong> difference with <strong>the</strong> parameterization defined aboveappears only at higher orders in <strong>the</strong> Wolfenstein expansion;<strong>the</strong> relation between <strong>the</strong> two schemes is√1 − A2 λρ + iη = (ρ + iη) √ 41 − λ2 [1 − A 2 λ 4 (ρ + iη)] . (16.4.9)16.5 <strong>The</strong> Unitarity Triangle<strong>The</strong> unitarity relations V <strong>CKM</strong> · V † <strong>CKM</strong> = 1 <strong>and</strong> V † <strong>CKM</strong> ·V <strong>CKM</strong> = 1 yield six independent relations correspondingto <strong>the</strong> off-diagonal zeros in <strong>the</strong> unit <strong>matrix</strong>. <strong>The</strong>y representtriangles in <strong>the</strong> complex plane; each triangle has <strong>the</strong>same area, reflecting <strong>the</strong> fact that (with three families)<strong>the</strong>re is only one irreducible phase. A non-trivial triangle— one with angles o<strong>the</strong>r than 0 or π — indicates CP violation,proportional to <strong>the</strong> triangles’ common area. Bigi<strong>and</strong> S<strong>and</strong>a (2000) provide a detailed discussion of <strong>the</strong> varioustriangles, <strong>the</strong>ir interpretation, <strong>and</strong> <strong>the</strong> possibilities toprobe <strong>the</strong>m. Only two triangles have sides of comparablelength, which means that <strong>the</strong>y are of <strong>the</strong> same order in


5215220225230235240245<strong>the</strong> Wolfenstein parameter λ. <strong>The</strong> corresponding relationsareV ud Vub ∗ + V cd Vcb ∗ + V td Vtb ∗ = 0 (16.5.1)V ud Vtd ∗ + V us Vts ∗ + V ub Vtb ∗ = 0. (16.5.2)Inserting <strong>the</strong> Wolfenstein parameterization, both relationsturn out to be identical, up to terms of order λ 5 ; <strong>the</strong> apexof <strong>the</strong> unitarity triangle is given by <strong>the</strong> coordinate (ρ, η).<strong>The</strong> three sides of this triangle (Fig. 16.5.1) — usually referredto as “<strong>the</strong>” <strong>CKM</strong> triangle — control semi-leptonic<strong>and</strong> non-leptonic B d transitions, including B d − B d oscillations.Due to <strong>the</strong> sizeable angles, one expects large250CP asymmetries in B decays in <strong>the</strong> SM; this was actuallyrealized before <strong>the</strong> discovery of “long” B lifetimes.__(,)V td V*V ud Vub2= V VV cd V* cdcb(0,0) = 3*tb*cb = Fig. 16.5.1. <strong>The</strong> Unitarity Triangle.<strong>The</strong> angles of <strong>the</strong> unitarity triangle are defined as1(1,0)φ 1 = β ≡ arg [−V cd Vcb/V ∗td Vtb] ∗ , (16.5.3)φ 2 = α ≡ arg [−V td Vtb/V ∗ud Vub] ∗ , (16.5.4)φ 3 = γ ≡ arg [−V ud Vub/V ∗cd Vcb] ∗255, (16.5.5)where this definition is independent of <strong>the</strong> specific phasechoice expressed in (16.4.3). Different notation conventionshave been used in <strong>the</strong> literature for <strong>the</strong>se angles.260In particular <strong>the</strong> BABAR experiment has used α, β, <strong>and</strong>γ, whereas <strong>the</strong> Belle experiment has reported results interms of φ 1 , φ 2 , <strong>and</strong> φ 3 . We use <strong>the</strong> latter for brevitywhen discussing results in later sections.<strong>The</strong> SM allows us to construct “<strong>the</strong>” <strong>CKM</strong> triangleby its angles or its sides or any combinations of <strong>the</strong>m.Any discrepancy between <strong>the</strong> observed <strong>and</strong> predicted valuesindicates a manifestation of dynamics beyond <strong>the</strong> SM.Clearly this requires a good control of experimental <strong>and</strong><strong>the</strong>oretical uncertainties, both in <strong>the</strong>ir CP sensitive <strong>and</strong>insensitive rates.Measurements of <strong>the</strong> magnitudes of <strong>CKM</strong> <strong>matrix</strong> elementsV ub <strong>and</strong> V cb can be found in Section 17.1, <strong>and</strong>measurements of V td <strong>and</strong> V ts in Section 17.2. Measurementsof <strong>the</strong> angles φ 1 , φ 2 , <strong>and</strong> φ 3 are discussed in Sections17.6, 17.7, <strong>and</strong> 17.8 respectively. It is possible toperform global fits, using data from many decay processes<strong>and</strong> <strong>the</strong>oretical input from Lattice QCD calculations, toover-constrain our knowledge of <strong>the</strong> <strong>CKM</strong> <strong>mechanism</strong> in 265<strong>the</strong> determination of <strong>the</strong> apex of <strong>the</strong> triangle. <strong>The</strong>se globalfits are discussed in Chapter 25, both in <strong>the</strong> context of <strong>the</strong>SM (Section 25.1) <strong>and</strong> allowing for physics beyond <strong>the</strong> SM(Section 25.2).16.6 CP violation phenomenologySince CP violation is due to irreducible phases of couplingconstants, it becomes observable through interference effects.<strong>The</strong> simplest example is an amplitude consisting oftwo distinct contributionsA f = λ 1 〈f|O 1 |B〉 + λ 2 〈f|O 2 |B〉 (16.6.1)where λ 1,2 are (complex) coupling constants (in our casecombinations of <strong>CKM</strong> <strong>matrix</strong> elements) <strong>and</strong> 〈f|O 1,2 |B〉are <strong>matrix</strong> elements of interaction operators between <strong>the</strong>initial <strong>and</strong> final state.<strong>The</strong> CP conjugate is <strong>the</strong> process B → f, yieldingA f= λ ∗ 1〈f|O † 1 |B〉 + λ∗ 2〈f|O † 2 |B〉. (16.6.2)<strong>The</strong> <strong>matrix</strong> elements of O (†)1,2 involve only strong interactions,which we assume to be CP -invariant. Hence we have〈f|O † 1 |B〉 = 〈f|O 1|B〉 <strong>and</strong> 〈f|O † 2 |B〉 = 〈f|O 2|B〉.(16.6.3)Thus for <strong>the</strong> CP asymmetry we findΓ (B → f) − Γ (B → f)A CP (B → f) ≡Γ (B → f) + Γ (B → f)(16.6.4)∝ 2 Im[λ 1 λ ∗ 2] Im[〈f|O 1 |B〉〈f|O 2 |B〉 ∗ ].Consequently, in order to create CP violation, <strong>the</strong>re hasto be — aside from <strong>the</strong> “weak phase” due to <strong>the</strong> complexphases of <strong>the</strong> <strong>CKM</strong> <strong>matrix</strong> — also a “strong phase”, i.e.a phase difference between <strong>the</strong> <strong>matrix</strong> elements 〈f|O 1 |B〉<strong>and</strong> 〈f|O 2 |B〉. In <strong>the</strong> SM <strong>the</strong>se two contributions correspondto different diagram topologies. In many cases, onecan identify tree-level contributions which carry different<strong>CKM</strong> factors compared to penguin contributions. CP violation<strong>the</strong>n emerges from <strong>the</strong> interference of “trees” <strong>and</strong>“penguins”.For a quantum-coherent pair of neutral B-mesons (like<strong>the</strong> color-singlet B 0 B 0 pair from Υ (4S) decay) <strong>the</strong> timeevolution generates a phase difference ∆m ∆t, which actslike <strong>the</strong> strong phase difference between <strong>the</strong> amplitudesfor B → f <strong>and</strong> for B → B → f. Hence we make use of<strong>the</strong> time-dependent CP asymmetryA B→fCP (∆t) ≡ Γ (B0 (∆t) → f) − Γ (B 0 (∆t) → f)Γ (B 0 (∆t) → f) − Γ (B 0 (∆t) → f)(16.6.5)= S B→f sin (∆m d ∆t) − C B→f cos (∆m d ∆t) .(16.6.6)<strong>The</strong> derivation (see <strong>the</strong> discussion in Chapter 10 leadingto Eq. (??)) neglects <strong>the</strong> small lifetime difference ∆Γ in<strong>the</strong> B d system; <strong>the</strong> expressions for S <strong>and</strong> C can be foundin Eqs (??) <strong>and</strong> (??).


6270275280We may distinguish three different types of CP violationaccording to <strong>the</strong> various sources from which itemerges. CP violation in decays stems from different ratesfor a process <strong>and</strong> for its CP conjugate: hence we have|A f /A f | ≠ 1. This contribution leads to C B→f ≠ 0: it isalready present at ∆t = 0, <strong>and</strong> remains in time-integratedmeasurements. Indirect CP violation, sometimes referredto as direct CP violation, emerges from mixing in caseswhere we have |p/q| ̸= 1; 1 one observable related to thisis <strong>the</strong> semileptonic decay asymmetry a SL . Finally, mixinginducedCP violation occurs for Imλ ≠ 0, in which caseinterference of <strong>the</strong> amplitudes B → f <strong>and</strong> B → B → fleads to CP violation.In <strong>the</strong> B d system we have to a very good approximationqp = exp(−2iφ 1) . (16.6.7)This follows from Eq. (??) <strong>and</strong> by inspection of <strong>the</strong> boxdiagram contributing to <strong>the</strong> B d mixing (Fig. ??), fromwhich it can be seen that <strong>the</strong> <strong>CKM</strong> <strong>matrix</strong> elements appearingin <strong>the</strong> amplitude yield φ M12 = 2φ 1 . Hence in allcases where A = A, we find |λ| = 1 <strong>and</strong> Imλ = − sin(2φ 1 ),leading toC B→f = 0 <strong>and</strong> S B→f = − sin(2φ 1 ). (16.6.8)This holds for <strong>the</strong> gold-plated mode B → J/ψK s where<strong>the</strong>re is no relative weak phase between A <strong>and</strong> A. However,if <strong>the</strong>re appears a relative weak phase in <strong>the</strong> decayamplitudes, <strong>the</strong>n we may still have |A| = |A| <strong>and</strong> hence|λ| = 1, <strong>and</strong> thus no direct CP violation. For example,<strong>the</strong> tree amplitude in B → ππ carries a weak phase e −iφ3which (neglecting penguin contributions) would lead toλ = exp(−2i(φ 1 + φ 3 )) = exp(+2iφ 2 ). (16.6.9)However, <strong>the</strong> penguin contribution in B → ππ cannot beneglected; in particular it leads to |λ| ̸= 1 <strong>and</strong> to directCP violation in <strong>the</strong>se decays.In general we have <strong>the</strong> “unitarity relation” between<strong>the</strong> quantities S B→f <strong>and</strong> C B→f ,(CB→f ) 2+(SB→f ) 2= 1 −(DB→f ) 2≤ 1 (16.6.10)285whereD B→f =2 Reλ1 + |λ| 2 . (16.6.11)However, in <strong>the</strong> limit of vanishing lifetime difference <strong>the</strong>time-dependent CP asymmetry does not depend on D B→f ,<strong>and</strong> hence a direct measurement of this quantity in <strong>the</strong> B dsystem is difficult.1 For a definition of <strong>the</strong> quantities p, q, <strong>and</strong> λ, we refer toChapter 10, where time evolution is considered.


290295300305310315320325330335Bibliography: BaBar PublicationsBibliography: Belle PublicationsBibliographyAhn, Cheng, <strong>and</strong> Oh 2011:Y. Ahn, H.-Y. Cheng, <strong>and</strong> S. Oh.350“An extension oftribimaximal lepton mixing”. Phys.Rev. D84, 113007(2011). doi:10.1103/PhysRevD.84.113007. 20 pages <strong>and</strong>8 figures, Accepted in Phys.Review D, 1107.4549.Alavi-Harati et al. 1999:355A. Alavi-Harati et al. “Observation of direct CPviolation in K S,L → ππ decays”. Phys.Rev.Lett.83, 22–27 (1999). doi:10.1103/PhysRevLett.83.22.hep-ex/9905060.Albrecht et al. 1987:360H. Albrecht et al. “Observation of B 0 B 0 Mixing”.Phys. Lett. B192, 245 (1987). doi:10.1016/0370-2693(87)91177-4.Aubert et al. 1974:J. J. Aubert et al.365“Experimental Observation of aHeavy Particle J”. Phys. Rev. Lett. 33, 1404–1406(1974). doi:10.1103/PhysRevLett.33.1404.Augustin et al. 1974:J. E. Augustin et al. “Discovery of a Narrow Resonancein e + e − 370Annihilation”. Phys. Rev. Lett. 33, 1406–1408(1974). doi:10.1103/PhysRevLett.33.1406.Bigi <strong>and</strong> S<strong>and</strong>a 1987:I. I. Y. Bigi <strong>and</strong> A. I. S<strong>and</strong>a. “From a New Smellto a New Flavor: B d -B d Mixing, CP Violation <strong>and</strong>New <strong>Physics</strong>”. Phys. Lett. B194, 307 (1987).375doi:10.1016/0370-2693(87)90548-X.Bigi <strong>and</strong> S<strong>and</strong>a 2000:I. I. Y. Bigi <strong>and</strong> A. I. S<strong>and</strong>a. “CP violation”. Camb.Monogr. Part. Phys. Nucl. Phys. Cosmol. 9, 1–382(2000).380Buras, Lautenbacher, <strong>and</strong> Ostermaier 1994:A. J. Buras, M. E. Lautenbacher, <strong>and</strong> G. Ostermaier.“Waiting for <strong>the</strong> top quark mass, K + →π + νν, Bs 0 − ¯B s 0 mixing <strong>and</strong> CP asymmetries in B385decays”. Phys. Rev. D50, 3433–3446 (1994). doi:10.1103/PhysRevD.50.3433. hep-ph/9403384.Burkhardt et al. 1988:H. Burkhardt et al. “First Evidence for Direct CP Violation”.Phys.Lett. B206, 169 (1988). doi:10.1016/0370-3902693(88)91282-8.Cabibbo 1963:N. Cabibbo. “Unitary Symmetry <strong>and</strong> Leptonic Decays”.Phys. Rev. Lett. 10, 531–533 (1963). doi:10.1103/PhysRevLett.10.531.395Charles et al. 2005:J. Charles et al. “CP violation <strong>and</strong> <strong>the</strong> <strong>CKM</strong> <strong>matrix</strong>: Assessing<strong>the</strong> impact of <strong>the</strong> asymmetric B factories”. Eur.Phys. J. C41, 1–131 (2005). doi:10.1140/epjc/s2005-34034502169-1. hep-ph/0406184.Chau <strong>and</strong> Keung 1984:L.-L. Chau <strong>and</strong> W.-Y. Keung. “Comments on<strong>the</strong> Parametrization of <strong>the</strong> <strong>Kobayashi</strong>-<strong>Maskawa</strong> Matrix”.Phys.Rev.Lett. 53, 1802 (1984). doi:10.1103/PhysRevLett.53.1802.Cheng 1988:H.-Y. Cheng. “<strong>The</strong> Strong CP Problem Revisited”.Phys.Rept. 158, 1 (1988). doi:10.1016/0370-1573(88)90135-4. Revised version.Christenson, Cronin, Fitch, <strong>and</strong> Turlay 1964:J. H. Christenson, J. W. Cronin, V. L. Fitch, <strong>and</strong>R. Turlay. “Evidence for <strong>the</strong> 2π Decay of <strong>the</strong> K20Meson”. Phys. Rev. Lett. 13, 138–140 (1964). doi:10.1103/PhysRevLett.13.138.Ellis, Hagelin, <strong>and</strong> Rudaz 1987:J. R. Ellis, J. S. Hagelin, <strong>and</strong> S. Rudaz. “Reexaminationof <strong>the</strong> St<strong>and</strong>ard Model in <strong>the</strong> Light of B Meson Mixing”.Phys. Lett. B192, 201 (1987). doi:10.1016/0370-2693(87)91168-3.Fanti et al. 1999:V. Fanti et al. “A New measurement of direct CPviolation in two pion decays of <strong>the</strong> neutral kaon”.Phys.Lett. B465, 335–348 (1999). doi:10.1016/S0370-2693(99)01030-8. hep-ex/9909022.Gaillard <strong>and</strong> Lee 1974:M. K. Gaillard <strong>and</strong> B. W. Lee. “Rare Decay Modesof <strong>the</strong> K-Mesons in Gauge <strong>The</strong>ories”. Phys. Rev. D10,897 (1974). doi:10.1103/PhysRevD.10.897.Glashow, Iliopoulos, <strong>and</strong> Maiani 1970:S. L. Glashow, J. Iliopoulos, <strong>and</strong> L. Maiani. “Weak Interactionswith Lepton-Hadron Symmetry”. Phys. Rev.D2, 1285–1292 (1970). doi:10.1103/PhysRevD.2.1285.Kim <strong>and</strong> Carosi 2010:J. E. Kim <strong>and</strong> G. Carosi. “Axions <strong>and</strong> <strong>the</strong> Strong CPProblem”. Rev.Mod.Phys. 82, 557–602 (2010). doi:10.1103/RevModPhys.82.557. 47 pages with 32 figures,0807.3125.<strong>Kobayashi</strong> <strong>and</strong> <strong>Maskawa</strong> 1973:M. <strong>Kobayashi</strong> <strong>and</strong> T. <strong>Maskawa</strong>. “CP Violationin <strong>the</strong> Renormalizable <strong>The</strong>ory of Weak Interaction”.Prog.<strong>The</strong>or.Phys. 49, 652–657 (1973). doi:10.1143/PTP.49.652.Nakamura 2010:K. Nakamura. “Review of particle physics”. J.Phys. G37, 075021 (2010). doi:10.1088/0954-3899/37/7A/075021.Sakharov 1967:A. D. Sakharov. “Violation of CP Invariance, C Asymmetry,<strong>and</strong> Baryon Asymmetry of <strong>the</strong> Universe”. PismaZh. Eksp. Teor. Fiz. 5, 32–35 (1967).Wolfenstein 1964:L. Wolfenstein. “Violation of CP Invariance <strong>and</strong> <strong>the</strong>Possibility of Very Weak Interactions”. Phys.Rev.Lett.13, 562–564 (1964). doi:10.1103/PhysRevLett.13.562.Wolfenstein 1983:L. Wolfenstein. “Parametrization of <strong>the</strong> <strong>Kobayashi</strong>-<strong>Maskawa</strong> Matrix”. Phys. Rev. Lett. 51, 1945 (1983).doi:10.1103/PhysRevLett.51.1945.7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!